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RIGIDITY MATROIDS AND LINEAR ALGEBRAIC MATROIDS WITH

APPLICATIONS TO MATRIX COMPLETION AND TENSOR CODES

JOSHUA BRAKENSIEK, MANIK DHAR, JIYANG GAO, SIVAKANTH GOPI, AND MATT LARSON

Abstract. We establish a connection between problems studied in rigidity theory and matroids arising
from linear algebraic constructions like tensor products and symmetric products. A special case of this cor-
respondence identifies the problem of giving a description of the correctable erasure patterns in a maximally
recoverable tensor code with the problems of describing bipartite rigid graphs or low-rank completable ma-
trix patterns. Additionally, we relate dependencies among symmetric products of generic vectors to graph
rigidity and symmetric matrix completion. With an eye toward applications to computer science, we study
the dependency of these matroids on the characteristic by giving new combinatorial descriptions in sev-
eral cases, including the first description of the correctable patterns in an (m,n, a = 2, b = 2) maximally
recoverable tensor code.

1. Introduction

Given a graph G, the graph rigidity problem in R
d asks whether a generic embedding of the vertices

of G into Rd is rigid, i.e., whether every motion of G which preserves the lengths of edges comes from a
rigid motion of Rd. This problem has been studied since the time of Maxwell [Max64]. When d = 2, the
Pollaczek-Geiringer–Laman theorem [PG27,Lam70] gives a simple characterization of rigid graphs. There is
no known generalization to embeddings of graphs into Rd for any d ≥ 3.

The rigid graphs on n vertices form the spanning sets of a matroid on the ground set
(

[n]
2

)

, the set of
edges of the complete graph with vertex set [n] = {1, . . . , n}. The language of matroids gives a convenient
framework and powerful tools for analyzing rigidity [CJT22a,CJT22b,Gra91,Whi96]. We refer to [Oxl11]
for undefined matroid terminology.

Several other matroids related to rigidity have been introduced, such as Kalai’s hyperconnectivity matroid

[Kal85] Hn(d), for 0 ≤ d ≤ n. This is a matroid whose vertex set is
(

[n]
2

)

which has similar formal properties
to the usual graph rigidity matroid. Kalai used the hyperconnectivity matroid to show the existence of
highly connected subgraphs in graphs with a large number of edges. Hyperconnectivity was used to study
polytopal realizations of certain simplicial spheres called higher associahedra [CRS22a,CRS22b,CR23].

More recently introduced is the bipartite rigidity matroid Bm,n(a, b) of Kalai, Nevo, and Novak [KNN16].
This is a matroid on [m]× [n] which gives a version of rigidity for an embedding of a bipartite graph, where
the parts have size m and n, into Ra ⊕ Rb in such a way that it respects the direct sum structure. When
a = b, the restriction of the hyperconnectivity matroid to the set of bipartite graphs coincides with the
bipartite rigidity matroid. See Section 2.1 for precise definitions of these matroids.

The rigidity matroids mentioned above are closely related to low-rank rank matrix completion matroids.

Given d and n, the symmetric matrix completion matroid Sn(d) is a matroid on ground set
(

[n]
2

)

⊔ [n]. A
subset S is independent if a matrix where the entries corresponding to S have been filled in with generic
complex numbers can be completed to a symmetric matrix of rank at most d. This is an algebraic matroid
realized by the variety of n×n symmetric matrices of rank at most d. By [GS18, Theorem 2.4], the matroid
describing graph rigidity in Rd−1 is obtained by contracting the elements corresponding to the diagonal in
Sn(d). In particular, a description of Sn(d) gives a description of graph rigidity in Rd−1. The symmetric
matrix completion matroid has been studied in connection with maximum likelihood problems in algebraic
statistics [BS19,BBL21]. When d = 2, it was studied from the perspective of tropical geometry in [CLY24].
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Similarly, there is a matrix completion matroid which describes when an m × n matrix which has been
partially filled in with generic complex numbers can be completed to a matrix of rank at most d. The matrix
completion matroid was studied in [Ber17, Tsa24]. This matroid is equal to the bipartite rigidity matroid
Bm,n(d, d) [SC09, Section 4]. As skew-symmetric matrices have even rank, one can only consider rank d
skew-symmetric matrix completion when d is even. In this case, the analogously defined skew-symmetric
matrix completion matroid coincides with Hn(d) [CRS23, Proposition 3.1].

We will establish a connection between the above rigidity matroids and matroids arising from natural
linear algebraic constructions. Suppose that we have n generic vectors v1, . . . , vn in an r-dimensional vector
space V over an infinite field of characteristic p ≥ 0. We assume n ≥ r, so the vectors span V . Then we
obtain

(

n+1
2

)

vectors v21 , v1v2, . . . , vn−1vn, v
2
n in Sym2 V . These vectors represent a matroid Sn(r, p) on the

ground set
(

[n]
2

)

⊔ [n]. This matroid depends only on the characteristic of the field, and in particular does not
depend on the choice of vectors (provided they are sufficiently generic). We call this the symmetric power
matroid.

Similarly, we obtain
(

n
2

)

vectors v1∧v2, . . . , vn−1∧vn in ∧2V . These vectors represent a matroid Wn(r, p),
which we call the wedge power matroid. If we also have m generic vectors u1, . . . , um in an s-dimensional
vector space U over the same field, for some m ≥ s, then we obtain mn vectors u1⊗v1, . . . , um⊗vn in U⊗V .
These vectors represent a matroid Tm,n(s, r, p), which we call the tensor matroid. As with the symmetric
power matroids, these matroids depend only on the characteristic of the field.

Similar constructions for arbitrary matroids have been been studied classically in the matroid literature
[Lov77,Mas81,LV81]. The case of symmetric powers has attracted particular attention recently in connection
with applications to tropical geometry [DR21,And23].

Bipartite Symmetric Skew-symmetric

Rigidity matroids
Bipartite rigidity matroid

Bm,n(a, b)
Graph rigidity matroid

Sn(d+ 1)/{diags}
Hyperconnectivity matroid

Hn(d)
Rank completion

matroids
Matrix completion matroid

Bm,n(d, d)
Sym. matrix completion

Sn(d)
Skew-sym. matrix completion

Hn(d), d is even
Linear algebraic

matroids
Tensor matroid
Tm,n(s, r, p)

Sym. power matroid
Sn(r, p)

Wedge power matroid
Wn(r, p)

Table 1. A table of various matroids that have been mentioned. The matroids in the same
column are related by Theorem 1.1.

Connections to Information Theory. The problem of understanding Tm,n(s, r, p) has been studied extensively
in information theory in connection with tensor codes (c.f., e.g., [MLR+14] for a practical implementation).
Consider a collection of servers arranged in an m × n grid. We view the data stored on each server as an
element of some (large) finite field k of characteristic p. To ensure redundancy in this cluster, we constrain
that each column lies in some fixed subspace of km of dimension s and each row lies in some fixed subspace
of kn of dimension r.1 The goal of this redundancy is that if a (small) subset of the servers fail (also called
erasures), we can completely recover the data using these various subspace constraints. The matroid of
failures which which do not lead to data loss is sensitive to the choice of subspaces, but if everything is
chosen generically, the “recoverability matroid” is the matroid dual of Tm,n(s, r, p).

1More commonly, information theorists care about the codimension of these spaces, often denoted by a = m−s and b = n−r,
respectively, as that is a measure of the redundancy of the encoding.
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Gopalan et al. [GHK+17] coined the term (m,n, a, b)-maximally recoverable tensor codes for realizations of
Tm,n(m−a, n−b, p) as tensor products of vectors spaces over finite fields. Gopalan et al. gave an exponential-
sized description of the spanning sets of Tm,n(s, r, p) when m−s = 1 and conjectured a description in general.
This conjecture was partially confirmed [SRLS18] but was later refuted in general [HPYWZ21]. Overall, the
focus of the information theory community has been on constructing maximally recoverable tensor codes
over small fields (e.g., [KMG21, HPYWZ21, Rot22, SL22, BDG23b, ACKL23]), although exponential-sized
lower bounds are now known [BDG23b,AGL24]. For applications, it is important to understand the matroid
realized by the tensor products of vectors which are not completely generic. For example, [BDG23a, Section
1.3] asks if the tensors products of generic vectors on the moment curve give a maximally recoverable tensor
code.

Within information theory, the study of higher order maximum-distance separable (MDS) codes [BGM22,
Rot22,BGM23] has shown that, in the m − s = 1 case, essentially the same matroid arises in many other
problems. Such scenarios include designing optimally list-decodable codes [ST23] and codes realizing partic-
ular zero patterns [DSY14,YH19,Lov21,YH19,LWWZS23,BDG23a]. Further, these equivalences imply that
a construction of any one of these types of codes can be converted into the other types [BGM23], and they
have led to many new constructions and analyses of near-optimal codes [GZ23, AGL23, AGL24, BDGZ23,
RZVW24]. Very recently, these connections also led to a novel proof of the Pollaczek-Geiringer–Laman
theorem [BELL23].

Our first main result is a correspondence between the above linear algebraic matroids and rigidity matroids.
Recall that the dual of a matroid M is the matroid whose bases are the complements of the bases of M.

Theorem 1.1. We have the following matroid dualities:

(1) The symmetric power matroid Sn(n−d, 0) is dual to the symmetric matrix completion matroid Sn(d).
(2) The wedge power matroid Wn(n− d, 0) is dual to the hyperconnectivity matroid Hn(d).
(3) The tensor matroid Tm,n(m− a, n− b, 0) is dual to the bipartite rigidity matroid Bm,n(a, b).

