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Abstract

Graphics Processing Units (GPUs) have become
the leading hardware accelerator for deep learn-
ing applications and are used widely in training
and inference of transformers; transformers have
achieved state-of-the-art performance in many ar-
eas of machine learning and are especially used
in most modern Large Language Models (LLMs).
However, GPUs require large amounts of energy,
which poses environmental concerns, demands
high operational costs, and causes GPUs to be
unsuitable for edge computing. We develop an
accelerator for transformers, namely, Llama 2,
an open-source state-of-the-art LLM, using high
level synthesis (HLS) on Field Programmable
Gate Arrays (FPGAs). HLS allows us to rapidly
prototype FPGA designs without writing code at
the register-transfer level (RTL). We name our
method HLSTransform, and the FPGA designs
we synthesize with HLS achieve up to a 12.75x
reduction and 8.25x reduction in energy used per
token on the Xilinx Virtex UltraScale+ VU9P
FPGA compared to an Intel Xeon Broadwell E5-
2686 v4 CPU and NVIDIA RTX 3090 GPU re-
spectively, while increasing inference speeds by
up to 2.46x compared to CPU and maintaining
0.53x the speed of an RTX 3090 GPU despite the
GPU’s 4 times higher base clock rate. With the
lack of existing open-source FPGA accelerators
for transformers, we open-source our code and
document our steps for synthesis. We hope this
work will serve as a step in democratizing the use
of FPGAs in transformer inference and inspire
research into energy-efficient inference methods
as a whole. The code can be found on GitHub.

*Equal contribution 1Cornell University, Ithaca, NY. Corre-
spondence to: Darren Key <dyk34@cornell.edu>.

1. Introduction
Hardware accelerators have long appeared in comput-
ing (Merritt, 2021) to improve performance compared to
general-purpose CPUs through specialized operations, high
parallelism, and efficient memory systems (Dally et al.,
2020). The use of accelerators for deep learning have
been especially significant to accommodate models that
are rapidly scaling up in size and complexity, such as
transformer-based Large Language Models (LLMs) which
have become increasingly complex with a massive influx of
research following the advent of OpenAI’s ChatGPT. Meta’s
popular Llama 2 model, for instance, is trained on 2 tril-
lion tokens and ranges up to 70 billion parameters (Touvron
et al., 2023a). GPUs are currently the dominant accelera-
tors for general deep learning tasks as they can be easily
leveraged to develop extremely efficient implementations of
parallel basic linear algebra subroutines (BLAS), which are
commonly used in deep learning algorithms. (Xiong & Xu,
2020).

However, the most glaring tradeoff to using GPUs is their
massive demand for power, resulting in high carbon emis-
sions and energy costs. The carbon footprint of training
Llama 2 is officially estimated at 539 tons carbon dioxide
equivalent (Touvron et al., 2023b), which is almost 72x the
amount the average US household produces per year at 7.5
tons (CCFPD). However, while model training takes large
amounts of energy, energy spent running inference on the
model is typically larger; NVIDIA and Amazon estimate
that over 80% of their energy usage for AI models is spent in
inference, and for Google, 60% of their energy usage for AI
models is for inference (McDonald et al., 2022) (Patterson,
2022). Inference dominates emissions in ChatGPT-like ser-
vices from the querying of millions of users, producing 25x
the carbon emissions of GPT-3 (Samsi et al., 2023) (Chien
et al., 2023).

High energy consumption also poses a problem for oper-
ational costs and for edge computing applications. High
energy consumption forces the inference of LLMs and deep
learning models to be mostly allocated to GPU clusters. An
article from Sequoia Capital estimates that for data cen-
ters, the price from energy alone is roughly equal to the
amount spent on buying GPUs (Cahn, 2023). For applica-
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tions requiring real-time inference on the edge, in addition
to monetary reasons, a dedicated GPU is often impractical
as it cannot draw sufficient and sustained power.

