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Abstract

We construct a new family of graded representations W, for the positive elliptic Hall algebra £ in-
dexed by Young diagrams X which generalize the standard £ action on symmetric functions. These rep-
resentations have homogeneous bases of eigenvectors for the action of the Macdonald element Py € € +
with distinct Q(g,t)-rational spectrum generalizing the symmetric Macdonald functions. The analysis
of the structure of these representations exhibits interesting combinatorics arising from the stable limits
of periodic standard Young tableaux. We find an explicit combinatorial rule for the action of the multi-
plication operators e,[X]* generalizing the Pieri rule for symmetric Macdonald functions. We will also
naturally obtain a family of interesting (g,t) product-series identities which come from keeping track of
certain combinatorial statistics associated to periodic standard Young tableaux.
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1 Introduction

The space of symmetric functions, A, is a central object in algebraic combinatorics deeply connecting the
fields of representation theory, geometry, and combinatorics. In his influential paper [Mac88], Macdonald
introduced a special basis Px[X; g, t] for A over Q(g, t) simultaneously generalizing many other important
and well-studied symmetric function bases like the Schur functions sx[X]. These symmetric functions
Py[X; q,t], called the symmetric Macdonald functions, exhibit many striking combinatorial properties
and can be defined as the eigenvectors of a certain operator A : A — A called the Macdonald operator
constructed using polynomial difference operators. It was discovered through the works of Bergeron,
Garsia, Haiman, Tesler, and many others [Hai0l] [BG99] |Ber+99] that variants of the symmetric Mac-
donald functions called the modified Macdonald functions Hy [X; ¢, t] have deep ties to the geometry of
the Hilbert schemes Hilb,, (C?). On the side of representation theory, it was shown first in full generality
by Cherednik [Che03] that one can recover the symmetric Macdonald functions by considering the rep-
resentation theory of certain algebras called the spherical double affine Hecke algebras (DAHAS) in type
GL,.

The positive elliptic Hall algebra (EHA), £, was introduced by Burban and Schiffmann |[BS12] as
the positive subalgebra of the Hall algebra of the category of coherent sheaves on an elliptic curve over a
finite field. This algebra has connections to many areas of mathematics including, most importantly for
the present paper, to Macdonald theory. In [SV13], Schiffmann and Vasserot realize £ as a stable limit
of the positive spherical DAHAs in type GL,. They show further that there is a natural action of €7 on
A aligning with the spherical DAHA representations originally considered by Cherednik. In particular,
the action of Py; € €T gives the Macdonald operator A. The action of €* on A can be realized as
the action of certain generalized convolution operators on the torus equivariant K-theory of the schemes
Hilb,, (C?).

Dunkl and Luque in [DL11] introduced symmetric and non-symmetric vector-valued (vv.) Macdonald
polynomials. The term vector-valued here refers to polynomial-like objects of the form )~  ca X ® v, for
some scalars ¢, monomials X<, and vectors v, lying in some Q(g,t)-vector space. The non-symmetric
vv. Macdonald polynomials are distinguished bases for certain DAHA representations built from the
irreducible representations of the finite Hecke algebras in type A. These DAHA representations are
indexed by Young diagrams and exhibit interesting combinatorial properties relating to periodic Young
tableaux. The symmetric vv. Macdonald polynomials are distinguished bases for the spherical (i.e.
Hecke-invariant) subspaces of these DAHA representations. Naturally, the spherical DAHA acts on this
spherical subspace with the special element & + ... + &, of spherical DAHA acting diagonally on the
symmetric vv. Macdonald polynomials.

Dunkl and Luque in [DL11] (and in later work of Colmenarejo, Dunkl, and Luque |[CDL22] and Dunkl
[Dun19]) only consider the finite rank non-symmetric and symmetric vv. Macdonald polynomials. It is
natural to ask if there is an infinite-rank stable-limit construction using the symmetric vv. Macdonald
polynomials to give generalized symmetric Macdonald functions and an associated representation of the
positive elliptic Hall algebra €. In this paper, we will describe such a construction (Thm. EI3). We
will obtain a new family of graded £'-representations Wy indexed by Young diagrams A and a natural
generalization of the symmetric Macdonald functions P, indexed by certain labellings of infinite Young
diagrams built as limits of the symmetric vv. Macdonald polynomials. For combinatorial reasons there
is essentially a unique natural way to obtain this construction. For any A we will consider the increasing
chains of Young diagrams A™) = (n — |\|,A) for n > |A| + A1 to build the representations Wy. These
special sequences of Young diagrams are central to Murnaghan’s theorem [Mur3§] regarding the reduced
Kronecker coefficients. As such we refer to the £'-representations fVIv/A as Murnaghan-type. For A = () we
recover the €1 action on A and the symmetric Macdonald functions P,[X;q,t]. We will obtain a Pieri
rule for the action of the multiplication operators e on the generalized symmetric Macdonald function
basis P . After studying the particular case of the e;-Pieri coefficients we will show that the modules
Wy are cyclic generated by their unique elements of minimal degree ‘BT;mn . Lastly, we will show that

these Murnaghan-type representations WA are mutually non-isomorphic.

The existence of these representations of the elliptic Hall algebra raises many questions about possible
new relations between Macdonald theory and geometry. Other authors have constructed families of £T-
representations [Fei+11] |Fei+12]. Although there should exist a relationship between the Murnaghan-
type representations WA and those of other authors, the construction in this paper appears to be distinct



from prior &€T-module constructions.

For technical reasons (regarding the misalignment of the spectrum of the Cherednik operators &;) we
will need to reprove many of the results of Dunkl and Luque in [DL11] using a re-oriented version of
the Cherednik operators 6;. Since the elements 6; are not uniformly conjugate to the & on the vector-
valued polynomial spaces Vy, we are not immediately able to use the results of Dunkl and Luque. This
alternative choice of conventions greatly assists during the construction of the generalized Macdonald
functions P,.. The 0; satisfy additional stability properties which the &; fail to satisfy. The combinatorics
underpinning the non-symmetric vv. Macdonald polynomials originally defined by Dunkl and Luque is
also nearly identical but with reversed orientation to the conventions appearing in this paper.

1.1 Overview

Here we will give a brief overview of this paper. First, in Section [2] we will review relevant definitions
and notations as well as recall the stable-limit spherical DAHA construction of Schiffmann-Vasserot.
In Section [3] we will reprove many of the results of Dunkl-Luque but for the re-oriented Cherednik
operators including describing the non-symmetric v.v. Macdonald polynomials F- and their associated
Knop-Sahi relations (Prop. [B2]). We define (Def. B9) the DAHA modules V() and connecting maps
<I>(A") : Vim+1) = Vy(n) which will be used in the stable-limit process. Next in Section [ we describe the
spherical subspaces WA(") of Hecke invariants of VA(") and the symmetric v.v. Macdonald polynomials
Pr including an explicit expansion of the Pr into the F- (Cor. [£E]). We will use the connecting maps to
define the stable-limit spaces WA and show in Thm A I3lthat they possess a graded action of £ having a
distinguished basis of generalized symmetric Macdonald functions B . In Section [§ we will obtain a Pieri
formula (Cor. (£9) for the action of e} on the generalized Macdonald functions 3. Lastly in Section [G]
we will look at an interesting family of (g, t) product-series identities (Thm. [£.12]) which follow naturally
from the algebra/combinatorics in the prior sections of the paper.
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2 Definitions and Notations

2.1 Some Combinatorics

We start with a description of many of the combinatorial objects which we will need for the remainder
of this paper.

Definition 2.1. A partition is a (possibly empty) sequence of weakly decreasing positive integers.
Denote by Y the set of all partitions. Given a partition A = (A1,...,Ar) we set £(A) := r and |A| :=
M4+ A For A= (A1,...,\) € Y and n > ny = [A 4+ A1 we set A™ := (n — |A|,A1,...,\r). We
will identify partitions as defined above with Young diagrams of the corresponding shape in English
notation i.e. justified up and to the left.

Fix a partition A with |A| = n. We will require each of the following combinatorial constructions for
types of labelling of the Young diagram A. If a diagram A appears as the domain of a labelling function
then we are referring to the set of boxes of A as the domain.

e A non-negative reverse Young tableau RYT>o()) is a labelling T' : A\ — Z>( which is weakly
decreasing along rows and columns.

e A non-negative reverse semi-standard Young tableau RSSYT>(()) is a labelling T : A — Z>o
which is weakly decreasing along rows and strictly decreasing along columns.

e A standard Young tableau SYT()) is a labelling 7 : A — {1,...,n} which is strictly increasing
along rows and columns.



e A non-negative periodic standard Young tableau PSYT>o(\) is a labelling 7: A — {jqb 1<
j < mn,b >0} in which each 1 < j < n occurs in exactly one box of A and where the labelling is
strictly increasing along rows and columns. Here we order the formal products jg™ by jg™ < kq¢*
if m > £ or in the case that m = ¢ we have j < k. Note that SYT(A) C PSYT>o(A).

Define 73°, 75° € SYT(A) to be the row-standard and column-standard labellings of A respectively.

17¢7|15¢° |16¢°|11¢%| 7¢* | 24°

14¢%|12¢*[13¢*| 9¢° | 8¢°
Example 1. € PSYT>0(6,5,4,2)
10¢2%| 4¢* | 5¢* | 6¢*

3q1 1q0

Definition 2.2. Given a box, 0, in a Young diagram A we define the content of O as ¢(00) := a — b
where [0 = (a,b) as drawn in the N x N grid (English notation). Let 7 € PSYT>(A) and 1 <14 < n.
Whenever 7(0) = ig® for some box 0 € A we will write

e ¢ (1) :=c(O)

e w(i):=b.

Set wr := (wr(1),...,wr(n)) € Z%,. Let 1 < j < n — 1 and suppose that for some boxes (1,2 € A
that 7(01) = jg™ and 7(02) = (j + 1)¢°. Let 7 be the labelling defined by 7/(01) = (j + 1)¢™,
7'(02) = jg*, and 7/(0) = 7(0) for O € A\ {1, 02}. If 7/ € PSYTx0()\) then we write s;(7) := 7’. Let
W(7) € PSYT>0(\) be the labelling defined by whenever 7(0) = kq” then either ¥(7)(0) = (k — 1)¢°
when k > 2 or ¥(7)(0) = ng" ™" when k = 1.

We give the set PSYT>((A) a partial order > defined by the following cover relations.

e For all 7 € PSYT>o(A), ¥U(7) > 7.
o If w, (i) < wr(i+ 1) then s;(7) > 7.
o If wy(3) =w,(i+1) and ¢ (i) —cr (¢ + 1) > 1 then s;(7) > 7.

Define the map py : PSYT50(A) = RYTx0()\) by pa(7)(0) = b whenever 7(00) = iqg”. We will write
PSYT>o(A; T') for the set of all 7 € PSYT>o(A) with pa(7) =T € RYT>0(A).

14" | 3¢° | 5¢° | 8¢% |12¢* |17¢° 17¢%| 2¢° | 4¢° | 7¢° |11¢ |164°

2¢% | 4¢° | 6¢° [14¢°|164° 14° | 3¢° | 5¢° |13¢°|15¢°
Example 2. ¥ =

7¢% |10 [11¢* [15¢° 6¢2 | 9¢* [10g*[144°

9¢* |13¢° 8q* [12¢°

We will frequently require the basic lemma regarding the ordering < on PSYT>o()).

Lemma 2.3. Let A € Y and T" € RYT>((A). There are unique min(7), top(7") € PSYT>o(X;T') such
that for all 7 € PSYT>o(A) with px(7) =T, min(T") < 7 < top(T).

Proof. We can explicitly construct the elements top(7"), min(7") directly. Define top(7") by first filling
in the boxes [ € X\ of A with the values ¢”™). Now we label these boxes with the values {1,---,n}
by first decomposing A into skew diagrams where T is constant on each sub-diagram. This gives us an
increasing chain of Young diagrams AV c ... C A" = X, Next we fill each diagram A\ with the values
{AD + .+ XD 11, 2D 4+ + AP} in column-standard order. This gives a value ig® in
each box of A.

For min(7T), we proceed similarly by first first filling in the boxes O € A of A with the values ¢
Then we decompose A into the same skew diagrams as before. Now we fill each diagram 2D with the
values {n— ((AD|+.. .+ X)) o n—((AD]+.. .+ AP} in row-standard order. This gives a value
iq® in each box of .

T(0)

O



Example 3. Given T = € RYT>¢(6,5,4,2) we have that

10
17¢7112¢°|13¢°|104%| 64" | 1¢° 14" | 3¢° | 5¢° | 8¢% |12¢* |17¢°
16¢°(14¢°|15¢°| 2¢° | 3¢° 2¢° | 4¢° | 6¢° [144°|164°
min(T') = and top(T) =
11¢%| 74 | 8¢ | 4¢° 7¢% [10¢* (114" [15¢°
9¢' | 5¢° 9¢* 134°

Definition 2.4. Let A € Y with [\| =n and T' € RYT (). Define v(T") € Z%, to be the vector formed
by listing the values of T in decreasing order i.e. v(T') = sort(w,) for any 7 € PSYT>o(X;T'). Define
S(T) € SYT(X) by ordering the boxes of X according to O; < Oy if and only if

o T(O1) > T(02) or

e T(0;) =T(02) and O comes before [z in the column-standard labelling of A.

We will often write as a shorthand 00 <7 O whenever S(T)(0:) < S(T)(0z). Define the statistic
br € ZZO by

br := Z v(T)i(esr) (i) +i—1).
i=1

Lastly, define the composition u(T") of n as follows. Decompose A into horizontal strips hi,..., hm
where T is constant on each strip. We order these strips so that the min(7") labels in h; are strictly less
than those in h;11 for all i. Note that, unless T € RSSYT>o(\), we may have horizontal strips with the
same T-value touching in adjacent rows. We see that each of these horizontal strips h; has some labels
@i, ...,a; + ;.. Then u(T) is given as (r1,...,7m).
Remark 1. For every T' € RYT>o(A) we can recover T' from the pair (S(T"),v(T')) by labelling A with
the entries of v(T') following the order of S(T"). Further, the standard Young tableau S(7T') is the largest
such tableau following the partial order defined in Definition 221

Below is an example calculation of the various data which we associate to T' € RYT>o()\).
Example 4. For T'€ RYT>(6,5,4,2) as in Example [ we have that
1 3|5 | 8 |12)|17

2 4 6 14 | 16
S(T) = € SYT(6,5,4,2),
7 10 | 11 | 15

9 |13

V(T) = (77 67 57 57 57 57 27 27 17 17 17 17 07 07 07 07 0) e Z12707

br =0+0+4+15+15+304+304+8+20+54+84+104+154+0+04+0+040 = 156,
and u(T) = (1,2,1,1,1,2,1,1,1,2,2,1,1).

The next definition will be crucial for many of the results in this paper.

Definition 2.5. Let A € Y, with [A| = n and 7 € PSYT>((X) with T' = px(7). An ordered pair of boxes
(01,02) € A x Ais called an inversion pair of 7 if S(T)(0;) < S(T)(0O2) and ¢ > j where 7(0;) = ig®,
7(02) = jg® for some a,b > 0. The set of all inversion pairs of 7 will be denoted by Inv(7). We will use
the shorthand I(T") for the set Inv(min(7)).



17¢7|12¢°[13¢°|10¢%| 6¢* | 1¢°

16¢%|144¢° [15¢°| 2¢° | 3¢°
Example 5. In the labelling we have that the pairs (17¢",12¢%),
11¢%| 7¢* | 8¢* | 44°

9q! 5q0

(14¢°,13¢%), and (5¢°, 4¢°) are all inversions. Here we have referred to boxes according to their labels.

In the following definition our conventions for the Bruhat ordering differ from many other authors.
These conventions are use to help properly state some triangularity properties later in the paper. How-
ever, one may obtain the below definition from the more standard conventions in [HHLO&] by reversing
the order of the entries of each vector (ai,...,an) = (Gn,...,a1) and rewriting their Bruhat ordering
from this reversed perspective.

Definition 2.6. Define the Bruhat ordering < on Z%, using the following cover relations for A € Z3,:
e if i < j with A\; < Aj then A < (4, )\
o if i <j with \j +1 < \; then A > A+ e; —e;.

Here e; denotes the i-th standard basis vector of Z™ and (i,7) € &, denotes the simple transposition
swapping ¢ and j. For o = (au, az,...,an) € Z%, we define () := (a2,...,an,01 + 1). We will write
sort(a) for the vector formed by listing the entries of a in weakly decreasing order and revsort(a) for
the vector formed by listing the entries of « in weakly increasing order. We define Stab(a) to be the
corresponding stabilizer subgroup of &, for « i.e. the set of all o € &,, with o(a) = a.

We require the following simple lemma regarding the interplay between the map 7 on ZZ, and the
ordering < .

Lemma 2.7. If o, § € ZZ satisfy a < 8 then J(a) < 5(6).

Proof. We will show that if o, 8 € Z%, and 3 covers a with respect to the Bruhat order then ¥(a) < 7(8).
We will proceed in cases. Let A € ZZ,.
First, suppose 1 < ¢ < j and A\; < A;. Then

) < (i = 1,5 — DI = 5((G J)N).