As a corollary, the correctable erasure patterns in a m × n maximally recoverable tensor code with a
column and b row parity checks over a field of sufficiently large characteristic are precisely the independent
sets in the bipartite rigidity matroid Bm,n(a, b).

Motivated by applications to information theory, we use Theorem 1.1(3) to study bipartite rigidity. This
strategy is well-suited to understanding the case when m − a is small. We give exact characterizations of
the independent sets in Tm,n(s, r, p) for all p when s ≤ 3, see Section 3. When m − a ≤ 3, this gives a
characterization of the spanning sets in Bm,n(a, b). In particular, we are able to prove the following theorem.

Theorem 1.2. If m − a ≤ 3, then there is an algorithm to compute the rank function of Bm,n(a, b) which
runs in time polynomial in m+ n.

Note that there are a few polynomial time algorithms to compute the rank function of Bm,n(a, b) when
a = 1, including ones based on the maximum flow problem [BGM22], total dual integral programs [BGM23],
and invariant theory [BGM23]. See also [Whi89].

The rank of Bm,n(a, b) is an+ bm− ab. In particular, any graph with more than an+ bm− ab edges must
be dependent in Bm,n(a, b). Furthermore, for each subset S ⊆ [m] and T ⊆ [n], if we restrict Bm,n(a, b) to
the edges S×T , then we obtain B|S|,|T |(a, b). See [KNN16, Lemma 3.7]. In particular, if G is independent in
Bm,n(a, b) and |S| ≥ a, |T | ≥ b, then G must have at most |T |a+ |S|b− ab edges in S × T . This observation
gives rise to the following family of circuits, i.e., minimal dependent sets.

Definition 1.3. A circuit C of Bm,n(a, b) is a Laman circuit if the edges of C are contained in S × T ⊆
[m]× [n], and C has more than |T |a+ |S|b− ab edges.
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The name “Laman circuits” comes from the Pollaczek-Geiringer–Laman theorem [PG27, Lam70], which
shows that all circuits of the graph rigidity matroid in R2 are Laman circuits. Laman circuits are called
“regularity” conditions in the information theory literature [GHK+17]. These authors showed that the Laman
circuits completely describe Tm,n(m − a, n − b, p) when a = 1. For all three rigidity problems mentioned
above, there are typically circuits which are not Laman circuits. Theorem 1.2 allows us to characterize
exactly when all circuits of Bm,n(a, b) are Laman circuits.

Example 1.4. [KNN16, Example 5.5][HPYWZ21, Lemma 4] The subset of [5] × [5] depicted as blue ⋆ in
Figure 1 is a circuit of B5,5(2, 2) which is not a Laman circuit. This is most easily seen from the perspective
of low-rank matrix completion. If we fill in the entries corresponding to the elements of the circuit with
generic complex numbers, then there will be two conflicting conditions on the (3, 3) entry. The complement
of this circuit is dependent in T5,5(3, 3, p) for any p, as two 2× 2-dimensional tensors in a 3× 3-dimensional
space necessarily intersect.

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋆

⋄

⋄

⋄

⋄

⋄

⋄

⋄

⋄

Figure 1. A circuit of B5,5(2, 2) which is not a Laman circuit. The squares of the 5 × 5
grid represent the ground set of the matroid, with the blue ⋆ squares representing the circuit
elements. The red ⋄ squares form the corresponding circuit in T5,5(3, 3, p) for any p.

Corollary 1.5. All circuits in Bm,n(a, b) are Laman circuits if and only if at least one of the following holds:
(1) a ≤ 1, (2) b ≤ 1, (3) m− a ≤ 2, or (4) n− b ≤ 2.

The case when a ∈ {0,m} or b ∈ {0, n} is trivial, and the case when a = 1 or b = 1 was proven in [Whi89]
and independently in [GHK+17]. Note that we are able to describe Bm,n(a, b) when m− a = 3 even though
the Laman condition usually fails. To do this, we find an additional family of combinatorial inequalities
which rule out circuits such as the one in Example 1.4.

Applications to information theory make use of Tm,n(s, r, p) when p > 0. While the bases of Tm,n(s, r, p)
are bases of Tm,n(s, r, 0) (Proposition 4.1), it is not obvious that these matroids are equal. Indeed, [And23,
Example 2.18] shows that S4(2, 2) 6= S4(2, 0), so the symmetric power matroid depends on the characteristic.
Some of the proofs of the Pollaczek-Geiringer–Laman theorem, such as the ones in [LY82, BELL23], show
that the rank of the matrices considered in 2-dimensional graph rigidity do not depend on the characteristic.
We show that the tensor matroid does not depend on the characteristic in several case.

Theorem 1.6. If s ≤ 3, m− s ≤ 1, or m− s = n− r = 2, then Tm,n(s, r, p) = Tm,n(s, r, 0).
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One of the deepest results on bipartite rigidity is the following theorem of Bernstein. The proof cru-
cially uses the interpretation of bipartite rigidity in terms of low-rank matrix completion to reformulate the
problem in terms of tropical geometry. Bernstein then uses several ingenious ideas to obtain the following
combinatorial characterization of the independent sets of the (2, 2) bipartite rigidity matroid.

Theorem 1.7. [Ber17] A bipartite graph is independent in Bm,n(2, 2) if and only if it has an edge orientation
with no directed cycles or alternating cycles.

That is, G is independent in Bm,n(2, 2) if and only if G has an acyclic orientation such that no cycle of
G is oriented so that the edges alternate in orientation. As part of our proof of Theorem 1.6, we give an
elementary proof (Proposition 4.2) of the sufficiency part of Theorem 1.7, i.e., if a bipartite graph G has an
edge orientation with no directed cycles or alternating cycles, then it is independent in Bm,n(2, 2). Unlike
Bernstein’s original proof, our argument establishes the stronger statement that G is independent in the
dual of Tm,n(m− 2, n− 2, p) for any p. Together with Proposition 4.1, this proves the independence of the
characteristic in this case.

As a consequence, we have a combinatorial description of correctable patterns in an (m,n, a = 2, b = 2)
maximally recoverable tensor code.

Proposition 1.8. Let C ⊆ km×n be an (m,n, a = 2, b = 2) maximally recoverable tensor code. An erasure
pattern E ⊆ C is correctable if and only if E, when viewed as a bipartite graph, has an edge orientation with
no directed cycles or alternating cycles.

Despite the combinatorial nature of the description in Theorem 1.7, we do not know a polynomial time
algorithm to check independence in Bm,n(2, 2). We do not even know a coNP certificate, i.e., a certificate
that a graph is not independent in Bm,n(2, 2), that can be checked in polynomial time. A candidate coNP
certificate for independence in Bm,n(a, b) is given in [JT24, Conjecture 6.4].

Finally, we give a conjectural description of the bases of Bm,n(d, d) for all d, generalizing Theorem 1.7
(Conjecture 5.4). Using a “coning” operation (Proposition 3.10), this gives a description of Bm,n(a, b) for all
a, b. We show that our conjecture implies that Tm,n(s, r, p) is independent of p.

Cases Description of Tm,n(s, r, p)

s = 1 or r = 1 Proposition 3.2
s = 2 or r = 2 Proposition 3.3
s = 3 or r = 3 Proposition 3.4

m− s = 1 or n− r = 1
[Whi89, Theorem 4.2]

[GHK+17, Theorem 3.2]

m− s = n− r = 2
[Ber17, Theorem 4.4] for p = 0

Proposition 4.2 for p > 0

Table 2. Currently known cases of the structure of the matroid Tm,n(s, r, p).

Acknowledgements. The first author was supported by a Microsoft Research PhD Fellowship. The second
author was supported by NSF grant DMS-1953807. The third author would like to thank Alex Postnikov
and Yibo Gao for introducing him to the matrix completion problem. The fifth author is supported by an
ARCS fellowship.

2. Rigidity matroids and their duals

In this section, we recall the definitions of the rigidity matroids. We then prove Theorem 1.1.
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2.1. Rigidity matroids.

2.1.1. Symmetric matrix completion. For 0 ≤ d ≤ n, the symmetric matrix completion matroid Sn(d) is the
algebraic matroid realized by the

(

n
2

)

+ n coordinate functions on the variety of n × n symmetric matrices
of rank at most d. More precisely, let K be the field of rational functions on the variety of n× n symmetric
matrices of rank at most d over C. For each i ≤ j, we have a coordinate function xij ∈ K. A subset

S ⊆
(

[n]
2

)

⊔ [n] is independent in Sn(d) if and only if the corresponding set of coordinate functions is
algebraically independent. The dimension of the variety of n × n symmetric matrices of rank at most d is
nd−

(

d
2

)

, so the rank of Sn(d) is nd−
(

d
2

)

.

The restriction of Sn(d) to
(

[n]
2

)

is the matroid denoted Id
n in [JT24, Section 6.3], which was introduced

in [Kal85, Section 8]. If n = m + p, then the restriction of Sn(d) to [m] × [p] ⊆
(

[n]
2

)

is Bm,p(d, d). This is
most easily seen using the description of Bm,p(d, d) as a matrix completion matroid : the projection of the
variety of n×n symmetric matrices of rank at most d onto the northeast m×p corner is the variety of m×p
matrices of rank at most d.

We use a description of Sn(d) which was derived in [KRT13, Section 3.2]. See Section 2.3 for a discussion
of an analogous calculation.