While GPU acceleration will likely remain dominant in the
near future despite the power disadvantage, there is value
in exploring different avenues of hardware acceleration as
deep learning tasks continue to diverge into highly specific
applications. Further, as transformers become more and
more ubiquitous, there is a case to be made for designing
model-specific hardware accelerators solely to optimize in-
ference. To that end, Field Programmable Gate Arrays (FP-
GAs) are another desirable choice for accelerators as they
offer a hardware reconfigurable for specific tasks enabled by
a large number of programmable logic gates, making them
inexpensive to iterate hardware designs on. Furthermore,
FPGAs are distinguished for their reduced power consump-
tion, which on average is only 28% of GPUs (Cong et al.,
2018).

What limits the adoption of FPGAs currently is the high
barrier of entry and relative lack of research compared to
GPUs. FPGAs are commonly used to prototype hardware
designs for system-on-chip (SoC) and Application Specific
Integrated Circuit (ASIC), which is typically done on the
register-transfer level (RTL) using hardware description lan-
guages like Verilog. However, the design and verification of
RTL modules are known to be extremely complex and time-
consuming. High Level Synthesis (HLS) is a methodology
that seeks to address that complexity by allowing developers
to write hardware descriptions in more accessible, high-level
languages like C or C++. HLS tools convert high-level code
input into RTL code that optimizes for performance, area,
and energy consumption, leading to faster prototyping and
iteration for FPGAs. Furthermore, the nature of HLS tools
and availability of Vitis C / RTL co-simulation make it sim-
ple to verify the correctness of the synthesized hardware
designs; these factors allow HLS to significantly shorten the
traditional hardware development cycle.

In this literature, we employ HLS tools to design FPGAs for
accelerating Llama 2 inference. In addition to the large GPU
power footprint of LLMs that may be addressed with FP-
GAs, the complex data flow of transformer models (Li et al.,
2020) often comprises of nonlinearities or token encoding
subroutines (such as RoPE) that are difficult to accelerate
on GPUs but could be better suited for FPGAs. Llama 2 is
chosen in particular due to its open-source implementations
and superb performance (Touvron et al., 2023b), making
it a popular and well researched choice. We use Andrej
Karpathy’s llama2.c repository (Karpathy, 2023) to develop
our methods on a relatively small (110M parameters) model
to allow for our financial and compute constraints. We focus
on inference over training due to its higher energy usage
and greater suitability for FPGAs.

In summary, through our methods which we name
HLSTransform, we demonstrate the following:

1. Low power and energy consumption
Energy savings up to a 12.75x reduction of total energy
consumption compared to CPU and an 8.25x reduction
of total energy consumption compared to GPU.

2. Fast inference speeds and low latency
Acceleration up to 2.46x in inference speed in compar-
ison to CPU, and maintaining up to 0.53x in inference
speed in comparison to GPU, despite the GPU having
4x higher base clock rate.

3. Verification of HLS tools for faster deployment
Ensuring HLS tools run properly to synthesize appro-
priate FPGA designs for this study. We also test the
learning curve of the tools for the use of any developer
without extensive hardware backgrounds.

We open-source our code and document our FPGA syn-
thesis to the public, available in our GitHub repo here:
github.com/HLSTransform/submission. To the
best of our knowledge, our model is one of the first open-
source HLS-based implementations for transformers. In
our research process, the lack of documentation for many
steps of the process combined with the absence of existing
open-source FPGA accelerators for transformers served as
a high barrier to entry, and we hope our work serves a step
forward in democratizing the usage and research of FPGAs
for transformer inference.

2. Related Work
We delineate a few studies that relate to FPGA accelerators
for transformers and the application of high level synthesis.

2.1. Existing Hardware Accelerators for Transformers
on FPGA

Existing hardware accelerators for transformers on FPGA
incorporate specialized techniques to optimize performance
on FPGAs. Column Balanced Block Pruning (Peng et al.,
2021) and FTrans (Li et al., 2020) are two novel frameworks
for transformer models suitable for FPGA acceleration. By
incorporating weight pruning to employ sparse matrix mul-
tiplication, these papers are able to achieve multiple folds of
improvements in transformer inference compared to CPUs
and GPUs in terms of performance and energy efficiency.
We instead strive to maintain dense matrix multiplication
in our methods to allow for general application to exist-
ing transformer models. Similarly, NPE (Khan et al., 2021)
introduces a framework for FPGA acceleration on transform-
ers, utilizing piecewise linear approximations for nonlinear
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functions (e.g. softmax and GELU) to achieve speedups.
In contrast, we compute exact values for nonlinear func-
tions. Our methodology allows us to avoid needing to train
FPGA-specific models and avoid potential accuracy trade-
offs associated with these novel pruning or approximation
techniques. The only potential accuracy tradeoffs are from
our usage of quantization, where we follow the well-tested
quantization algorithm “Q8 0”, explored further in Section
3.2.