Now suppose 1 < j and A1 < Aj. Then

(1, 5)A) = F((L,)A) + &5 —en = (5,n)(F((1, ))A) + €5 — en) = F(A).
If now we have that 1 < i < j and A\; < A; — 1 then
FA) =F(A) +eicr —ejo1 =F(A+ e —€).
Lastly, consider the case when 1 < j and A1 < A\j — 1. If Ay +2 = \; then
FA) = (G = Ln)y(A) =F(A +e1 —€).

Instead if A1 < A\; — 2 then

FA) = (G = Ln)y(A) = (G = L,n)y(A) + ejm1 —en = YA +e1 = ¢j).

O
Here we review some necessary details about the extended affine symmetric groups.
Definition 2.8. Define &, to be the extended affine symmetric group given by
S =6, x2Z"
WhereAGn acts on Z" by coordinate permutations. Qenote by ti,...,t, the standard generators of

7™ C &,,. Further, we define the special element 7, € &,, given by

Yn = tnSn—1...51.



For any 8 € Z" we will write
tg =t th
Define the positive submonoid of (‘ASm GAS:L as the monoid generated by {s1,...,5n—1,7n} (i.e. no F,'s).

The length (o) of o € &,, is the minimal number of s; required to express o in terms of the generators
{51,.-.,8n—-1,9n}. We denote by &,,/&,, the set of minimal length left coset representatives of &, with
respect to the subgroup &,,. We will denote the set of positive minimal length coset representatives

~ ~ + ~ ~
of &,, with respect to the subgroup &,, by (GH/GH) = (6,/6,)N Gr. If p = (B1y.voy i) is a
composition of n = p1 +. ..+ g, then we will define the Young subgroup &,, of G,, corresponding to u as
Gy =6, x---x6,, C6,. Wewill write 6,/&,, for the set of minimal length left coset representatives
for &,, with respect to the subgroup &,.

For g € Z™ define og € &, by

08 1= Olsort(B)
where o is the unique minimal length coset representative in &, /Ggiabsort(s)) such that o(sort(3)) = B.
The next two lemmas are standard in the theory of (extended) affine permutations and we leave them
to the reader to verify.
Lemma 2.9. We have that N
6,/6, ={os|B € Z™}
and N
(8n/8n)" = {osl8 € 220},
Lemma 2.10. For all a € Z%, we have the following:

e If o is weakly decreasing then o, = tq.

o If 5;(a) > a then o, (o) = 5i0a.

o If s;(a) = a then 8,00 = 0aS,-1(;) where o is the minimal length permutation with o(sort(a)) = a.

® 05, (a) = Tn(0a)-

Recall that in Definition[Z2] we only defined s;(7) for 7 € PSYT>((A) in the situation where swapping
the ¢ and ¢ + 1 labels in the boxes of 7 resulted in an element of PSYT>o(\). We now generalize this
notion to elements of &;'.

Definition 2.11. Suppose z, - - - z1 is a reduced word in é:{ written in the generators z; € {s1,...,8n—1,Vn}-
We define inductively on r > 1 if z._1---21(7) € PSYT>((A) the element z, ---z1(7) of PSYT>0(\) as
either

o U(zp1--21(7)) if 2 =7

e si(zr—1---21(7)) if 2» = s; and swapping the ¢ and 7 + 1 labels in the boxes of z,_1 - -+ z1(T) results

in an element of PSYT>o()\).

Ot}}\erwise we will leave this symbol undefined. This definition is only dependent on the element z, - - - 21
of &} in that if z.---21 = z.--- 2} is another reduced word then z, - --z; () is defined if and only if
2l -+ 21(7) is defined. Thus we will write o(7) = z---21(7) unambiguously in this situation if ¢ =

Zpcc 21
We will need the following result later in the paper.
Lemma 2.12. For T' € RYT>((A) we have that

top(7) = ¢7 L O (5(1))

where for all 1 <i<n _
Ci = (81' e Snflllf)l.

Proof. One may check by direct computation that if T € RYT>0(A) and 1 < ¢ < n then ¢ (top(T))) is
well defined according to Definition [ZIT] and in particular, ¢;(top(T')) = top(T”) where T'(0) = T'(0) + 1
for S(T)(O) < i and T'(0) = T(O) otherwise. Note that S(T) = S(T") so applying ¢; does not change
the underlying diagram ordering corresponding to the labelling 7. Thus given any T € RYT>q(\) by

applying each (; one at a time we see that Cf<T)17V(T)2 .- -CZ(T)" (S(T")) must equal top(T). O



A +
We will need to identify an explicit bijection between PSYT>o(A) and (GSH/GH) x SYT(X). We

~ +
already have a map PSYT>0.,(A) — (GH/GH) given by 7 — o, . This is not bijective so we will use

elements of SYT(A) to refine this map to yield a bijection. We now identify the correct choice of SYT(X)
for a given 7 € PSYT>0+,()).

Definition 2.13. For 7 € PSYT>((A) we define S(7) € SYT(X) by the following recursion:
S(top(T)) := S(T') as defined in Definition 24

If wr (i) < wr(i+ 1) then S(si(7)) = S(7).

S(¥(r)) = S(7)

If w (i) = w-(i + 1) and ¢ (i) — ¢ (i + 1) > 1 then S(s;(7)) = 5;5(7) where j = 0~ '(4) and o is
the minimal length permutation with o(sort(w;)) = w-.

Proposition 2.14. For 7 € PSYT>(A)

7 = 0w, (S(7).
Proof. Using Lemma [2.10] and Lemma 2.T2] we see that for all 7' € RYT>o())

Tuapiry (S (02 (£0D(T)))) = 0(7) (S(T)) =ty (S(T)) = ¢ T2 DI (S(T)) = top(T).

Let 7 € PSYT>o(A\;T) and suppose for sake of induction that 7 = o4, (S(7)). Now let s;(7) < 7. If

wr(i) > wr (i + 1) then S(si(7)) = S(7) and 0w, (., = Siow, so that

Tw,, () (S(5:(T))) = 810w, (S(7)) = s(7).

In the case instead that w. (i) = w,(¢ + 1) with ¢, (¢ + 1) — ¢-(¢) > 1 then S(si(7)) = s;(S(7)) and
Ow,, () = Ow, Where j = o~ %(4) and o is the minimal length permutation with o(sort(w;)) = w,. Then

Tu,, () (S(5i(7)))
= 0w, (s55(7)
= (0w, 55)(5(7))
= (si0w,)(5(7))
= 5i(7).

)
)

We may now obtain the desired bijection.
~ +
Proposition 2.15. The map Z) : PSYT>o()\) — (Gn/Gn) x SYT(X) given by
Ex(T) := (ow,,5(7))
is a bijection.

Proof. Tt is immediate from Proposition [2.I4] that =, is injective. But it is straightforward to check

~ +
inductively that given any o € (Gn/Gn) and S € SYT(X), 0(95) is a well defined element of PSYT >0 (\)
in the sense of Definition 2111 This shows that =, is also surjective and thus bijective. O



2.2 Finite Hecke Algebra

Here we detail the conventions for the finite Hecke algebras in type A,_1 occurring in this paper.

Definition 2.16. Define the finite Hecke algebra H,, to be the Q(q, t)-algebra generated by T1,...,Tn-1
subject to the relations

o (T;—1)(Ti+t)=0for1<i<n-—1

L] TiTi+1T1 = Ti+1TiTi+1 fOl" 1 S 7 S n—2

° TiTj = TjTi for |Z —jl > 1.
We define the special elements 517 o ﬁn € f}{_n by_§1 =1 and §i+1 = tT;lginl forl1 <i<n-—1.
Further, define @,,...,%,_, by B, := (T, ")0; — 0;(tT; ). For a permutation ¢ € &, and a reduced
expression o = s;, -+ 8;, we write T, :=T;, ---Tj, .

Note that the definition of 3, in [DL11] differs from our definition given above. To translate between
our differing conventions we may identify as follows:

e s — t (parameters)
o T; — tT;" (Hecke elements).

Remark 2. Thgre are natural algebra inclusions H,, — H,+1 given by T; — Ti_for 1 <i<n-—1. Under
this embedding 6, — 0; for 1 < i < n so we can naturally identify the copies of 8; in both H,, and H,11.
We require the following list of relations.
Proposition 2.17. The following relations hold:
o Oy =t"'T T T for 1<i <
© 0,0; =0;0; for 1 <i,j<n
o Ti0; =0,T; for j ¢ {i,i +1}
¢ B, =tT,'(0; —0ix1) + (t —1)0ip1 for 1 <i<n—1
® D0 1P =P 1 PPy for 1 <i<n—1
® 9, p;, =p,;p, for li—jl>1
. @Z?j :gsi(j)@ forl1<i<m—land1<j<n
o @ = (t0; — 0i1)(t0i1 — 6:).
Proof. This result follows directly from using the map p,, defined in Definition [2.23] and Proposition
which will be independently proven later. |

The following definition gives a description of the irreducible representations of H,,. There are many
equivalent methods for defining these representations but we choose to specify eigenvectors for the Jucys-
Murphy elements 6; directly as we will require these eigenvectors throughout this paper.

Definition 2.18. Let A € Y with |A\| = n. Define Sy to be the H,-module spanned by e, for 7 € SYT(X)
defined by the following relations:

° gi(ef) =g
If 5;(7) > 7 then B,(e,) = (t°7® — tCT(iH))esi(T).

e If the labels 4,7 4+ 1 are in the same row in 7 then Tj(e;) = e-.

e If the labels 4,7 4 1 are in the same column in 7 then Ti(e,;) = —te-.

Using the relations from Proposition 2.I7]we can show the following more explicit form for the action
of the T; on the SYT(X) basis:

e If s;(7) > 7 then
(1 _ t)tcr(i)

Ti(er) = €s;(r) T ter (i) — ger (1) €r.

o If 5i(7) < 7 then
(tcT(i+1)+1 _ tc.,-(i))(tcf(i)+1 _ tcT(i+1)) (1 _ t)tc.,-(i)

Ti(er) = — (tCT(iH) _ tcf(i))z €s;(r) T ter (i) — per(itl) €r.




Proposition 2.19. Definition 218 is well-posed i.e. the action of the operators T; on S, define an
irreducible H,,-module.

Proof. As this construction is standard we will only give an outline. It follows from standard theory for
the finite Hecke algebra H, (analogous to that of the symmetric group &, in characteristic 0) that there
exists an irreducible representation of H,, Sx, corresponding to the partition A with a basis of weight
vectors for the Jucys-Murphy elements 6;, v, say, indexed by 7 € SYT(A). Further, the weights are
given by gi(vf) = tcT(i)vT. As these weights are all distinct it follows that this basis is unique up to re-
normalization by nonzero scalars. The presentation given in Definition 2.I8]fixes a specific normalization
given by choosing first €rrs = vrrs and then building the full basis e, using the intertwiner @; relations in
Proposition 217 with the choice that whenever s;(7) > 7 we have that (e, ) = (t7") — tCT(i“))esi(T).
Up to an initial arbitrary choice for the scalar multiple of erys, this uniquely determines the rest of the
coefficients of the e,. O

Remark 3. The set {A € Y : Al = n} gives a full set of irreducible H,-modules up to isomorphism.
Note that for 7,7" € SYT()), the O-weights of e; = e,s are equal if and only if 7 = 7'.

Lemma 2.20. Let A € Y and n > ny. Let Oy be the unique square in the skew-diagram )\("“)/)\(").
Consider the map qf\") AHD A given for 7 € SYT(A™ D) as

" (er) = 4 T T(Ho) =n+1
0 T(Do) 75 n—+ 1.

Then q&") is a H,-module map.

Proof. Let 7 € SYT(A™V). First, assume that 7(Co) # n+1 so that q&")(ef) = 0. Thenfor 1 <i¢ < n-—1,
from the relations in Definition 218 we see that Ti(er) is either a scalar multiple of e, or a linear
combination of e, and e, (). In either case q&")(Ti(eT)) =0= Tiqf\”)(e.r). Now assume 7(0g) = n + 1.
We will be more detailed about this case as we will need to be careful about the combinatorics regarding

the coefficients of expanding T (e,) into the SYT(A™) basis. For 1 <i < n — 1 we have the cases
e Ti(er) =e; if 4,4+ 1 are in the same row of 7
e Ti(er) = —ter if i,7+ 1 are in the same column of 7

_¢)er (@) .
o Ti(er) = €o,(r) + ot ermrmyer if si(m) > 7

(tcr(i+1)+1 o7 (i))(tCT(i)+1 ,tCT(i+1)) (1,,5),507-("5)
- (or (D) —ger 02 Csi(r) T e i

o Ti(er) = er if s;(7) < 7.

In any of these cases since 7(o) =n+ 1 and 1 < i < n — 1, we have that s;(7)(0o) = n + 1 as well.
Further, the placement of the boxes labelled 7,7+ 1 in the labellings 7, s;(7) is unchanged when restricted
to A(™ i.e. in the labellings Tls(ny, i (T)| ). Let 7/ := 7|, (n). Therefore we have the cases:

L4 qE\n) (TZ(eT)) = e‘l'\k(n)

o q\"(Ti(er)) = —tes

= Tiqg”)(eT) if 7,4 + 1 are in the same row of 7
o = Tiq&")(ef) if 4,4+ 1 are in the same column of 7

m 1— epr(4) 7 .
N q(AL)(Ti(GT)) = e, () + Mweﬂ = Tiq(Al)(eT) if si(r) > 71

(n) - $Crr GHDFL e s (D)y e (D41 ey (i41) 1) (D . (n) .
o a\(Ti(er)) = Dy Yesy oty + et e = Ty (er) if 7>
si(T).
Thus in all cases we have that q\"(T;(e,)) = T3q" (e,). Hence, ¢\ is a H,-module map. O

2.3 Affine Hecke Algebra

We will be interested in the presentation of the AHAs of type GL,, which follows.

Definition 2.21. Define the affine Hecke algebra A, to be the Q(g, t)-algebra generated by T1,...,Th—1
and 0{':17 ...,0F" subject to the relations

o Th,...,Th_1 generate H,,
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e 0;0; =0;0; forall 1 <i,5<n

 Oi1 =tT7 0T " for1<i<n—1

o T30, = 0;T; for j & {i,i+ 1}

Define the special elements 7, and ¢1,...,¢on—1 of A, by

o m,=t"Tle T T

o ;= (tT7 10 — 0;(tT, ).

We will denote by 9™ the commutative subalgebra of A,, generated by 9%1)7 cee 07(;1).

It is important to note that when converting between the AHA conventions in this paper and those
in Dunkl-Luque |[DL11] the standard Cherednik elements & of Dunkl-Luque do not align with the
0; above. In particular, after the appropriate translation into our conventions we have that &; are
given by & = t" T ... T171'7LT,;11 B T[l as opposed to 6; = t*(”*i)Ti:l1 N Tflﬂ'nTn,1 ... T;. The
distinction between the standard Cherednik elements &; and the reversed orientation Cherednik elements

0; will be important in this paper since the latter will yield operators with additional stability properties
which the &; do not satisfy.

Remark 4. We will use the notation 95") and 9§m) to differentiate between the copies of 6; in A, and
Am for n # m.

The following proposition is standard in AHA theory and will be required at many points throughout
this paper. We include the proofs of these relations for completeness and to emphasize that we may use
intertwiner theory for AHA with the 6; elements instead of the standard & with only slight differences.

Proposition 2.22. The following relations hold:
o 0 =T 10 — 0is1) + (t — 1)0ip1 = (Oip1 — 0T+ (1 —t)0ipg for 1 <i<n—1
wilj =0,,hypifor1<i<n—land1<j<n
@7 = (t0; — Oi41)(t0i41 — 6;)
& ViPit1pi = Yir1Pipit1 for 1 <i<n —2
* pip; = pjpi for |i —j| > 1.

Proof. The proofs of the correctness of the above relations are standard but we include them for com-

pleteness. We will proceed by proving each of these relations in the order in which they appear above.
Let 1 <7 <n—1. Then

i = tT; 0 — 0;(tT; )
=T, '0; — Ti0i 1
=T "0, — (4T, 4+ 1 — )0
=T, (0 — 0i1) + (t — 1)Bis1.

By a similar calculation we also get

$Yi = (9i+1 - ai)tTfl + (1 - t)0i+1.

This can also be written as
wi = (Oix1 —0:)Ti + (1 —t)6;

which we will need later in this proof.

11



Now we see

@il = tT; (0 — 0i41)0; + (t — 1)0i110;
= 4T, 0:(0; — 0i1) + (t — 1)0:i116;
=0;11T:(0; — 0i41) + (t — 1)0:416;
= 0i1 (Ti(0: — Oiv1) + (t — 1)0:)
=0is1 (LT, + 1 =) (0 — Ois1) + (t — 1)0;)
= Op1 (¢T;7 1 (00 — Oi1) + (t — 1)0i41)
=0iy10i

and

@ibiyr = tT; ' (0: — 0i1)0ir1 + (¢ — 1)074
= (Ti +t — 1)0i1(0; — Oi1) + (t — 1)67 14
= Ti0i41(0; — Oi1) + (£ = 1) (01 (0: — Oi1) + 6741)
=10, T, (05 — 0iy 1) + (t — 1)0:0:11
= 0; (LT (0: — Oig1) + (t — 1)0iy1)
= 0;p;.

