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In recent years, several experimental groups have claimed demonstrations of “quantum supremacy”
or computational quantum advantage. A notable first claim by Google Quantum AI revolves around
a metric called the Linear Cross Entropy Benchmarking (Linear XEB), which has been used in
multiple quantum supremacy experiments since. The complexity-theoretic hardness of spoofing
Linear XEB has nevertheless been doubtful due to its dependence on the Cross-Entropy Quantum
Threshold (XQUATH) conjecture put forth by Aaronson and Gunn, which has been disproven for
sublinear depth circuits. In efforts on demonstrating quantum supremacy by quantum Hamiltonian
simulation, a similar benchmarking metric called the System Linear Cross Entropy Score (sXES)
holds firm in light of the aforementioned negative result due to its fundamental distinction with
Linear XEB. Moreover, the hardness of spoofing sXES complexity-theoretically rests on the System
Linear Cross-Entropy Quantum Threshold Assumption (sXQUATH), the formal relationship of
which to XQUATH is unclear. Despite the promises that sXES offers for future demonstration of
quantum supremacy, in this work we show that it is an unsound benchmarking metric. Particularly,
we prove that sXQUATH does not hold for sublinear depth circuits and present a classical algorithm
that spoofs sXES for experiments corrupted with noise larger than certain threshold.

Introduction.— In 2019, the Google quantum AI
team claimed the first experimental demonstration of
“quantum supremacy,” [1] or computational quantum ad-
vantage using a 53 qubits superconducting circuit [2], sig-
nifying a major leap forward in practical quantum com-
puting and challenging the extended Church-Turing the-
sis [3]. In verifying that their circuit is correctly per-
forming a task called quantum random circuit sampling
(RCS), they tested their samples using a metric called
“Linear Cross-Entropy Benchmarking (Linear XEB)” [4–
9]. Since then, multiple RCS experiments [10–12] have
their quantum supremacy claims verified by Linear XEB
method, or a variant thereof. Skepticism on these claims
have been raised, particularly by classical simulations of
Google’s RCS experiment [13–18] showing significantly
shorter classical runtime compared to their initial esti-
mation of 10,000 years. Moreover, theoretical results on
classical simulation of different RCS variants [19–24] cast
doubts on the complexity-theoretic hardness of spoofing
Linear XEB that rests on the cross entropy quantum
threshold assumption (XQUATH) conjecture proposed
by Aaronson and Gunn [25]. Recent demonstration that
XQUATH does not hold for sublinear depth RCS [23],
further diminishes the legitimacy of Linear XEB as a
benchmark for quantum supremacy.

In the ongoing pursuit of quantum supremacy by the
way of near-term quantum Hamiltonian simulation, a
variant of Linear XEB called the System Linear Cross
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Entropy Score (sXES) has been proposed [26]. Struc-
tural difference between the circuits assessed by sXES
and other Linear XEB variants renders it unclear whether
existing Linear XEB spoofing methods such as [19, 21, 23]
can be used for sXES. Moreover the hardness of spoofing
sXES lies upon a complexity-theoretic conjecture known
as the System Linear Cross-Entropy Quantum Thresh-
old Assumption (sXQUATH), the formal relationship of
which to XQUATH is unknown. These fundamental dis-
tinctions from other Linear XEB variants thus renders
sXES a promising verification method in future claims of
quantum supremacy experiments. For a more extensive
discussion on these nontrivial relationships, see Appen-
dices A and D.

In this work, we go beyond the technique in [23] to
show that there exists an efficient classical algorithm
that approximates the experiment sufficiently well to re-
fute sXQUATH (see Theorem 1). At the same time, we
also show explicitly that our algorithm spoofs the sXES
benchmark (see Theorem 2) for noisy experiments. Our
algorithm approximates the output probability distribu-
tion of a family of quantum circuits known as the Min-
imal Quantum Singular Value Transform (mQSVT) cir-
cuit [26], which sXES assessed upon. While the mQSVT
circuits bear the power to implement any quantum algo-
rithm that falls into the Quantum Singular Value Trans-
form (QSVT) framework [27] (such as Szegedy quantum
walk [28] and quantum solver for system of linear equa-
tions [29] and Hamiltonian simulation tasks [30, 31]), our
results suggest that a more robust benchmarking method
is necessary for any claim of quantum supremacy exper-
iment.
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Spoofing mQSVT circuit benchmarking.— An
mQSVT circuit mQSVT(U) (see Fig. 1) consists of d
“blocks”, each containing a copy of n+ 1 qubit unitary U
and a copy of its conjugate U †. Denote the depth of U
as dU so that we can write U = UdU

. . . U1 where Uj is
the j-th layer of U . These unitaries are interleaved by
phase shift gates R(φ) at the top register with carefully
chosen phases (as discussed in the supplementary
material of [26]). Samples from an mQSVT circuit
are obtained from measuring the bottom n registers
conditioned on measurement of the top register being 0.
The outcome probability of an n-bit string x is therefore
p(U,x) = ∣⟨0x∣mQSVT(U)∣0n+1⟩∣2 (for an explicit expres-
sion of the output probability of an mQSVT circuit, see
Appendix C). Here we consider unitaries U consisting
only of two-qubit gates such that in each layer, every
qubit register is evolved by precisely one two-qubit gate
without any geometric locality assumption (hence n + 1
is even). This is the unitary architecture assumed for
the RCS simulation result in [23].

For a noisy mQSVT Hamiltonian simulation experi-
ment, a benchmarking scheme similar to XEB bench-
marking used in RCS experiment [2, 10, 11], called the
average system linear cross-entropy score (sXES) [26] was
proposed. For a given ideal mQSVT circuit mQSVT(U)
and (empirically approximated) experimental probabil-
ity pexp(U,x) of output x, its sXES is given by

EU [sXES(U)] = ∑
x≠0n

EU [p(U,x)pexp(U,x)] , (1)

where EU is expectation over random U . An experiment
with high sXES indicates a high circuit fidelity as it as-
signs a high probability pexp(U,x) to string x with high
ideal probability p(U,x), hence higher sXES.

Computational hardness of classically spoofing sXES
can be reduced to the system linear cross-entropy heavy
output generation (sXHOG) sampling problem [26].
However, the hardness of classically solving sXHOG
(with a high probability and a suitable choice of num-
ber of samples) holds only under a conjecture called the
System linear cross-entropy quantum threshold assump-
tion (sXQUATH) [26]. sXQUATH conjecture states that
there is no polynomial-time classical algorithm taking an
efficient description of n + 1-qubit unitary U and n bit
string x as inputs and outputs an approximation q(U,x)
of mQSVT output probability p(U,x) such that

sXQ = E(p(U,X), 1

2n
) − E(p(U,X), q(U,X)) ≥ c2−3n

(2)

for some constant c and large enough n. Here, E(f, g) ∶=
EU,X[(f(U,X) − g(U,X))2] is the mean-squared error
(MSE) between functions f and g and EU,X is expec-
tation over uniformly random variable X ∈ {0,1}n/{0n}
and over Haar-random two-qubit gates in n+1-qubit uni-
tary U .

Now we present our main result below in Theorem 1,
which states that sXQUATH generally does not hold.

Particularly for a single-block mQSVT circuit (i.e. with
d = 1) and a sublinear depth unitary U , one can con-
struct a classical algorithm running in time polynomial
in n with a non-negligibly less MSE than the trivial ap-
proximation.

Theorem 1. There exists an efficient classical algorithm
taking an efficient description of n + 1-qubit unitary U
with sublinear depth dU = o(n) and n bit string x as in-
puts and outputs an approximation q(U,x) of a single-
block mQSVT circuit output probability p(U,x) that sat-
isfies eqn. (2).

We further show that our algorithm spoofs mQSVT
circuits with sufficiently large noise. As mQSVT
circuits with completely depolarizing noise have uni-
form output probability, its sXES is EU [sXES(U)] =
2−n∑x≠0EU [p(U,x)], indicating no correlation with
the ideal probability p(U,x). Our algorithm spoofs
sXES of all mQSVT circuits with depolarizing noise
above a certain threshold (such that it is close to
2−n∑x≠0EU [p(U,x)]).

Theorem 2. There exists an efficient classical algorithm
spoofing sXES for all noisy single-block mQSVT circuit
with n + 1-qubit unitary U such that its sXES is at most
2−n(∑x≠0EU [p(U,x)] + cdU ) for some constant c > 0.

If we consider mQSVT circuit corrupted with depo-
larizing noise with noise strength γ ∈ [0,1] on each of its
register in each layer, then for sufficiently large γ its sXES
score is going to be less than 2−n(∑x≠0EU [p(U,x)] +
cdU ). Theorem 2 indicates that the sXES all such noisy
mQSVT circuit is spoofed by our algorithm.

Classical algorithm that refutes sXQUATH and spoofs
sXES benchmark in Theorem 1 and Theorem 2 above is
from a family of algorithms called the Pauli path algo-
rithms. The proofs will be given momentarily after we
lay out the Pauli path framework below. We will also dis-
cuss how the existing instances of Pauli path algorithm
used to classically simulate quantum circuits [19, 23, 32]
are not directly applicable to mQSVT circuit, mainly due
to the existence of multiple copies of random unitaries.