2.2. hls4ml

We aim to inspire the democratization of FPGA acceler-
ators for deep learning using HLS. Fast Machine Learn-
ing Lab’s hls4ml (Fahim et al., 2021) is an open-source
workflow that enables fast prototyping of machine learning
algorithms via Python for FPGAs (FastML Team, 2023)
(Duarte et al., 2018). hls4ml has been successful in being
one of the first open source HLS tools for deep learning espe-
cially in Python, but a major limitation is its lack of support
for attention layers used in transformer models. The tool
mainly supports convolutional neural networks (CNNs) and
feed-forward deep neural networks (DNNs), but transformer
models like Llama 2 are unique in requiring attention layers
and novel techniques such as Rotary Position Embeddings,
which are not yet supported by this framework.

3. Methods
We follow the same architecture outlined in the original
Llama 2 paper (Touvron et al., 2023a): the standard Trans-
former architecture (Vaswani et al., 2023), rotary posi-
tion embeddings (Su et al., 2021), grouped query atten-
tion (Ainslie et al., 2023), RMS norm for pre-normalization
(Zhang & Sennrich, 2019), and the SwiGlu activation func-
tion (Shazeer, 2020). Since FPGAs are constrained in per-
formance by the amount of on-chip memory, we selected
a small 110M parameter model trained on the TinyStories
dataset to test our designs (Eldan & Li, 2023). We discuss
the limitations of the small model size further in the Lim-
itations and Future Works section. More details on model
architecture are included in the Appendix.

3.1. Implementation

Our implementation of Llama 2 is built on Andrej Karpa-
thy’s llama2.c repository. For our HLS toolchain, we chose
Vitis, as it is both widely used and directly supported by
the FPGAs available to us on AWS. The code is split into
two portions, the host and the kernel. The kernel code
contains the hardware description for one iteration of the
computationally-intensive forward inference pass and is
synthesized for the FPGA, while the host is responsible for
driving the kernel code. The host interfaces with the FPGA
accelerator through the Xilinx Runtime Library (XRT).

Kernel Code 

(C++/Verilog) 

Host Code (C++)

g++ Vitis HLS

Kernel BinaryHost Executable

User Code

Vitis Platform

Xilinx Runtime 

Hardware Platform


Figure 1. Vitis HLS development workflow.

The host sends the input parameters, such as the token and
position to the FPGA via direct memory access (DMA).
The FPGA is responsible for writing the output to a shared-
buffer that can be accessed by both the host and the kernel.
The host reads the output and performs sampling to extract
the next token.

We focus on three HLS optimizations: pipelining, unrolling,
and array partitioning. We also implement software-level op-
timizations; in addition to memory limitations, FPGAs also
have constraints regarding Digital Signal Processor (DSP)
blocks, which are specialized hardware modules within an
FPGA that are optimized for efficient floating point arith-
metic calculations. However, the number of available DSP
blocks is limited and varies depending on the FPGA model;
to address DSP and on-chip memory bottlenecks, we first
quantized the weights from 32-bit (single-precision) IEEE
floating points to 8-bit signed integers.

3.2. Int-8 Quantization

Included in Karpathy’s work, we employ an 8-bit integer
quantized forward pass to run our inference on FPGAs
(Karpathy, 2023). The quantization process is post-training;
i.e. it is independent from model training.