Proposition 2.1. Consider the nd× (
(

n
2

)

+n) matrix JSym over the field C(xij)1≤i≤n,1≤j≤d whose rows are

labeled by pairs (i, j) with 1 ≤ i ≤ n, 1 ≤ j ≤ d, and whose columns are labeled by either {k, ℓ} ∈
(

[n]
2

)

or
k ∈ n. In each row labeled by (i, j), we have an entry of 2xij in the column labeled by i ∈ [n], and we have

an entry of xkj in the column labeled by {i, k} ∈
(

[n]
2

)

. The other entries are 0. A subset S ⊆
(

[n]
2

)

⊔ [n] is
independent in Sn(d) if and only the columns labeled by S in JSym are linearly independent.

In other words, Sn(d) is the column matroid of JSym.

2.1.2. Hyperconnectivity. For 0 ≤ d ≤ n, the hyperconnectivity matroid Hn(d) is a matroid on
(

[n]
2

)

of rank

dn −
(

d+1
2

)

. It was defined in [Kal85] in terms of algebraic shifting. It can equivalently be defined as a
column matroid of an explicit matrix, see Definition 2.2 below. If n = m+ p, then the restriction of Hn(d)

to [m]× [p] ⊆
(

[n]
2

)

is Bm,p(d, d).

Definition 2.2. Consider the nd ×
(

n
2

)

matrix over the field C(xij)1≤i≤n,1≤j≤d whose rows are labeled by

pairs (i, j) with 1 ≤ i ≤ n, 1 ≤ j ≤ d, and whose columns are labeled by {k, ℓ} ∈
(

[n]
2

)

. The row corresponding
corresponding to (i, j) has xki in the column labeled by {k, j} if k < j, −xki in the column labeled by {k, j}
if k > j, and is 0 otherwise. The hyperconnectivity matroid Hn(d) is the column matroid of this matrix.

2.1.3. Bipartite rigidity. For 0 ≤ a ≤ m and 0 ≤ b ≤ n, the bipartite rigidity matroid Bm,n(a, b) is a matroid
on [m] × [n] of rank an+ bm− ab. It was introduced in [KNN16]. See [KNN16, Section 1.2] for a physical
interpretation of bipartite rigidity in terms of embeddings of bipartite graphs on [m]⊔ [n] into R

a⊕R
b, where

[m] is embedded into Ra ⊕ 0 and [n] is embedded into 0⊕ Rb. It can equivalently be defined as the column
matroid of an explicit matrix [KNN16, Proposition 3.3].

Definition 2.3. Consider the (an+ bm)×mn matrix over the field C(xij , ykℓ), where (i, j) ∈ [m]× [a] and
(k, ℓ) ∈ [n]× [b], whose rows are labeled by elements of [a]× [n] or [b]× [m], and whose columns are labeled
by elements of [m]× [n]. In the row labeled by (j, k) ∈ [a]× [n], we have xpj in the column labeled by (p, k)
for k ∈ [m] and 0 in every other column. In the row labeled by (ℓ, i) ∈ [b]× [m], we have ypℓ in the column
labeled by (p, i) for i ∈ [n] and 0 in every other column. The bipartite rigidity matroid Bm,n(a, b) is the
column matroid of this matrix.
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2.2. Dualities. In this section, prove Theorem 1.1. For this, it is convenient to pass to the dual picture.
Suppose we have a collection of n vectors in an d-dimensional vector space L. If we choose a basis for L,
then we obtain an d× n matrix A. A collection of vectors is independent in the matroid represented by the
vector configuration if and only if the corresponding columns of A are linearly independent. Whether a given
set of columns is linearly independent depends only on the row span of A. In particular, we can replace A
by any matrix with the same row span (even if its rows are linearly dependent).

Using this formulation, we can describe Sn(r, p) as follows. Choose an infinite field K of characteristic
p ≥ 0, and choose a generic linear subspace L ⊆ Kn of dimension r. We then obtain a subspace Sym2 L ⊆
Sym2 Kn. We have a canonical basis for Sym2 Kn, given by the vectors e21, e1e2, . . . , e

2
n, where e1, . . . , en is

the standard basis of Kn. To compute the independent sets of Sn(r, p), we choose m vectors in Sym2 Kn

whose span is Sym2 L, form the corresponding m ×
(

n+1
2

)

matrix, and check which columns are linearly

independent. To compute the dual of Sn(r, p), we choose vectors which span (Sym2 L)⊥ ⊆ Sym2 Kn, where
the orthogonal complement is taken with respect to the usual inner product on a vector space with a basis.
We can calculate Wn(r, p) and Tm,n(s, r, p) in a similar way.

Proof of Theorem 1.1(1). As Sn(n− d, 0) is independent of the choice of infinite field of characteristic 0, we
may work over K = C(xij)1≤i≤n,1≤j≤d and choose our generic linear subspace L ⊆ Kn to be the orthogonal
complement of the span of the vectors (x11, . . . , xn1), . . . , (x1d, . . . , xnd). In order to compute the dual of
Sn(n − d, 0), we find vectors which span (Sym2 L)⊥. There is a surjective map L⊥ ⊗ Kn → (Sym2 L)⊥ ⊆
Sym2 Kn which sends v⊗w to vw. There is a basis for L⊥⊗Kn given by vectors of the form (x1j , . . . , xnj)⊗ei
for 1 ≤ i ≤ n and 1 ≤ j ≤ d. We form the matrix A whose rows are given by the images of these vectors
in Sym2 Kn, written in the basis e21, e1e2, . . . , e

2
n. The dual of Sn(n − d, 0) records which columns of A are

linearly independent. We note that we obtain the matrix JSym of Proposition 2.1 from A after multiplying
the columns labeled by i ∈ [n] by 2, proving the equivalence. �

Proof of Theorem 1.1(2). We work over K = C(xij)1≤i≤n,1≤j≤d, and choose our generic linear subspace
L ⊆ Kn to be the orthogonal complement of the span of the vectors (x11, . . . , xn1), . . . , (x1d, . . . , xnd). There
is a surjective map L⊥ ⊗ Kn → (∧2L)⊥ ⊆ ∧2Kn. Using the basis {(x1j , . . . , xnj) ⊗ ei}1≤i≤n,1≤j≤d for
L⊥ ⊗ Kn and the basis {ei ∧ ej : i < j} for ∧2Kn, we see that (∧2L)⊥ is the row span of the matrix
appearing in Definition 2.2. �

Proof of Theorem 1.1(3). We work over K = C(xij , ykℓ), where (i, j) ∈ [m] × [a] and (k, ℓ) ∈ [n] × [b]. Set
L1 ⊆ Km to be the orthogonal complement to the span of the vectors (x11, . . . , xm1), . . . , (x1a, . . . , xma), and
set L2 ⊆ Kn to be the orthogonal complement to the span of the vectors (y11, . . . , yn1), . . . , (y1b, . . . , ynb).
There is a surjective map (L⊥

1 ⊗Kn)⊕ (Km⊗L⊥
2 ) → (L1⊗L2)

⊥ ⊆ Km⊗Kn. This implies that (L1⊗L2)
⊥

is the row span of the matrix appearing in Definition 2.3. �

Example 2.4. Using Theorem 1.1, a special case of [Kal02, Problem 3] which is given as a conjecture in
[CRS23, Conjecture 4.3] becomes the following. Let G be a graph on n vertices, and suppose that E(G) is
independent in Wn(r, 0). Then E(G) is independent in Sn(r − 1, 0). We checked this for r ≤ 6.

2.3. Matrix completion in positive characteristic. As mentioned in the introduction, the algebraic
matroid of the variety of n× n skew-symmetric matrices of rank at most 2d over C is the hyperconnectivity
matroid Hn(2d) [CRS23, Proposition 3.1], and the algebraic matroid of m × n matrices of rank at most d
over C is the bipartite rigidity matroid Bm,n(d, d) [SC09, Section 4]. We briefly comment on the relationship
between the linear algebraic matroids in characteristic p and the low-rank matrix completion matroids in
characteristic p. This section is not used in the rest of the paper and can be skipped by the uninterested
reader. For the field theory facts used in this section, see [Mat86, Section 26], especially Theorem 26.6.
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We first sketch how one computes the low-rank matrix completion matroid. Let Yd be the subvariety of
Cmn given by m × n matrices of rank at most d, and let K(Yd) be the function field of Yd. The matrix
completion matroid encodes when the coordinate functions zij ∈ K(Yd) are algebraically independent. Be-
cause we are over a field of characteristic 0, some functions {zij} are algebraically independent if and only if
their differentials dzij ∈ ΩK(Yd)/C are linearly independent in the module of differentials of K(Yd). In order
to make the module of differentials ΩK(Yd)/C explicit, we use that every matrix of rank at most d can be
written as AB, where A is an m× d matrix and B is an d× n matrix. This means that there is a surjective

map Cmd+dn → Yd, which sends a coordinate function zij to
∑d

ℓ=1 xiℓyℓj . Because we are over a field of
characteristic 0, the pullback map ΩK(Yd)/C ⊗K(Yd) C(xij , ykℓ) → ΩC(xij,ykℓ)/C is injective. There is a basis

for ΩC(xij,ykℓ)/C given by {dxij , dykℓ}. Then dzij pulls back to d(
∑r

ℓ=1 xiℓyℓj) =
∑d

ℓ=1(xiℓdyℓj + yℓjdxiℓ).
The matrix whose columns are given by the pullbacks of the dzij is exactly the matrix defining Bm,n(d, d).
A similar argument can be used to compute the symmetric matrix completion matroid, using that an n× n
symmetric matrix of rank at most d can be written as AAt, where A is an n×dmatrix, or the skew-symmetric
matrix completion matroid, using that an n× n skew symmetric matrix of rank at most 2d can be written
as ABt −BAt for A,B n× d matrices.