For any j ¢ {i,7+ 1} it follows since 6; commutes with both 8; and 7T; that
@il = 0;pi.
Thus for any 1 < j<n
®i; = 0.,y pi-
Now we have that
= (tT;'0; — 04T, ")?
=TT 0, — 4T 02T — 120,120, + 20,17 10,1 "
= t0;110; — 10 A T0 T, — t0;(1 + (t — )T 1)0; + 0,041
= 20:0i11 — 01 (T, + 1 — )0, T " — 107 +t(1 — )0, T 6,
= 20:0i11 — 20,1 T, 0T +t(t — 1)0:0: T, — 107 + (1 — £)0:0;1 T
= 20,0;41 — 1071 — 107 + (1 — £)0;0,41 (T3 — tT; ")
= 20:0i11 — t07,1 — 107 + (1 — 1)%0:0,11
= (14 t3)0:0i11 — 107, — 10
= (t0; — Oi1) (t0it1 — 6;).

Now suppose 1 < i < n—2. By expanding each of the ¢; from right to left using ¢; = (0,41
(1 —t)8; and repeatedly applying the relation ;0, = 05,1 i we find

pipit1pi = (0
+ (1= 1)0i11(Biv — 0:) (Bisr — 00) T Tir + (1 — £)*0:0i41 (a2 — 0.) T,
+(1- t) 0; 01+1(9i+2 —0:)Ti+1
+ (11 = £)0;(Oit2 — 0i1) (Bigr — 0;) + (1 — )°070,41) .

12
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Using the same method we also see that

(0i41 — 0:)(Oir2 — 0:)(Oiv2 — i) Ti1 TiTir + (1 — £)0i41(0i1 — 0:)(Oivz — 0:)TiTin
+ (1 =¢)0;(0ix2 — 0:)(Osy2 — Osp1) i1 T + (1 — t) 0i0i+1(0ir2 — 0:)Ti41

—cr am(em —0.)T;

+ (HL = 1)0:(0 01— 05) (B2 — Oip1) + (1 — £)°070:41) .

Pi+1PiPi+1 =

From here we may use the braid relation T;T;4+17; = T3+173Ti+1 and some rearrangement of terms to see

PiPit1Pi = Pit1PiPit1.
Lastly, consider |¢ — j| > 1. Since T;7; = T;T;, Ti0; = 0;T;, and 6;8; = 6;6; we readily find that

Pip; = pipi- O
In this paper we will be interested in AHA modules which are pulled back from irreducible finite
Hecke representations. To do this we need to define algebra surjections A,, — H,, . There are many such

choices for these maps but we choose the maps p,, defined below carefully so that the AHA modules we
consider in this paper satisfy nontrivial stability conditions.

Definition 2.23. Define the Q(g, t)-algebra homomorphism p, : A, — H, by
e ppo(Ti)=Tifor1<i<n-1
e pn(6h) =1.
For a H,-module V we will denote by p;, (V') the A,-module with action defined for v € V and X € A,
by X(v) := pn(X)(v).
Remark 5. Note that p,(m,) = t”flel TL ; and for all 1 <4 < n, pn(6;) = 0;. Further, for A € Y

with [A] = n, p,()) is an irreducible A,-module with a basis of §-weight vectors {e;}rcsyr(r) with
distinct weights.

2.4 Positive Double Affine Hecke Algebra

We will use the following presentation for the positive DAHAs in type GL,,.

Definition 2.24. Define the positive double affine Hecke algebra D,, to be the Q(g, t)-algebra generated
by Th,...,Th-1, 0%17 ...,0F and X,,..., X, subject to the relations

e Ty,....,T_1 and 0{':17 . 79?51 satisfy the relations of A, in Definition 221

o X;X; =X;X;for1<i,5<n

o Xip1 =tT7 ' X,T; M for1<i<n-—1

e I'X; =X;Tifor1<i<n-—1land1<j<nwithj¢ {i,i+1}

. WnXiﬂ';l =Xip1for1<i<n-1

o T, Xnm,t = qXi.
Define the special element v, := X, Tp—1---T1.

The element ~,, satisfies some nice intertwining relations which we will need later.
Lemma 2.25. The following hold:

® 0ivp = nbig1 for 1 <i<n-—1

® 0pvn = Ynqb1.
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Proof. Let 1 <i<mn — 1. We find that
Oyn =t~ O T Ty T X Ty - T
=¢ O T T 1 X T g TiTo oy -+ Ty
=¢ O Tt X AT T e T Ty -+ Ty
=L T X T T T - Th
=t X T e T T o Ti(Toy -+ Th).

From the braid relations we see that for all 1 < j <mn—2
Ti(Tnr - Th) = (Tnoa--T1)Tj1a
and hence

) X T e T T o Ti(Ty -+~ Th)

=t =D x T e T (T oy T )T - Tia
=D x el e T g ATy - Tiga
=D x el T, T Ty - Tiga
=D x el T T, T e Ty - Tiga
=t = x 1 T T T e Ty To

= (XpTn 1T o e Ty -+ Tiga)

= Ynbit1.

Now we consider the last case:
Oy = Tn:ll .. T;lwnan Ty
=T, Ty qXamp Doy - Th
=t VX T 1 TigmnTn1-Th
= (XnTh-1--- T1)(qt7("71)71'nTn,1 --Th)
= Tnqbhs.

O

Recall the definition of the intertwiner elements (; in Definition 2.22T] As is standard in DAHA theory
we will use the elements {¢1,...,pn—1,7n} to define intertwiner operators corresponding to elements of
&t
Definition 2.26. For any o € &} with o = (s, ---8i; )¥n Y (Si;, o 5 1177 Sij 4 4j) written
minimally in terms of the generators {s1,...,sn—1,7} define p, € D, by

Po = (‘Ph C Py )’Yn e ’Yn(‘Pij1+,A,+jT,1+1 T ‘Pi]‘1+m+jr) € Dp.

In particular, we have that s, = ¢; and @5, = Vn.

The main utility of considering the intertwiner operators ¢, comes from the next lemma.
Lemma 2.27. Ifvis a 0(")-Weight vector in some D,-module with weight o = (au,...,an) and 0 € &,
with ¢, (v) # 0 then ¢, (v) is a 0 -weight vector with weight o given by the following recursion:

o % = (1, ..., Qit1, Qiy ... Qi)

[} Oﬁ" = (0527 vy Oy, qal)
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o (a%2)7t = 192,

Proof. This result follows easily by using induction on @: using the relations in Proposition 2.22] and
Lemma [2.25] We leave the details to the reader. O

We will be primarily interested in modules for the spherical subalgebra of D,, .

Definition 2.28. Let (™ € K, denote the (normalized) trivial idempotent given by

€ im S ),

|
[n]t' oceG,

where [n]¢! := H?zl(llitz). The positive spherical double affine Hecke algebra D5P" is the non-unital

subalgebra of D,, given by DPP ;= (™ D, ™),

The element ™ := ﬁ Zaeen t(g)fz(a)Ta € H,, is uniquely determined by the following properties:

e €™ £ 0 (non-zero)

o (")2 =™ (idempotent)

o M =Tie™ forall1<i<mn-—1 (central)

o Tie™ =™ (trivial-like).

We will use without proof that ¢™ as defined in Definition 28] satisfies these properties but it is
straightforward to check this using the defining relations of ¥, . Since (e("))2 = €™ we see that D" is a
unital algebra with unit e™. The algebra DSP" contains both of the subalgebras Q(g, t)[X1, . .., Xn]m ™
and Q(q,£)[05", ..., 0] ™.

We may use €™ to generate modules for the spherical DAHA. Given any D,-module V the space
e (V) is naturally a D5P "_module. In the standard picture of Cherednik theory the standard polynomial

representation of D, on Q(q,t)[z1,...,zs] is symmetrized using €™ to yield the standard symmetric
polynomial representation of D5P* on Q(q, t)[z1, . ..,z.]".

Remark 6. We will use without proof the standard result that D, is a free right A, module with basis
{X“}aezgo. This follows from the standard PBW-type result for DAHA. Importantly, for our purposes,

this implies that for any A,-module V with Q(g, t)-basis {v; }ics, the induced module
Ind," V := Dy @,V

has Q(q,t)-basis {X* @ vila € Z%,1 € I}.

2.5 Elliptic Hall Algebra

Here we give a brief description of the positive elliptic Hall algebra which will be a sufficient introduction
for the purposes of this paper. For a more complete description of the elliptic Hall algebra we direct the
reader to the original paper of Burban-Schiffmann [BS12] introducing EHA and the subsequent paper of
Schiffmann-Vasserot |[SV13] which develops more of the relations between EHA and Macdonald theory.

Definition 2.29. For £ € Z\ {0}, r > 0 define the special elements PO(TZ), PT%) € DPh by
o Byy =" (S, 00)
. P’r(,%) =q e >, X)) e,

Theorem 2.30. |[SV13] The elements PO(Z), Pfy’é) for £ € Z\ {0}, 7 > 0 generate DSP" as a Q(q, t)-algebra.
There is a unique Zs¢ x Z grading on DSP® determined by

o deg(Py})) = (0,0)

o deg(PY)) = (r,0).
There is a graded algebra surjection 'Dflpfl — DPP determined for £ € Z\ {0}, r > 0 by PO(ZH) — PO(Z)
and Py — P
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The existence of the Z>¢ x Z-graded algebra surjections fo’fl — DSPY allows for the following

definition.

Definition 2.31. [SV13] The positive elliptic Hall algebra & is the stable limit of the Z>q x Z-graded

algebras DP with respect to the maps 'Dflpi‘l — DSPR For £ € Z\ {0}, r > 0 define the special elements

of &¥, Py :=lim, Py and P, := lim, Py,

The positive elliptic Hall algebra contains elements Py p, for (a,b) € Z>o x Z \ {(0,0)} which may be
defined using repeated commutators of the elements Py ¢, Pro. For example, P11 = [Po,1, P1,0]. We will
not require an explicit description of these elements for the purposes of this paper. Further, we will not
require knowledge of the full elliptic Hall algebra £ which is obtained as the Drinfeld double of £1 with
respect to a certain Hopf pairing. In the standard Macdonald theory picture, we can realize the action of
the full EHA on the ring of symmetric functions A using multiplication operators py, skewing operators
pi, and Macdonald operators pg [A] roughly corresponding to the elements Pr o, P—r0, Po,¢ respectively.

Remark 7. We will be considering the Z>o-grading on £ obtained by the specialization (a,b) — a i.e.
forr >0 and ¢ € Z\ {0}

e deg(Poy) =0
e deg(Pro) =r.

When we refer to a £-module V' as graded we are referring to the Z>o-grading on £7.

3 DAHA Modules from Young Diagrams

3.1 The D,-module V,

We begin by defining a collection of DAHA modules indexed by Young diagrams A € Y. These modules
are the same as those appearing in [DL11] but we take the approach of using induction from A, to D,
for their definition.

Definition 3.1. Let A € Y with |A\| = n. Define the D,-module V) to be the induced module Vy :=
Ind;"™ pi(S).-

The modules Vy naturally have the basis given by X ® e, where X< is a monomial and 7 € SYT().
We will refer to this as the standard basis of V).

Using the theory of intertwiners for DAHA and some combinatorics we are able to show the following
structural results. The F appearing below are the version of the non-symmetric vv. Macdonald polyno-
mials from [DL11] following our conventions. These do not align with the vv. Macdonald polynomials
of [DL11].

Proposition 3.2. There exists a basis of V) consisting of §™-weight vectors {F, : 7 € PSYTs0(\)}
with distinct 8% -weights such that the following hold:

. 95”)(F7_) _ qwr(i)tcT(i)FT
e If 7 € SYT(A) then Fr =1®e,.

o If si(7) > 7 then
1 (t _ 1)qw7(i+1)tc7(i+1) B
(tTi + qur ger (D) — qur i+ Dger (iF D) (Fr) = Fo(n)-

o Py =g O Xum, (1)

Proof. Using Mackey Decomposition we find

16



gr. Reszj(’;) (Vx)

= gr. Reszj(:;) Indﬁ;‘ PEN)

@ (Resj{;) P:L(SA))U

UE(@71/G71)+

- @ Q(Q7 t)(‘)OU ® 67’)'

o (&n/6n)"
TESYT(N)

As a consequence we find that the set {¢s ® er}(a el is a generalized 0™ -weight

&n/6n) T xeSYT(N)
basis for V). We now define

Fr = g:90,, Qes(r)
of V\ where the scalars g. are chosen uniquely to satisfy the conditions detailed in this proposition’s
statement. It is easy to check that since every 7 € PSYT>o(\) may be obtained by applying ow., to S(7)
the scalars g are uniquely determined by setting g-rs = 1. By Proposition 215l this assignment produces
a basis for V) labelled by PSYT>((A). Further, by induction using Lemma and Proposition [2.14]

we see that no matter our choice of nonzero scalars g, each F; is a 0(")-Weight vector with 01(") (Fr) =
we (i) yer (3)
q t F;.
The only remaining step to justify is that if 7 € PSYTso()) then v, (F,) agrees with X, 7, (F,) up
to some nonzero scalar. We see that

Yn(Fr)
= XnTnfl A TI(FT)

= Xnmp, "0 Tot - Ti(Fr)
="' X, 01 (Fy)
— tnflqwq-(1)tc7-(1)Xn7T;1(FT)'

Therefore, there is no issue in defining the coefficient gy (ry so that Fy () = qu(l)Xnmjl(FT).

Example 6.

_ o 1—t
Frpa=t2X1Xo®e g+ 1 2<—>X2X3®e 5
m l 1— g2 l

=2 1—t 3 1=t
—— | X2 X —t — | X1 X
+1—|—t<1—qt2> 2 3®€ (1—qt2> 1 3®€

t~! 1—t
— ) X1 X
+1—|—t<1—qt2> ! 3®e

Remark 8. Note that from Proposition we get that

’Yn(FT) — tn71+cT(1)F\I/(7—).

By induction we see that
’y;(FT) = tr(nil)tcT(l)Jr"'JrcT(T)F\pr(.,).

Proposition 3.3. The D,-module V) has the following decomposition into A,-submodules:

Resgz Vi = @ Ur

TERYT 50 (N)

where Ur := spang, , {F-|T € PSYT>o(A; T)}. Further, each A,-module Ur is irreducible.
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Proof. Let T € RYT5>0(A). Note that it follows immediately from Proposition that each Ur is a
An-submodule of Vy. Further, trivially Ur N Uy, = () for T' # T" since the F; are a basis for V and the
sets PSYT>o(\; T) partition PSYT>q(X). Therefore,

Resi: Vi = @ Ur.

TERYT50(N)

Now let T € RYT>o(\). If U C Ur is a nonzero A,-submodule then U must contain some 6™ weight
vector as Ur is spanned by 6™ weight vectors. Thus there exists some 7 € PSYT>o(\; T) with Fr, € U.
But then it is follows readily from Proposition that by using intertwiner operators ¢; given any
7 € PSYT>0(A) we may find A € A, such that A(Fr,) = F,. Therefore, U = Ur and hence Ur is
irreducible. O

Remark 9. It follows by using Frobenius Reciprocity and Proposition B3] that in fact there are surjective
An module maps

A
Ind’/™ — U
Aucry XT T

where xr is the 1-dimensional representation of A,y determined by the 0(")—weight of Fuin(ry and
T; — 1 for relevant T;. Thus each Ur is a quotient of an induced module from a parabolic subalgebra of
An . In the case of T' € RSSYT>0(A) this map is an isomorphism. We may witness the implied bijection
between PSYTo(A;T') and &, /& ,(ry combinatorially using the map o — o(min(T)) for o € &,/6 (1.
It is straightforward to check by decomposing A into horizontal strip diagrams where T is constant along
rows that this map is actually an isomorphism of posets.

The following lemma exhibits triangularity for the Tfl operators with respect to the reversed Bruhat
order on ZZ,.

Lemma 3.4. For 1 <i<n—1anda >0,

Xe _ x@
T X8 = XeGT 1 t— 1) Xy oL
( i ) i+1 1( i )+( ) +1Xi_Xi+1

. . . X§ X3
Further, every monomial occurring in the term X;41 7){1_7)(:11

the Bruhat ordering <. Consequently, it follows that for any o € Z%, with s;(a) > «a the following
expansion holds for some scalars cg

is strictly lower than X;* with respect to

T X = x5 ety + Z csX”.