Pauli path algorithm.— Given an n-qubit unitary
quantum circuit C = CdCd−1 . . .C1 (where Cj is its j-
th layer), Pauli path algorithm classically computes its
output probabilities by expanding density matrices at ev-
ery layer in terms of normalized n-qubit Pauli matrices
Pn = {I/

√
2,X/

√
2, Y /

√
2, Z/

√
2}⊗n. At the input, we

get ∣0n⟩⟨0n∣ = ∑s1∈Pn
s1Tr(s1∣0n⟩⟨0n∣). We can substi-

tute this expansion to the density matrix after the first
layer, ρ1 ∶= C1∣0n⟩⟨0n∣C†

1 then expand it in the same man-
ner to get ρ1 = ∑s1,s2∈Pn

s2Tr(s2C1s1C
†
1)Tr(s1∣0n⟩⟨0n∣).

Repeating this for the remaining layers and for mea-
surement ∣x⟩⟨x∣, we obtain transition amplitudes de-
fined by ⟪s1∣0n⟫ ∶= Tr(s1∣0n⟩⟨0n∣) and ⟪sj+1∣Cj ∣sj⟫ ∶=
Tr(sj+1CjsjC

†
j ) and ⟪x∣sd+1⟫ ∶= Tr(∣x⟩⟨x∣sd+1). For tran-

sition amplitude ⟪sj+1∣Cj ∣sj⟫, we call sj an input Pauli
and sj+1 an output Pauli. A sequence of normalized n-
qubit Paulis s = s1, s2, . . . , sd+1 is called a Pauli path.
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mQSVT(U)
Block 1 Block d

∣0⟩ R(ϕ1)

U

R(ϕ2)

U†

. . . R(ϕ2d−1)

U

R(ϕ2d)

U†

R(ϕ2d+1) ∣0⟩

∣0n⟩
. . .

∣x⟩⋮ ⋮ ⋮ ⋮ ⋮ ⋮
. . .

FIG. 1: mQSVT circuit mQSVT(U) where U is a random n + 1 qubit unitary made out of 2 qubit Haar-random unitaries and
R(φ) is Z-rotation gate with angle φ.

Then, the probability of n bit string x is

∣⟨x∣C ∣0n⟩∣2 = ∑
s1,s2,...,sd+1∈Pn

f(C, s, x) , (3)

where each Pauli path defines a Fourier coefficient
f(C, s, x) = ⟪x∣sd+1⟫⟪sd+1∣Cd∣sd⟫ . . .⟪s2∣C1∣s1⟫⟪s1∣0n⟫.

An important property of the Pauli path algorithm
in approximating RCS (with the circuit architecture as
mQSVT circuit unitary explained earlier) is the orthog-
onality property [23, 33] which states that

EC[f(C, s, x)f(C, r, x)] = 0 , (4)

for Pauli paths s ≠ r and EC expectation over random
circuit C. This is due to independently sampled two-
qubit gates in C that decomposes the expectation over
circuit C as a product of Haar-random expectations over
these two-qubit gates. As each two-qubit gate V appears
twice, once in f(C, s, x) and once in f(C, r, x), we get
expressions of the form Tr(EV [V ⊗2s ⊗ r(V †)⊗2]s′ ⊗ r′)
which evaluates to 0 when s ≠ r or s′ ≠ r′.

Unfortunately, orthogonality condition (4) does not
hold in general for mQSVT circuits due to a random
unitary U appearing 2d number of times in a d-block
mQSVT circuit (see Appendix G for the case of d = 1).
This requires the more complicated analysis of higher
moment two-qubit Haar-random expectation, which un-
like the second moment, is negative for some choices of
Paulis.

Now we define an mQSVT Pauli path s =
s(1), s(2), . . . , s(d) is a sequence of sub-paths s(k) =
s
(k)
1 , . . . , s

(k)
dU+1, s̃

(k)
dU+1, . . . , s̃

(k)
1 that goes through unitary

U and U † in the k-th block. So, sj , sj+1 are the input
and output Paulis for layer Uj , respectively. Whereas
s̃j+1, s̃j are input and output Paulis for U †

j . Since phases
φ1, . . . , φ2d+1 in an mQSVT circuit are fixed, we can in-
stead simply absorb rotation gates R(φ1) and R(φ2d+1)
at the beginning and end of the circuit into the prepara-
tion and measurement, respectively. So for a Pauli path s
through a mQSVT circuit with unitary U , we can define

an mQSVT circuit Fourier coefficient as

F (U, s, x) = ⟪0x∣s̃(d)1 ⟫
d

∏
k=1

Fk(U, s(k))⟪s(1)1 ∣0
n+1⟫ , (5)

where Fk(U, s(k)) is the k-th block Fourier coefficient
that contains the product of transition amplitudes of
each layer of U and U † and rotation gates R(φ2k) and
R(φ2k−1) (for an explicit expression, see supplementary
material F). Hence the probability of output x from an
mQSVT circuit with unitary U is

p(U,x) =∑
s

F (U, s, x) . (6)

Refuting sXQUATH.— Here we give an outline of the
proof of Theorem 1. The detailed, more technical proof
is deferred to Appendix H. For readability, we omit the
normalization factors of the Paulis in the paths, e.g. we
write Z when we mean Z/

√
2.

Consider an mQSVT Pauli path approximation for
probability of outcome x,

q(U,x) = 1

2n
+ F (U, r, x) , (7)

for Pauli path r = (Z⊗I⊗l−1⊗Z⊗I⊗n−l, Z⊗I⊗n, . . . , Z⊗
I⊗n). Since there is only a single block, we write r =
r1, . . . , rdU+1, r̃dU+1, . . . , r̃1 where the rj ’s and r̃j are in-
put/output Paulis in U and U †, respectively. From the
second layer onwards, all Paulis in path r are identity
except for the Pauli Z at the first register. However,
r1 = Z ⊗ I⊗l−1 ⊗ Z ⊗ I⊗n−l depends on the architecture
in the first layer of U . Namely we set l ∈ {2, . . . , n + 1}
such that the first qubit is coupled with the l+1-th qubit
in the first layer U1 by two-qubit unitary V . Thus the
input Paulis for this two-qubit gate is Z ⊗ Z. For ex-
ample, if in the first layer the two qubit gate that oper-
ates on the first qubit couples it with the 5th qubit then
r1 = Z ⊗ I⊗3 ⊗ Z ⊗ I⊗n−4. We also denote the two-qubit
gates in the j-th layer of U as Vj,i, for some arbitrary
indexing i ∈ [(n + 1)/2] (as the coupling by these gates
are arbitrary, i.e. gates V1,1 and V2,1 may operate on
different pair of registers).
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Now by using q(U,x) in sXQUATH eqn. (2) as an ap- proximation to p(U,x) and by expanding the squares and
simplifying the terms we get

sXQ = 1

2n − 1 ∑x≠0n
( − 2

2n
EU[F (U, r, x)]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(i)

+EU[F (U, r, x)2]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

(ii)

+2∑
s≠r

EU[F (U, s, x)F (U, r, x)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
(iii)

]) , (8)

where we also expand p(U,x) in terms of the mQSVT
Fourier coefficients. For notational simplicity, from now
on we will omit the tensor "⊗" in denoting two-qubit
Paulis that is an input or output to the same two-qubit
gate. For example, by V ⊗2(ZZ ⊗ II)(V †)⊗2IZ ⊗ II we
mean V ⊗2(Z ⊗Z ⊗ I ⊗ I)(V †)⊗2I ⊗Z ⊗ I ⊗ I.

We treat the terms (i), (ii), (iii) separately in eqn (8).
However the main idea is similar. Since the two-qubit
gates {Vj,i}j,i in U are sampled independently, the ex-
pectation EU can be decomposed as a product of expec-
tations over each two-qubit gate EVj,i and the transition
amplitudes for the input, output, and the rotation gate
(see Appendix G). More explicitly, this decomposition
allows us to express expectation EU as the product of
order-t expectations of two-qubit Haar unitary

TrEVj,i[V ⊗tj,i p
(1)
j,i ⊗⋅ ⋅ ⋅⊗p

(t)
j,i (V

†
j,i)
⊗tp(1)j+1,i⊗⋅ ⋅ ⋅⊗p

(t)
j+1,i] , (9)

for some positive integer t and two-qubit paulis
p
(l)
j,i , p

(l)
j+1,i, where t = 2 for term (i) and t = 4 for terms

(ii) and (iii). Note that Paulis in path r at the sec-
ond to n+ 1-th qubit registers are all identity, except for
the Paulis at the input r1. Namely, r2, . . . , r̃1 equal to
Z⊗I⊗n. As a consequence, most of these expectations are
of the form TrE[(V IIV †II)⊗t], which takes the value of
1 (up to some normalization). Of course, the only excep-
tions are the expectations with respect to the two-qubit
gates that are interacting with the first qubit register,
since the first register Paulis are all Z. When there are
non-identity Paulis, expectation (9) can take any real val-
ues depending on the choice of Paulis and order t. This
is precisely where the non-trivialities occur, thus requir-
ing a more extensive analysis on the terms (i), (ii), (iii)
above. Since the mQSVT circuit that we consider only
have one block, we omit the superscript for the Paulis in
r and simply write rj and r̃j .

Since in term (i) each two-qubit unitary Vj,i appears
only two times (in U and U †), we only have second
moment expectations, allowing us to use the results
in [23, 33] to determine its values (see Appendix G).
Here we only need to consider transition amplitude for
the two-qubit gate V in the first layer operating on the
first register and the l-th register, the only gate in the
first layer which input pauli is ZZ. Since its transition
amplitude TrEV [V ⊗2ZZ ⊗ZZ(V †)⊗2IZ ⊗ IZ] = 0, term
(i) is 0.