This argument breaks down in positive characteristic due to the presence of inseparable extensions. Given
a finitely generated extension of fields K/L, we say that a1, . . . , aℓ are separably algebraically independent if
there are b1, . . . , bp such that a1, . . . , aℓ, b1, . . . , bp is a separating transcendence basis for K/L, i.e., they are
algebraically independent and K/L(a1, . . . , bp) is a finite separable extension. We say that K/L is separable
if it has a separating transcendence basis.

Over a field k of positive characteristic, it is no longer true that we can test algebraic independence of a
collection a1, . . . , aℓ by checking the linear independence of da1, . . . , daℓ. Rather, da1, . . . , daℓ are linearly
independent if and only a1, . . . , aℓ are separably algebraically independent. Furthermore, pullback maps on
differentials are no longer automatically injective; they are injective if and only if the corresponding field
extension is separable. This fails for the variety of symmetric matrices of rank at most d in characteristic 2:
the map

knd → {n× n symmetric matrices of rank ≤ d}, A 7→ AAt

does not induce a separable extension of function fields. In all other case, the analogous map does induce a
separable extension of function fields. This can be proved by verifying that the matrix defining Sn(d) has rank

nd−
(

d
2

)

in characteristic p 6= 2, the matrix defining Hn(2d) has rank 2dn−
(

2d+1
2

)

in any characteristic, and

the matrix defining Bm,n(d, d) has rank d(m+ n)− d2 in any characteristic. Then the proof of Theorem 1.1
then gives the following result.

Theorem 2.5. Let k be a field of characteristic p.

(1) If p 6= 2, then a collection of elements is independent in the dual of the symmetric power matroid
Sn(n − d, p) if and only if the corresponding rational functions on the variety of n × n symmetric
matrices of rank at most d over k are separably algebraically independent.

(2) A collection of elements is independent in the dual of wedge power matroid Wn(n−2d, p) if and only
if the corresponding rational function on the variety of n × n skew-symmetric matrices2 of rank at
most 2d over k are separably algebraically independent.

(3) A collection of elements is independent in the dual of tensor matroid Tm,n(m − d, n − d, p) if and
only if the corresponding rational function on the variety of m× n matrices of rank at most d over
k are separably algebraically independent.

2In characteristic 2, we say that a matrix is skew-symmetric if it is symmetric with zeroes on the diagonal. It remains true
that, over an algebraically closed field, an n× n matrix can be written as ABt

−BAt with A,B n× d matrices if and only if it
is skew-symmetric and has rank at most 2d.
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Remark 2.6. A collection of coordinate functions {xij : (i, j) ∈ S ⊆ [m] × [n]} ⊆ K(Yd) is algebraically
independent if and only if the coordinate projections Yd →֒ kmn → kS is dominant, i.e., its image contains a
Zariski open set. The collection is separably algebraically independent if and only if the coordinate projection
is generically smooth.

Remark 2.7. One can sometimes show that the rank completion matroid in characteristic p, i.e., the
algebraic matroid of the rank at most d locus, is independent of the characteristic by showing that the
tropicalization of the rank at most d locus does not depend on the characteristic. For example, this was
shown for d = 2 in [DSS05, Section 6]. We note that results of this form do not imply that the tensor
matroid is independent of the characteristic.

Remark 2.8. We are unaware of any case in which the symmetric matrix completion matroid, the skew-
symmetric matrix completion matroid, or the matrix completion matroid depends on the characteristic. In
particular, the 4 × 4 symmetric rank 2 matrix completion matroid is the same in all characteristics, even
though S4(2, 0) 6= S4(2, 2).

3. Bipartite rigidity when m− a is small

In this section, we give a complete description of the matroid Tm,n(s, r, p) when s ≤ 3. Our description is
independent of the characteristic p. By Theorem 1.1(3), this gives a description of Bm,n(a, b) when m−a ≤ 3.
We use this description to prove Theorem 1.2 and Corollary 1.5.

3.1. The disjoint case and s = 1. Given an infinite field k of characteristic p, consider m generic vectors
u1, . . . , um in ks and n generic vectors in v1, . . . , vn in kr. By definition, the independent sets of the matroid
Tm,n(s, r, p) are given by sets E ⊆ [m]× [n] such that {ui ⊗ vj : (i, j) ∈ E} is linearly independent. We give
a characteristic-independent description of the independent sets when s ≤ 3.

We write E =
⋃m

i=1{i}×Ai, Ai ⊆ [n]. We first show that when the Ai are disjoint a simple dimension/size
criteria is equivalent to independence.

Lemma 3.1 (The disjoint case). Let A1, . . . Am ⊆ [n] be disjoint sets. Let E =
⋃m

i=1{i} × Ai ⊆ [m] ⊗ [n].
Then E is independent in Tm,n(s, r, p) if and only if |Ai| ≤ r for all i and

∑m
i=1 |Ai| ≤ sr.

Proof. The “only if” conditions follow from comparing dimensions. For the “if” direction, it suffices to give
a choice of the ui and vj such that {ui⊗vj : (i, j) ∈ E} is a set of linearly independent vectors. Let e1, . . . , er
be a basis of kr. Set each vj ∈ A1 to be one of the basis vectors. Keep going, and set each vj ∈ A2 to be
the “next” basis vectors and so forth. Each vj will be set to some basis vector, no two vectors in some Ai

are set to the same basis vector, and each basis vector is used at most s times. For each j ∈ [r], let Cj be
the set of i for which ej is used for some vector in Ai.

Pick the ui to be generic vectors, so every s of them are linearly independent. Consider a linear dependence
among {ui ⊗ vj : (i, j) ∈ E}. That is, some λi,j ∈ k for which

∑

(i,j)∈E

λi,jui ⊗ vj = 0.

In particular, we have that
∑

j∈[r]

∑

i∈Cj

λi,j′ui ⊗ ej = 0,

where j′ is shorthand for the j′ ∈ Ai for which vj′ = ej. Since the ej form a basis, we have that, for all
j ∈ [r],

∑

i∈Cj

λi,j′ui = 0.
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Since |Cj | ≤ s for each j and the ui are generic, we have that λi,j′ = 0 for all (i, j′) ∈ E. Thus, the vectors
ui ⊗ vj are linearly independent, as desired. �

We can use the above result to address the case s = 1.

Corollary 3.2. Let A1, . . . Am ⊆ [n], and set E =
⋃m

i=1{i} × Ai ⊆ [m] ⊗ [n]. Then E is independent in
Tm,n(1, r, p) if and only if

|Ai ∩Aj | = 0 for all distinct i, j ∈ [m](1)
m
∑

i=1

|Ai| ≤ r.(2)

Proof. First, we prove that (1) and (2) are necessary. If there exists some k ∈ Ai ∩ Aj , then ui ⊗ vk and
uj ⊗ vk are linearly dependent, so (1) is necessary. The necessity of (2) is obvious, as dim(k⊗ kr) = r.

To prove sufficiency, note that (1) implies we are in the disjoint case. Thus, we can apply Lemma 3.1
with s = 1. �

3.2. The case s = 2.

Proposition 3.3 (Case s = 2). Let A1, . . . Am ⊆ [n] be sets of size at most r, and set E =
⋃m

i=1{i} ×Ai ⊆
[m]⊗ [n]. Then E is independent in Tm,n(2, r, p) if and only if

|Ai ∩ Aj ∩ Ak| = 0 for all distinct i, j, k ∈ [m](3)

∑

1≤i<j≤m

|Ai ∩ Aj |+

∣

∣

∣

∣

∣

∣

Ak \
⋃

i∈[m]\{k}

Ai

∣

∣

∣

∣

∣

∣

≤ r for all k ∈ [m](4)

m
∑

i=1

|Ai| ≤ 2r.(5)

Proof. For any set A ⊆ [n], let VA be the subspace of kr spanned by the generic vectors vi for i ∈ A.
The fact that these inequalities are necessary is not hard to see. The last inequality is equivalent to

requiring |E| ≤ 2r = dim(k2 ⊗ kr). For (4), let W =
∑

(i,j)∈E ui ⊗ vj . Observe that, for all i < j ∈ [m],

k2 ⊗ VAi∩Aj
⊆ W . In particular, uk ⊗ VAi∩Aj

⊆ W . Also note that uk ⊗ VAk\
⋃

i6=k
Ai

⊆ W . For these to be

linearly independent we must have (4).
If ℓ ∈ Ai ∩ Aj ∩ Ak for some distinct i, j, k ∈ [m], then we have linearly dependent vectors ui ⊗ vℓ, uj ⊗

vℓ, uk ⊗ vℓ ∈ k2 ⊗ kr. This shows that (3) is necessary.
If the above inequalities are satisfied, then we show that {ui ⊗ vj : (i, j) ∈ E} are independent for a

semi-explicit choice of the ui ∈ k2 and vj ∈ kr. Let e1, . . . , er be a basis of kr. Let S1 be the elements of
⋃m

i=1 Ai that appear in exactly one Ai. Let S2 be the elements which appear in exactly two Ai. By (3), we
have that S1 ∪ S2 =

⋃m
i=1 Ai. Observe then that (4) and (5) can thus be re-written as

|Ai ∩ S1|+ |S2| ≤ r for all i(6)

|S1|+ 2|S2| ≤ 2r(7)

Pick u1, . . . , um to be generic vectors in k2, so any pair of the vectors are linearly independent. For each
j ∈ S2, set vj to be a separate ei for i ∈ {1, 2, . . . , |S2|}. This is possible by (4) as |S2| ≤ r. Finally, set the
vi for i ∈ S1 to be generic vectors in the space spanned by {ei : i ∈ {|S2|+ 1, . . . , r}}.