We perform symmetric quantization, scaling each weight
between [-127, 127]. Each weight is divided into sections
of equal size, each of which is quantized by the following
formula, where w here represents a vector of weights in
that section and the square brackets denote the rounding
function.

w = ⌈127 ∗ w

∥w∥∞
⌋

This quantization has been noted to perform well empiri-
cally, used in Georgi Gerganov’s popular GGML library
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for efficient CPU transformer inference and referred to as
“Q8 0” quantization in the library (Gerganov). We quantize
the embedding, attention, and the feedforward weights. The
RMSNorm params, which are sensitive to error, are kept in
float32 precision.

Although quantization leads to decreased model accuracy,
the accuracy dropoff is minimal, and we explore the ef-
fects of quantization in Section 4.1. Quantization allows
for smaller weights, which permits us to better utilize
the limited memory bandwidth on the FPGA and per-
form integer-only calculations, which provides inference
speedups through lower precision arithmetic calculations
(Kim et al., 2021).

3.3. Optimization of Llama 2 Accelerator Using HLS
Pragmas

Pragmas in High-Level Synthesis (HLS) are directives used
to guide the HLS compiler in the process of converting the
high-level code into a hardware description, typically used
when indicating to the compiler that a specific optimization
should be performed on some section of the code.

Pipelining with II = 1

(4 cycle latency)

No pipelining

(6 cycle latency)

RD

RD

RDRD RDRD
RD

EX

EX

EXEX
EX

WR

WR

WRWR
WR

for(int i = 0; i < 2; i++) {

     op_read;

     op_execute;

     op_write;

}

Figure 2. Pipelining two iterations of instructions with read, exe-
cute, and write stages.

3.3.1. PIPELINING

Pipelining HLS is a technique used to enhance the perfor-
mance of hardware circuits generated from high-level code.
This method involves dividing a process into several stages,
each separated by registers. Similar to an assembly line,
pipelining allows different stages of a computation to oc-
cur in parallel but on different sets of data. In HLS, this
means translating high-level programming constructs into
pipelined hardware structures.

For example, in a computation involving multiple arith-
metic operations, HLS can break down these operations
into stages, where each stage performs a part of the com-
putation. By doing so, while one stage is processing one
set of data, the next stage can work on another, leading

to increased throughput. The pipeline pragma is applied
to the main loops responsible for computing matrix-vector
multiplication and rotary position embeddings.

3.3.2. LOOP UNROLLING

Loop unrolling is an optimization technique that increases
the efficiency of hardware implementations derived from
high-level code. This process involves expanding the loop
body multiple times in order to reduce the number of itera-
tions. By doing this, loop unrolling enables the simultaneous
execution of multiple consecutive loop iterations, as long as
there are no intra-loop data dependencies.

In other words, if a loop is executed N times and we un-
roll it M times, the loop body will be replicated M times
within each iteration, thereby reducing the total number
of iterations to N/M . This technique is especially useful
in hardware design because it can lead to more parallel
operations, allowing the hardware to perform more tasks
simultaneously at the cost of chip space.

3.3.3. MEMORY PARTITIONING

The application of HLS partitioning pragmas is a critical
step in the design of the Llama 2 deep learning accelera-
tor. Typically, FPGA BRAM is implemented as a dual-port
memory, which greatly restricts the degree to which code
can be parallelized on chip. By dividing arrays and memory
structures into smaller, independent blocks, different data
segments can be processed in parallel. Memory partitioning
ensures more efficient utilization of the available compu-
tational resources, thereby enhancing the throughput for
matrix multiplication operations, a common bottleneck in
neural network computations.

3.3.4. BURST READS / WRITES OVER AXI4

In general, a dual-port memory bank can support two reads
per cycle. Since global memory cannot be partitioned com-
pletely due to the limitation on the number of memory chan-
nels available to the FPGA, we instead utilize burst reads
and writes into local on-chip buffers. By using a technique
called widening, global memory can be accessed through
dual-port 256-bit wide lines, allowing the simultaneous read
of 64 8-bit integers per cycle. Efficient data transfer between
the FPGA and external memory is essential, given the large
amount of parameters that need to be read from memory
before any computations can begin.

