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Abstract—Emerging multi-model workloads with heavy models
like recent large language models significantly increased the
compute and memory demands on hardware. To address such
increasing demands, designing a scalable hardware architecture
became a key problem. Among recent solutions, the 2.5D silicon
interposer multi-chip module (MCM)-based AI accelerator has
been actively explored as a promising scalable solution due
to their significant benefits in the low engineering cost and
composability. However, previous MCM accelerators are based on
homogeneous architectures with fixed dataflow, which encounter
major challenges from highly heterogeneous multi-model work-
loads due to their limited workload adaptivity.

Therefore, in this work, we explore the opportunity in the
heterogeneous dataflow MCM AI accelerators. We identify the
scheduling of multi-model workload on heterogeneous dataflow
MCM AI accelerator is an important and challenging problem
due to its significance and scale, which reaches O(1018) scale
even for a single model case on 6x6 chiplets. We develop a set
of heuristics to navigate the huge scheduling space and codify
them into a scheduler with advanced techniques such as inter-
chiplet pipelining. Our evaluation on ten multi-model workload
scenarios for datacenter multitenancy and AR/VR use-cases has
shown the efficacy of our approach, achieving on average 35.3%
and 31.4% less energy-delay product (EDP) for the respective
applications settings compared to homogeneous baselines.

I. INTRODUCTION

Recent artificial intelligence (AI) inference workloads have
increased their scale in both of the model size (e.g., large
language models [3], [53]) and the number of models deployed
together (e.g., augmented and virtual reality; AR/VR [27]),
which constructs multi-model workloads with heavier models
than those in the past. Such trends led to heavy demands
on compute capabilities in AI hardware from edge to cloud
devices. As an approach to scale up the hardware for AI
and increase the compute capability, chiplet-based multi-chip
module (MCM) package has emerged as a promising solu-
tion [40], [48], [52], [55]. Such MCM packages facilitate
the scaling of AI hardware based on their composability
and cost-effectiveness, unlike monolithic designs, which are
often constrained by fabrication yields, power, heat, and other
engineering costs such as verification [38].

Researchers have actively explored the MCM for AI, fo-
cusing on the dataflow mapping (i.e., loop ordering, paral-
lelization, and tiling) and workload orchestration onto chiplets
considering the network-on-package (NoP) and other com-
munication constraints [40], [48], [52], [55]. For example,
Simba [48] proposed a scalable MCM inference architecture
that enables chiplets to either act as standalone inference en-
gines or collaborate as groups for a layer. Although such works

have successfully delivered promising performance and energy
efficiency than monolithic designs, they mostly focused on
single-model workloads targeting homogeneous chiplets. Un-
like single-model workloads, multi-model workloads introduce
major challenges to such homogeneous MCMs because of the
ML operator heterogeneity (e.g., operator types and tensor
sizes) and resulting diverse dataflow preferences [26]. Also,
multi-model workloads often involve model level dependency
and concurrency [27], which adds complex considerations to
the scheduling problem.

Therefore, considering the new trend with multi-model
AI workloads such as multi-tenancy [13], [28], [56] and
AR/VR [27], we propose to explore heterogeneous chiplet-
based MCM with AI accelerator chiplets with various
dataflows to address the workload heterogeneity and con-
currency. We consider inter-layer pipelining to enhance in-
package data reuse and reduce offchip traffic. We formulate
the scheduling problem and develop effective heuristics to
navigate the huge scheduling space, whose problem scale is as
big as O(1018) on a 6x6 chiplet MCM AI accelerator system
even running a single model (BERT-L).

We evaluate five MCMs including three heterogeneous
MCMs on ten multi-model scenarios: the first five scenarios
are curated using MLPerf [46] to represent datacenter multi-
tenancy scenarios. The models are selected based on recent
datacenter model usage trends [13], [19] and the trend of
large language model adoptions (e.g., GPT-L [44]), future-
proofing emerging AI workloads such as AI assistant [35]. The
other five scenarios are curated for AR/VR usage scenarios
from XRBench as a practical use case for edge multi-model
workloads [27]. The evaluation results show the effective-
ness of heterogeneous MCM combined with our scheduling
method. Compared to the homogeneous MCM [48] running
NVDLA [39] and Shi-diannao [8] style dataflows, heteroge-
neous MCM, on average, achieved 35.3% and 31.4% less
energy-delay product (EDP) in each domain, respectively.
Moreover, we performed ablation studies on the efficacy of
our greedy scheduling algorithm, and found that it leads to
superior multi-model schedules compared to other approaches,
achieving 21.8% and 8.6% execution speedups and energy
improvement on heterogeneous MCMs. We summarize our
contributions as follows:

• We propose to explore heterogeneous dataflow MCM for
emerging AI workloads with multiple models running
concurrently for the first time.
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Fig. 1. An overview of this work: (a) Emerging Multi-model workloads have introduced new challenges for AI hardware. (b) Heterogeneous MCMs present
a promising solution to scale with multi-model workloads with some considerations. (c) Our proposed scheduling framework addresses said challenges to
explore the heterogeneous scheduling space. (d) Provided Solutions provide optimized spatio-temporal scheduling strategies for the multi-model workloads.