It is not hard to see from these choices that {ui ⊗ vj : (i, j) ∈ E} are independent if and only if {ui ⊗
vj : (i, j) ∈ E, j ∈ S1} are independent, as the vectors in S2 and S1 are in disjoint subspaces. Thus a
non-zero linear combination of {ui ⊗ vj : (i, j) ∈ E, j ∈ S2} cannot intersect with the subspace spanned
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by {ui ⊗ vj : (i, j) ∈ E, j ∈ S1}. As i ∈ S2 only appears in two of the Aj , we also see that the set

{ui ⊗ vj : (i, j) ∈ E, j ∈ S2} is linearly independent and indeed spans k2 ⊗ k|S2|.

Then {ui ⊗ vj : (i, j) ∈ E, j ∈ S1} are vectors in the subspace k2 ⊗ kr−|S2|. The result follows from
applying Lemma 3.1 with the parameters (m,n, s, r) = (m,n − |S2|, 2, r) and the sets Ai ∩ S1 for i ∈ [m].
The inequalities needed to invoke Lemma 3.1 are exactly (6) and (7). �

3.3. The case s = 3.

Proposition 3.4 (Case s = 3). Let A1, . . . Am ⊆ [n] be sets of size at most r, and set E =
⋃m

i=1{i} ×Ai ⊆
[m] ⊗ [n]. For k ∈ {1, 2, 3}, let Sk be the set of j ∈ [n] which appear in exactly k of the Ai. Then E is
independent in Tm,n(3, r, p) if and only if

|Ai ∩ Aj ∩Ak ∩ Aℓ| = 0 for all distinct i, j, k, ℓ ∈ [m](8)

|Ai \ S3|+ |S3| ≤ r for all i ∈ [m](9)

|(Ai ∩ Aj) \ S3|+ |(Ak ∩ Aℓ) \ S3|+ |S3| ≤ r for all distinct i, j, k, ℓ ∈ [m](10)

|Ai \ S3|+ |Aj \ S3|+ |S2 \ (S3 ∪ Ai ∪ Aj)|+ 2|S3| ≤ 2r for all distinct i, j ∈ [m](11)

|S1|+ 2|S2|+ 3|S3| ≤ 3r.(12)

Proof. Let W :=
∑

(i,j)∈E ui ⊗ vj . For any set A ⊆ [n], let VA be the subspace of kr spanned by the generic

vectors vi for i ∈ A.
The necessity of (8) and (12) are obvious. To show the necessity of (9), observe that k3 ⊗ VS3

⊆ W .
Thus, ui ⊗ VS3

⊆ W . Also note that ui ⊗ VAi\S3
⊆ W . For these two subspaces to be linearly independent

we must have |Ai \ S3|+ |S3| ≤ r.
Next, we now show (10) is necessary. Consider distinct i, j, k, ℓ ∈ [m] and let u be a nontrivial vector in

span{ui, uj}∩span{uk, uℓ}. As before, u⊗VS3
⊆ W . Further, u⊗V(Ai∩Aj)\S3

⊆ W and u⊗V(Ak∩Aℓ)\S3
⊆ W .

If these subspaces are linearly independent, then (10) must hold.
To finish the proof of the necessity of the inequalities, we show (11) is necessary. Consider distinct

i, j ∈ [m]. For each k ∈ S2 \ (S3∪Ai∪Aj), let u
′
k be a nontrivial vector in span{ui, uj}∩ span{ua, ub}, where

a and b are the two sets such that k ∈ Aa∩Ab. Observe that ui⊗VAi\S3
, uj⊗VAj\S3

,
∑

k∈S2\(S3∪Ai∪Aj)
u′
k⊗vk,

and span{ui, uj}⊗VS3
are linearly independent subspaces ofW∩(span{ui, uj}⊗ks). This proves the necessity

of (11).
Next, we prove the sufficiency of these equations by specializing some of the vectors. The strategy is to

induct by finding a nice subspace to quotient by. We first use this strategy to reduce to the case S3 = ∅.

Claim 3.5. E is independent in Tm,n(3, r, p) if and only if E \{(i, j) : j ∈ S3} is independent in Tm,n(3, r−
|S3|, p).

Proof. Let e1, . . . , er be a basis of kr. For each i ∈ S3, we set vi to a different basis element (which is
possible as |S3| ≤ r by (12)). For j ∈ [n] \ S3 we choose the vj to be generic vectors in the subspace
spanned e|S3|+1, . . . , er. We have that E \ {(i, j) : j ∈ S3} is independent in Tm,n(3, r − |S3|, p) if and only
if {ui ⊗ vj : (i, j) ∈ E, j 6∈ S3} is independent in Tm,n(3, r, p). We see that

span{ui ⊗ vj : (i, j) ∈ E, j ∈ S3} ∩ span{ui ⊗ vj : (i, j) ∈ E, j 6∈ S3} = 0.

As the ui are generic, {ui ⊗ vj : (i, j) ∈ E, j ∈ S3} is independent in Tm,n(3, r, p) if and only if E \ {(i, j) :
j ∈ S3} is independent in Tm,n(3, r − |S3|, p), so this implies the result. �
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With the assumption S3 = ∅, we have a much simpler set of inequalities:

|Ai| ≤ r for all i ∈ [n](13)

|Ai ∩Aj |+ |Ak ∩ Aℓ| ≤ r for all distinct i, j, k, ℓ ∈ [n](14)

|Ai|+ |Aj |+ |S2 \ (Ai ∪Aj)| ≤ 2r for all distinct i, j ∈ [n](15)

|S1|+ 2|S2| ≤ 3r.(16)

We will proceed via induction on m and considering several cases.
Case 1, (13) is tight: Without loss of generality, assume that i = 1 in (13). Since |A1| = r, we have that
VA1

= kr. For i ≥ 2, let u′
i be the image of ui in k3/〈u1〉. Then the u′

i are generic vectors in k3/〈u1〉.
We claim that the (i, j) ∈ E with i ≥ 2 give an independent set in Tm−1,n(2, r, p). This follows by

checking the inequalities of Lemma 3.3: (3) follows because |S3| = 0, (4) follows from (15) for A1 and Ai,
and (5) follows from (16). This means {u′

i ⊗ vj : (i, j) ∈
⋃m

k=2{k} × Ak} is linearly independent, which
implies {ui ⊗ vj : (i, j) ∈ E} is linearly independent.
Case 2, (14) is tight: Without loss of generality, assume that (i, j, k, ℓ) = (1, 2, 3, 4). As the ui are generic
vectors, any three of them are linearly independent and that there is no common non-zero vector in the span
of any three disjoint pairs (ui1 , ui2), (ui3 , ui4), (ui5 , ui6).

Suppose |A1∩A2|+ |A3∩A4| = r, so kr = VA1∩A2
+VA3∩A4

. Let u be a non-zero vector in span{u1, u2}∩
span{u3, u4}. We quotient k3 ⊗ kr by u ⊗ VA1∩A2

+ u ⊗ VA3∩A4
= u ⊗ kr. Let u′

j be the image of uj in

k3/〈u〉.
We set A′

1 = A1 ∪ A2 and A′
2 = A3 ∪ A4. We note u′

1, u
′
2 are scalar multiples of each other and so are

u′
3, u

′
4. Observe that {u′

1, u
′
3, u

′
5, . . . , u

′
m} is a set of generic vectors, i.e., any pair is linearly independent.

Let E′ = ({1} × A′
1) ∪ ({3} × A′

2) ∪
⋃m

i=5({i} × Ai). We claim that {u′
i × vj : (i, j) ∈ E′} is linearly

independent in (k3/〈u〉)⊗kr. This follows by checking the conditions in Lemma 3.3 for A′
1, A

′
2, A5, . . . , Am.

Indeed, (3) easily follows. LetB = (A1∩A2)∪(A3∩A4), which has size exactly r becauseA1∩A2∩A3∩A4 = ∅.
We see that |A′

1| + |A′
2| +

∑m
i=5 |Ai| =

∑m
i=1 |Ai| − |B| ≤ 2r, so (5) holds. To check (4), we use (15) for

A1, . . . , Am and the fact that the indices which appear in two sets for A′
1, A

′
2, A5, . . . , Am are precisely S2 \B,

and |S2 \B| = |S2| − |B| = |S2| − r.
If we have a non-zero linear combination of {ui× vj : (i, j) ∈ E} which is zero, then quotienting by u⊗kr

and using the linear independence of {u′
i × vj : (i, j) ∈ E′} gives a contradiction.

Case 3, (15) is tight: Without loss of generality, assume that |A1|+ |A2|+ |S2 \ (A1 ∪A2)| = 2r. For each
i ∈ S2 \ (A1 ∪ A2), let u

′
i = span{u1, u2} ∩ span{uj, uk}, where j, k are the two sets such that i ∈ Aj ∩ Ak.