4. Results and Discussion
We evaluate the perplexity, latency, power, and energy con-
sumption of the 110M parameter Llama 2 model across
CPU, GPU, and FPGA. We provide more details of the eval-
uation setup in the Appendix. We run our benchmarks for
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256 tokens and the max context length of 1024 tokens to
test both the short and long text generation domains.

Our FPGA designs were synthesized targeting the Ultra-
scale+ VU9P platform available on AWS, and the synthe-
sized designs were then exported to an Amazon Machine
Image (AMI) using a custom toolchain provided by Ama-
zon (AWS). We use the f1.2xlarge instance from AWS to
host the FPGA, and we use the t2.2xlarge instance for our
CPU benchmarks (8 vCPUs, 2.3 GHz Intel Xeon Broadwell
E5-2686 v4), the same CPUs used in the FPGA instance,
and an NVIDIA RTX 3090 GPU for our GPU benchmarks.
We use the original Llama 2 implementation provided by
Meta for our GPU experiments. We run all samples with
non-batched inference (batch size 1).

While we run benchmarks of FPGA performance against
CPUs and GPUs, we are unable to provide equitable quan-
tized benchmarks for GPUs, as the different scaling factors
per section in the quantization algorithm used would require
specialized kernels to make this efficient. To provide equi-
table comparisons, we also provide perplexity benchmarks,
a common metric for model quality, along with inference
latency and energy consumption benchmarks to demonstrate
minimal tradeoffs to accuracy while fully utilizing the opti-
mized integer-arithmetic abilities of FPGAs.

4.1. Perplexity

We measure perplexity on the validation dataset for TinyS-
tories, for both the quantized and unquantized models of the
110M parameter model; perplexity is a common metric for
model quality that measures a model’s uncertainty about its
predictions. Our experimental setup is detailed further in
the Appendix.

Table 1. PERPLEXITY (LOWER IS BETTER)

MODEL AVERAGE PERPLEXITY (PPL) ↓
QUANTIZED 110M 2.9679
UNQUANTIZED 110M 2.9667
UNQUANTIZED 42M 3.1810

The quantized model is able to retain nearly identical levels
of performance (0.04% increase in perplexity) as the un-
quantized model while utilizing integer only computations.
We include the perplexity benchmark for a 42 million pa-
rameter model as reference, which is 7.22% higher than the
unquantized 110 million parameter model.

4.2. Latency and Speed

We measure inference latency in milliseconds and inference
speed in tokens per second. Similar to NPE, an existing
hardware accelerator for FPGAs, we obtain our timing re-

sults from the system simulations (Khan et al., 2021), and
we provide a report of our full timings in the Appendix.

Table 2. INFERENCE SPEED (TOKENS PER SECOND)

HARDWARE 256 TOKENS ↑ 1024 TOKENS ↑
CPU 23.21 TOKS/S 19.63 TOKS/S
GPU 107.00 TOKS/S 107.24 TOKS/S
FPGA 57.11 TOKS/S 57.11 TOKS/S

Table 3. INFERENCE LATENCY (MILLISECONDS)

HARDWARE 256 TOKENS ↓ 1024 TOKENS ↓
CPU 43.08 MS 50.94 MS
GPU 9.34 MS 9.32 MS
FPGA 17.51 MS 17.51 MS

According to Table 2, the FPGA is 2.46x the inference speed
of CPU and 0.53x the inference speed of GPU.

Although the GPU performs inference faster than the FPGA,
one of the primary bottlenecks of deep learning inference is
memory bandwidth and the availability of on-chip memory
(Balasubramanian et al., 2021). A RTX 3090 has 24GB
VRAM running at 1219 MHz with a base core clock of 1395
MHz (TechPowerUp, 2024). In comparison, a VU9P FPGA
has 345.9 MB of combined on-chip BRAM and URAM,
running at a much slower clock speed of around 200-300
MHz depending on the module; however, with much lower
clock speeds, the FPGA is able to achieve better efficiency
on power and energy consumption, as shown below.