In terms (ii) and (iii), each Haar random two-qubit
unitary Vj,i appears four times, twice in each Fourier
coefficient (as each Fourier coefficient contains U and
U †). Hence we consider order t = 4 of expectation (9),
EV [V ⊗2r ⊗ r̃ ⊗ s⊗ s̃(V †)⊗2r′ ⊗ r̃′ ⊗ s′ ⊗ s̃′] hence the re-
sults [23, 33] are no longer useful. We instead make a
detour to unitary random matrix theory of Weingarten
calculus which studies the expansion of Haar-random uni-
tary moment operation [34, 35] (for applications in quan-
tum theory, see also [36, 37]). Using the Weingarten cal-
culus framework, we can express the Haar unitary expec-
tations (9) in terms of Weingarten functions and permu-
tation operators. By evaluating the values of the Wein-
garten functions and analyzing permutations over a ten-
sor product of four two-qubit Paulis (see Appendix G),
we can obtain the relevant values of expectations (9). As
now the expectation (9) can take negative values, one
needs to take great care that term (ii) and (iii) are suf-
ficiently large in order to obtain sXQ = Ω(2−3n). We will
show below that our chosen Pauli path r does this.

For term (ii), the analysis is relatively simple since the
expectations (9) for gates with non-identity input/output
Paulis turns out to be all positive (see supplementary
material H). Note that there are precisely dU many such
gates, i.e. those that are operating on the first qubit. By
also accounting for the normalization of 1/

√
2 for each

Pauli, we get EU [F (U, r, x)2] ≥ 2−2nαdU for some con-
stant α ∈ (0,1) independent of n and dU .

The analysis of term (iii) is the most involved
part of the proof since it involves the Fourier co-
efficient F (U, s, x) for all Pauli path s. The trick
here is to see for which Pauli path s the expectation
EU [F (U, s, x)F (U, r, x)] is negative, positive, and equals
to 0. This can be determined by the output transi-
tion amplitude ⟪0x∣s̃⟫ in F (U, s, x) and by the two-qubit
Haar unitary expectations (9). The analysis of the lat-
ter is made slightly simpler by our choice of Pauli path
r since we only need to analyze three types of expecta-
tions (9), namely those where the input (output) two-
qubit Paulis in F (U, r, x) are either ZZ (ZI) or ZI (ZI)
or II (II). Then we evaluate the expectations using
the Weingarten function expansion (see supplementary
material G) to identify the non-zero values. It turns
out that EU [F (U, s, x)F (U, r, x)] is non-zero only if the
input/output two-qubit Paulis of s to each two qubit
gate Vj,i must be from the set {II,ZZ,ZI, IZ,PX,PY }
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for P ∈ {I,X,Y,Z}. Furthermore since ⟨b∣P ∣b⟩ = 0 for
P ∈ {X,Y } and b ∈ {0,1}, the paths s with Pauli X or
Y at the output transition amplitude has F (U, s, x) = 0,
so we do not need to consider such Pauli paths. The
other complicated analysis comes from the fact that
some output transition amplitude ⟪0x∣s̃⟫ can be nega-
tive because ⟨1∣Z ∣1⟩ = − 1

2
. However we can pull the sum

∑x≠0n inside the brackets in eqn. (8) and instead consider
∑x≠0n ∑s≠rEU [F (U, s, x)F (U, r, x)]. From here we can
separate out the negative terms and positive terms ac-
cording to x ≠ 0n and the measurement layer of Paulis in
s. The reader can find the detailed calculation in supple-
mentary material H, but in short the negative terms from
to transition amplitude at the measurement layer ⟪0x∣s̃⟫
and from the expectations (9) either cancel each other out
or small enough with respect to the positive terms in the
sum over x ≠ 0 and s ≠ r. This rather involved calculation
gives us ∑x≠0n ∑s≠rEU [F (U, s, x)F (U, r, x)] ≥ 2−nβdU

for some constant β ∈ (0,1) independent of n and dU .
Finally, we can substitute back in the values we ob-

tained for terms (i), (ii), (iii) to eqn. (8) to get

sXQ ≥ 1

2n − 1
((2n − 1)2−2nαdU + 2−nβdU ) . (10)

Thus for U with depth sublinear in n, i.e. dU = o(n),
we get sXQ = Ω(2−2n(α + β)n) = Ω(2−3n) which refutes
sXQUATH for single-block mQSVT circuit, proving The-
orem 1.

Spoofing sXES benchmark.— The same Pauli path
that we use to refute sXQUATH above can also be used
to spoof the average sXES benchmark (1) as stated in
Theorem 2. We use the same Pauli path approximation
q(U,x) (eqn. (7)) in place of experimental probability
pexp. Details are given in Appendix I, but the proof idea
is similar to the proof of Theorem 1 above. First we ex-
pand p(U,x) in terms of fourier coefficients F (U, s, x) to
obtain

sXES = ∑
x≠0n

EU[
p(U,x)

2n
] +∑

s≠r
EU[F (U, s, x)F (U, r, x)] .

(11)
Note that the second term above is equal to term
(iii) in eqn. (8), which can be lower bounded as
∑x≠0n ∑s≠rEU [F (U, s, x)F (U, r, x)] ≤ 2−ncdU for some
constant c ∈ (0,1) independent of n and dU . By also

noting that EU [p(U,x)] = 1
2n+1

for all x, we can lower
bound sXES score as

sXES ≥ 2n − 1
22n+1

+ 2−ncdU ≈ 1 + cdU

2n
(12)

for some constant c ∈ (0,1) independent of n and dU .
Discussions.— Linear XEB has been the method of

choice in verifying sampling-based quantum supremacy
claim in many experiments. However, results on effi-
cient classical sampling algorithms spoofing Linear XEB
and a result that disproves the complexity-theoretic as-
sumption which hardness of Linear XEB rests upon cast
doubts on its robustness. In an effort for a more robust
quantum supremacy benchmarking scheme, a variant of
Linear XEB called sXES has been proposed for quan-
tum Hamiltonian simulation experiments. Its promise
relies upon the quantum circuit that it samples from
being structurally distinct from circuits used for other
Linear XEB, hence preventing current spoofing results
to be applied directly, while also relying on a different
complexity-theoretic foundation. We have shown that
sXES benchmarking for experiments corruped by high
amount of noise is susceptible to spoofing. At the same
time, our result also shows the frailty of the complexity-
theoretic foundation that sXES rests upon, particularly
for sublinear-depth circuits. Our negative results extend
the seminal result [23] that spoofs Linear XEB for unitary
random circuit sampling and further support the need for
a novel benchmarking task with a stronger complexity-
theoretic guarantee for any future quantum supremacy
experiments. In particular, such guarantee needs to rule
out any possibility of spoofing by the state-of-the-art al-
gorithms used in our result as well as those used in pre-
vious spoofing results.
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Appendix A: Further Difficulties in Analyzing Pauli Path for mQSVT circuits

Neither the classical algorithm called Pauli path algorithm that efficiently approximates RCS output probabilities
to refute XQUATH [23], nor its precursors [19, 32], can be directly used to refute sXQUATH. Essentially, the Pauli
path approximation in Ref. [23] was shown to be sufficiently close to the RCS probabilities by an analysis of the first
and second moment of Haar-random expectations. The same analysis does not work for mQSVT circuits due to the
use of multiple copies of random gates in the circuit. Particularly, the “orthogonality property” central in the analysis
of RCS Pauli path does not hold for mQSVT Pauli path. Additionally, how one is required to approximate all output
n bit strings except for the all zeros string 0n in sXQUATH and sXES complicates the analysis even more.

Appendix B: Spoofing Random Circuit Sampling Benchmarking

Linear XEB benchmarking for an RCS experiment quantifies how close the noisy circuit implementation is to the
ideal circuit. It is done by analyzing samples taken from the noisy circuit to obtain an empirical estimation of the
circuit’s output probability distribution.

Definition 1. Linear cross-entropy benchmark (XEB) of a noisy implementation of an n qubit unitary U is defined
as

XEB(U) = 2n ∑
x≠0n

p(U,x)pexp(U,x) − 1 (B1)

where pexp(U,x) is the output probability from the noisy implementation of circuit U .

To argue for the quantum supremacy from an RCS experiment, a noisy circuit used for the experiment with
sufficiently high Linear XEB (on average over some distribution that circuit U is sampled from) implies its ability to
solve a problem that is supposedly hard for classical computers. Aaronson and Gunn proposed the XHOG problem [25],
which demands an algorithm to output a set of strings that have sufficiently high probabilities from a given circuit U .

Definition 2. Linear cross-entropy heavy output generation (XHOG) problem: For a given n qubit unitary U and
some b > 1, output k many distinct non-zero n bit strings {x1, . . . , xk} ⊆ {0,1}n/{0n} such that they satisfy

1

k

k

∑
j=1

p(U,xj) >
b

2n
. (B2)

However, showing the hardness of solving XHOG classically remains a problem. Aaronson and Gunn have shown
that if there is no classical algorithm that can approximate the output probability of the all zero string 0n from a
random circuit U with an error that is slightly less than that of a trivial algorithm, then XHOG is a hard problem
for classical computers to solve with some high probability for a suitable choice of k and b.

Definition 3. Linear cross-entropy quantum threshold assumption (XQUATH): There is no polynomial-time classical
algorithm C that given a description of an n qubit quantum circuit U with depth d and input bits 0n and output bits
0n computes the output probability pC(U,0n) such that the following holds for all n ∈ N

XQ = 22n(EU[(p(U,0n) −
1

2n
)
2

] −EU[(p(U,0n) − qC(U,0n))
2

]) = Ω( 1

2n
) (B3)

where and p(U,0n) is the probability of output 0n on mQSVT circuit for a given unitary U . The expectations are
over Haar-random two qubit unitary gates that makes up U where each qubit goes through a two-qubit gate at each
layer.