• We formulate the MCM AI accelerator scheduling prob-
lem into a multi-tiered optimization problem to address
intractably large scheduling space.

• Based on the formulation, we develop a scheduler that thor-
oughly considers heterogeneous MCM and multi-model
workloads. The scheduler employs advanced scheduling
techniques, such as inter-layer pipelining, dynamic chiplet
regrouping utilizing latest representation such as the re-
source allocation tree [4].

• We codify our scheduling method and integrate it with a
heterogeneous MCM AI accelerator cost model. We extend
MAESTRO [24], [25] to model the latency and energy of
MCM accelerators.

• We analyze the costs and benefits of heterogeneous
dataflow MCM using future-proof multi-model workloads
motivated by recent industry use cases and present the
importance of the scheduling problem.

II. BACKGROUND

We discuss examples of emerging multi-model AI work-
loads and chiplet-based MCM AI accelerators.

A. Multi-model AI Workloads

The success of AI algorithms in individual tasks (e.g., hand
tracking, depth estimation, and speech recognition) led to the
emergence of multi-model AI workloads, which include multi-
tenant workloads at data centers [13], [28], [56] and real-time
multi-model workloads such as AR/VR [27]. We summarize
example multi-model AI workloads from industrial use cases
in Table II. The models in such workloads are diverse in terms
of the tasks and input modalities. For example, an industrial
data center multi-tenant AI workload suite [13] includes a
face recognition model based on support vector machine,
recommendation models based on multi-layer perceptron, and
a speech recognition model based on recurrent neural network
(RNN). More recent workloads in data center AI workload
include large language models [36], which adds more hetero-
geneity to the multi-model AI workloads. As discussed in prior
works [26], [27], such multi-model workloads involve high

heterogeneity in AI operators (or layers), which is one of the
major challenges to accelerators that specialize the architecture
and dataflow for a specific set of workloads.

B. MCM AI Accelerators

Multi-chip Modules (MCM) comprise small functional dies
(chiplets) that are packaged together to build a larger system.
Chiplets are interconnected via on-package links typically
through silicon interposer or organic substrates to create a
network-on-package (NoP) [2], [20], [54]. A typical chiplet, in
the context of a DNN accelerator, comprises off-chip memory,
a global shared memory, and an array of processing elements
connected via a Network-on-Chip (NoC) [6]. Advantages of
the chiplet-based MCM architecture include the modularity
and scalability to systems of varied scales simply by ad-
justing the number of chiplets placed on the package as
well as low verification cost [38]. Based on such benefits,
many chiplet-based MCMs have been developed for scalable
DL inference [5], [40], [48], [51]. Such MCM accelerators
successfully scaled up the systems up to 256 chiplets with 1
million processing engines [40]. However, the effectiveness of
a chiplet-based MCM system heavily depends on the careful
distribution of computation amongst the different chiplets
while balancing the added NoP/NoC communication costs.

C. Scheduling space

As discussed in previous works [4], [26], [41], scheduling
AI workloads on an accelerator can be considered as assigning
a set of computations in various granularity (e.g., layer or com-
pute tile) to each compute unit and ordering the computation.
That is, the scheduling process is spatially and temporarily par-
titioning a workload onto a target accelerator architecture [4].
However, with that formulation, the scheduling space of multi-
model workloads onto shared MCM accelerators is intractably
large and high-dimensional, as discussed in Section I.

One approach to address the complexity is formulating the
problem into multi-level decision problem where each decision
subspace is a tractable problem [6], [26].We adopt a similar
approach and formulate the multi-model workload scheduling
on MCM as multiple-level decision problem, as shown in
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Figure 2. We discuss details of our problem formulation in
detail and performance modeling methodology next.

III. SYSTEM MODELING AND PROBLEM FORMULATION

To develop a systematic approach to navigate complex
scheduling space, we formulate the scheduling problem of the
multi-model workloads running on a heterogeneous MCM AI
accelerator.

A. Base Formulation

To formulate the MCM scehduling problem, we first define
multi-model workload scenario (Sc) and MCM hardware (H).

We formulate the workload in the granularity of layers in
each model. Therefore, we formulate a multi-model workload
scenario (Sc) as the collection of layers in the models included
in the scenario. Letting the number of models included in Sc
as |Sc| and the number of layers included in a model m as
|m|, we define Sc as follows:

Definition 1. Multi-model Workload Scenario (Sc)

Sc = {layeri,j |0 < i ≤ |Sc|, 0 < j ≤ |mi|}

where layer(i,j) refers to the j-th layer of model i in Sc.