4.3. Energy and Power Consumption

We utilize the CodeCarbon library, also used by Hugging-
Face to provide carbon estimations for the BLOOM LLM, to
provide energy consumption metrics for CPU and GPU per-
formance (Heikkiläarchive, 2022) (Workshop et al., 2022)
(Courty et al., 2023). For GPU benchmarks, CodeCar-
bon sources energy consumption directly from NVIDIA’s
NVML library. For the AWS CPU benchmarks, energy
consumption cannot be directly sourced since AWS uses hy-
pervisors, and CodeCarbon uses an estimation derived from
empirical energy consumption data (Courty et al., 2023).

As CodeCarbon does not handle FPGA energy consumption
measurement, energy consumption metrics for FPGA is
provided by Vivado and AWS provided tools (AWS).

The average power consumption of the FPGA is consider-
ably lower than the average power consumption for both
CPU and GPU. For 256 tokens, the average FPGA power
consumption achieves a 4.72x reduction in the average
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Table 4. POWER CONSUMPTION ON FPGA (WATTS)

FPGA 256 TOKENS ↓ 1024 TOKENS ↓
AVERAGE 9 W 9 W
MAX 12 W 11 W

Table 5. AVERAGE POWER CONSUMPTION (WATTS)

HARDWARE 256 TOKENS ↓ 1024 TOKENS ↓
CPU 42.5 W 42.5 W
GPU 126.9 W 130.6 W
FPGA 9 W 9 W

power consumption of the CPU, and a 14.10x reduction
in the average power consumption of the GPU. For 1024
tokens, the FPGA achieves a 14.51x reduction of the power
consumption of the GPU, reaching a maximum of only 12
watts.

To calculate the total energy consumption, we need the
duration of inference; therefore we introduce a new metric,
the total energy consumption per token, calculated by using
the inference latency and average power consumption. We
measure the energy consumption per token in milliwatt
hours per token.

Table 6. TOTAL ENERGY CONSUMPTION (MILLIWATT HOUR PER

TOKEN, MWH/TOK)

HARDWARE 256 TOKENS ↓ 1024 TOKENS ↓
CPU 0.51 MWH/TOK 0.60 MWH/TOK
GPU 0.33 MWH/TOK 0.34 MWH/TOK
FPGA 0.04 MWH/TOK 0.04 MWH/TOK

For 256 tokens, the FPGA reaches a 12.75x reduction in
energy consumption over the CPU and 8.25x reduction in
energy consumption over the GPU, while for 1024 tokens,
the FPGA achieves a 15x reduction over the CPU and a 8.5x
reduction over the GPU. Through HLSTransform, we are
able to achieve high savings in energy per token.

5. Limitations and Future Work
We note several limitations regarding our work, and we
provide potential research directions:

5.1. Model Size

A key limitation of our work is the on-chip memory bot-
tlenecks that accompany FPGAs; for example, one of Xil-
inx’s high-end commercial FPGAs, the Virtex UltraScale+

VU19P, has an on-chip memory capacity of 224 MB (AMD).
In contrast, most LLMs are much larger than the maximum
size FPGAs can load on chip; for instance, Llama 2 has three
pretrained LLMs of size 7, 13, and 70 billion, while GPT-3
uses 175 billion parameters (Touvron et al., 2023a) (Brown
et al., 2020). Since the parameters cannot be pre-initialized
on on-chip memory banks due to memory constraints, the
weights are instead on off-chip global memory interfaced
via the AXI4 protocol, making it possible to run inference on
larger models. However, external memory accesses quickly
become a major bottleneck in inference latency as only 64
8-bit integers can be read per cycle.

As a result, we limit our model size to 110M parameters.
Despite the model size, there are many practical applications
of similar model sizes. For instance, BERT has a base
model size of 110M parameters, while ALBERT xlarge
has a model size of 68M parameters; these models achieve
state-of-the-art or near state-of-the-art performances on a
multitude of NLP tasks and are in widespread use (Rogers
et al., 2020). Several Llama variants, such as LiteLlama
and TinyLlama, also have considerably smaller parameter
sizes of 460M parameters and 1.1B parameters respectively,
while achieving considerable generation capabilities for the
size (Han) (Zhang et al., 2024).