The Pauli path algorithm is used in [23] as an efficient classical approximation to the output probabilities of a
random unitary circuit U with sufficiently low MSE to show that XQUATH does not hold for circuit U of sublinear
depth.
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Appendix C: Hardness of classically spoofing mQSVT circuit benchmarking

Formally, an mQSVT circuit consists of d “blocks”, each containing a copy of n + 1 qubit unitary U and a copy of
its conjugate U † interleaved by phase shift gates Rz(φ) at the first register (see Fig. 1). The probability of output
x ∈ {0,1}n from an mQSVT circuit with d layers and unitary U is

p(U,x) = ∣⟨0x∣(Rz(φ2d+1)⊗ In)
d

∏
k=0
(U †(Rz(φ2k+2)⊗ In)U(Rz(φ2k+1)⊗ In))∣0n+1⟩∣

2

, (C1)

where Rz(φ) = eiφZ . So if dU is depth of circuit U , then the total depth of the mQSVT circuit is dmQSVT = d(2dU+2)+1.
In an Hamiltonian simulation experiment using a noisy mQSVT circuit, one is ought to benchmark this noisy

implementation with respect to the ideal (noiseless) mQSVT circuit to determine the simulation performance. Similar
to XEB benchmarking that is used in RCS experiment [2], a benchmarking metric called the linear cross-entropy score
(sXES) has been proposed in [26] to benchmark a noisy Hamiltonian simulation experiments. The sXES metric can
be used to compute the fidelity between the implemented noisy circuit and ideal circuit [26, eqn.(4)] by sampling the
implemented device and performing some classical computations.

Definition 4. System linear cross-entropy score (sXES) of a noisy implementation of an mQSVT circuit given a
unitary U is defined as

sXES(U) = ∑
x≠0n

p(U,x)pexp(U,x) (C2)

where pexp(U,x) is the output probability from the noisy implementation of mQSVT circuit.

How well the performance of an mQSVT circuit implementation as quantified by sXES is shown to determine
whether it is able to solve a problem called the system linear cross-entropy heavy output generation (sXHOG).
Essentially, sXHOG problem requires the implemented circuit to output a fixed amount of distinct n-bit strings that
have sufficiently large output probabilities from the ideal mQSVT circuit.

Definition 5. System linear cross-entropy heavy output generation (sXHOG) problem: For a given mQSVT circuit
with n + 1 qubit unitary U and some b > 1, output k many distinct non-zero n bit strings {x1, . . . , xk} ⊆ {0,1}n/{0n}
such that they satisfy

1

k

k

∑
j=1

p(U,xj) >
b

2n
. (C3)

sXHOG can be solved by sampling from an MQSVT implementation with sufficiently high sXES score (as it implies
a sufficiently high circuitsfidelity). However, the hardness of solving sXHOG with some high probability depending on
a suitable choice of k and b using a classical algorithm has been asserted under an assumption that any polynomial-
time classical algorithm cannot approximate the ideal mQSVT circuit output probability better (in mean squared
error) than a trivial uniform approximation up to some negligible margin. This assumption is what is called the
System linear cross-entropy quantum threshold assumption (sXQUATH).

Definition 6. System linear cross-entropy quantum threshold assumption (sXQUATH) conjecture: There is no
polynomial-time classical algorithm C such that the following holds for an mQSVT circuit for all n ∈ N

sXQ = 22n(EU,X[(p(U,X) −
1

2n
)
2

] −EU,X[(p(U,X) − qC(U,X))
2

]) = Ω( 1

2n
) (C4)

where n is the number of input/output qubits, and p(U,X) is the probability of output X on mQSVT circuit for a
given unitary U , and qC(U,X) is the probability of classical algorithm C simulating an mQSVT circuit outputting X
for a given unitary U . The expectations are over uniformly distributed random variable X ∈ {0,1}n/{0n} and over
n + 1 qubits Haar random unitaries U .

Similar to XQUATH, sXQUATH conjecture states that there is no classical algorithm approximation of the output
probability of an mQSVT circuit that has a mean squared error that is 2−n less than the mean squared error of a
trivial approximation.
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Appendix D: Reductions between threshold assumptions

Here we discuss the complexity-theoretic relationship between XQUATH, sXQUATH, and its precursor, QUATH
(Quantum threshold assumption). The latter is related to another sampling-based quantum supremacy verification
method called Heavy Output Generation (HOG) [4], which is a precursor to XHOG and sXHOG. Here we again
consider sampling from n qubit unitary random circuit U with all zero input and probability of outputting some
string x is p(x,U) = ∣⟨x∣U ∣0n⟩∣2.

Definition 7. Heavy output generation (HOG) problem: For a random n qubit unitary circuit U drawn from some dis-
tribution D, output k many n bit strings {x1, . . . , xk} ⊆ {0,1}n such that 2

3
of their probabilities p(x1, U), . . . , p(xk, U)

are larger than the median of all the output probabilities medianU∼D{p(x,U) ∶ x ∈ {0,1}n}.

Compared to XHOG and sXHOG, HOG is clearly the most distinct as it requires that a certain proportion of the
output strings to have probability larger than a value (the median) instead of requiring the sum of the probabilities
to be larger than some value (as in XHOG and sXHOG). However, similarly to XHOG and sXHOG, the hardness of
classically solving HOG is also based on a conjecture called the Quantum threshold assumption (QUATH) [4], which
as opposed to XQUATH and sXQUATH, is a conjecture for a decision problem.

Definition 8. Quantum threshold assumption (QUATH): For some distribution D over n qubit unitary circuit U ,
there is no polynomial-time classical algorithm taking a description of U as input and outputs "Yes" if p(0, U) is
larger than medianU∼D{p(x,U) ∶ x ∈ {0,1}n} and "No" otherwise, with probability 1

2
+Ω(2−n) over D.

To obtain a better understanding on what features does a robust benchmarking scheme must have, one can gain
insights by looking into the relationship between QUATH and XQUATH and sXQUATH. Namely, whether one can
be reduced from another is unclear. Also, as XQUATH and sXQUATH for sublinear depth random unitaries has been
refuted by using the Pauli path algorithms, it is interesting to further investigate whether the Pauli path algorithm
can also disprove QUATH.

Even for XQUATH and sXQUATH, which bear most similarity among the three, their relationship does not seem
to be straightforward. As mentioned, the difficulty here is due to multiple copies of random unitary in an mQSVT
circuit. Hence one would need to find some nontrivial correspondence between algorithms that approximates output
probabilities a circuit containing multiple copies of random unitary U and those with only a single U . If we consider
random unitaries made out of Haar-random two-qubit unitaries used in this work and in [23], we expect that this
relationship between XQUATH and sXQUATH can be better understood by a deeper investigation into the relationship
between two-qubit Haar-random unitary moment matrices of moment t = 2 and t > 2.

Appendix E: Haar-random unitary moment matrix

As we will see later on how Pauli path algorithm is used to refute XQUATH and sXQUATH, an important ingredient
is the expectation of t Pauli matrices over product of t Haar-random unitaries

EV [V ⊗tp1 ⊗ ⋅ ⋅ ⋅ ⊗ pt(V †)⊗t] , (E1)

where V is a l qubit unitary matrix and p1, . . . , pt ∈ Pl. This quantity is extensively studied in [33] and used in [38] to
show the properties of the transition amplitudes in the Fourier coefficients of Pauli paths. For our purposes we focus
on the case where l = 2, i.e. p1, . . . , pt ∈ P2 are normalized two qubit Pauli matrices and the unitaries V are two-qubit
unitaries.

Now consider a matrix indexed by t two-qubit Paulis

G(p;q) = Tr(EV [V ⊗tp1 ⊗ ⋅ ⋅ ⋅ ⊗ pt(V †)⊗t]qt ⊗ ⋅ ⋅ ⋅ ⊗ qt) . (E2)

If one considers a random N -qubit circuit U constructed from Haar-random two-qubit unitaries (as in [23]), then the
expectation of Pauli path transition amplitudes can be expressed as a product of expectation of transition amplitudes
EV [⟪p∣V ∣p′⟫] = EV [Tr(V pV †p′)] = G(p;p′) for two-qubit Haar random unitary V and normalized two-qubit paulis
p, p′. This is precisely the key analysis being done in analyzing the Pauli path algorithm for RCS [23]



10

Appendix F: Pauli path for mQSVT circuit

We may define a Pauli path s through an mQSVT circuit as a sequence of sub-paths s(k) = s
(k)
1 , . . . , s

(k)
dU+1 and

s̃(k) = s̃(k)dU+1, . . . , s̃
(k)
1 that goes through unitary U and U † in the k-th block, respectively. Since phases φ1, . . . , φ2d+1 in

an mQSVT circuit are fixed, we can instead simply absorb the rotation gates Rz(φ1) and Rz(φ2d+1) at the beginning
and end of the circuit into the preparation and measurement, respectively, in the mQSVT Pauli path simulation. So
for a single Pauli path s through a mQSVT circuit with unitary U gives us a Fourier coefficient of the form