B=s;(a)
Proof. We start with
T X = (T +t — 1) X
= Tinqul + (t — 1)X1a+1
X% . — Xo@
=X+ (1— )X, 2L 2 (1 — ) X¢
P+ (1= X S — (1= DX
=XM1 -+ (1 - t)X—M —(1—t)X¢
7 7 [ Xz — Xi+1 1+1
a _ xa
= X%t — @ _(1— a _ il T i
=XM1, +(1-)X! -1 -)X "+ (1 —1)X; X, X,
a _ xa
= XMT7 4 (6 — 1) X =4
i+ ( ) +1Xi+1—Xi
Further,
ia - Xza a a— a— a—
X L = X+ X2 X4+ X2 X X X
Xiy1— Xi
so that
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T Xy = XM 4 (= D)X + X0 X+ X2 X2+ X X!
Now let a € Z%, with si(a) = aie. a; < ajyi. Then
Tl x e
— tT;le‘l .. XffIlX?inﬁle?ﬁ;z D
X XX X XX

_ aq Qg1 ay «; Q42 [ 7% —1 Q41—
*Xl "'Xifl XilXiﬁlXi+2 "'Xn th‘ Xi+1

= X XXX X (X (- DO X
ajpp—oa;—1
— xsila)yp-1 T (t—1) Z xotilei—eit1)
7=0

Lastly, from Definition [2.8] it is clear that for all 0 < j < @41 — i — 1, si(a) = a + j(e; —

).

1Xi+”‘+XZ_+1X;1i+1faifl))

67;+1). O

Corollary 3.5. For 7 € PSYT>0(\) each F: has a triangular monomial expansion with respect to the

Bruhat order on Z%, of the form
F=X"@f(n)+ Y X" ®us
B=wr
for some vg € S\ where f(7) € Sy is given by the following recurrence relations:
o If 7 € SYT()) then f(7) =e-.
o f(¥(r) =t "Iy Ta(f(7))
o If wr (i) < wr(i+1) then f(s;(7)) = T, f(7).
o If wy (i) =w,(i+1) and ¢+ (i) —cr (i + 1) > 1 then

_ cr(i+1)
flston = (7 + L2 ) e

Proof. We will proceed by induction with respect to the partial ordering on PSYT>o(A) defined in
Definition 2221 We will at the same time verify the recurrence relations given for f(7) € Sy given above.
From Proposition we know that if 7 € SYT(A) then F; = 1 ® e,. Hence, F; trivially has a

triangular monomial expansion of the correct form in this case and that f(7) = e-.
In what follows assume that for 7 € PSYT>((A) we have that

F=X"@f(n)+ Y X ®us
f=wr

for some vg € Si.
First, we see that

Fy(ry = ¢"""7 X, (Fr)
= ¢ X, XY @ f(r) + Z ¢ X, i XP @ s

B=<wr
_ qwl(f)qfwl(T)X:,(wT)wf ® f(r) + Z qwl(r)qfﬁlX?/(ﬁ)mjl ® vs
B=<wr
=X @ pu(m V() + 3 X @ g T g (s
B=Lwr
— x7(wr) ® t*(nfl)Tn71 o Tif(r) + Z x7(B) ® qw1(‘r)*51t*(n71)Tn71 .
B=wr
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From Lemma 27 we know that if 8 < w- then 5(8) < 7(w-). Therefore, we find that Fy ;) has the
expansion

F\I/(q—) — Xﬁ(wq—) ® is*(1171)717171 . 'Tlf(T) + Z X’B ® v;g
B=7(7)
for some vj; € Sx. From this we see that f(¥(7)) =t~ """ VT, _1 - Ti(f(1)).
Now suppose s;(7) > 7. From Proposition we get

_ . (t _ l)qu (i+1)tc.,- (i+1)
Fom= (tTi t g e () — qur G D ger GTD) )

_ . (t _ 1)qw7(i+1)tc.,-(i+1) w, 8
- (tTi + g D¢er () — qur (iF D) ger (it 1) X ® f(r) + ,BZ X" ®vg
<wr

. ; (t = 1) O+ D0 G640 . ’
=t (X f()+ Y X @ | + 7o 0o — g ) | X @f)+ > X
B B

<wr

<wr

For any 8 < w, using Lemma [34] we find that

X @vs = Y, X7 @ug
B’ <si(wr)

for some ugr g € Sx; that is to say, each of the monomials X? that appears in the standard basis
expansion of tT; ' X” ® vs must have 8 < s;(w-).
Assume w, (i) < w,(i + 1). By Lemma [3.4] we see

(X" @ f(r) = XTI @ f(r) + Y e X @ f(r)

B=si(wr)

=X @)+ > esXP @ f(7).
B=<si(wr)

Therefore, Fj, () has the expansion

Fom = X" 0t (0 + Y X o
B=si(wr)

where fu}j € S,. Since s;(wr) = ws,(r) wWe have

Fomy =X"O tT,  f(r)+ > X @
B=way(r)

and f(si(1)) = tTflf(T)-
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Now assume instead that w- (i) = w-(i+ 1) and ¢, (i) — ¢, (¢ + 1) > 1. Then T;X*" = X" T} so

(t _ l)qu(i+1)tc.,-(i+1) .
qvr () ger (1) — qvr (i+1)¢er (i41) )

= (tT;l + w) (Fr)

ter (i) — ger(i41)

Fs;ry = (tTiﬁl +

. (t _ 1)tcr(i+1) w 8
- (tTi S o ) _tcT(m)) XU f(r)+ > X' @
B=<wr

B . (t _ 1)tc7-(z+1) w. t _ l)tc-r(z+1) 8

- (tTi t e g ) X @S+ + o Z A
B<wr

_ywr (o1, (= DO (e ety s

=X (tTZ * ter (i) — ger(i+1) + ¢, tcT (1) — ter (i+1) Z X" e ve
B=wr

_ yur N (e I Gt ) LA B

=X @ (tTi + ter Ter (i) _ fer(itl) ter (i+1) + tTZ + th—(l) _ ter(i+1) BZ X'® vs-
<wr

Therefore, since w, = w;, () we find that

Ia = XY 1 4 (t — 1)tcf(i+1) f(T) + Z XB ® v
si(t) = i 1er () _ ger (itD) . B
SWsi(7)

for some vy € Sy and

— cr (it+1)
s = (e + L ) e

Using the (; operators on PSYT>(()\) we may compute f(top(T")) explicitly.
Proposition 3.6. For T' € RYT>q(\) we have that

F(top(T)) = €y =Dz @ (eg 7))
where define for 1 < i < n,
e = ((tT;l) T IT, -Tl))’ .

Proof. Using the recurrence relations in Corollary for the elements f(7) and Proposition 214 we see
that for any T'€ RSSYT>((\) since

top(T) = Ci’(T)I*V(T)Q L CZ(T)n (S(T))
with each ¢; := (s;---s,—1¥)" then we have a similar expression for f(top(T)):
f(top(T)) = €7 D2 €D (eg )

where C; 1= ((tT;l) (T )Y, --Tl))z is obtained by replacing each s; and ¥ in (;

with tijl andt~ VT, ... Ty respectively. Importantly, when we apply (; to any element of the form
top(T”) we never perform any swaps s;(7) > 7 such that w-(j) = w,(j + 1) and hence never require the
more complicated recurrence relation:

_ cr(j+1)
J(s5(7)) = (tT;l n L) ().

ter () — ger(G+1)
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The C; operators can be identified concretely using the 8; elements of the finite Hecke algebra.
Lemma 3.7. Forall 1 <i<mn,
where A; := tf(jfl)gjil.
Proof. Let 0 < k <14 — 1. We first show by induction that

(ti,1§;1) . (ti*kflg;lk) = (Tiey - T (Thgr -+ Toa)(Tho -+ Tiz) -+ (Ty -+ To— o).
To start we see that for k = 0 we have
ti*1§;1 =Ty q--- T12 Ty = (Ty—y - - Tl)l(Tl cTilq).
Now suppose that for 0 < k < i — 2 the formula above holds. Then

i—1p7—1 i— =1
(t 9, Yoo (t (k+1)9i7(k+1))

= (Timr - T (Thgr - Tom) (T - Toma) -+ (Th -~ Tom 1) (£~ VG, 1))

=(Ticq1- T (Toyr - T ) (Th - Tia) - (Th Ty 1) (Ty_p—g -+ T7 - Ti_p_2)

= (Tic1 - T)" ™ (Thgr - Tim1) (T - Ti2) -+ (To - Ti) (T -+ Timomr ) (Tim ez - T1)(T1 -+ Timgo—2)

= (Ti-1 Tl)kH(TkH Ti1) Tk Tic2) - (T2 L) (Ticp—r - To)(Th - Timom1) (Th - - Timg—2)
=Ty 1) (Togr - Tis)) (T Tia) - (To- Ty ) (Timpor - T)(To - Tipp 1 )(Th - Tip2)
=(Tio1 - T ™ (Togr - To ) (T Tia) - (s Ty pyr) (T To ) (Tippr - T1) (T Ty i1 ) (Th
=(Ty1--- Tl)kH(TkH T ) (T Toa) - (T Ty ) (Ty—pe - T (T3 Ti ) (To - Ty g1 ) (T - -

= (Ti—1--- T (Ticr - T (Thga - Tim1)(Thgr - Tia) - (Th -+ Ti_j—2)
= (Ticq T (Thyo - Tisa)(Thgr - Ti—a) - (Th - Ti__2).

By taking k =i — 1 we find
0 () = (LT
Now we see that
€= (0T - (T T )
=t (T, Ty
=@ - (1)
— $20i-1)=2(i=2)—...=2(1)=2(0) (ti71§;1) . (togfl)

=g )7,
=A; Ay

where A; := tf(jfl)gjil. O

Putting the results of this section together gives the following:

Corollary 3.8. For T' € RYT>0()), the triangular expansion of Fio,(r) has the form

Ftop(T) — ¢ xv(T) ® es(ry + Z X8 ® vs
B=v(T)

for some vg € Si.
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Proof. First, notice that for T' € RYT0()\) wiop(ry = v(T'). From Proposition and Lemma 2.12]
f(top(T)) = el(T)lfl/(T)2 me;(T)n (es(r)

_ Allf(T)lfV(Th (A1A2)V(T)2*V(T)3 ce(Ay - An)v(T)n (es(T))
A:(lV(T)l*V(T)2)+~~~+(V(T)n717V(T)n)+V(T)n ...Ai:’i(f)n—liu(’r)n)+V(T)TLA;’L(T)TL(

es(r))
=@, ) (0, (esir)

— ¢vMilesmW)-(1-1) | ,t*V(T)n(CS(T)(H)*(nfl))eS(T)
— ¢ Zi= V(T)i(CS(T)(i)+i*1)eS(T)

= tibTes(T).

Therefore, the leading term of Fio,(r) is

X" @ f(top(T)) = t "7 X" @ eg(p).

3.2 Connecting Maps Between V),

Definition 3.9. Let A € Y. For n > ny define ¢g\n) : Vitmt1) = Vi) as the Q(g, t)-linear map given on
any element X* ® v € V, (n41) by
(X @v) = L(ant1 = )X - X2 @ ¢ (v).

(An) satisfies the following relations:

Proposition 3.10. The map ¢
e o, =Ti0(M for 1 <i<n—1
e VX, = x;0M for1<i<n
b4 (P(An)XnJrl =0
° @&n)tfnwnHTn = tf(”fl)mﬁign)
e Mt — MM for 1 <i<n
o (Y — =)y =0,
Proof. From Lemma [2.20] and Definition [3.9] it follows immediately for all 1 <i<n—1land 1<j<n
that VT, = 1,0, @V X; = X;0", and ®{” X,,;1 = 0.
Let X® ® v € V) (n+1). By direct calculation we find

OVt T (XP0 - X0 @ 0)

= ot M X X T (X X @)
= XS X g T (X X @)
=t XS X T M T (XS X @)

n

Xn - Xn+1

N N Xanan+1 _ Xon Xs‘n+1
=" XS X e\ (X:;zlxn"*lTn @v+(1—1)Xn ntl +1 ® v>

—n v n e e Xanszrl - Xsn X':anrl
=t X N cI,(A ) (q " X¢ nijjlwnHTn Qv+ (1 —t) Xnt1Tns1 ;}1 — Xn;l L Qv

= L(an+1 = 0)t " XO" XSt - X0 0 (1@ prs1 (a1 Ti)v)
L(ans1 = 0)t " X0 X$1 - Xamt oM 1 @ "1yt - - T )
L(ant1 = 0)g° " X7 X5 - X" @ Ty - Ty g\ (v).

23



On the other hand we see

D, e (X X0 @)

= L(ans1 = 00t~ V(X7 X0 @ a5 (v)
Mawa=0ﬁ<"1>MXWva X2 @ pa(ma) (a0 (v)
— ]]_( — 0) OénXlaanal .. ,X;i‘nfl ®T;1 Tn 1qg\")( )

Therefore, <I>(A")t7”7rn+1Tn = t*("*l)wnégn) as desired.
Now let 1 < i < n. We see that

MY = My~ (=Dl iy T,
=t -Tfl(q)(;)tfnﬁnﬂT V1T
=t T (T, S ) T T
=t T e T TS
=M.

Now let o € Z’;};l and 7 € SYT(A\" V). We find

n n+1 e
Mot (X ®e,)
=T T e (X @)

_ (I)g\n)T7;1 . TlflqanJrle’n#»ngl .. X::il ® pn+1(7rn+1)e'r

=g T X XS XS (Lt T T (o).

Now if a1 > 0 then this evaluates to 0 since

Tt T X =t X1 Ty - Th = 0.

Hence,
VT (X @ er) = L(anps = 0) BT, - T X5 - XOH (1@ " T - Ty (er).
Now we by repeatedly applying Lemma [3.4] we see that as maps V) (n+1) = Vy(m)
T, Ty (T XS XS X
a1 aq
oMt Ty ! <Xf1Tf1 +(1- t*pgu) X902 .. X0
X1 — X5
X=X
= xpo\T T XS X0+ (1=t hel Tt --T;lxgﬁX” e X
") e _ B o n X1 X
= Xillq)(x )Tn L "Tl IX?Q ngﬁ + (1 —t 1)t ( 2)(1)& )XnJrlTn—l . "T2ﬁXa2

= XM <I>(A")T,fl ST XSE X2 40

=X e Ty (T XS T XS XS

= X XGROT, T X

= XM ...Xgn@&")T;l Tt
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As usual let (o denote the unique square of the skew diagram )\("H)/)\("). Returning to our main
calculation now shows

Mot (X ®e,)
=1t =0T, TS XS (LT T (er)
Xt XTI A T T es)

)
= 1(ant1 = 0)
)X .X"‘nqp(”)(l QT Tflel e T;l(eT))
)
)

= ]]_(an+1 =
Xe o xem M (1 @00 (er))

— ]]-(an+1 — X?l . Xzén (I,(n)(l ® tc"(n+1)67—)
= 7D ]

0
0
=1(any1 =0
0

X X:" X q(n)( ‘r)
= t“C 1 (ans1 = 0)L(r(Do) = n+ DX X" @ e,y
="M (ans1 = 0)1(r(Do) = n + DX - Xo™ @ Eralm)

Therefore,
oM (D — My = 0.

Corollary 3.11. Let n > ny and Og = AV /X For 7 € PSYT50(A" V) we have

@&n)(Ff) = FT‘X(") 7(Mo) =n+1
0 T(Do) 74— n -+ 1.

Proof. We will first deal with the case when 7(Co) = n 4 1. Let T € RYTs0(A™) and let T' €
RYT5o(A™ ) with T(0o) = 0 and T"|,(n) = T|,(n)- By looking at the eigenvalues of ot et
on Fiop(rry and the eigenvalues of 9(") ., 05{” on Fiop(r) We see that <I>(A") (Fyop(17)) = BFiop(r) for some
scalar 5. We will now show that 5 = 1 From Corollary [3.8 we know that

Fiop(rry = 70 x T es(rry + Z X’ vl
B=v(T’)
and
Fropiry =t "X D @esry+ Y. X' @up
B=v(T)
for some vg € Sy(n) and vs € Sy(mt1). Since T" (o) = 0 and T"|y ) = T'|\(n), it follows that by = br,
v(T') = v(T) % 0, and qf\n)(es(T/)) = eg(r). Therefore,

(PE\”) (tbe, XV(T/) ® eS(T/)) _ t*bTXl/(T) ® €s(T)-

Now if 8 < v(T") then <I>(A") (XP @) = 1(Bas1 = 00X - XP @ q(")( 5) cannot be of the form
X7 @ for any w € Sy\(ny. As such the coefficient of XM g es(r) in the standard basis expansion
of <I>(A") (Fyop(17)) is t=°7 . Since this agrees with the same coefficient in the expansion of Fio, (1) we know
that 8 =1 and thus <I>(A") (Frop(r)) = Frop(1)-

Now consider any 7" € PSYT5o(A" ") with 7/(0o) = n+ 1. Let T" := p,nt1) (7) € RYTso(A" D).
Then 7" (0g) = 0 so if we set T := T"|, () we have that q)(;)(Fmp(T/)) = Fiop(r). Write 7 := 7’|\ (n). As
seen before there exists a sequence 7 < s, (7) < ... < 84, - -+ 8i, (T) = top(T). Since /(o) = n + 1, we
see that 7' < s;, (7') < ... < 84, -+ 8i, (7") = top(T”) as well. For each 1 < j < r we will consider using
the intertwiner operators from Proposition [3.2] to obtain Fj, L siy (7) from Fsijil...si1 (r)- We have
that

S5
iS5

Ly G o sy (0 5+

(t—1)g""% !