Claim 3.6. The three subspaces 〈u1〉⊗VA1
, 〈u2〉⊗VA2

, and
∑

i∈S2\(A1∪A2)
〈u′

i〉⊗〈vi〉 spans span{u1, u2}⊗kr.

Proof. We see that 〈u1〉⊗VA1
, 〈u2〉⊗VA2

, and
∑

i∈S2\(A1∪A2)
〈u′

i〉⊗〈vi〉 spans a subspace of span{u1, u2}⊗kr.

We will show it spans the whole space by proving that {u1 ⊗ vi : i ∈ A1}, {u2 ⊗ vj : j ∈ A2}, and
{u′

k ⊗ vl : k ∈ S2 \ (A1 ∪ A2), l ∈ Ak} are linearly independent.
We will use Lemma 3.3 for this. First note that, because the ui are generic, the vectors {u1, u2}∪{u′

k : k ∈
S2\(A1∪A2)} are generic vectors in span{u1, u2}. In the collection of sets {A1, A2}∪{{i} : i ∈ S2\(A1∪A2)},
the only non-empty pairwise intersection is between A1 and A2. As |A1 ∩ A2| < r, we can use this to check
(3),(4), and (5). �

Suppose there is a dependence relation in {ui ⊗ vj : (i, j) ∈ E}:

(17)
∑

(i,j)∈E

λi,jui ⊗ vj = 0.
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Consider the image of this relation in k3/ span{u1, u2}⊗kr. All ui, i ≥ 3 are projected to non-zero scalar
multiples, say αi, of the same vector u. Then (17) becomes,

(18)

m
∑

i=3

∑

j∈Ai\S2

αiλi,ju⊗ vj +
∑

i6=j∈[m]\{1,2}

∑

k∈Ai∩Aj

(αiλi,k + αjλj,k)u⊗ vk = 0.

Note {vj : j ∈ Ai \ S2, i ≥ 3}∪ {vk : k ∈ Ai ∩Aj , i 6= j ∈ [m] \ {1, 2}} is a set of at most r distinct vectors
(we use S1 + 2S2 ≤ 3r and |A1| + |A2| + |S2 \ (A1 ∪ A2)| = 2r). Thus λi,j = 0 for i ≥ 3, j ∈ Ai \ S2 and
αiλi,k + αjλj,k = 0 for i 6= j ∈ [m] \ {1, 2}, k ∈ Ai ∩Aj .

Using this in (17) gives us a linear dependence which contradicts Claim 3.6.
Case 4, |S2| = 0: This is just the disjoint case (Lemma 3.1).
Case 5, |S1| 6= 0, |S2| 6= 0 and (13),(14),(15) are not tight: As m ≥ 3, without loss of generality we can
assume that A1 ∩ S1 6= ∅ and A2 ∩ A3 6= ∅. After relabeling, let i ∈ A1 be in S1 and j ∈ A2 ∩ A3. We
now set vi = vj = e1 and quotient by k3 ⊗ e1 ∼= span{u1, u2, u3} ⊗ e1. Set A′

1 = A1 \ {i}, A′
2 = A2 \ {j},

A′
3 = A3 \ {j}, and A′

j = Aj for j ≥ 4. Then A′
1, . . . , A

′
m satisfy the inequalities (13),(14),(16) for k3⊗kr−1.

The only non-trivial check is for (15), but if we re-write (15) as |S2 ∪A1 ∪A2|+ |A1 ∩A2| ≤ 2r− 1 (as (15)
is not tight) then we see A′

i satisfy the needed inequality.
Case 6, |S1| = 0, |S2| 6= 0 and (13),(14),(15) are not tight: If (16) is not tight then 2|S2| ≤ 3r−1. Choose
i ∈ S2 and quotient by k3 ⊗ 〈vi〉. The new sets will satisfy the inequalities for k3 ⊗ kr−1.

From now we assume (16) is tight, which means |S2| = 3r/2 (which also implies that r is even). In that
case (15) simplifies even further to |Ai∩Aj | ≤ r/2−1 (as (15) is not tight), which also makes (14) redundant.

We claim that if r ≥ 1, we can always pick i1, i2, i3 ∈ S2 with the following properties. Let j1, j
′
1, j2, j

′
2, j3, j

′
3 ∈

[m] be such that i1 ∈ Aj1 ∩Aj′
1
, and so forth. Further, set A′

i = Ai \ {i1, i2, i3} for all i ∈ [m]. It is not hard
to see that |A′

1|+ · · ·+ |A′
m| = 3(r − 2). We seek claim that the following holds:

• If e1, e2 ∈ k2 are standard basis vectors, then span{uj1 , uj′
1
}⊗e1+span{uj2 , uj′

2
}⊗e2+span{uj3 , uj′

3
}⊗

(e1 + e2) = k3 ⊗ k2.
• |A′

i| ≤ r − 2 for all i ∈ [m].
• |A′

i ∩ A′
j | ≤ (r − 2)/2 for i 6= j ∈ [m].

If all these properties are satisfied, then we can use induction to finish this case. By setting vi1 = e1, vi2 =
e2, and vi3 = e1 + e2 and quotienting out k3 ⊗ span{e1, e2}, we reduce to a smaller case on k3 ⊗ kr−2.

The third condition follows directly as |Ai∩Aj | ≤ r/2−1. One can check that the first condition is satisfied
when the pairs {j1, j′1}, {j2, j

′
2}, {j3, j

′
3} are distinct and no index appears in the multiset {j1, j′1, j2, j

′
2, j3, j

′
3}

more than twice.3 As |Ai ∩Aj | ≤ r/2− 1 for every i, j and S2 = 3r/2, we have at least three pairs to choose
from. We would be forced to pick the same index thrice if there are only 4 sets A1, A2, A3, A4 and one of
them intersects with the rest but the rest do not intersect with each other, but that would contradict that
S2 = 3r/2.

For the second condition, if |Ai| > r−2, then imust appear at least |Ai|−(r−2) times in {j1, j
′
1, j2, j

′
2, j3, j

′
3}.

As |Ai| ≤ r − 1 we only have to ensure |Ai| = r − 1 happens at most 6 times. If it happens 7 times, say
for A1, . . . , A7 then |Ai ∩ Aj | ≥ r/2 − 2 for i 6= j = 1, . . . , 7. This gives us that 21r/2 − 42 ≤ |S2| = 3r/2
which implies r ≤ 42/9. As r is even we have r ∈ {2, 4}. In either case we have |S2| ≤ 6 and |Ai| = r− 1 for
i = 1, . . . , 7, so the fact that |S3| = |S1| = 0 leads to a contradiction. �

Proof of Theorem 1.2. The description of Tm,n(s, r, 0) when s ≤ 3 above shows that we can check inde-
pendence in Tm,n(s, r, 0) by checking polynomially many conditions (the case s = 0 is immediate). By
Theorem 1.1, Tm,n(s, r, 0) is dual to Bm,n(m− s, n− r), so a set is independent in Tm,n(s, r, 0) if and only

3And this is not a characteristic-dependent condition.
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if its complement is spanning in Bm,n(m − s, n − r). By [HK81], there is a polynomial time algorithm to
compute the rank function of a matroid by checking if polynomially many sets are spanning. �

3.4. Characterizing the Laman condition. In this section, we prove Corollary 1.5. One consequence of
Corollary 1.5 is that, when m− a ≤ 2, the Laman circuits are the circuits of a matroid; Example 1.4 shows
that this is false in general. It will be necessary to prove this directly in order to prove Corollary 1.5.

Any subset U of [m]× [n] is contained in some minimal rectangle S×T . We say that U violates the Laman
condition if there is some rectangle S × T with |S| ≥ a, |T | ≥ b such that |U ∩ S × T | > |S|b + |T |a − ab.
Clearly any subset which violates the Laman condition contains a minimal subset which violates the Laman
condition. In general, a minimal subset which violates the Laman condition need not contain a Laman circuit
(which are, by definition, minimal dependent sets).

Lemma 3.7. Let C1, C2 be distinct minimal sets which violate the Laman condition whose minimal rectangles
are S1 × T1 and S2 × T2, respectively. Suppose that |S1 ∩ S2| ≥ a. Then, for any e ∈ C1 ∪ C2, C1 ∪ C2 \ e
violates the Laman condition.

Proof. We have |C1| ≥ b|S1|+ a|T1| − ab+ 1 and |C2| ≥ b|S2|+ a|T2| − ab+ 1. Therefore

|C1 ∪ C2 \ e| ≥ b(|S1|+ |S2|) + a(|T1|+ |T2|)− 2ab+ 1− |C1 ∩C2|.

We claim that we have the bound

b|S1 ∩ S2|+ a|T1 ∩ T2| − ab ≥ |C1 ∩ C2|.

Given this inequality, we see that |C1 ∪C2 \ e| ≥ b|S1 ∪S2|+ a|T1 ∪ T2| − ab+1. As C1 ∪C2 \ e is contained
in the rectangle (S1 ∪ S2)× (T1 ∪ T2), this implies the result.

First suppose that |T1 ∩ T2| ≥ b. Note that, because C1 6= C2, C1 ∩ C2 does not violate the Laman
condition and is contained in (S1 ∩ S2)× (T1 ∩ T2). The claimed inequality follows.

Now suppose that |T1 ∩ T2| ≤ b. Write |S1 ∩ S2| = a+ ℓ for some ℓ ≥ 0. Then we have that

b|S1 ∩ S2|+ a|T1 ∩ T2| − ab = bℓ+ a|T1 ∩ T2|.