F (U, s, x) = ⟪0x∣s̃(d)1 ⟫(
d

∏
k=1

Fk(U, s))⟪s(1)1 ∣0
n+1⟫ (F1)

where we define

F1(U, s) = f2(U †, s)⟪s̃(k)dU+1∣Rz(φ2)∣s(k)dU+1⟫ f1(U, s) ,

Fk(U, s) = f2k(U †, s)⟪s̃(k)dU+1∣Rz(φ2k)∣s(k)dU+1⟫ f2k−1(U, s)⟪s
(k)
1 ∣Rz(φ2k−1)∣s̃(k−1)1 ⟫ ,

f2k−1(U, s) = ⟪s(k)dU+1∣UdU
∣s(k)dU
⟫ . . .⟪s(k)2 ∣U1∣s(k)1 ⟫ ,

f2k(U †, s) = ⟪s̃(k)1 ∣U
†
1 ∣s̃
(k)
2 ⟫ . . .⟪s̃

(k)
dU
∣U †

dU
∣s̃(k)dU+1⟫

(F2)

where Uj is the j-th layer of U for j ∈ {1, . . . , dU}. Hence we can explicitly write an mQSVT Pauli path s in terms of
its sub-paths as

s = s(1), s̃(1), s(2), s̃(2), . . . , s(d), s̃(d) , (F3)

which consists of 2d(dU + 1) many n+ 1-qubit Paulis. Hence in terms of Pauli paths, the probability of output x from
an mQSVT circuit with unitary U is

p(U,x) =∑
s

F (U, s, x) . (F4)

Appendix G: Pauli path for single-block mQSVT circuit

For the special case of d = 1, the probability of an mQSVT circuit with n+ 1 qubit unitary U outputting string x is

p(U,x) = ∣⟨0x∣(R(φ2)⊗ I⊗n)U †(R(φ1)⊗ I⊗n)U(R(φ0)⊗ I⊗n)∣0n+1⟩∣2

= ∣⟨0x∣U †(R(φ1)⊗ I⊗n)U ∣0n+1⟩∣2

=∑
s

F (U, s, x)
(G1)

where we have Pauli path s = s1, . . . , sdU+1, s̃dU+1, . . . , s̃1 and Fourier coefficient

F (U, s, x) = ⟪0x∣s̃1⟫⟪s̃1∣U †
1 ∣s̃2⟫ . . .⟪s̃dU

∣U †
1 ∣s̃dU+1⟫⟪s̃dU+1∣R(φ1)∣sdU+1⟫

⟪sdU+1∣UdU
∣sdU
⟫ . . .⟪s2∣U1∣s1⟫⟪s1∣0n+1⟫ .

(G2)

We employ the circuit architecture of the random unitary circuit in [23] to each copy of random unitary U in the
mQSVT circuit. This unitary U consists of two qubit gates, each drawn independently from the two-qubit unitary Haar
measure. Every qubit register goes through exactly one two-qubit unitary in each layer U1, . . . , Ud+1. No geometric
locality on which two qubit registers any two-qubit gate operates on is assumed in this architecture. However since
each qubit must go through a two-qubit gate in each layer we assume that the number of qubits n + 1 is even so that
in layer Uj there are (n + 1)/2 two-qubit gates Vj,1, . . . , Vj,(n+1)/2.

First we look at the expectation of a Fourier coefficient for a single Pauli path for a single-block mQSVT circuit
over Haar-random unitary U

EU[F (U, s, x)] = ⟪0x∣s̃1⟫⟪s̃dU+1∣R(φ1)∣sdU+1⟫⟪s1∣0
n+1⟫

dU

∏
j=1

(n+1)/2
∏
i=1

EVj,i[Tr(V ⊗2j,i (sj,i ⊗ s̃j,i)(V †
j,i)
⊗2(sj+1,i ⊗ s̃j+1,i))] .

(G3)



11

Note that the Haar-random expectation of a Fourier coefficient for the single-block mQSVT circuit involves a second-
order Haar-random unitary moment, as there are two copies of every two-qubit gate Vj,i in the circuit. In contrast,
the expectation of a random unitary circuit involves only the first-order moment

EU[f(U, s, x)] = ⟪x∣sdU+1⟫⟪s1∣0
n+1⟫

dU

∏
j=1

(n+1)/2
∏
i=1

EVj,i[Tr(Vj,isj,iV
†
j,isj+1,i)] , (G4)

where f(U, s, x) is the Fourier coefficient of unitary circuit U with output x and Pauli path s = s1, . . . , sdU+1. Although
EU [f(U, s, x)] = 0 for any Pauli path s containing a non-identity Pauli, this is not the case for mQSVT circuits. To
identify the value of EU [F (U, s, x)] we need to look at the entries of the Haar unitary moment matrix G in (E2) for
t = 2 which is shown in [33] to be

G(s, s̃; s′, s̃′) = EV [Tr(V ⊗2(s⊗ s̃)(V †)⊗2(s′ ⊗ s̃′))]

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if s ≠ s̃ or s′ ≠ s̃′

0 if exactly one of s or s′ is I ⊗ I/2
0 if exactly one of s̃ or s̃′ is I ⊗ I/2
1 if s = s̃ = s′ = s̃′ = I ⊗ I/2
1
15

if s = s̃ ≠ I ⊗ I/2 and s′ = s̃′ ≠ I ⊗ I/2

.
(G5)

By substituting these values into (G3) we can see that EU [F (U, s, x)] = 0 if and only if (1) there is an input or output
Pauli to some two-qubit gate Vj,i that differs in the two unitaries in the mQSVT circuits, or (2) only either an input
or output Pauli to some two-qubit gate Vj,i is identity, i.e. there exists some j ∈ [dU ] and i ∈ [n+1

2
] such that sj,i ≠ s̃j,i

or sj+1,i ≠ s̃j+1,i or only one of sj,i, sj+1,i is identity or only one of s̃j,i, s̃j+1,i is identity.
Recall that in the Pauli path simulation for random unitary circuit in [23], Fourier coefficient of different Pauli path

are orthogonal, i.e.

EU[f(U, r, x)f(U, s, x)] = 0 (G6)

for r ≠ s. This Fourier coefficient orthogonality condition does not hold for mQSVT circuit in general. For a single-
block mQSVT circuit the Fourier coefficient expectation above can be expanded as

EU[F (U, r, x)F (U, s, x)]

= ⟪0x∣r̃1⟫⟪0x∣s̃1⟫⟪r̃dU+1∣R(φ1)∣rdU+1⟫⟪s̃dU+1∣R(φ1)∣sdU+1⟫⟪r1∣0
n+1⟫⟪s1∣0n+1⟫

dU

∏
j=1

(n+1)/2
∏
i=1

EVj,i[Tr(V ⊗4j,i (rj,i ⊗ r̃j,i ⊗ sj,i ⊗ s̃j,i)(V †
j,i)
⊗4(rj+1,i ⊗ r̃j+1,i ⊗ sj+1,i ⊗ s̃j+1,i))]

(G7)

where the expectations are over two qubit unitaries Vj,i and rj,i, r̃j,i, sj,i, s̃j,i, rj+1,i, r̃j+1,i, sj+1,i, s̃j+1,i are normalized
two qubit Paulis which at the inputs and outputs of Vj,i. The two qubit unitary expectation terms above are the
entries of Haar unitary moment matrix G in (E2) for t = 4 which can be expanded in terms of the Weingarten functions
Wg as

G(r, r̃, s, s̃; r′, r̃′, s′, s̃′) = EV [Tr(V ⊗4(r ⊗ r̃ ⊗ s⊗ s̃)(V †)⊗4(r′ ⊗ r̃′ ⊗ s′ ⊗ s̃′))]

=∑
τ,π

Wg(τπ)Tr(Wτ−1r ⊗ r̃ ⊗ s⊗ s̃)Tr(Wπr
′ ⊗ r̃′ ⊗ s′ ⊗ s̃′) , (G8)

where τ, π are permutations in S4 and τπ is the composition of permutations π and τ .
To determine the value of expectation over the Fourier coefficients of mQSVT circuit in (G7), we need to analyze

the terms in the sum in (G8). First, we need to determine for which Paulis the value of (G8) is zero. Here we define
the cyclic partition of a permutation π on ordered set B as the partition of B where each partition is a subset of B
that is permuted by a cycle in the cyclic decomposition of π. For the term Tr(Wπr⊗ r̃⊗s⊗ s̃), the set being permuted
is {r, r̃, s, s̃}. So, if the cyclic decomposition is π = (134)(2) then its cyclic partition is {{r, s, s̃},{r̃}}. For simplicity in
what follows, let us denote the unnormalized two-qubit Paulis by the capital letters of their corresponding normalized
two-qubit Paulis, e.g. R for r and S̃ for s, so we can write eqn (G8) as

G(r, r̃, s, s̃; r′, r̃′, s′, s̃′) = 1

28
∑
τ,π

Wg(τπ)Tr(Wτ−1R⊗ R̃⊗ S ⊗ S̃)Tr(WπR
′ ⊗ R̃′ ⊗ S′ ⊗ S̃′) . (G9)

Now as a first step to evaluate some of the relevant values of (G8) we show the following lemma.
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Lemma 1. For k two-qubit Paulis Q1, . . . ,Qk and permutation operator Wπ for permutation π ∈ Sk, we have
Tr(WπQ1⊗ ⋅ ⋅ ⋅ ⊗Qk) ≠ 0 if and only if the product of Paulis in each set in the cyclic partition of π on {Q1, . . . ,Qk} is
equal to I ⊗ I. Moreover, let the number of cyclic partition of π be cπ. Then, if the product of Paulis in each partition
of π is identity then Tr(WπQ1 ⊗ ⋅ ⋅ ⋅ ⊗Qk) = Tr(I ⊗ I)cπ = 4cπ .