T+ . _ : . Foi srm) = Fs, (6o
< ij qwsij—l4.457;1(T)(Zj)tcsij—1.“Sil(ﬂ—)(lj)_qwsijfl4.4Si1(T)(1j+1)tcsij714.457;1(7—)(1‘7‘4»1) (slj,l 511(7)) sij(si;_q
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Now the same exact formula holds with 7 replaced by 7. Importantly, we have that w,, sy () (i;4+1) =
J

—1

wsijil...sil(-,-/)(ij + 1) and Csi,_y sy (m (i +1) = Csiy_y «s;, (7 (45 + 1). Therefore, we may write
D; (Fsijfl"'sil("')) = Fsij Sij_qsig (T)

and
D; (Fsij,I "'51’1(7'/)) = Fsij sij_q iy (7))

for D; € Ap C A(n,1y of the form D; = T;; +a; where o; € Q(g,t). Here we have used 1T =Ty +t—
By using the quadratic relation for T;; we may locally invert the operator D; in the sense that there
exists operators C; € A, with

F, sy (T) = Cj (Fsij Sij_y "'51’1(7'))

Jj—1

and

F, esgy (T7) T Cj(FsijSij,I'"Sil(T’))‘

Jj—1

Therefore, if we assume that ¢>(")( Fy, s, s, () =Fs, s, s, (r) then
159151 i1 i %51 i1

O (Fyy, | osiy (1)

= (Ci(Fyy or, yosiy o)
= GO (Fyp sy, siy (7))
= CiFy o sy ()

=F,

i sig (1)

Thus by induction, since we know <I>(A") (Fiop(r)) = Fiop(r), it follows that q)(;”)(FT/) =F,.

Lastly, we consider the case of 7(0o) # n+1. Then 7(0o) = iq® with either i #n+1ora >0.1fa >0
then 7 = ¥(7’) for some 7" and thus from Proposition B2 we know X, 11 divides F-. Since q)(”)XnH =0
it follows that <I>(")( F;) = 0. Now suppose a = 0 and ¢ # n + 1. Notice for any m > ny that the largest
power of ¢ occurring in the ™ -weight of any F,, with 7/ € PSYT>0()\(m)) is exactly ™~ *~1 Since
i # n+ 1 we know that if <I>(")( F,) = BF,, for some nonzero scalar 8 and 7/ € PSYTso(A™ V) then the
maximal power of ¢ occurring in the ™) -weight of F, is t*~* coming from

0;(F,/)
= 0,(%" (F))
=" (0:(Fy)))
= oVt Fy)
= o (" M)
=" p,.

Thus <I>(A") (F;) cannot be a 6™ -weight vector in V() and so 8 = 0. a

The maps <I>(A") possess another important stability property.
Proposition 3.12. For all £ € Z\ {0} and n > ny,

n+1 n
q)g\n) Z(Q;n+1))£ _ Z téc(l]) _ Z a(n) Z tlc(D) (P(n)
j=1 Oex(n+1) Jj=1 Oex(n)
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Proof. Let £ € Z \ {0} and n > nx. As usual let Oy denote the unique square of the skew diagram
)\(”H)/)\(”). Directly from Proposition B.10] we see

n+1
n n+1)\¢ Le(O
U DI D Dl
j=1 Oex(n+1)
n
:q)g\n) Z 0(n+1) Z (@) _HI)(;L) ((0517:31)) tu(mo))
J=1 dex(™)
_ Z(a(n) Z (@) (I)(7L)_~_q)(7l) ((97(1%1)) té(nf\M))'
j=1 Oex(n)

It follows from the relation @&") (07(5:21) - t"fm) — 0 and the fact that 87""" is invertible on V, \(nt1)

n+1
that
CI)(;L) ((951?11))[ _ tl(nf\/\\)) -0

Therefore,

n+1

e Z ) G S O] 2": (e 4@ | g,

j=1 Oex(n+1) j=1 Oex(n)

4 Positive EHA Representations from Young Diagrams

4.1 The @th—modules Wi

We now turn to the corresponding spherical DAHA modules and symmetric v.v. polynomials to the
positive DAHA modules V) and the non-symmetric v.v. polynomials F; considered in the prior sections.

Definition 4.1. For A € Y with |\| = n define the D5P"-module W) := ™ (V).

The F, expansions of any symmetrized element of any A, submodule Ur satisfy a simple set of
recurrence relations.

Lemma 4.2. Let T € RSSYT>o()\) and v € €™ (Ur). Suppose that v has the following expansion into

the F; basis:
v = Z krFr.

TEPSYT>o(NT)
Then for each 7 € PSYT>o(\;T) with 1 <14 <n — 1 such that s;(7) > 7 we have the relation

g (D ger (i) _ qur (1) ger (i41)
Rsi(r) = (me)tcf(i) - qwf(i+1)tCr(i+1)+1) Fr-

As a consequence, if Kop(ry 7 O then each coefficient %, is also nonzero.

Proof. Let 7 € PSYTx»o(AT) and 1 < ¢ < n — 1 with s;(r) > 7. Note that Q(q,t){Fr, Fs,(r} is
a 2-dimensional submodule for Q(q,t)[T;]. The T;-invariant subspace of Q(q,t){F-, Fs,(-)} is given by
Q(q,t)(1 + T, ") F;. From Proposition B2 we find

(L+tT;7 " Fy = Fr + T, 'F;

1—¢ 'uJ.,-(i+1)tc.,-(i+1)
=F +Fgm)+ (1= )

w.,-(i)tc.,-(i) _ qu(i+1)tcT(i+1) Fr
qu(z)tcT(l) _ qu(z+1)tcT(1+1)+1

= Fo) e @ = gur e G LT
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Since v = ZTEPSYT>0(A~T) k7 Fr is Ti-invariant then we know that in particular k;Fr + kg, () Fs;(r) is

also Ti-invariant and therefore must be a scalar multiple of (1 + tT[l)FT. Therefore,

qw.,- (2) ter (i) _ qw.,- (i+1)tc7' (i+1)+1

KB 4 Ky () Foy(r) = Ksy () Fsy(m) + Ks; (r) Fr

qwr (3) ger (1) — qwr (i+1)ger (i+1)

and so

B qu(i)tcT(i) _ qu(i+1)tcT(i+1)
Foi(r) = \ Qurger 9 — gur G Dger i1 ) BT

O

Using the recurrence relations in Lemma and the irreducibility of each of the A, submodules of
Vi we may determine which 7€ RYT>0()\) have a non-zero space of H,-invariants ¢™ (Ur).

Proposition 4.3. For A € Y with |[A\| =n and T € RYT>o(\),

1 T eRSSYTso())

dimgq,pye™ (Ur) = {0 T ¢ RSSYT>0(\)

Proof. By Proposition [3.3] each A,-module Ur is irreducible with simple o spectrum. This implies
that dimQ(q,t)e(”)(UT) < 1 for any T € RYT3>0()\). Further, we have that €™ (Ur) is zero if for any
6™ -weight vector v in Ur, ¢™ (v) is zero. If T € RYT50(\) \ RSSYT50()\) then there exists a pair of
boxes 0,02 € A with O; directly above Oz such that T'(0;) = T'(02) = a. Hence, top(T)(0O:) = iq”
and top(7)(02) = (i + 1)¢” for some 1 < i < n — 1. Then Ti(Fiop(r)) = —tFiop(ry Which implies that
e(")(Ftop(T)) = 0. Thus €™ (Ur) = 0.

Alternatively, now suppose T' € RSSYT>o(\). Following Lemma [.2] we construct a vector v € Ur of

the form
v = Z K+ Fr
TEPSYT o (NT)
where Kgop(ry = 1 and if s5;(7) > 7 then

g (D ger (i) _ qur (1) ger (i41)
Rsi(r) = <qwf<i>tcf(i> _ qwr(i+1)tcr(i+1)+1) R

These coefficients k, have the property that if s;(7) > 7 then

Ti(kr Fr + Ry (1) Foy(r) = R Fr + Ry (1) Fy ()

wr (i) yer (i) _ gwr (i41) yor (i+1)
. . q t t . .
By construction v # 0 since T (D ger (0 —qur (F D ger GFDFI # 0 whenever s;(7) > 7. We will show that

Ti(v) = v for all 1 <i <n —1 and thus €™ (Ur) # 0.
We find that

Tl(v)
= > rr T3 (F)

TEPSYT>o(NT)

= > T; (ke (Fr) + ks (r) (Foy(m)) + > ke Ti(Fr) + > rr Ti(Fr)

(7,8: (7)) PSYT>(A)? TEPSYT > (X) TEPSYTx((N)
s (T)>T i,i+1 same row of T i,i+1 same column of T
= Z (HT(FT)_FHSi(T)(FSi(T))) + Z ko b+ Z (—t)k-Fr.
(7,85 (7)) PSYT>0(A)2 TEPSYT >0 (N) TEPSYT»0(A)
s (T)>T i,i+1 same row of T i,i+1 same column of 7
Thus

Ti(v) —v = E (1+t)k-Fr.
TEPSYT>(N)
1,741 same column of T
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Lastly, since ' € RSSYT>((A) there cannot be any 7 € PSYT>o(A; T') with 4,7+ 1 occurring in the same
column as necessarily this would imply that 7" would have redundant values in those boxes contradicting
the fact that T is reverse semi-standard. Hence, the above sum vanishes and we find T;(v) = v. O

Finally, we are able to define the symmetric v.v. Macdonald polynomials following the conventions
of this paper.
Definition 4.4. Let T € RSSYTs¢(\). Define Pr € €™ (Ur) to be the unique element of the form

PT:FtOP(T)“'Z“yFy
y

where the sum above ranges over y € PSYT>((A) with px(y) =T and y < top(T).

Now we are able to explicitly compute the F; expansion of each Pr using the recurrence relations
found in Lemma [£2]

Corollary 4.5. For all T € RSSYT>¢(A),

T O @D+ _ qT(Dz)tC(Dz)>

Pr = T 0D @) — ¢TO2)¢e(0z)

TEPSYT»o(NT) (H1,02)€Inv(r) <

Proof. For 7 € PSYT5o(\;T) let

!

(01,02)€Inv(r)

qT(E’1)tC(Dl)+1 _ qT(Dz)tc(Dz)
( gT ) ¢e@1) — gT(@2)¢e(@2) )

From Lemma E.2it suffices to show that

® HKiop(T) = 1

) o qu(i)tCT (i)iqu('H»l)tcT('H»l)
o If si(7) > 7 then ki, (r) = <qw7(i)tc7(i),qu(iH)tcT(iﬂ)ﬂ Kr.

It is easy to see that Inv(top(T)) = 0 50 Kiop(ry = 1. Now suppose s;(7) > 7. Let 0@ O0TD ¢ A
denote the boxes of A with 7(0®) = ig® and 7(0*V) = (i+1)¢® for some a, b > 0. It is straightforward

to check that _ _
Inv(si(7)) = {(@?,00Y)} U Inv(r).

Therefore,

Fs;(r)

T(O1) pe@)+1 _ qT(E’z)tC(Dz)>

q
< gT @) ¢e@1) — ¢T(B2)¢e(B2)
(01,082)€Inv(s; (7))

qT(D(i))tc(D(i))+1 _ qT(D(i+1))tc(D(i+1))
= qT(D(i))tc(D(i)) _ qT(D(i+1))tc(D(i+1))

1l

<qT<Dl>tc<Dl>+1 _ qT(Dz)tC(Dz))
(04,02)€Inv(T)

g7 B0 ¢e@) — gT(@2)¢e(@2)

qw.,-(i)tc.,-(i) _ qw.,-(i+1)tc7-(i+1)
g (Dger @) — qur (iF D ger DT K.

We look now at the action of the special spherical DAHA elements Po(z).

Proposition 4.6. Let |A\| = n. The set {Pr : T € RSSYTx>o(\)} is a Q(q,t)[0i, ..., 05| -weight
basis for Wy. Further, for £ € Z \ {0}

) = (3247080 ) .

Oex
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Consequently, Po(ji) acts on Wy with simple spectrum

{Z ¢ e RSSYT>0()\)} .

Oex

Proof. Tt follows directly from Proposition B:3]and Proposition 3] that the set {Pr : T € RSSYT>0(\)}
is a linear basis for Wy. We need to show that the Pr are Q(g,t)[6E",.. ., 05| -weight vectors. Let
T € RSSYT3>0(A). Then from Definition 4] we know that

Pr = 8™ (Fiop(r))

for some nonzero scalar 8 depending on 7. Then for any ¢ € Z \ {0} we have that

(iwﬁ»’”)@) (Pr)

j=1

= <Z<9§”>>‘> (Be™ (Frop(ry))

j=1

= pe <<Z<9§">>2> (Fmpm)
j=1
_ ﬂé(") <<Z qlwtop(r)(j)tlctop(T)(j)> Ftop(T))

j=1

_ g™ <<Z qu)tec(D)) Fmp@))
Oex
- <Z qu(E’)tZC(D)> ﬂé(n)(Ftop(T))

Oex
_ <ZqZT(D)tlc(D)> Pr.
Oex
Hence, Pr is a Q(q,t)[0F", ..., 051]® -weight vector.

Now let S € RSSYT>0(A) and suppose that

SO0 = 3 SO0,

Oex Oex

Fix any d € Z. Since q and t are algebraically independent over Q,

Y O T £SO
A A

Oe Oe
c(0)=d c(0)=d

Since the labelling T is reverse semi-standard, the values of T'(0) for O € A with ¢(O) = d are all distinct
and strictly decreasing down the d-diagonal. Of course, the same is true for S. Therefore, the values of
T and S agree along the d-diagonal of X\. As d € Z was general it follows that 7" = S. Thus the spectrum
of the operator Po(ﬁ) on W, is simple.

O

As mentioned previously, the non-symmetric v.v. Macdonald polynomials do not align with those of
Dunkl-Luque. However, we are able to show that, once symmetrized, the symmetrized v.v. polynomials
agree.

Corollary 4.7. The symmetric vector valued Macdonald polynomials of Dunkl-Luque [DL11] agree with
the Pr of this paper up to nonzero scalars.
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Proof. The Dy,-modules V, in this paper are isomorphic (after aligning conventions) to the D,-modules
M in Dunkl-Luque’s paper. Dunkl and Luque characterize the symmetric vector valued Macdonald
polynomials as eigenvectors with distinct eigenvalues for the operator 55") +.. .+£,(1") acting on e (Ma).

Here §§”> are the standard Cherednik elements given in our conventions by §£n) S A LR T17rnTn111 R ek
A simple calculation shows that the spherical DAHA elements ™ (fin) + .+ &)™ and e<")(0§") +
L+ 07(?))6(") are both nonzero scalar multiples of ™™ Since the spectrum of e, ™ acting on

W is simple, it follows that the Pr are eigenvectors for ¢™ (gin) +... 4+ 57(1"))5(”) and hence agree with
the symmetric vector valued Macdonald polynomials of Dunkl-Luque up to re-normalization. O

4.2 Stable Limit of the W,

Finally, we identify a special stability property for the Pr elements.

Corollary 4.8. For T € RSSYTs>¢(A(™) let T € RSSYT50(A™*Y) be such that T(0) = T7’(0) for
Oe A" and T'(To) = 0 for o € A" /X Then

o™ (Pp) = Pr.

Proof. Note that restriction from A% to A" identifies PSYTo(A™; T') as the subset of 7 € PSYTso(A™ D, T7)
with 7(0o) = n + 1. Thus by using Corollary BTl in conjunction with Corollary we find that

o\ (Prr)

- ¥

TEPSYTyo(A(?+1);77) (01,02) €lnv(r)

o\ (F)

qT(E’1)tC(E’1)+1 _ qT(E’z)tC(Dz)
< gT @) ¢e@1) — ¢T(@2)¢e(2) >

B qT(Dl)tC(Dl)+1 _ qT(D2)tC(D2)
- Z qT @D ¢e@) — gTO2)¢e(02) NG
TEPSY T oA+ 77y (O1,02)€lnv(r)
7(0g)=n+1
B Z H qT(Dl)tc(D1)+1 _ qT(E’z)tc(Dz) .
B qT @) ¢e@1) — ¢TO2)e(02) NG
TEPSYTs (A1), (O1,02)€lnv(r], (5))
7(0p)=n+1
B Z H qT(Dl)tC(EH)H _ qT(Dz)tC(Dz) "
N qT OV ¢te1) — gTO2)¢e(U:) T
TEPSYTZO(A(”);T) (O1,02)€Inv(r)
= Pr.

This stability allows for the following definition.

Definition 4.9. Let A € Y. Define the infinite diagram A\ := |
of all labellings T': A(*®) — Z=( such that

e {Oe ™ :7[@)#0} < oo

e T decreases weakly across rows

A" Define Q()) to be the set

n>ny

e T decreases strictly down columns.