The bound |C1 ∩ C2| ≤ |S1 ∩ S2| · |T1 ∩ T2| = (a+ ℓ)|T1 ∩ T2| implies the claim, as bℓ ≥ ℓ|T1 ∩ T2|. �

Lemma 3.8. For m,n, a, b with m− a ≤ 2, the minimal sets which violate the Laman condition in [m]× [n]
form the circuits of a matroid.

Proof. We must check the circuit elimination axiom. Let C1, C2 be distinct minimal sets which violate the
Laman condition, and let S1 ×T1, S2 ×T2 be the minimal rectangles containing them. We have |S1| ≥ a+1
and |S2| ≥ a + 1: if |Si| = a, then no subset of Si × Ti is large enough to violate the Laman condition.
As m − a ≤ 2, this implies that |S1 ∩ S2| ≥ a. It then follows from Lemma 3.7 that, for any e ∈ C1 ∪ C2,
C1 ∪ C2 \ e violates the Laman condition. �

Proposition 3.9. If m−a ≤ 2, then the circuits of Bm,n(a, b) are the minimal sets which violate the Laman
condition.

Proof. We focus on the case m − a = 2; the cases m = a and m = a + 1 are straightforward or can be
deduced from the case m− a = 2. Let MLam be the matroid on [m]× [n] whose circuits are the minimal sets
which satisfy the Laman condition. Note that every basis of Bm,n(a, b) is independent in MLam. The Laman
condition implies that the rank of MLam is at most na+mb− ab = 2b+ na, which is the rank of Bm,n(a, b),
so the rank of MLam is the same as the rank of Bm,n(a, b). It therefore suffices to show that if F ⊆ [m]× [n]
is independent in MLam with |F | = 2b + na, then the complement F c is independent in Tm,n(2, n − b, 0).
Set F c = ∪i{i} × Ai.
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We check that F c satisfies the inequalities in Proposition 3.3 (with r = n− b). That |Ai| ≤ n− b follows
from the Laman condition applied to ([m] \ {i})× [n] and the fact that |F | = 2b+ na.

Condition (5) holds: it is equivalent to requiring that |F | ≥ 2b+ na.
Condition (3) holds: suppose i ∈ Aj ∩ Ak ∩ Aℓ, i.e., |F ∩ [m] × {i}| < a. The Laman condition implies

that |F ∩ [m]× ([n] \ i)| ≤ 2b+ a(n− 1). But this implies that |F | < 2b+ an, a contradiction.
Condition (4) holds: let S1 be the set of elements in [n] which occur in exactly 1 of the Ai, let S2 be

the elements in [n] which occur in exactly two of the Ai, and suppose |Ai ∩ S1| + |S2| > n − b. Consider
the complement of the first row. The Laman condition implies that there can at most b columns j where F
contains ([m] \ i)× {j}. The other n − b columns have at least one entry missing from ([m] \ i)× {j}. We
see that |S1| − |Ai ∩ S1| of these columns can arise from elements of S1, and |S2| of these columns can arise
from elements of S2. Therefore

n− b ≤ (|S1| − |Ai ∩ S1|) + |S2|.

Adding this to the equation |Ai∩S1|+|S2| > n−b, we see that 2(n−b) < |S1|+2|S2|. But 2(n−b) = |S1|+2|S2|
because |F | = 2b+ na. �

The circuits which are not Laman circuits that we will use to prove Corollary 1.5 will be built out
Example 1.4 using the following result.

Proposition 3.10. For i ∈ [m], let S = {(1, 1), . . . , (1, n)}. For any p ≥ 0 and 0 < s < m, the contraction
Tm,n(s, r, p)/S is Tm−1,n(s− 1, r, p), and the deletion Tm,n(s, r, p) \ S is Tm−1,n(s, r, p).

Proof. Let U, V be vector spaces over an infinite field k of characteristic p of dimensions s, r respectively.
Choose generic vectors u1, . . . , um ∈ U and v1, . . . , vn ∈ V . The contraction Tm,n(s, r, p)/S is represented
by the vector configuration u2 ⊗ v1, u2 ⊗ v2, . . . , um ⊗ vn ∈ U/(k · u1)⊗ V , and the deletion Tm,n(s, r, p) \ S
is represented by u2 ⊗ v1, u2 ⊗ v2, . . . , um ⊗ vn ∈ U ⊗ V . �

Using Proposition 3.10 and Theorem 1.1(3), we obtain a simple proof of the “cone lemma” [KNN16,
Lemma 3.12] for bipartite rigidity.

Corollary 3.11. Let G be a bipartite graph on [m]× [n]. Let CLG (respectively CRG) be the bipartite graph
on [m + 1] × [n] (resp. [m] × [n + 1]) obtained by adding a vertex to G on the left (resp. right) and then
connecting it to everything in [n] (resp. [m]). Then G is independent in Bm,n(a, b) if and only if CLG is
independent in Bm+1,n(a+ 1, b) (resp. CRG is independent in Bm,n+1(a, b+ 1)).

Proof of Corollary 1.5. Suppose 2 ≤ a < m − 2 and 2 ≤ b < n − 2. Let G be the graph described in
Example 1.4, which is dependent in B5,5(2, 2) but does not contain a Laman circuit. If we perform a − 2
left cones and b − 2 right cones, then we obtain a graph H which is dependent in Ba+3,b+3(a, b) but does
not contain a Laman circuit. The restriction of Bm,n(a, b) to [a + 3] × [b + 3] is Ba+3,b+3(a, b), e.g. by
Proposition 3.10, so H also gives a dependent set which does not contain a Laman circuit for Bm,n(a, b).

If a ≤ 1 or b ≤ 1, then the result follows [KNN16, Theorem 5.4], which is based on [Whi89]. If m− a ≤ 2
or b ≤ n− 2, then the result follows from Proposition 3.9. �

3.5. Challenges for s = 4. Consider m = n = 7 and s = r = 4. Consider the pattern

E = ({1, 2, 3}2 \ {(3, 3)}) ∪ {4, 5}2 ∪ {6, 7}2.

This is illustrated in Figure 2. Although E is of basis size and its complement satisfies the Laman conditions,
it is not a basis of the matroid T7,7(4, 4, p) for any p.

Proposition 3.12. For all p, E is not a basis of T7,7(4, 4, p).
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Figure 2. (red ⋄) A circuit of T7,7(4, 4, p). (blue ⋆) The corresponding circuit in B7,7(3, 3).
See Figure 1 for how to interpret.

Proof. Let u1, . . . , u7, v1, . . . , v7 ∈ k4 be generic. Further define

W0 = span{ui ⊗ vj : (i, j) ∈ {1, 2, 3}2}

W1 = span{ui ⊗ vj : (i, j) ∈ {1, 2, 3}2 \ {(3, 3)}}

W2 = span{ui ⊗ vj : (i, j) ∈ {4, 5}2}

W3 = span{ui ⊗ vj : (i, j) ∈ {6, 7}2}.

Assume for sake of contradiction that dim(W1 +W2 +W3) = 16. Note that there exists w2 ∈ W0 ∩W2 and
w3 ∈ W0 ∩W3. Since W1,W2, and W3 are linearly independent, then W1, w2, w3 are linearly independent.
This implies that dim(W1 + span{w2}+ span{w3}) = 10, which contradicts the fact that W1 + span{w2}+
span{w3} ⊆ W0. �

Note that the example of Proposition 3.12 is an obstruction to extending the proof of Proposition 3.4
to s = 4. In the proof of Proposition 3.4, once we reduce to the S3 = ∅ case, we show (through six cases)
that a set E ⊆ [m] × [n] is dependent if and only if there is a tensor product R = L ⊗ kr for some L ⊆ ks

and a partition of E1, E2, . . . , Eℓ of E such that
ℓ
∑

i=1

dim((spanEi) ∩ R) > r dimL. This gives a family of

inequalities that are satisfied by independent sets, and by this method we obtains all the inequalities in
Proposition 3.4. To prove the sufficiency of these inequalities, we use an inductive argument: when one
such inequality is tight then we can quotient by the tensor subspace L⊗kr and work over the smaller space
(ks/L)⊗kr. In the example of Proposition 3.12, the dependence is detected by looking at a subspace L⊗L
in k4 ⊗ k4, where dimL = 3. As (k4 ⊗ k4)/(L ⊗ L) is not naturally the tensor product of two spaces, the
simple inductive argument of Proposition 3.4 will not work.
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4. Characteristic independence

In this section, we prove Theorem 1.6. The cases s = 0 and m = s are trivial. The descriptions of
Tm,n(s, r, p) when s ≤ 3 (Section 3) or when m− s = 1 ([GHK+17]) are independent of the characteristic, so
it remains to do the case when m−s = n− r = 2. For this we use Bernstein’s description of the independent
sets of Bm,n(2, 2), Theorem 1.7, which gives a description of Tm,n(m − 2, n − 2, 0). The following result
shows that the dependent sets of Tm,n(m − 2, n− 2, 0) are also dependent in Tm,n(m − 2, n− 2, p), so we
only need to show that the bases of Tm,n(m− 2, n− 2, 0) are bases of Tm,n(m− 2, n− 2, p).

Proposition 4.1. Any independent set of Tm,n(s, r, p) is an independent set of Tm,n(s, r, 0).