Proof. Suppose that permutation π ∈ Sk has cπ cyclic partitions so we can express it as π = π1 . . . πcπ where π1, . . . , πcπ

are disjoint cycles. So we can rewrite Tr(WπQ1 ⊗ ⋅ ⋅ ⋅ ⊗Qk) as

Tr(WπQ1 ⊗ ⋅ ⋅ ⋅ ⊗Qk) =
cπ

∏
j=1

Tr(Wπj Q̄j) (G10)

where Q̄j is the product of two-qubit Paulis in {Q1, . . . ,Qk} in the j-th partition of π. For example, if πj = (1436)
then Q̄j = Q1 ⊗Q3 ⊗Q4 ⊗Q6. Suppose that the j-th cycle is πj = (a1, . . . , al) where a1, . . . , al are distinct numbers in
1, . . . , k indicating the indices of the two-qubit Paulis in the j-th partition. Then we have

Tr(Wπj Q̄j) = Tr(Qa1Qπj(a1)Qπ2
j (a1) . . .Qπl−1

j (a1)) (G11)

which is equal to 0 if Qa1Qπj(a1)Qπ2
j (a1) . . .Qπl−1

j (a1) is not equal to identity I⊗I and otherwise Tr(Wπj Q̄j) = Tr(I⊗I) =
4. The claim in the lemma follows by following the same argument for each of the cπ partitions.

Values of the Weingarten function only depends on the cyclic partition of the permutation τπ, particularly thesize
of each partition. As we are interested only in permutations over four elements, there are only five possible cyclic
partitions we denote as [4], [3,1], [2,2], [2,1,1], and [1,1,1,1], where the numbers inside the square brackets are
the size of each partition. Now for simplicity, we do a slight abuse of notation in writing the Weingarten function to
only denote the cyclic partition of the permutation in its argument and list its values

Wg([4]) = −20
∆

Wg([3,1]) = 29

∆

Wg([2,2]) = 32

∆

Wg([2,1,1]) = −48
∆

Wg([1,1,1,1]) = 134

∆

(G12)

where ∆ = 4(42 − 1)(42 − 4)(42 − 9) = 20160. For a more general formula of the Weingarten function on S4 see the
appendix of [36].

For S,S ′ ⊆ S4, let

Ḡ(r, r̃, s, s̃; r′, r̃′, s′, s̃′) = ∑
τ∈S,π∈S′

Wg(τπ)Tr(Wτ−1r ⊗ r̃ ⊗ s⊗ s̃)Tr(Wπr
′ ⊗ r̃′ ⊗ s′ ⊗ s̃′)

= 1

28
∑

τ∈S,π∈S′
Wg(τπ)Tr(Wτ−1R⊗ R̃⊗ S ⊗ S̃)Tr(WπR

′ ⊗ R̃′ ⊗ S′ ⊗ S̃′) ,
(G13)

where S and S ′ are subsets of S4 defined as

S = {π ∈ S4 ∶ Tr(WπR⊗ R̃⊗ S ⊗ S̃) ≠ 0}

S ′ = {π ∈ S4 ∶ Tr(WπR
′ ⊗ R̃′ ⊗ S′ ⊗ S̃′) ≠ 0} .

(G14)

Therefore we get

G(r, r̃, s, s̃; r′, r̃′, s′, s̃′) = Ḡ(r, r̃, s, s̃; r′, r̃′, s′, s̃′) (G15)

hence Ḡ consist of the non-zero terms in G which we can get by using Lemma 1, namely the only terms that we need
to compute to get the value of G for two qubit Paulis in its argument that we are interested in.

Now we consider the values of G for specific Paulis r, r̃, r′, r̃′:
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1. r = r̃ = r′ = r̃′ = ZI/2,

2. r = r̃ = r′ = r̃′ = II/2, and

3. r = ZZ/2 and r̃ = r′ = r̃′ = ZI/2,

which relevance will be clear in our proof that sXQUATH does not hold for single-block mQSVT. The different values
that G can take for the aforementioned two qubit Paulis are

G(ZI/2, ZI/2, s, s̃;ZI/2, ZI/2, s′, s̃′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

90048
28∆

if s = s̃ = s′ = s̃′ = ZI/2
31680
28∆

if s = s̃ ∉ {ZI/2, II/2} and s′ = s̃′ ∉ {ZI/2, II/2}
18368
28∆

if s = s̃ = ZI/2 and s′ = s̃′ ∉ {ZI/2, II/2}
18368
28∆

if s = s̃ ∉ {ZI/2, II/2} and s′ = s̃′ = ZI/2
602048
28∆

if s = s̃ = s′ = s̃′ = II/2
0 otherwise

(G16)

G(II/2, II/2, s, s̃; II/2, II/2, s′, s̃′) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if s = s̃ = s′ = s̃′ = II/2
31680
28∆

if s = s̃ ≠ II/2 and s′ = s̃′ ≠ II/2
0 otherwise

(G17)

G(ZZ/2, ZI/2, s, s̃;ZI/2, ZI/2, s′, s̃′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

95232
28∆

if {s, s̃} = {ZZ/2, ZI/2} and s′ = s̃′ = ZI/2
−121920

28∆
if {s, s̃} = {PX/2, PY /2} and s′ = s̃′ = ZI/2

73664
28∆

if {s, s̃} = {IZ/2, II/2} and s′ = s̃′ = ZI/2
−6656
28∆

if {s, s̃} = {ZZ/2, ZI/2} and s′ = s̃′ ∉ {ZI/2, II/2}
12224
28∆

if {s, s̃} = {PX/2, PY /2} and s′ = s̃′ ∉ {ZI/2, II/2}
960
28∆

if {s, s̃} = {IZ/2, II/2} and s′ = s̃′ ∉ {ZI/2, II/2}
0 otherwise

, (G18)

where P ∈ {I,X,Y,Z} in eqn. (G18). Note that each of the values above lies in the interval [−1,1] since 28∆ = 5160960.

Appendix H: sXQUATH does not hold for single-block mQSVT circuit

Consider Pauli path algorithm that gives a classical approximation q(U,x) of the probability p(U,x) for single-block
mQSVT circuit with n + 1 qubit unitary U with depth dU outputting an n bit string x ≠ 0n, where

q(U,x) = 1

2n
+ F (U, r, x) , (H1)

for Pauli path r = (Z ⊗ I l ⊗ Z ⊗ I⊗n−l−1, Z ⊗ I⊗n, . . . , Z ⊗ I⊗n) such that the input Paulis into the two qubit gate in
the first layer of unitary U that operates on the first qubit is Z ⊗ Z. For example, if in the first layer the two qubit
gate that operates on the first qubit couples it with the 5th qubit then Z ⊗ I l ⊗Z ⊗ I⊗n−l−1 = Z ⊗ I3 ⊗Z ⊗ I⊗n−4.

As the architecture that we consider puts every qubit register through a two qubit gate in each layer j ∈ [dU ], we
assume that n+1 is even. This is the same architecture used in [23]. For notational simplicity in the decomposition of
U into two qubit gates {Vj,i ∶ j ∈ [dU ], i ∈ [(n+1)/2]} as in the previous section, we denote the two qubit gate operating
on the first qubit register in each layer j as Vj,1. So for Pauli path r, these are the only two qubit gates in U (therefore
in the entire mQSVT circuit) that has non-identity input and output Paulis in the Pauli path approximation.

Now if by using q(U,x) in sXQUATH (Definition 6) as an approximation to p(U,x) and by expanding the squares
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and simplifying the terms we get

sXQ = 22n(EU,X[(p(U,X) −
1

2n
)
2

] −EU,X[(p(U,X) − q(U,X))
2

]) (H2)

= 22nEU,X[
1

22n
− 2

2n
p(U,X) − q(U,X)2 + 2p(U,X)q(U,X)] (H3)

= 22n

2n − 1 ∑x≠0n
EU[

1

22n
− 2

2n
p(U,x) − q(U,x)2 + 2p(U,x)q(U,x)] (H4)

= 22n

2n − 1 ∑x≠0n
EU[

1

22n
− 2

2n
p(U,x) − q(U,x)2 + 2

2n
p(U,x) + 2p(U,x)F (U, r, x)] (H5)

= 22n

2n − 1 ∑x≠0n
EU[

1

22n
− ( 1

22n
+ 2

2n
F (U, r, x) + F (U, r, x)2) + 2p(U,x)F (U, r, x)] (H6)

= 22n

2n − 1 ∑x≠0n
( − 2

2n
EU[F (U, r, x)] −EU[F (U, r, x)2] + 2EU[p(U,x)F (U, r, x)]) . (H7)

Furthermore if we express the probability p(U,x) in terms of Pauli paths, namely p(U,x) = ∑s F (U, s, x) we get

EU[p(U,x)F (U, r, x)] =∑
s

EU[F (U, s, x)F (U, r, x)] (H8)

where the first equality is obtained by expanding p(U,x) in terms of Pauli paths (eqn.(F4)). Hence the sXQUATH
expression above becomes

sXQ = 22n

2n − 1 ∑x≠0n
( − 2

2n
EU[F (U, r, x)] +EU[F (U, r, x)2] + 2∑

s≠r
EU[F (U, s, x)F (U, r, x)]) . (H9)

Now we treat each terms in the sum over x above separately.
For the first term in the outer sum of eqn. (H9), we have EU [F (U, r, x)] = 0 because by expanding it in terms of

the Pauli paths as in eqn. (G3) we get the term

1

24
EV [Tr(V ⊗2ZI ⊗ZZ(V †)⊗2ZI ⊗ZI)] = 1

24
G(ZI,ZZ;ZI,ZI) = 0 (H10)

by eqn. (G5). For the second term EU [F (U, r, x)2], we use eqn. (G7) with r = s and evaluate the product of Haar-
random expectation values using (G18), (G16), and (G17) to get

dU

∏
j=1

(n+1)/2
∏
i=1

EVj,i[Tr(V ⊗4j,i (rj,i ⊗ r̃j,i ⊗ sj,i ⊗ s̃j,i)(V †
j,i)
⊗4(rj+1,i ⊗ r̃j+1,i ⊗ sj+1,i ⊗ s̃j+1,i))]

= G(ZZ/2, ZI/2, ZZ/2, ZI/2;ZI/2, ZI/2, ZI/2, ZI/2)

(G(ZI/2, ZI/2, ZI/2, ZI/2;ZI/2, ZI/2, ZI/2, ZI/2))
dU−1

(G(II/2, II/2, II/2, II/2; II/2, II/2, II/2, II/2))
(dU−1)+n−1

2

= 95232

28∆
(90048

28∆
)
dU−1

= (28∆)−dU × 95232 × 90048dU−1 .