Several future directions to be explored for fitting larger
models on FPGA include using greater levels of quanti-
zation (i.e. 4-bit precision) or using multiple FPGAs in
unison. “Q4 0” quantization utilizes the same quantization
technique applied to 4-bit integers, and has seen success in
implementations in Gerganov’s GGML library, and ongo-
ing research exists for other quantization schemes, such as
2-bit LLMs (Chee et al., 2023). Fully-integer quantization
methods also serve as a potential research path, which both
reduces parameter size and inference latency by making all
weights and all calculations involve only integers, such as
the ones explored in I-BERT (Kim et al., 2021). Model par-
allelism schema utilizing multiple FPGAs may also help run
larger models by sharding a model across multiple FPGAs.

5.2. Batch Size

Another limitation of our work is our focus on the non-
batched inference domain; i.e. inference with batch size 1.
The large VRAM capacity and parallel computation nature
of GPUs make the GPUs suitable for tasks requiring high
throughput, which may make the GPU overall more power
efficient in the high batch regime. An interesting future
research direction is the optimization of batched inference
on FPGAs.
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6. Conclusion
We propose a new hardware accelerator for transformers
on FPGA, HLSTranform, which achieves up to a 12.75x
reduction and 8.25x reduction in total energy consumption
per token, compared to a 2.3 GHz Intel Xeon Broadwell E5-
2686 v4 CPU and a NVIDIA RTX 3090 GPU, respectively.
Our FPGA accelerator maintains 0.53x the inference speed
of an RTX 3090 GPU and is 2.46x as fast as the inference
speed of the Intel Xeon Broadwell E5-2686 v4 CPU; these
results are achieved via synthesis combined with pipelining,
memory unrolling, and memory partitioning and transfer
optimizations, with the addition of 8-bit integer quantization.
Through our study, we provide a proof-of-concept for the
usage of High Level Synthesis (HLS) as a much quicker
way of prototyping FPGA designs.

As transformers become more widely used and as model
sizes continue to increase, energy consumption from AI-
related applications will increase correspondingly. In-
creased energy consumption comes with vast environmental
concerns and monetary costs, as well as limiting applica-
tions that restrict power consumption such as edge comput-
ing; as a result, energy-efficient methods for inference that
provide more sustainable solutions may become a much
more pressing issue. We hope that our work serves as a step
forward in energy-efficient methods for AI.
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A. Appendix
A.1. Experimental Setup

For all our experiments, we use a sampling temperature of 1, an empty prompt (prompt is “”), and top-p sampling at 1. We
run all our experiments 100 times and take the average for our results.

We use Karpathy’s provided 110M model, which has an embedding dim of 768, 12 layers. 12 heads, 12 KV heads, and a
max context length of 1024.