For T' € Q(\) we define the degree of T as deg(T') := Y ey T(0). Define the rank of T', rk(T), to
be the minimal 7 > nx such that T'[} ce)\ y(n) = 0.

Define the space W/{oo) to be the inverse limit 1&1 W, (n) with respect to the maps <I>(A"). Let W be the

subspace of all bounded X-degree elements of WA((X’). For T € Q) define the generalized Macdonald
function B = lim,, PT‘A(n) € Wi.
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Example 7. For A = (3,2,1)

A=) = and

31210

€ Q(N).
1] 1
0

Remark 10. The degree of each P, is given simply as

deg(Pr) = deg(T) = > T(O).

Oex(e0)
It is clear from definition that the set of all . for T' € Q(X) gives a Q(g, t)-basis of Wi.
Using the stability of the action of the PO(Z) operators we may define the following operators.
Definition 4.10. For £ € Z \ {0} define the operator A : W/{OO) — W/{OO) to be the stable-limit

n
5200) — lim Z 0(n) Z )

Jj=1 Oex(n)

A simple calculation shows the following:

Lemma 4.11. For all £ € Z\ {0} and T € Q(}\),

AP = > @ - | gy

Oex(e)

Proof. Let £ € Z\ {0} and T € Q(A). Then

AP (Br)
n

o ()¢ @ | (1

=tim { S°(6) = 3 ¢ (tim Py )
=1 Oex(m
n

_n (n) Le(0)

= lim Ze Z ¢ (Pri )
=1 Oex(m

o eT(0) 4 ee(0) ee(D)

= lim > T = S Pri, )
Oex(n) Oex(m)

S T () te(0)

= hrrln Z (¢ — 1)t Pri (-
Oex(n)
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Importantly, for n > rk(7T)

Z (qu(D) _ l)tu(m) _ Z (qu(D) B 1)tlc(D)'

Oex(n) Oex(ee)

Therefore,

im [ Y (@7 -1 Py

n A(n)
Oex(®)
- ¢T(0) ee(0)
hm Z (q — 1)t PT‘A(n)
Oex(e)
ET(D) - 1)1526@ lim PTwn)
n
EIGA(OO)
ZT (] Lc(O
((E)I 1t (=) B
DeA(f’o)

Corollary 4.12. For ¢ € Z\ {0} the operator KEOO) restricts to an operator on Wi.

Proof. Let ¢ € Z \ {0}. We know that the set {P,|T € Q(N\)} is a basis for Wy. From Lemma ZIT]
we further know that AEOO) acts diagonally on this basis. Therefore, AEOO) restricts to an operator on
Wi. O

Example 8. For T' € Q(3,2,1) as is Example [T

A @) = (@ D+ (@~ D+t + )+ (@~ DE+ ) + (- DE >+t +14)) By

4.3 Positive Elliptic Hall Algebra Action on WA

Combining every result of this paper thus far we are able to define a novel family of positive EHA
representations.

Theorem 4.13. For A € Y, W, is a graded &*-module with action determined for ¢ € Z\{0} and r >0
by

e Pro—q'pr
o Py, — &éw).
Further, WA is spanned by a basis of eigenvectors {B, }recq(x) with distinct eigenvalues for the Macdonald

operator A = ﬁg‘"’).

Proof. Tt suffices to establish that the map £+ — End@(qyt)(WA) satisfies the generating relations of &% .
Any such relation is a non-commutative polynomial expression in €T of the form

F(Po,fr7 ey 1:70,71]:’0,17 ey Po,r-7 Pl,()7 ey Ps,o) =0

for some r > 0 and s > 0. By an argument of Schiffmann-Vasserot (Lemma 1.3 in [SV13]), there are
automorphisms T'™ of DP" such that for all £ € Z \ {0} and s > 0, F(”)(PO(?)) Po(?) > Oea tte®)

and F(")(P(")) Pé(%) By applying the canonical quotient maps II, WA — W, ) we see using Cor.
that as maps
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H»,L]'T(I‘_’()’fr7 ey Poyfl, 1:’(),17 ey 1:’(),77 PL(), ey Ps,o)
= FIT™(PM,), . TP, T (B, . T (B, T (PO, ..., T (PO,
=T(FEB,, . B PSP P PU)ILL, = 0.

As this holds for all n > ny, it follows that F(Po,—r,...,Po,—1,Po,1,...,Por, Pr0,...,Ps0) = 0 in
Endg(q,:) (W) as desired. The last statement regarding the spectrum of A follows directly from Prop.
6]l and Cor. &8 O

Remark 11. For 7' € Q()) and ¢ € Z \ {0},

Poe(Bp) = Z (qu(D) _ 1) 4be(@) B,

Oex(e)
Remark 12. For A\ = 0, W@ = A4, Tecovers the standard representation of €T . In this case, () = Y
and B, = Pu[X;¢ ", t] (up to nonzero scalar).
We identify a special element of each W,\.
Definition 4.14. For any A € Y define the labelling T of A by

TE™(O) = #{0 € A\°|O strictly below O}.
Lemma 4.15. The labelling T{"™ is the unique element of Q(\) of lowest degree dy := Zizl i

Proof. Tt is immediate that since X is a partition 73™™ € Q()). Further, by construction each entry of
T is chosen minimally in that for any 7' € Q(\) and O € A\ T&i"(0) < T(0O). To see this simply
note that if 7 € Q(\) and O € A(*) then if I’ is the box directly below O then T'(0) > T'(C'). Hence,
T(0) must be at least as large as the number of boxes strictly below O. Therefore, T3 has the minimal
degree among all elements of (). Lastly, the number of boxes O € A(*) with T@*(0) = i is \; so

deg(T5™™) = dy as defined above. |
Proposition 4.16. For A\, u € Y distinct, WA * WM as graded €7 modules.

Proof. Let A\,u € Y and suppose that f : Wy — WH is a graded £T module isomorphism. Then by
Lemma [4.15] we know that

f(mT;"‘H) = O‘mT;ﬂin
for some nonzero scalar o € Q(gq,t). Further,

PO,l(f(mT;ﬂH)) = f(Po,l(‘BT;nan))
HOY @O - 1) )

Oex(e)

min (O
— [ X @O -1e@ ) £

Oex(e)
min O (O
= Z (qT* ( )—1)t( ) a‘ﬁTLmn.
Oex(e)
On the other hand,
min O (O
Po,l(amT,;nin) = Z (" — 1) O‘mT;;ﬂn-
Oep(ee)
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By assumption a # 0 so

S (@O @ Y (O ),

Oex(eo) Oeplee)

This gives _ _
Z (qTf”“(D) _ 1)tC(D) — Z (qT,‘}““(D) _ 1)tC(D)

Oex(™x) Dep(mn)
which after limiting ¢ — 0 gives
OUEES S
Oex Oep

By comparing the coefficient of t* for all d € Z on both sides of the above equality we see that A and u
have the same number of boxes on each diagonal and are therefore equal.
O

5 Pieri Rule for Generalized Macdonald Functions

The goal of this section is to derive and utilize an explicit combinatorial formula for the action of the
multiplication operators e,[X]® on W,. We will investigate the e; Pieri coefficients in more depth and
show that they satisfy a simple non-vanishing condition. We will use this non-vanishing to prove that
the Wy modules are cyclic.

5.1 Pieri Rule Preliminaries

We begin first by establishing some useful lemmas.

Lemma 5.1. For T'€ RYT>q(\)

n w(T | 2\ _ (#(TN _g(o
6( )(Enin(T)) — % Z t((2) ( 2 )) ( )TU(Fmin(T))«
’ JGGn/G“(T)

Proof. The result follows from the following simple calculation:

E(n) (Fmin(T))
1 n 72 o

= W Z t(2) ( )Ta(—FInin(T))
t oeG,

_ [nl] ' Z Z t(g)*z(‘”)TM(Fmin(T))

t.
0€6n /6, (1) YES u(T)

1 Y gy
= ] T Z Z t(2) £(o) Z(’Y)TUT'V(*Fmin(T))

o€SR/S (1) TES (T)

1 Z Z t((g)’(ug)))72(")15(“(2?))’e(")Ta(Fmin(T))

" 0€GR/S () YES u(T)

=

=

= 1 Z t((g),(ug)))fe(a)Ta(Fmin(T)) Z t(“f))wo)

C0EGR/Su(T) VES (1)
Iu, THY],! 2\ _ (DY _g(o
o = oI DRI R R AT
0€6n/G (1)
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Lemma 5.2. For RSSYT>((A) and 0 € 6,/6 (1)
To (Frin(r)) = Fo(min(m)) + Z K Fr
T<o(min(T))
for some scalars ~-.
Proof. We will proceed by induction using the fact that PSYT>o(\;T) is isomorphic to &,/&,(r) as

posets which we saw in Remark Certainly, the statement holds trivially for 7 = min(7"). Take some
o(min(T)) =7 € PSYT>(A; T) with s;(7) > 7 and suppose that

To(Fuin(r)) = Fominry) + Ko
/<o (min(T))
for some scalars k.. Then using Proposition
Ts;0(Fmin(T))
=TT (Fiin(T))
=T,F, + Z K T Fr

7/ <o (min(T))

_ (1 _ t)qu (i)tcﬂ' (4) (1 _ t)qu/(i)tCT/ (2)
=Fum+ qur (Der (@) — qur (1) ger (i+1) Bt Z ot \ Fsiry + g Ve () _ qur F D e G D) o
7/ <o (min(T))

= Fs;0)(min(T)) + Z Koy Fopr

/< (830 (min(T))

a

The above lemmas may now be used to compute the symmetrization of each F; in terms of the Pr
basis.

Proposition 5.3. For T' € RSSYT>q()\)
[(T)]¢!
[n]:!
Proof. Recall from Definition [£4] that the coefficient of Fiop(T) in Pr is 1. We know that from the proof
of Proposition [A3] that since T' € RSSYT>0(A),

E(n) (Fmin(T)) -

™ (Fmin(T)) = @Pr

for some nonzero scalar . Let oo denote the longest element of &, /&, (. Note that go(min(7")) =

top(T"). We now use Lemmas[ETland 52 to compute the coefficient of Fyop (1) in e (Fimin(T)) determining
o

E(n) (Fmin(T))
w(T)]e! 2\ _ (DY _g(o
= % Z t((2) ( 2 )) ( )To(Enin(T))
JEGn/G“(T)

n

_ M Z t((2),(u<2T>))7£(a) Fy(min(T)) + Z i B

|
[n]t‘ JEGn/G“(T) 7<o(min(T))
! n\_ ((T)\) _ -

= [M(T)l]t Fao(min(T))t((Q) (MZ )) £oo) + Z H;F‘r

[T’L]t. T<0oo(min(T))

[(T)]!
= [n] \ Ftop(T) + Z K;F.,-.
t T<top(T)
Therefore, o = L(Te! O

[n]¢!
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Lemma 5.4. For 7 € PSYT>( () with px(7) =T € RSSYT>(X)

T(O1) (@) _ ,T02)pe(02)
qT@D e(@n) — ¢T(O2)e(02)+1 € (Frop(T))-

M (F) = (
(01,82)€Inv(r)

Proof. Let T € RSSYT>o(A) and 7 € PSYT>((A; T') with s;(7) > 7. Then using Proposition B.2] we see

e(n)(FSi(T))

7 (i) per (i)
_ (n) ) (t _ l)qw t
=€ <<Tz + qu (’L)tcr(l) — qu (i+1)tc7.(i+1) F‘r

_ (t — 1)g@rWger (n)
= (1 + qw_,_(i)tc.,.(i) — QW (i+1) ger (i+1) € (Fr)

_ qwr(iﬁ»l)tcr(i«kl) _ qw.,-(z)tc.,-(z) () .
= gur D ger D) — gur (D ger (i) e (Fr).

Now using an induction argument nearly identical to the proof of Corollary we see that for any
T E PSYTE()()\; T)

)= ]

(01,02)€lInv(r)

T(O1)e@r) _ T (02)4e(02)
qTE0 @) — ¢TO2)¢e(@2)+1 top(T)J-

O
Corollary 5.5. For px(7) =T € RSSYT>0(A)
T(0y1)4e(0r) T(H2)4c(02)
(n) _ q t —q t
) =kaan I )(§®W®LWMMM%H Pr
1,02)€Inv (T
where
[(T)]e! g B0 eE) _ o T(E2)ge(C2)+1
Kr(q,t) == RN H ( IO 100 — gT(02)e(02) )
(01,02)€Inv(min(T))
Proof. We begin by noting that from Lemma [54] applied to min(7T):
T(81)4e(01) _ T(0O2)c(02)
" (Finin) = ( g 0 tEI 3 o tD > ™ (Frop())-
(0100} etme(r) gTE)¢e@1) — gT([B2)¢e(02)+1
1,42 AN
But from Proposition [£.3] we know that e(”)(Fmin) = %PT SO
qT(Dl)tC(Dl) _ qT(D2)tC(Dz) 5(”)(F - [,“(T)]t!P
S = qT @D ¢e@) — gTO2)pe(@2)+1 tep(M)) = T T
1,U2)E€Inv (T
Thus
E(n) (Ftop(T)) = KT((L t)PT
as defined in the corollary statement above.
Lastly, we can now use Lemma [5.4] to finish the proof. O

The last lemma of this section relates the action of e,.[X]® to the action of 4], on symmetrized elements.

Lemma 5.6. For 1 <r < n, e(”)er[Xl 4.4+ Xn]e(”) = t*(("*1)*“ﬂn*r))er[%]e(")fy;e(").
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Proof. First, we will show by induction that for 1 <r <n

— =Dt ()

n—1"

oA ST (T Ty T (T T T T X - X

For » = 1 we see that
Yn = XnThor---Th = t" ! n 11 Tlile'

Now suppose this equation holds for some 1 < r < n — 1. Then we have

it
= TnYn
= DT Y (T Ty ) e (T T ey T X Xt T T T X
= (D F A nmryn— 1(T STy )( . 1T1) (T T ey T X X T T X
— (=Dt (=) n— YT STTYT T (T T ey - Th) ,;fl---TfleH---XrTfl”-Tf

A simple calculation verifies that
Xy X, T T =TT T X X,

Therefore,

r+1
Tn

= DT Y (T T ) e (T T T T T Tt T T X X

= t(”’IH“'H"’TH("*(TH))(Tnil .. T;l)( o -T{lTl) o T My - Ty )( o .TrjrllTT T X -

which is of the correct form.
Now we see that for any 1 <r < n,

e(")’y,:e(")

= Wb e (T (T T ) (T T T T X X
_ t(nfl)Jr...Jr(nfr)e(n)Xl . Xré(n)

Suppose that 1 =ip < i1 < ... <4r < iprgy1 =n with 45 < d;41 — 1 for some 0 < j <. Then

Xiy oo Xiy Xy Xy ) Xy g o0 X,
= Xiy o Xy, (X T X X

101 Xijpo 0 X

1 —1
=T Xy Xiy Xy X Xay o X, T

ti—1 ti+1

—1 1
=T, Xiy - Xo, 15,

which shows that
My X X, X, X, o X M M x o x ()
i1 IR A S PR S i€ = l€ i1 in€ .
It follows that for any 1 <i1 < ... <i < n

G(n)Xil . 'X'LTE(TL) _ t(ir*T)+<~+(’L‘1*1)E(n)X1 . Xre(n).
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Now we see

e(")eT[X1 + ...+ Xn]e(")

= e(n) Z ‘X'i1 . X“ 6(")

1<i1<...<ipr<n

- Z 6(”>Xi1 X, ™

1<i1<...<ip<n

_ Z t(ir*T')+.~~+(i1*1)6(")X1 . XTE(")

1<) <...<ip<n
_ Z t(irff')+...+(i1*1)t*((n71)+...+(nfr'))6(n),y;'6(n)

1<iy <...<ip<n

_ (=Dt (nr) D Il PG
1<i<...<ir<n
= t*(("*l)*''“"77"))67-(17 R t7l71)6(n)’}/26(n)

(e _ 1— 1"
_ (=Dt () {1 : ] (T ).

5.2 Pieri Rule

Using the above lemmas, we may derive an explicit formula for the action of e,[X]* on the symmetric
v.v. Macdonald polynomials in the finite variable situation. We will then use the stability of the Pr to
derive a similar formula for the P .

Theorem 5.7. For T'€ RSSYT>o(A) and 1 < r < n we have the expansion

er[Xi + ...+ Xo|Pr =Y d§ ) Ps
S

where

(r)
dsr

T(O1)pe(O)+1 _ qT(E’z)tC(Dz)
gT@E)¢e@1) — ¢T(@2)¢e(2) )

— Z th—(l)+...+c7-(r')

q
t(2)er. [1::] KS(% t) TEPSY T (N T) (O71,02)E€Inv(T) <

S.T.
BT (7)EPSY T30 (A;S)

qS(Dl)tC(Dl) _ qS(Dz)tC(Dz) >

<qS(Dl)tC(Dl) — ¢S5@2)e(02)+1
(O1,02)€nv (7 (7))

and T” ranges over all T’ € RSSYT>0()) one can obtain from 7' by adding r to the boxes of T' with at
most one 1 being added to each box.