(H11)

For shorthand let γ = (28∆)−dU × 95232 × 90048dU−1, so by substituting this into eqn. (G7) we get

EU [F (U, r, x)2] = γ⟪0x∣r̃1⟫2⟪r̃dU+1∣R(φ1)∣rdU+1⟫
2⟪r1∣0n+1⟫2

= γ

24(n+1)
⟨0x∣Z ⊗ I⊗n∣0x⟩2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

Tr(R(φ1)ZR(φ1)†Z)
2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=22

Tr(I⊗n)2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

22n

⟨0n+1∣Z ⊗Z ⊗ I⊗n−1∣0n+1⟩2
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=1

= γ

22(n+1)

(H12)
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because ⟨y∣I ∣y⟩ = 1 for y ∈ {0,1} and ⟨0∣Z ∣0⟩ = 1 and because R(φ1) and Z commute. Since this is true for all x ≠ 0n
then by pulling in the sum over x ≠ 0n in eqn. (H9) inside the brackets we get the term

∑
x≠0n

EU [F (U, r, x)2] =
2n − 1
22(n+1)

γ . (H13)

Now we are left with the ∑s≠rEU [F (U, s, x)F (U, r, x)] term in eqn. (H9), where we need to evaluate this for every
Pauli path s such that s ≠ r. Again we expand EU [F (U, s, x)F (U, r, x)] using eqn. (G7) which contains product of
Haar-random expectations

γs =
dU

∏
j=1

(n+1)/2
∏
i=1

EVj,i[Tr(V ⊗4j,i (rj,i ⊗ r̃j,i ⊗ sj,i ⊗ s̃j,i)(V †
j,i)
⊗4(rj+1,i ⊗ r̃j+1,i ⊗ sj+1,i ⊗ s̃j+1,i))]

= G(ZZ/2, ZI/2, s1,1, s̃1,1;ZI/2, ZI/2, s2,1, s̃2,1)

(
dU

∏
j=2

G(ZI/2, ZI/2, sj,1, s̃j,1;ZI/2, ZI/2, sj+1,1, s̃j+1,1))

(
dU

∏
j=1

(n+1)/2
∏
i=2

G(II/2, II/2, sj,i, s̃j,i; II/2, II/2, sj+1,i, s̃j+1,i)) .

(H14)

Note that γs is non-zero if and only if Pauli path s is such that all instance of G in it is non-zero, which can be
identified using (G18), (G16), and (G17). Moreover, the values of ⟪s1,1∣00⟫ and ⟪0x1∣s̃1,1⟫ also determines which s
gives a non-zero EU [F (U, s, x)F (U, r, x)]. Their values for all s such that γs ≠ 0 (see eqn.(G18)) are

⟪s1,1∣00⟫ = {
0 if s1,1 ∈ {PX/2, PY /2}
1
2

if s1,1 ∈ {ZI/2, ZZ/2, IZ/2, II/2}

⟪0x1∣s̃1,1⟫ =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if s̃1,1 ∈ {PX/2, PY /2}
1
2

if s̃1,1 ∈ {ZI/2, II/2}
1
2

if s̃1,1 ∈ {ZZ/2, IZ/2} and x1 = 0
− 1

2
if s̃1,1 ∈ {ZZ/2, IZ/2} and x1 = 1

,

(H15)

which implies that we only need to consider s (i.e. those that gives nonzero γs and ⟪s1,1∣00⟫ and ⟪0x1∣s̃1,1⟫) such
that

(s1,1, s̃1,1) ∈ {(ZI/2, ZZ/2), (ZZ/2, ZI/2), (IZ/2, II/2), (II/2, IZ/2)} . (H16)

Now by doing similar calculation as in (H12),

EU [F (U, s, x)F (U, r, x)]
= γs⟪0x∣r̃1⟫⟪0x∣s̃1⟫⟪r̃dU+1∣R(φ1)∣rdU+1⟫⟪s̃dU+1∣R(φ1)∣sdU+1⟫⟪r1∣0

n+1⟫⟪s1∣0n+1⟫

= γs
22n
⟪0x1∣s̃1,1⟫⟪s1,1∣00⟫ .

(H17)

Then by pulling the sum over x ≠ 0n inside the brackets in eqn. (H9), we get

∑
x≠0n
∑
s≠r

EU [F (U, s, x)F (U, r, x)] =
1

22n
∑

x≠0n
∑
s≠r

γs⟪0x1∣s̃1,1⟫⟪s1,1∣00⟫

= 1

22n
∑
s∈S

γs⟪s1,1∣00⟫((2n−1 − 1)⟪00∣s̃1,1⟫ + 2n−1⟪01∣s̃1,1⟫)
(H18)

where S is the set of Pauli paths such that s ≠ r and γs ≠ 0 and ⟪s1,1∣00⟫ ≠ 0 and ⟪0x1∣s̃1,1⟫ ≠ 0. Now con-
sider a fixed s2, . . . , sdU+1, s̃dU+1, . . . , s̃2 ≠ r2, . . . , rdU+1, r̃dU+1, . . . , r̃2. By using eqn. (G18), let γs(Z3) be the product
of Haar moments for a Pauli path s such that (s1,1, s̃1,1) ∈ {(ZI/2, ZZ/2), (ZZ/2, ZI/2)} and γs(Z1) the prod-
uct of Haar moments for a Pauli path s such that (s1,1, s̃1,1) ∈ {(IZ/2, II/2), (II/2, IZ/2)}. For such Pauli paths
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s2, . . . , sdU+1, s̃dU+1, . . . , s̃2 we have

∑
s1,1,s̃1,1

γs⟪s1,1∣00⟫((2n−1 − 1)⟪00∣s̃1,1⟫ + 2n−1⟪01∣s̃1,1⟫)

= ( ∑
s1,1,s̃1,1

γs(2n−1 − 1)
4

) + (
γs(Z3)

2
(2

n−1

2
− 2n−1

2
) +

γs(Z1)
2
(2

n−1

2
− 2n−1

2
))

= ∑
s1,1,s̃1,1

γs(2n−1 − 1)
4

,

(H19)

where the sum is over the pair s1,1, s̃1,1 in (H16). Note that the first equality is due to ⟪s1,1∣00⟫ = ⟪00∣s̃1,1⟫ = 1
2
. For

s2, . . . , sdU+1, s̃dU+1, . . . , s̃2 = r2, . . . , rdU+1, r̃dU+1, . . . , r̃2, similarly we get

∑
s1,1,s̃1,1

γs⟪s1,1∣00⟫((2n−1 − 1)⟪00∣s̃1,1⟫ + 2n−1⟪01∣s̃1,1⟫)

= ( ∑
s1,1,s̃1,1

γs(2n−1 − 1)
4

) + (
γs(Z3)

2
( − 2n−1

2
) +

γs(Z1)
2
(2

n−1

2
− 2n−1

2
))

=
γs(Z3)(2n−1 − 1)

2
+
γs(Z1)(2n−1 − 1)

2
−
γs(Z3)2n−1

4

=
γs(Z3)(2n−1 − 2)

4
+
γs(Z1)(2n−1 − 1)

2
,

(H20)

where the sum in the first and second line are over the pair s1,1, s̃1,1 in (H16) except for (s1,1, s̃1,1) = (ZZ/2, ZI/2)
because (r1,1, r̃1,1) = (ZZ/2, ZI/2) and we require that s ≠ r. Hence by substituting eqn.(H19) and eqn. (H20) back
into eqn. (H18) we obtain

∑
x≠0n
∑
s≠r

EU [F (U, s, x)F (U, r, x)]

= 1

22n
( ∑

s1,1,s̃1,1

∑
s2∶∈S2∶/{r2∶}

γs(2n−1 − 1)
4

) + 1

22n
(
γs(Z3)(2n−1 − 2)

4
+
γs(Z1)(2n−1 − 1)

2
)

(H21)

where we denote s2∶ = s2, . . . , sdU+1, s̃dU+1, . . . , s̃2 and S2∶/{r2∶} is the set of s2∶ ≠ r2, . . . , rdU+1, r̃dU+1, . . . , r̃2. Also, here
the product of Haar moments γs(Z3) and γs(Z1) are such that s2∶ = r2, . . . , rdU+1, r̃dU+1, . . . , r̃2.

We now analyze the value of the γs’s. For Pauli path s such that s2∶ = r2, . . . , rdU+1, r̃dU+1, . . . , r̃2 a calculation
similar to eqn. (H11) by using (G18) gives us

γs(Z3) = (90048
28∆

)
dU−1

G(ZZ/2, ZI/2, IZ/2, ZZ/2;ZI/2, ZI/2, ZI/2, ZI/2)

= (28∆)−dU × 95232 × 90048dU−1

and

γs(Z1) = (90048
28∆

)
dU−1

G(ZZ/2, ZI/2, IZ/2, II/2;ZI/2, ZI/2, ZI/2, ZI/2)

= (90048
28∆

)
dU−1

G(ZZ/2, ZI/2, II/2, IZ/2;ZI/2, ZI/2, ZI/2, ZI/2)

= (28∆)−dU × 73664 × 90048dU−1 .