Proof. The proof of Theorem 1.1 shows that one can check if a set is independent in Tm,n(s, r, 0) in terms
of the rank of a matrix whose entries are polynomials with integer coefficients in {xij , ykℓ}. We can check
if a set is independent in Tm,n(s, r, p) by taking the same matrix and computing the rank over a field of
characteristic p. �

We now show that the independent sets of Bm,n(2, 2), as described in Theorem 1.7, are still independent
in the dual of Tm,n(m− 2, n− 2, p) for any p.

Proposition 4.2. If a bipartite graph has an edge orientation with no directed cycles or alternating cycles,
then the graph is independent in the dual of Tm,n(m− 2, n− 2, p) for any p.

Proof. Let G be a bipartite graph on [m]⊔ [n] which has an edge orientation with no directed cycles or alter-
nating cycles. LetMG be the 2|V (G)|×|E(G)| matrix obtained by taking the columns of the matrix in Defini-
tion 2.3 (with a = b = 2) indexed by edges ofG. Instead of using the variables {xij , ykℓ}(i,j)∈[m]×[2], (k,ℓ)∈[n]×[2],
it will be convenient to use the variables {xvc}v∈V (G), c∈{1,2}. Set 2V (G) = {xvc : v ∈ V (G), c ∈ {1, 2}} to be
the set of variables. We will show that there a maximal minor of MG for which some monomial occurs with
coefficient ±1, so MG has the same rank in any characteristic. The proof of Theorem 1.1(3) then implies
the result.

For each injective map σ : E(G) → 2V (G), we set Mσ :=
∏

e∈E(G) Mσ(e),e. This is one term in the

expansion of a maximal minor of MG. Since the column of MG corresponding to an edge e = (u, v) has only
4 non-zero entries xu1, xu2, xv1, and xv2, there are only a few Mσ that are non-zero. A non-zero Mσ can
be represented by a 2-colored directed version of G (denoted Gσ): if σ(e) = xuc, we color (u, v) with color
c and direct u → v. Set indegc,Gσ

(v) to be the number of edges directed towards v in Gσ of color c, and
similarly define outdegc,Gσ

. In order for the map σ to be injective, the outdegree of each vertex in Gσ must
be at most 1 per color. In fact outdegc,Gσ

(v) = 1 if xvc ∈ σ(E(G)) and 0 otherwise. We have

Mσ =
∏

v∈V (G), c∈{1,2}

x
indegc,Gσ

(v)
vc .

Using the acyclic orientation ofG with no alternating cycles, we construct aGσ for which the corresponding
monomial Mσ does not occur for any other injective map σ′ : E(G) → 2V (G). We color the edges of G with
color 1 if they are oriented from [m] to [n], and we use color 2 if they are oriented from [n] to [m]. This
coloring has no monochromatic cycles or cycles which alternate in color. Now we pick out a root for every
monochromatic connected tree, and we direct the edges towards the root. In this way, we obtain a directed
2-coloring of G, say Gσ. As outdegc,Gσ

(v) ≤ 1 for each v and c, this Gσ does indeed arise from an injective
map σ : E(G) → 2V (G). Note that directions on the edges are not the same as the orientation we used to
construct Gσ.

We claim that the monomial Mσ only appears once in the determinant of the minor of MG with rows
indexed by σ(E(G)), which is a maximal minor of MG. Otherwise, there is another Gσ′ with the same
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monomial weight. Therefore

indegc,Gσ
(v) = indegc,Gσ′

(v), for any v ∈ V (G) and each color c ∈ {1, 2}.

Note that outdegc,Gσ
(v) = outdegc,Gσ′

(v) for all c, v since σ(E(G)) = σ′(E(G)) as they appear in the same
maximal minor and the range of σ determines which vertices have outdegree 1 for each color. Therefore

degc,Gσ
(v) = degc,Gσ′

(v), for any v ∈ V (G) and color c ∈ {1, 2}.

Note that Gσ and Gσ′ have to give different colors to at least one edge. Indeed, suppose they give the
same color to each edge. Since Gσ has no monochromatic cycles, every monochromatic strongly connected
component of Gσ is a tree. Each tree has a unique vertex with outdegc,Gσ

= 0. We make that vertex the
root of the tree and direct all edges of the tree towards the root. This recovers the directions for the edges
of Gσ, as this is how Gσ was defined. But the same process can be followed for Gσ′ to arrive at the same
directions for the edges, i.e., once the outdegrees for each color are fixed, there is only one way to direct the
graph. This implies that σ = σ′, so Gσ and Gσ′ have to differ in at least one color if they are distinct.

However, consider the following process. We start with a vertex v0 that is adjacent to an edge e = (v0, v1)
which is given a different color in Gσ and Gσ′ . We can assume e has color 1 in Gσ and color 2 in Gσ′ . Since
degc,Gσ

(v1) = degc,Gσ′
(v1), there must be another edge e′ = (v1, v2) adjacent to v1 that has color 2 in Gσ

and color 1 in Gσ′ . Now we can use the same argument repeatedly find a path v0 → v1 → v2 → · · · which
eventually self-intersects and forms a loop. However, this loop will be a cycle which alternates in color in
Gσ, but there are no such cycles in Gσ. �

Remark 4.3. The argument above can also be applied to rank 2 skew-symmetric matrix completion. A
2-coloring of the edges of a graph G is unbalanced if it has no monochromatic cycles or trails which alternate
in color. An acyclic orientation of the edges of G is unbalanced if it has no alternating trail. When G is
bipartite, an unbalanced coloring is equivalent to an unbalanced acyclic orientation, so Theorem 1.7 states
that G is independent in Bm,n(2, 2) if and only if it has an unbalanced coloring.

In [Ber17], Bernstein proved that a graph G has an unbalanced acyclic orientation if and only if it is
independent in Hn(2). Extending the proof of Proposition 4.2, one can show that a graph with an unbalanced
coloring is independent in the dual of Wn(n− 2, p) for any p. This implies that a graph with an unbalanced
coloring has an unbalanced acyclic orientation, but we do not know a combinatorial proof of this fact. We
do not know if the converse holds.

Proof of Theorem 1.6. The case when s = 0 or s = m is trivial. The case when m − s = 1 is proven in
[GHK+17]. The case when 1 ≤ s ≤ 3 is proven in Corollary 3.2, Proposition 3.3, and Proposition 3.4. The
case when m− s = n− r = 2 is proven in Proposition 4.2. �

5. Conjectural description of the bipartite rigidity matroid

We now give a conjectural description of the independent sets of Bm,n(d, d) for all d. Using Proposi-
tion 3.10, this gives a description of the independent sets of Bm,n(a, b) for all a and b. Our conjecture is
inspired by Bernstein’s proof of Theorem 1.7 using tropical geometry [Ber17]. We show that the sets we de-
scribe are in fact independent in Bm,n(d, d), and moreover are independent in the dual of Tm,n(m−d, n−d, p)
for all p. In particular, our conjecture implies that tensor matroid is independent of the characteristic.

Definition 5.1. Given a bipartite graph G and an integer d ≥ 0, a d-coloring of the edges of G is d-
Bernstein if there are no monochromatic cycles and there exists a labeling c : V (G) → Rd which sends
v 7→ (c1(v), c2(v), . . . , cd(v)) that satisfies the following conditions:

(1) c1(v) + c2(v) + · · ·+ cd(v) = 0 for any v ∈ V (G);
(2) for every edge (u, v) ∈ E(G) with color i, ci(u) + ci(v) > cj(u) + cj(v) for any j ∈ [d] \ {i}.
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Remark 5.2. When d = 2, we recover Bernstein’s condition in Theorem 1.7, if we orient the edges with
color 1 from [m] to [n] and orient the edges with color 2 from [n] to [m].

Proposition 5.3. If a bipartite graph G admits a d-coloring that is d-Bernstein, then G is independent in
the dual of Tm,n(m− d, n− d, p) for all p.

Proof. The proof is almost identical to the proof of Proposition 4.2 except in the last step. The statement
reduces to proving that if there is a d-Bernstein coloring of G say Gσ, then there does not exist a another
d-coloring of G say Gσ′ , where Gσ and Gσ′ differ in at least one edge color, and

degc,Gσ
(v) = degc,Gσ′

(v), for any v ∈ V (G) and color c ∈ [d].

Consider the following equality:
∑

v∈V (G),c∈[d]

degc,Gσ
(v)ci(v) =

∑

e=(u,v)∈E(G)

(cσ(e)(u) + cσ(e)(v)), where σ(e) is the color of e in Gσ.

This equality also holds when we replace σ with σ′. However, as we change from σ to σ′, the left hand side
does not change, but the right hand side strictly decreases because of condition (2) in Definition 5.1 and
σ, σ′ give different colors to at least one edge. �

Conjecture 5.4. If G is independent in Bm,n(d, d), then G admits d-coloring that is d-Bernstein.

When d = 1, this holds because Bm,n(1, 1) is the graphical matroid of the complete bipartite graph Km,n.
When d = 2, this is proven in [Ber17]. We have checked this conjecture for B5,5(3, 3) and for Bm,n(d, d)
when d ≥ m− 1. This conjecture and Proposition 3.10 imply that Tm,n(s, r, 0) = Tm,n(s, r, p) for all p.

Remark 5.5. The d-Bernstein condition is closely related to the notion of Barvinok rank for tropical
matrices [DSS05]. Conjecture 5.4 is equivalent to saying that the Barvinok rank d cones, which are a subset
of cones in the tropical determinantal variety, determine the matroid Bm,n(d, d).
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