39



Proof. Using Lemma and Remark [8 we find

67-[X1 4+ ...+ Xn]PT
= e(")er-[X1 + ...+ Xn]e(")(PT)

Cne ~ (1 —¢"]
— (=Dt (n=r) = €MAT ) (pry

—((n— n—r _1_tn n r
= ¢~ (=Dt (n=m) — € )%L(PT)

(=Dt et (=) [ L=t"] ) r q
=t er -1 € " Yn Z H (

- - TEPSYTZO(A;T) (O4,02)€Inv(T)
qT(Dl)tc(Dl)+1 _ qT(Dz)tc(Dz)

(=Dt (neryy [ 1= (n) 7
= R > 11 PO — e ) © Y (Fr)
- - TEPSYT o (NT) (U1,02)€Inv(r)

T pe@)+1 _ qT(D2)tC(Dz)
gT @) ¢e@1) — gT(@2)¢e(2) > T

qT(Dl Jpe@0+1 qT(Dz)tC(Dz)

(=Dt ey, [ L=t () (yr(n=1) o7 ()4 ter (1)
=t Sl R— Z H 0000 — gt e2) ) € (t t Fyr(r))
- - TEPSYT o (NT) (U1,02)€Inv(r)

T OV @D+ T(02) 4e(0a)
qT @D ¢e@n) — ¢T(02)402) ) e (Fyr(r))-

n
—le [L2] Y o

1=t TEPSYT 50 (NT) (O0y,02)€Inv(r) <

From Corollary [5.5]

qT(Dl)tC(Dl) _ qT(D2)tC(Dz)
P r
T(0p)¢e(@1) — qT(Dg)tc(D2)+1> PA(ET(T))"

™ (Fyr(y) = 1 (pA(¥7(7)) € RSSYT50(N\)) Ky, (wr(r)) (2 1) (q
(01,02)eInv(¥ (7))

Hence, by collecting coefficients around each Ps for S € RSSYTx((A) we see that

er[X1 + ...+ XalPr =Y d§)Ps
S

where dg)T are as given in the theorem statement above.

Lastly, if 7 € PSYTx>0(\;T") then the boxes of A containing the labels 1,...,r (with some powers of

g given by T') are exactly those boxes O € A with px(¥7(7))(0) = T(0O) + 1. Thus if S = pA(¥"(7)) €

RSSYT>0(A) then we may obtain S from T by adding the value 1 to r boxes of T' with at most one 1
added to each box.

a

Definition 5.8. For S,T € Q(\) and r > 1 define D(ST)T € Q(gq,t) by

X P = > oGP

SeQ(N)

Remark 13. Note that from Theorem [B.7]it is clear for T' € Q(A) and r > 1 that each S € Q(X) such
that D(ST)T # 0 will necessarily be obtained from 7" by adding r 1’s to the boxes of 7" with at most one 1
being added to each box. As such the set of such S is finite. Further, any such S has rk(S) < rk(T") + 7.

As an immediate consequence of Theorem [5.7] and the definition of B from Definition 9] we obtain
the following result.

Corollary 5.9 (Pieri Rule). Let S,T € Q(X) and r > 1. For all n > rk(T") +r

(m) _ 4
051 = dSh(n) Tl
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5.3 Non-vanishing for e¢; Pieri Coefficients
In this section we will prove that if T',.S satisfy a simple combinatorial relationship then Dgpl,).T # 0. This

will be instrumental in the proof that the modules WA are cyclic.

Definition 5.10. Let A € Y and T" € RSSYT>¢(A). A box Op in A is T-raisable if the labelling S
defined by

S(O) = T(O) O+ Oo
T +1 O=Oo.

is also in RSSYT>o(\). We say that S is obtained by raising the box Oy of T. Further, we say that [y
is a S-lowerable box in A.
We will write T'1 S if S may be obtained by raising one box of T

Remark 14. We may define a partial order C on the set RSSYT>((A) simply by
TCS«vVOeA? 7(0) < s@0).

Then the relation 7' 1 S defined in Definition [.10] is simply the cover relation of C . Lastly, we may
extend the definitions of raisable/lowerable boxes and of the relation T 1 .S to () analogously in the
obvious way.

We require the following lemmas.
Lemma 5.11. Let 7 € PSYT>o(M\;T') for T € RSSYT>o(A). If (O1,02) € Inv(7) with T(0:) = T'(0Oz)
then ¢(Oz2) — ¢(0) > 2.

Proof. Since T' € RSSYT>0(A), for all n > 0 the set of boxes {0 € A\|T(0) = n} is a skew-diagram
consisting of a union of disjoint horizontal strips. Suppose (di,02) € Inv(7) with T(0:) = T'(02) = n.
Then Oy and Oz cannot be in the same horizontal strip component of {0 € AT(O) = n}. Further, Oy
must be to the left of Os. Hence, ¢(02) — ¢(01) > 2. |

Lemma 5.12. Let T € RSSYT>o(A). Given a T-raisable box of A, Oy, there exists a unique 7 €
PSYT>0(A; T) such that

e 7(0o) = 1¢° for some a > 0

e inv(r) =5(T)(0o) — 1.
Proof. Since the count inv(7) = S(T")(0o) — 1 is tight there exists at most one such labelling. We may
simply define 7 € PSYT>( by labelling the boxes O € A with O <7 O with the labels {2, ..., S(T)(0o)—1

following the box ordering S(7'). We then fill the boxes O >¢ Oy with the values {S(T")(0o),...,n}
following the box ordering S(T"). Thus 7 has exactly S(T")(o) — 1 inversion pairs. |

Lemma 5.13. Let T, 7" € RSSYT>((\) with 71 T". Let 0o be the box of A on which T and 7" differ.
Let 7 € PSYT>o(\; T') with ¥(7) € PSYT>0(X; T"). Then we have the following:

o Inv(r) = {(01,02) € Inv(7)|0; # 0o} U {(0,00)|0 <7 0o}
o Inv(U(7)) = {(O1,02) € Inv(¥(7))|0; # To} U {(To,0) |00 <7 O}
o {(01,02) € Inv(7)|0; # 0o} = {(T1,02) € Inv(¥(7))|Ts # o}
Proof. This result follows by simple case work which we leave to the reader. O

Putting these lemmas together we may show the following:

Theorem 5.14. Let A € Y and 7,7" € RSSYTxo()) with 7'+ T". Then df,) . # 0.
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Proof. Let (o be the T-raisable box on which T and T” differ. From [5.7] we see that

dsl) . S o <qT<Dl)tc(D1>+1 _ qT(Dz)tC(D2)>
5 — tc.,—
i—t" , T(O1)tc(01) — ,T(0z)4c(0z)
(F=¢ ) K (q:1) TEPSYT>((NT) (H1,02)€lnv(7) g e g e
t

s.t.
U(T)EPSYT>q T

g7 (H)ge@) — gT"(H2)¢e(U2)+1

( g7’ B0 e@1) _ T (B2)4e(@z) )
(01,02) €lnv (¥ (7))

Therefore, it suffices to show that the sum on the right hand side of the above equation is nonzero. If
7 € PSYT>o(A\; T) with ¥(7) € PSYT>0(A;T”) then ¢, (1) = ¢(0o). Hence, we may factor out the term

ter() = o) outside the sum. From Lemma 513 we have the following for any 7 € PSYTso(); T) with
U(1) € PSYT>0(NT):

gT @D ¢te@) — ¢T(H2)¢e(U2) gT' @ e) — ¢T"(U2)¢e(B2)+1

<qT<D1>tc<D1>+1 _ qT(Dz)tc(Dz)> < g7 @)e@) _ gT'(@2)e(02) )
(0y,02)€Inv(7) (0y,02)€Inv (¥ (7))

TO) pe(@+1 _ qT(E’o)tC(Do)>

_ q
= 11 < O _ gT00) o)
O<70g

T (C0)+14e(@0) _ oT(0)4e@) gTOD @1 _ T (O2)4e(@s)
H <qT(D0)+1tc(D0) _ qT(D)tC(D)+1 ) H <qT(D1)tC(E’1) _ qT(Dg)tc(D2)+1 )
D()<T/E| (Dl,Eb;)éEDInv(T)

3 0

The first two products above are nonzero and do not depend on 7 and can therefore be brought
outside the summation

TEPSYT>o(NT)
s.t.
U(T)EPSYT>o(NT")
Hence, it suffices to show that

> 0 <qT<Dl)tc<Dl>+1 _ qT(Dz)tC(Dz)> 0

qT OV ¢er) — ¢T([2)¢e(D2)+1
TEPSYT>o(NT)  (Op,02)€Inv(r)
. 0,0

i #Uo

s.t.
U(T)EPSYT5o(NT")

Notice that we can rewrite the above product terms in the following way:

<qT(Dl)tC(Dl)+1 _ qT(D2)tC(Dz)
T(O1)ge(@r) — T(Dz)tc(52)+1>
(04,02)€Inv(T) q q

0;#00

(o) ST Gy 1 — ¢7(@2)=T(0) e(@z)—e(D1)—1

=t 11 (1 - qT<Dz)—T(D1)tc(Eb)—c(Dlm)
(O04,02)€Inv(T)

0;#00

Therefore,

>

TEPSYT>o(MT)  (01,02)€Inv(r) <
t

qT(Dl)tC(Dl)+1 _ qT(D2)tC(D2)
g7 O ¢e@) — qT(Dz)tC(Dz)+1>

s.t. i#Ho
\IJ(T)EPSYTZO(A;T,)
T(Os)—T(d c(0g)—c(O7)—
_ Z fine(r)=S(T) Qo) +1 1 — T @2)=T(E1)pe(@2)—e(@) -1
1 — ¢T(E2)=TE1)¢e(H2)—c(@1)+1
TEPSYTSo(N;T) (84,02)€Inv(T)
s.t. i#Ho
W(T)EPSYTZO(A;T’)
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Now we have by definition for any inversion pair (i,0z) that T'(0z2) — T(0:1) < 0. Therefore, by
limiting ¢ — oo we see that

T(82)—T(01) pc(02)—c(b1)—1
. inv(7)—8(T)(Op)+1 1—gq t
END DR I )

1 — ¢T(E2)=TE1)¢e(H2)—c(@1)+1

TEPSYT>o(NT) (04,02)€Inv(T)
s.t. 0;#0¢
U(T)EPSYT5o(MT)
c(ds)—c(dy)—1
_ 3 finv(7) =S (T) (Do) +1 1 — ¢o(02) e

1 — te(02)—c(01)+1

TEPSYT>o(NT) (01,02)€Inv(T)

£ i
\I'(T)EPS%'TEO(A;T’) T(I:ll):T(()l:lg)

By Lemma [5.11] we see that for each of the inversion pairs (O;,02) € Inv(7) for 7 € PSYT>0(A; T)
with U(7) € PSYT>o(A;T7) and T(0;) = T(02) that ¢(0z2) — c(0y) — 1 > 1. Therefore, if we limit ¢ — 0

c¢(02)—c(01)-1
: inv(r)—S(T)(Do)+1 1t
}LI)I}) Z t H (1 _tc(Dg)fc(Dl)+1>
TEPSYT>o(NT) (04,02)€Inv(T)
\I/(T)GPSi}t’I"EO()\;T’) (O, )T (Cy)

) ) 1 — ¢e@2)=e(@1)-1
= Z 1 (inv(7r) = S(T)(0o) — 1) }5{1 <m)

TEPSYT>o(NT) 0 (01,02)€Inv(T)
s.t. i
T(T)EPSY T (M T”) T(Dl):T[()Eb)
= > 1 (inv(r) = S(T)(0o) — 1) I (1)
TEPSYT>o(NT) (04,02)€Inv(T)
.t B
\I/(T)epsiszo(A;T’) T(Dl):T(()DQ)

=#{1 € PSYT>o(\;T)|U(7) € PSYTZ()()\;TI),iHV(T) = 5(T)(Qo) — 1}.

By Lemma 5121 #{r € PSYT>o(A\; T)|¥(7) € PSYT>o(\; T"),inv(7) = S(T)(do) — 1} = 1 which in
particular is not 0. Therefore, d;l,)’T # 0. O

Using stability we find the following:
/ . / (1)
Corollary 5.15. Let A € Y and T, 7" € Q()) with T' 1 T". Then 2,/ ;. # 0.

Proof. From Corollary [.9] we know that for all n > rk(7) + 1

1 1)
o) =d :
T'.T T'1y (n) Tl (n)

Since T” is obtained from T by increasing the value of a single box of T' by 1 we know that the same

must be true for T'|,(») and T'|y(n) for all n > rk(T') + 1. Therefore, from Theorem [.14] we conclude that
1 L)
0 =dl| i,y # O U

A(n)

The non-vanishing of the e; Pieri coefficients is sufficient to prove that the WA are cyclic £€"-modules.

Corollary 5.16. For A €Y, Wy is a cyclic £T-module.

Proof. We will show that mT;nin is a cyclic vector for Whie £F mT;nin = Wy. It suffices to show that for
every T € Q()\) there exists some X € £ with X(‘ﬁTf.in) = P . Notice that given any T € Q()\) we may
choose any lowerable box i of T" and obtain a labelling 77 € Q(\) by subtracting the value of 1 from
[y in the labelling T. Continuing in this process yields a sequence of labellings 71,75, ... with Ti41 T 7T;
which must eventually terminate as deg(7;) = deg(T") — i. It is easy to verify that the only element of
Q()\) without any lowerable boxes is T{"™ so the sequence T1,T2, ... must end at Ty"". Reversing this

min

process shows that any 7' € Q()\) may be obtained from T5™™ by a sequence T3 = T1,..., T, = T with
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T; 1 Ti4+1. Hence, by induction it suffices to show that if 7' 1 7" then there exists X € £ such that

XBr) =B -
Let T, 7" € Q(\) with T 4 T’. Consider the element X € £t defined by

x= [ Poy =Y peyee (¢° = D)eeD)
TS ZD@(&)(QT/(D) - qS(D))tC(D)
S#T’

The denominator of the above product is nonzero since Py,1 acts with simple spectrum on WA. Further,
as mentioned before the set of S € Q(X\) with T' 1 S is finite so the above product is finite. We have that

forTTV
P (5D _ 1)@
xop) = [] ( b1~ oexeald” 1) )(m)

Tis \ 2oeaee (@ = g5 @)ie®)
S#T’

“ 11 Soereo (g7 = " @)™ B,
s\ 2mexto (@7 = g¥ @)@
S#T’

= 6V,T’ g’BV B

From Corollary we know that D(l)T # 0. Therefore, we may consider the element X’ € £*
defined by

71

X = D(l) XP10

We find that

71

Xl(mT) = (1) XD O(mT)

T’ T
71
= (1) qul(qu)
0
T, T
_ 1 NeD
- 0(1) X(Z mS)
T',T TrS
L (1)
= Zﬁsﬁsm P
T/, T TTS
=By .

6 Family of (¢,7) Product-Sum Identities

In the final section of this paper we will investigate an interesting family of (g,t) product-sum identities
which are derived using the combinatorics underpinning the structure of the generalized symmetric
Macdonald functions B, along with some elementary non-archimedean analysis.

Definition 6.1. A non-negative asymptotic periodic standard Young tableau with base shape A € Y is
a labelling 7 : A®) — {ig® : i > 1,a > 0} such that

e 7 is strictly increasing along rows and columns
e The set of boxes [ € A such that 7(CJ) = iq® for some i > 1 and a > 0 is finite
e For all i > 1 there exists a unique (J € \®) such that 7(0J) = ig® for some a > 0.
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We will write APSYT>()) for the set of all non-negative asymptotic periodic standard Young tableaux
with base shape A € Y. If 7 € APSYT>o()\) has that for every O € X, 7(0J) = iq° for some i > 1
then we will call 7 an asymptotic standard Young tableau with base shape A\. We will write ASYT(X)
for the set of asymptotic standard Young tableau with base shape A. As an abuse of notation will write
pr : APSYT>o(A) — Q(A) for the map given on 7 € APSYT>o(A) by pa(7)(0) = a whenever 7(0O) = iq®
for some ¢ > 1. We will let APSYT>q(A;T) denote the set of all 7 € APSYT>(A) with px(7) =T.
Definition 6.2. For T € Q()\) define S(T) € ASYT(A) by ordering the boxes of A(*) according to
00, <0, if and only if

o T(0O1) > T(02) or

e T(0;) =T(02) and O comes before [z in the column-standard labelling of (),
Let 7 € APSYTso(A;T). An ordered pair of boxes ((J1,02) € A x X\(**) is called an inversion pair
of 7 if S(T)(0h) < S(T)(02) and 7(0i) = ig® 7(02) = jg® for some i > j and a,b > 0. The set of all
inversion pairs of 7 will be denoted by Inv(7). We will write inv(7) = |Inv(7)|. Define rk(7) to be the
minimal n > ny such that T|A(oo)/A(n) has consecutive labels.