(H22)

Hence, the second term in (H21) is

1

22n
(
γs(Z3)(2n−1 − 2) + γs(Z1)(2n − 2)

4
) = 1

22n
((2

n−1 × 242560 − 2 × 168896)90048dU−1

4(28∆)dU
) , (H23)

which is positive for all n ≥ 2.
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For Pauli paths s such that s2∶ ≠ r2, . . . , rdU+1, r̃dU+1, . . . , r̃2, let us denote

g1(s, s̃, s′, s̃′) = G(ZZ/2, ZI/2, s, s̃;ZI/2, ZI/2, s′, s̃′)
g2(s, s̃, s′, s̃′) = G(ZI/2, ZI/2, s, s̃;ZI/2, ZI/2, s′, s̃′)
g3(s, s̃, s′, s̃′) = G(II/2, II/2, s, s̃; II/2, II/2, s′, s̃′) ,

(H24)

so that we can write γs as

γs = g1(s1,1, s̃1,1, s2,1, s̃2,1)(
dU

∏
j=2

g2(sj,1, s̃j,1, sj+1,1, s̃j+1,1))(
dU

∏
j=1

(n+1)/2
∏
i=2

g3(sj,i, s̃j,i, sj+1,i, s̃j+1,i)) . (H25)

For such Pauli path, in the product of Haar moments γs (see eqn. (H14)) there are:

1. 2 possible s1,1, s̃1,1, s2,1, s̃2,1 such that g1(s1,1, s̃1,1, s2,1, s̃2,1) = 95232(28∆)−1

2. 2 possible s1,1, s̃1,1, s2,1, s̃2,1 such that g1(s1,1, s̃1,1, s2,1, s̃2,1) = 73664(28∆)−1

3. 28 possible s1,1, s̃1,1, s2,1, s̃2,1 such that g1(s1,1, s̃1,1, s2,1, s̃2,1) = −6656(28∆)−1

4. 28 possible s1,1, s̃1,1, s2,1, s̃2,1 such that g1(s1,1, s̃1,1, s2,1, s̃2,1) = 960(28∆)−1.

For each j ∈ {2, . . . , dU}, there are:

1. 1 possible sj,1, s̃j,1, sj+1,1, s̃j+1,1 such that g2(sj,1, s̃j,1, sj+1,1, s̃j+1,1) = 90048(28∆)−1

2. 14 × 14 = 196 possible sj,1, s̃j,1, sj+1,1, s̃j+1,1 such that g2(sj,1, s̃j,1, sj+1,1, s̃j+1,1) = 31680(28∆)−1

3. 28 possible sj,1, s̃j,1, sj+1,1, s̃j+1,1 such that g2(sj,1, s̃j,1, sj+1,1, s̃j+1,1) = 18368(28∆)−1

4. 1 possible sj,1, s̃j,1, sj+1,1, s̃j+1,1 such that g2(sj,1, s̃j,1, sj+1,1, s̃j+1,1) = 602048(28∆)−1.

For each j ∈ {1, . . . , dU} and i ∈ {2, . . . , (n + 1)/2} there are:

1. 1 possible sj,i, s̃j,i, sj+1,i, s̃j+1,i such that g3(sj,i, s̃j,i, sj+1,i, s̃j+1,i) = 1

2. 15 × 15 = 225 possible sj,i, s̃j,i, sj+1,i, s̃j+1,i such that g3(sj,i, s̃j,i, sj+1,i, s̃j+1,i) = 31680(28∆)−1.

Note that among all possible values of g1, g2, g3 there is only a single negative value, namely when g1 takes the
argument of {s, s̃} = {ZZ/2, ZI/2} and s′ = s̃′ ∉ {ZI/2, II/2} in which it gives −6656(28∆)−1. Hence two products of
g2’s and g3’s in (H25) are positive for any Pauli path s. Now if we fix all Paulis in s except for s1,1, s̃1,1, s2,1, s̃2,1 then
let

ξs = ∑
s1,1,s̃1,1

∑
s2,1,s̃2,1

γs(2n−1 − 1)
4

= 2n−1 − 1
4

(
dU

∏
j=2

g2(sj,1, s̃j,1, sj+1,1, s̃j+1,1))(
dU

∏
j=1

(n+1)/2
∏
i=2

g3(sj,i, s̃j,i, sj+1,i, s̃j+1,i))

× (2 × 95232 + 2 × 73664 + 28 × (−6656) + 28 × 960)(28∆)−1

= 2n−1 − 1
4

178304

28∆
(

dU

∏
j=2

g2(sj,1, s̃j,1, sj+1,1, s̃j+1,1))(
dU

∏
j=1

(n+1)/2
∏
i=2

g3(sj,i, s̃j,i, sj+1,i, s̃j+1,i)) ,

(H26)

which is positive. Therefore for any choice of Paulis that determines the value of the g2’s and g3’s, namely
{(sj,1, s̃j,1, sj+1,1, s̃j+1,1)}dU

j=2 and {(sj,i, s̃j,i, sj+1,i, s̃j+1,i)}dU ,(n+1)/2
j=1,i=2 , the first term of eqn. (H21) are positive. Hence

we can obtain a lower bound

1

22n
( ∑

s/{s1,1,s̃1,1,s2,1,s̃2,1}
∑

s1,1,s̃1,1

∑
s2,1,s̃2,1

γs(2n−1 − 1)
4

)

= 1

22n
( ∑

s/{s1,1,s̃1,1,s2,1,s̃2,1}
ξs)

≥ 1

22n
2n−1 − 1

4

178304

28∆
(602048

28∆
)
dU−1

(H27)
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by simply picking a single term in the sum on the second line where Pauli path s is such that
{(sj,1, s̃j,1, sj+1,1, s̃j+1,1)}dU

j=2 and {(sj,i, s̃j,i, sj+1,i, s̃j+1,i)}dU ,(n+1)/2
j=1,i=2 are all identities II/2. Note that this choice of

s indeed satisfies s ≠ r.
Finally by substituting eqn. (H23) and eqn. (H27) back into (H21) we get a lower bound

∑
x≠0n
∑
s≠r

EU [F (U, s, x)F (U, r, x)]

≥ (2
n−1 − 1) × 178304 × 602048dU−1 + (2n−1 × 242560 − 2 × 168896)90048dU−1

22n+2(28∆)dU

(H28)

Putting eqn. (H13) and eqn. (H28) into sXQUATH value (H9) gives us the final lower bound

sXQ = 22n

2n − 1 ∑x≠0n
( − 2

2n
EU[F (U, r, x)] +EU[F (U, r, x)2] + 2∑

s≠r
EU[F (U, s, x)F (U, r, x)])

≥ 1

2n − 1
(2

n − 1
22

95232 × 90048dU−1

(28∆)dU

+ (2
n−1 − 1) × 178304 × 602048dU−1 + (2n−1 × 242560 − 2 × 168896)90048dU−1

22(28∆)dU
)

≈ 95232 × 90048dU−1

22(28∆)dU
+ 178304 × 602048dU−1 + 242560 × 90048dU−1

23(28∆)dU

= cdU

(H29)

for some constant c ∈ (0,1) independent of number of qubits n and sub-circuit U depth dU . By setting dU = o(n),
this refutes sXQUATH for single-block mQSVT circuit.

Appendix I: Spoofing cross-entropy benchmarking using Pauli path simulation

Here we show Theorem 2 by using Pauli path algorithm to spoof sXES benchmarking defined in eqn. (C2), on
average. This is done by using the Pauli path algorithm in the proof of Theorem 1 (explained in detail in Supplementary
Material H). The average sXES score over random unitary U is given by

sXES = EU [sXES(U)] = EU[ ∑
x≠0n

p(U,x) q(U,x)] . (I1)

For convenience we restate the approximation q(U,x) in Supplementary Material H

q(U,x) = 1

2n
+ F (U, r, x) , (I2)

for Pauli path r = (Z⊗I l⊗Z⊗I⊗n−l−1, Z⊗I⊗n, . . . , Z⊗I⊗n). Details of this Pauli path algorithm, i.e. which two-qubit
unitary the input and output Paulis correspond to, are in the paragraphs surrounding eqn.(H1).

By using this Pauli path simulation, we can write the sXES score as

sXES = ∑
x≠0n

EU[p(U,x) (
1

2n
+ F (U, r, x))]

= ∑
x≠0n

EU[
p(U,x)

2n
] +EU[p(U,x)F (U, r, x)]

= ∑
x≠0n

EU[
p(U,x)

2n
] +∑

s≠r
EU[F (U, s, x)F (U, r, x)] .

(I3)

Note that we can lower bound the second term using eqn. (H28), restated below for convenience

∑
x≠0n
∑
s≠r

EU [F (U, s, x)F (U, r, x)]

≥ (2
n−1 − 1) × 178304 × 602048dU−1 + (2n−1 × 242560 − 2 × 168896)90048dU−1

22n+2(28∆)dU
.

(I4)
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Hence we can lower bound sXES score of this Pauli path simulation as

sXES ≥ 1

2n
EU[ ∑

x≠0n
p(U,x)] + (2

n−1 − 1) × 178304 × 602048dU−1 + (2n−1 × 242560 − 2 × 168896)90048dU−1

22n+2(28∆)dU

≈ 1

2n
(EU[ ∑

x≠0n
p(U,x)] + cdU )

(I5)

for some constant c ∈ (0,1) independent of n and dU .
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