A.2. Timing Results

Table 7. We obtain our timing results from the synthesis as shown below.
Module Name Start Interval Best (cycles) Avg (cycles) Worst (cycles) Best (absolute) Avg (absolute) Worst (absolute)
forward Pipeline 1 771 771 771 771 3.084 us 3.084 us 3.084 us
rmsnorm 768 Pipeline 1 770 770 770 770 3.080 us 3.080 us 3.080 us
rmsnorm 768 Pipeline 2 771 771 771 771 3.084 us 3.084 us 3.084 us
rmsnorm 768 Pipeline sum of squares 5413 5413 5413 5413 21.652 us 21.652 us 21.652 us
rmsnorm 768 Pipeline norm and scale 23 23 23 23 92.000 ns 92.000 ns 92.000 ns
rmsnorm 768 Pipeline 5 770 770 770 770 3.080 us 3.080 us 3.080 us
rmsnorm 768 s 7822 7822 7822 7822 31.288 us 31.288 us 31.288 us
round 1 1 1 1 4.000 ns 4.000 ns 4.000 ns
p hls fptosi float i8 1 1 1 1 4.000 ns 4.000 ns 4.000 ns
quantize 768 Pipeline main loop 198 198 198 198 0.792 us 0.792 us 0.792 us
quantize 768 Pipeline 2 770 770 770 770 3.080 us 3.080 us 3.080 us
quantize 768 Pipeline 3 14 14 14 14 56.000 ns 56.000 ns 56.000 ns
quantize 768 s 971 971 971 971 3.884 us 3.884 us 3.884 us
matmul 768 768 Pipeline x buff 50 50 50 50 0.200 us 0.200 us 0.200 us
matmul 768 768 Pipeline xs buff 5 5 5 5 20.000 ns 20.000 ns 20.000 ns
matmul 768 768 Pipeline VITIS LOOP 225 1 20900 20900 20900 20900 83.600 us 83.600 us 83.600 us
matmul 768 768 s 20977 20977 20977 20977 83.908 us 83.908 us 83.908 us
pow generic float s 1 15 15 15 60.000 ns 60.000 ns 60.000 ns
sin or cos float s 1 18 18 18 72.000 ns 72.000 ns 72.000 ns
forward Pipeline rotation1 119 119 119 119 0.476 us 0.476 us 0.476 us
forward Pipeline 3 839 839 839 839 3.356 us 3.356 us 3.356 us
forward Pipeline 4 839 839 839 839 3.356 us 3.356 us 3.356 us
forward Pipeline iterate 530 1̃554 530 1042 1554 2.120 us 4.168 us 6.216 us
forward Pipeline max 2 2̃61 2 133 261 8.000 ns 0.532 us 1.044 us
forward Pipeline exp 24 5̃6 24 40 56 96.000 ns 0.160 us 0.224 us
forward Pipeline sum 10 1̃546 10 778 1546 40.000 ns 3.112 us 6.184 us
forward Pipeline norm 9 2̃5 9 17 25 36.000 ns 68.000 ns 0.100 us
forward Pipeline 10 66 66 66 66 0.264 us 0.264 us 0.264 us
forward Pipeline acc 89 1̃625 89 857 1625 0.356 us 3.428 us 6.500 us
forward Pipeline residual 61 61 61 61 0.244 us 0.244 us 0.244 us
matmul 768 2048 Pipeline x buff 50 50 50 50 0.200 us 0.200 us 0.200 us
matmul 768 2048 Pipeline xs buff 5 5 5 5 20.000 ns 20.000 ns 20.000 ns
matmul 768 2048 Pipeline VITIS LOOP 225 1 55460 55460 55460 55460 0.222 ms 0.222 ms 0.222 ms
matmul 768 2048 s 55537 55537 55537 55537 0.222 ms 0.222 ms 0.222 ms
forward Pipeline swi glu 552 552 552 552 2.208 us 2.208 us 2.208 us
forward Pipeline 14 2050 2050 2050 2050 8.200 us 8.200 us 8.200 us
quantize 2048 Pipeline main loop 221 221 221 221 0.884 us 0.884 us 0.884 us
quantize 2048 Pipeline 2 2050 2050 2050 2050 8.200 us 8.200 us 8.200 us
quantize 2048 Pipeline 3 34 34 34 34 0.136 us 0.136 us 0.136 us
quantize 2048 s 2274 2274 2274 2274 9.096 us 9.096 us 9.096 us
matmul 2048 768 Pipeline x buff 130 130 130 130 0.520 us 0.520 us 0.520 us
matmul 2048 768 Pipeline xs buff 10 10 10 10 40.000 ns 40.000 ns 40.000 ns
matmul 2048 768 Pipeline VITIS LOOP 225 1 52526 52526 52526 52526 0.210 ms 0.210 ms 0.210 ms
matmul 2048 768 s 52659 52659 52659 52659 0.211 ms 0.211 ms 0.211 ms
forward Pipeline residual2 58 58 58 58 0.232 us 0.232 us 0.232 us
matmul 768 32000 Pipeline x buff 50 50 50 50 0.200 us 0.200 us 0.200 us
matmul 768 32000 Pipeline xs buff 5 5 5 5 20.000 ns 20.000 ns 20.000 ns
matmul 768 32000 Pipeline VITIS LOOP 225 1 864190 864190 864190 864190 3.457 ms 3.457 ms 3.457 ms
matmul 768 32000 s 864311 864311 864311 864311 3.457 ms 3.457 ms 3.457 ms
forward 4160108 4̃892636 4160107 4377403 4892635 16.640 ms 17.510 ms 19.571 ms
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