Example 9. Consider T € Q(3,2,1) from Example[ll Then
1% | 2¢° | 3¢% | 5¢® | 7¢% |12¢%|13¢°|144° [15¢°

442 | 6¢° |11¢*

T = S APSYYTZ()(?)7 2,1; T)7
8q' | 9¢t
104°
1 2 3 6 71113 |14 | 15
4 5 | 10
S(T) = I
8 9
12
and rk(T) = 12.

Recall Corollary for the definition of Kr(q,t).
Proposition 6.3. For '€ RSSYT>¢(A)

1
Kr(g,1)

Z inv(7) 1— qT(D2)7T(Dl)tC(D2)7C(Dl)*1>
— tl V(T .

( 1 — ¢T(E2)=TE1)¢e(U2)—c(@1)+1
TEPSYT>o(NT) (01,02)€Inv(7)

Proof. Using Corollary and Corollary we find

Pr = ™ (Pr)

—

qT(Dl)tC(Dl)+1 _ qT(D2)tC(D2)
< qT @O ¢e(@1) — ¢T(O2)¢e2) > T

TEPSYT»o(NT) (Hy,H2)€EInv(r)
qT(Dl)tC(Dl)+1 _ qT(Dz)tC(D2)

_ (n)
- Z H ( qT@0 @) — T @2)¢e(T2) ) e (Fr)
TEPSYT»o(NT) (Hy,H2)€EInv(r)

<qT(Dl)tC(E’1)+1 _ qT(Dz)tC(Dz)

¢T @) _ T 0s)4e@2) ) Kr(q,1) I1
(01,02)€Inv(T)

TEPSYT»o(NT) (H1,02)€Inv(r)
T(0q)pe(0r)+1 T(0O2) e(02)
— q t —q t
= Krlg. ) 2 II <qT<D1)tc<Dl> - qT(Dz)tC(Dz)+1> Pr.
TEPSYT»o(NT) (H1,02)€Inv(r)
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gTED @) — gTO2)¢e(C2)+1
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Therefore,

T(O0) e@n)+1 _ qT(Dz)tC(Dz)>

1 q
Kr(g,t) - Z H <qT(D1)tc(D1) — ¢T@2)ge(@2)+1
’ TEPSYT5o(NT) (Op,02)€lnv(r)

_ tinv(‘r)

1— qT(Dz)*T(Dl)tC(Dz)*C(Dl)*l )

( 1 — ¢T(@2)=TO1) ge(H2)—c(Ur)+1
TEPSYT>o(NT) (01,82)€lnv(r)

O

Our goal now is to compute the limit of both sides of the equation in Proposition [6.3] along sequences
of the form (A),>,, . One side gives an infinite product and the other a power series which are dealt
with separately. We require the following straightforward lemmas.

Lemma 6.4. For 7 € APSYT>o(\; 1), vk(7) — 1k(T) < inv(7) < (rkéﬂ).

Proof. Any inversion pair (i, 02) € Inv(7) has Oy, e € A7) Therefore, trivially inv(r) < (rkéﬂ).
For the other side of the inequality, we only need to consider the case when rk(7) > rk(7T) since
inv(7) > 0. Let Cp be the unique square of A™(™) /AOX(™) Then by of the definition of rank 7(Co) #
rk(7). Further, for any 0 € A /A\OKT) we must have that 7(0) # rk(r) as 7 must be strictly
increasing to the right along the horizontal strip )\(rk(T))/)\(rk(T)). Therefore, if O; is the box of A<D
with 7(01) = rk(7)g® for some a > 0 then for all O € \XM)/\OKT) we find that (O0;,0) € Inv(7).
Therefore, inv(7) > rk(7) — rk(T). |

Lemma 6.5. For k > 0 there are only finitely many 7 € APSYT>o(\; T) with rk(7) < k.

Proof. The map {r € APSYTxo(\; T)|rk(r) < k} — PSYT50(A*); T) given by 7 — 7|, is easily seen
to be a bijection. Since PSYTso(A*);T) is a finite set we are done. |

Corollary 6.6. For k > 0 there are only finitely many 7 € APSYT>o(A; T') with inv(7) < k.
Proof. 1f inv(r) < k then by Lemma [6.4] we know that rk(7) < k + rk(7"). Thus by Lemma [6.5]
#{7|inv(r) < k} < #{7|rk(7) < k+1k(T)} < co.
O

Lemma 6.7. For T' € RSSYT>0(A), the set I(7T") = Inv(min(T")) consists of all pairs of boxes ((0;,0z) €
A x A with Oy <7 Oz except those pairs with 7(0;) = T'(02) and Oy before Oz in the same row.

Proof. This follows immediately from the definition of min(7"). a

Now we deal with the limit of products.

Proposition 6.8. Let T' € Q()). The sequence (KT‘)\(n) (g¢,t))n>n, converges with respect to the t-adic
topology on Q(g)((?)) to

(1= 0 [T o o EICRE R
HDeA(fk(T)) (1- qiT(D)trk(T)i‘Mfc(D)) H 1 — T (H2)=T (1) ¢e(H2)—e(0r) >

(O1,02)€l(T| | (xk(T)))
Proof. Let n > 1rk(T). From Lemma [67] we know

(T ym) = (T |yerery ) U (01, O2) |01 € AT 0y € A /ACKTD Y,
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Therefore,

H (1 — qT(D2)*T(Dl)tC(Dz)*C(Dl)Jrl)

1 — ¢T@2)=T(01)¢e(U2)—e(01)
(U1,02) €T (n))

1— qT(D2)*T(Dl)tC(Dz)*C(Dl)Jrl
= H ( 1 — ¢T(E2)=T(E1)¢e(U2)—e(01) )

( 1— qT(D2)*T(Dl)tC(Dz)*C(Dl)Jrl )
(O1,02) €T, (ri(T)))

1 — ¢T(E2)=TE1)¢e(U2)—e(01)
0y eATK(TY) Oy () AGK(TY)

B 1 (1 _ quz)—T(Dl>tc<D2>—c<D1)+1) no A=l

1= ¢ TOi—e@1
1 — ¢T(E2)=T(E1)¢e(U2)—e(01) H ( 1 — ¢ TO¢i=cO) ) :
OexGK(T) i=rk(T)—|A|

(O1,02) €T vk (1))

Note that the following product telescopes:

n—|A|—=1 1— q—T(D)tifc(D)Jﬁl
H 1— ¢ T@¢i—@)
i=rk(T)—|A|

C(1- qu(D)trk(T)—\)\\fc(D)Jﬁl 1— qu(D)trk(T)—\)\\fc(D)J& 1— q—T(D)t(nf\M—l)—c(D%rl
- 1 — ¢ TO k(M —A[—e(@) 1 — ¢ TO ¢k —A[—e(@)+1 T 1 — ¢ T@ = -D—<0)

1 — g T@n=1N=e(O)
= (1 — qu(D)trk(T)—\)\\fc(D)) :

Thus

1— qT(E’z)*T(Dl)tC(E’z)*C(Dl)Jrl
( 1 — T @2)=T(E1)¢e(B2)—c(H1) )
(B1,02) €T (n))

1 — g @)= T(E1)ye@)—e(@)+1
- 1 — 7@~ T@n) e(02)—e(0) )

1— q*T(D)tn*W*C(D)
H (1 — qu(D)trk(T)—\)\\fc(D)) ‘
(B1,02) €T, ok (1)) Oek(T))

Now p(Tyny) = u(Tyaxery) * (n — k(7)) so

(T )]e! = [(Tyrry) el - [ — rk(T)]e!.
Putting this together gives

KT\A(n) (q7 t)

_ [w(T]om)]e! H 1 — ¢T@2)=T @) e(0z)—e(@)+1
- [n]:! 1 — T @2)~T@1)¢e@2)—c(@1)
(B1,02) €T (n))
e : '[n—rk(T)]t! 1— qT(EI2) T(01) ge(@2)—e(@)+1 H 1—gq T(0) gn—|rl—c(0)
BL Y (k(T)) t'i[n]t! 1 — ¢T(@E2)—TO)e@2)—c(th) 1 — g~ TOprk(T)=Al—e@) |~
(01,02) €T (rie(1))) Dexri(T))

From here it is simple to see
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Jim Kz, (g,t)
T(O2)—T(01) pe(Oz)—c(01)+1 —T(0) yn—|A|—c(0)
o ([ —rk(T)]¢! 1—g¢q t 1—gq t
nhj;o[ﬂ(TMrk(T)) )]t [n]t' H 1 — ¢T(O2)=T([O1)¢e(@2)—c(01) 1 — ¢~ T@¢rk(T) =X —e(D)

(B1,02) €T (rie(T))) Oextk(T))

_T(Oy)—T(0y) ye(Oz)—c(0y)+1 _ ' (@) n—|A|—c(D)
= [(Ty (1)) )]¢! l-gq ° ot i lim [n — k(]! H 1-4q !
g (01, Oa) (T \ 1= 7O TE0 @)= J s n]y! Ly \1T = ¢ TO KD R0
1,U2)€l(T] (rk (1)) Oexr
1 — ¢7(@2)=T(O1) ge(T2)—e(@n)+1 ) (O k(1) |0
= [u(Tyowern )it I1 ( 1~ gty ) (1Y) 11 (1 —q Tt )
(U1,02) €T k(1)) OexCk(T))
N € ) ik M e | 0 1= g7 TOe(Ca)eCur s
- 1 — ¢—T(O) pk(T)—[A[—c(d) 1 — ¢T(@2)—T(01)¢e(@2)—c(0r)
OeGk(T)) q q

(U1,02) €T k(1))

O

We will now deal with the series side. For this we need the following lemmas. Here we write |f(q,t)|
for the t-adic norm of f(q,t) € Q(¢)((t)) normalized so that [t"| =27".

Lemma 6.9. For a #0 and b € Z

1
1_qatb71 B
‘W =32 =0
< -1
Proof. We proceed in cases. If b > 1 then
1—qatb71 _ |1 _qatb71| _
1 — gatd+1 - |1 _qatb+1| -
Ifb=0,
1—q% ! 1—q* +t il —gt+t
q B P e P Y e
1— g2t 1—qot |1 — gt
Lastly, if b < —1 then
1— g% b—1 _ agb—1 —b+1
q°t _ |1 — g%t _2 4
1— qatb+1 |1 _ qatb+1| 2—1771

O

Lemma 6.10. Let 7 € APSYT>o(N; 7). If (O;,02) € Inv(7) with ¢(0z2) — ¢(01) < 0 then 0,0, €
\(K(T))

Proof. Suppose (Oi,02) € Inv(r) with either O; € A /XKT) o [0, € M) /\OKT) | Then since

A AGKD) s a horizontal strip necessarily Ca € A /AT and 00 € AT Thus ¢(0s) >

C(Dl) -+ 1. O
Using these lemmas gives the following;:

Proposition 6.11. Let T' € Q()). The sequence of sums

Z tinv(-r)

TGPSYTEO(A(’”);T\/\(H)) (04,02)€Inv(T) (

1 — ¢7(@2)=T(@1) je(0a) —e(On)-1
1-— qT(Dz)*T(EH)tC(E’z)*C(Dl)+1)

n>ny
converges with respect to the t-adic topology on Q(q)((t)) to the series

T(2)=T(01) ge(02)—e(@r) -1

inv(T) 1_q
> 0 [ (e ) € €0(0)

TEAPSYT(NT) (O1,02)€Inv(r)
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Proof. Our method will be to first verify that the above infinite series over 7 € APSYT>o(\;T) is
convergent in Q(¢)((t)) and then argue that the above sums over 7 € PSYT50(A™; T, ) converge to
the same element of Q(q)((¥)).

We begin by noting that from Lemma [6.10] we have the (sufficient but egregiously unoptimal) upper
bound

#{(01,02) € Inv(r)|e(0h) — o(02) < —1} < <rk(2T)>'

Recall that if T(0d;) = T(Oz2) then by Lemma [E11] ¢(d2) — ¢(01) > 2. Thus using Lemma [6.9] we find

1— qT(Dz)*T(E’l)tC(Dz)*C(Dl)*l) (rk(gT))

< 1 — ¢T(02)=TO1)¢e@2)—e(U1)+1
(01,02)€lInv(7)

and hence

1— qT(E’z)*T(Dl)tC(Dz)*C(Dl)*l

tinv(-r)
1 — ¢T(E2)=TO) ¢e(U2)—c(U1)+1

( )| <z
(01,02)€Inv(r)

Recall that (from the strong triangle inequality) if (fm(q,t))m>1 is any sequence in Q(q)((¢)) then
the series Y fm(q,t) is convergent in Q(q)((¢)) if and only if limm o |fm(g,t)] = 0. In turn, this is
equivalent to the property that for every r > 0 there are only finitely many m > 1 with |fm(q,t)| > 27".
From Corollary we find that for any r > 0 there are only finitely many 7 € APSYT>o(\; T') with

. rk(T)
inv(t) <2 <rk(2T)> 4o = 27 Iy (M) >27".
Thus there are only finitely many 7 € APSYT>o()\; T') with

tinv(r) > 977,

1— qT(Dz)*T(Dl)tC(Dz)*C(Dl)*l
(1 — qT(DZ)*T(Dl)tc(DQ)*C(DIH’l)
(O1,02)€Inv(r)
We conclude that the series

s= o

TEAPSYT>o(NT) (01,02)€Inv(T) <

1— qT(D2)—T(Dl)tc(EI2)—c(EI1)—1
1— qT(D2)*T(Dl)tC(Dz)*C(Dl)Jrl>

is convergent in Q(q)((¢)).
Now let n > rk(T) :

g Z Jinv(r) H <1 _ qT(Dz)*T(E’l)tC(Dz)*C(Dl)*l)
1 — ¢T(O2)-T01) te(@2)—c(@1)+1
TEPSYTZO(A(");T\)\(n)) (01,02)€Inv(T) q
inv(r) 1 — T (@2)=T(E1)ye@2) =@ -1
- Z ¢ < 1— qT(D2)7T(D1)tC(D2)7c(D1)+1 )
TEAPSYT> o (NT) (04,02)€Inv(T)
rk(7)>n
() 1 — gT(O2)=T(O1) ge(Da)—e(Ch) =1
= TEAPSI;IKI’%};[)(A;T) t (Oy.O2) elnv(r) <1 — qT(Dz)*T(Dl)tC(Dz)fc(D1)+1)
tk(T)>n 1,=2)&lnviT

< 27(n+17rk(T))4(rkéT)).
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Hence,

) 1 — ¢T(E2)=TM1)pe(@2)—e(@1) -1
lim |S — Z tan(T) q
n— oo 1-— qT(D2)*T(Dl)tC(Dz)*C(Dl)‘Fl
TEPSYTEO(A(");T\)\(TL)) (0y,02)€Inv ()
< lim 2—(n+17rk(T))4(rkéT))
n—r oo
=0.

We immediately arrive at the following product-series formula:
Theorem 6.12. For T € Q(\) we have the following equality in Q(g)((t)) :
[Toeaaxey (1 - qu(D)trk(T)fwfc(D))

H 1— qT(Dz)*T(Dl)tC(Dz)*C(Dl)
1 — ). D[ (T], (v ! (1 — T(E’z)*T(Dl)tc(Dz)*c(Dl)Jrl)
(1= )™ O[Ty ) e (O1.Oa)CAGKT) q

1= 702 T ge(0) e 11
TEAPSYTo(NT) (01,02)€Inv(T)

Z finv() H <1 _ qT(Dz)*T(Eh)tC(Dz)*C(Eh)*l) '

Remark 15. Note that the powers of ¢ appearing in the Theorem [6.12] are all non-positive i.e. the sum
and product are elements of Q[¢™']((¢)). In particular, we may limit ¢ — oo to obtain the prod-sum
equality in Q((¢)) :

. 1— trk(T)—w—c(D))
HD??(D)Z?) ( 1 < 1 — ¢e(H2)—eE) )
1 — ) kD[ (T, (o ] 1 — ¢e(@2)—c(@1)+1
( ) [/’L( |)\( k(T)) )]t (Dl,Dg)EI(A(rk(T)))
T(01)=T(2)

_ Z tinv(f) H (1 _ tC(D2)7c(D1)—1> .

1 — te(@2)—c(@1)+1
TEAPSY TS o(N;T) (01,02)€Inv(T)
B T(0,)=T(02)

By noting that the product term in Theorem [6.12] is a finite product of rational terms we observe
the following:

Corollary 6.13. For T' € Q(A),

inv(r) 1— qT(D2)*T(Dl)tC(Dz)*C(Dl)*1
> ¢ (1 _ qT(D2)—T(Dntc(Dz)—c(Dlm> € Qg 1)
TEAPSYT > (NT) (04,02)€Inv(T)

Example 10. Here we give a few simple examples of this (g,¢) identity. Consider A = () and T =
10| 0 |... €Q(0). Then we get

1—q 't =



Now consider A = (1) and T' = € Q(1). In this case we get

[ [ )
(=121 =g

o i—2 —13k—1y\ J—1 k—1 —1,-2 -1
i 1-— t 1—t 1-— t 1-—
_ i+j—3 q . . q . . q
,Zt E(l_q1tk+1)k_2(1_tk+1) (1(J§Z—1)t<71_q71 >+1(2+1§J)<71_q71t2>).

i,j=1
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