AI accelerator chiplets consist of a PE array, memory, and
on-chip interconnection among memory and PEs. In addition
to them, we also include the dataflow in the formulation to
model heterogeneous chiplet MCM AI accelerator. Accord-
ingly, we define an AI accelerator chiplet (c) as follows:

Definition 2. AI Accelerator Chiplet (c)

c = {df,NPE , BWnoc, BWmem, Szmem}

In Definition 2, df refers to the dataflow, NPE is the number
of PEs, BWnoc is the NoC bandwidth, BWmem is the chiplet-
level shared memory bandwidth, and Szmem is the memory
size in c.

Based on the definition of the chiplet, we formu-
late the MCM accelerator as the set of chiplets (C =
{c1, c2, ..., cNcpl

}), NoP, and off-chip interface as follows:

Definition 3. MCM AI Accelerator (H)

H = {C,BWoffchip, BWnop}

We assume the 2D mesh topology for NoP like Simba [48],
and chiplets on two sides (left and right) of the packages have
off-chip interfaces.

B. Workload Partitioning Space

To reduce the complexity of the scheduling problem, we
adopt a multi-level scheduling method, which splits the end-
to-end workload defined in the layer granularity into coarse-
grained layer groups, termed as the time window. Figure 2
shows an example of the time window that contains six layers
from Model A and five layers from Model B.

A time window (tw) is defined by the start time and the
duration (TS and Ttw) and a set of assigned layers to the time
window, as shown in Definition 4.

Definition 4. Time Window (tw)
For a target workload scenario Sc, a time window tw is
defined as follows:

tw(Sc) = (Ts, Ttw, L)

where L = {l|l ∈ Sc}

The time window describes a set of layers to be executed on
an MCM AI accelerator package, which is used for describing
package level scheduling. For each chiplet, we define a finer-
grained group of layers within a time window. We term the
sub-set of layers within a time window as segment.

Definition 5. Segment (sg)
For a time window tw(Sc) and its layers L(tw(Sc)), the
segment sg(tw(Sc)) is defined as follows:

sg(tw(Sc)) = {l|l ∈ L(tw(Sc))}

To develop a systematic optimization algorithm for layer
segmentation within each time window, we need to define the
conditions of valid layer segments. We define the condition as
follows:

Theorem 1. The validity of segments in a time window
For a time window tw(Sc) and its layers L(tw(Sc)), let the
set of all segments for tw(Sc) be SG, then SG is valid if the
following condition is satisfied:⋃

sg∈SG

sg = L(tw(Sc)) ∧ ∀sgi ̸= sgj ∈ SG, sgi ∩ sgj = ∅

Theorem 1 states two conditions (1) the set of segments
needs to cover all the layers in their time window for com-
pleting assigned layer computations for the time window and
(2) all segments are exclusive to prevent redundant computing.
The same idea extends to the time window as follows:

Theorem 2. The validity of time window partitioning
For a multi-model workload Sc, its layers L(Sc), and the set
of time windows TW (Sc), TW (Sc) is valid if the following
condition is satisfied:⋃
tw∈TW (Sc)

tw = L(Sc)∧∀twi ̸= twj ∈ TW (Sc), twi∩twj = ∅

Both Theorem 1 and Theorem 2 indicate that the time
windows and segments need to be partitions of the workload
and time window layer, respectively. Combining all definitions
in this section, we formulate the workload partitioning space
into the time window and segment as follows:

Definition 6. Workload Partitioning Space
For a multi-model workload Sc, the time window partitioning
space (Sptw(Sc)) and the layer segmentation space for a time
window (Spsg(tw)) are defined as follows:

Sptw(Sc) = P(L(Sc))
Spsg(tw) = P(L(tw))

where P(A) refers to all possible partitioning of a set A
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C. Scheduling Space

A segment contains layers to be executed on a chiplet.
Therefore, spatial (i.e., which segment runs on which chiplet)
and temporal mappings (i.e., execution order of segments
on each chiplet) of segments construct the scheduling space
within each time window when segments are determined.
Therefore, the scheduling space within a time window tw(Sc)
can be defined as follows:

Definition 7. Scheduling Space in a Time Window (SSTW )
For a given time window tw(Sc) and a target MCM accelera-
tor hardware H , the scheduling space within the time window
(SSTW (tw(Sc), H) is defined as follows:

SSTW (tw(Sc), SG,H)

={(sg, c, j)|sg ∈ SG ∧ c ∈ CH ∧ j ∈ N ∧ valid(sg, tw(Sc))}

where CH refers to the set of chiplets in H and val(sg,
tw(Sc)) indicates the validity of sg for tw(Sc)

Each entry in SSTW describes the spatial and temporal
mapping of a segment (sg). Spatial mapping can be defined as
the target chiplet to execute sg. Accordingly, a target chiplet
(c) is specified for sg. The temporal mapping is defined as
the execution order. Therefore, a natural number j is used to
represent the execution order. Note that the execution order is
defined separately on each chiplet. Based on Definition 7, we
can define the entire scheduling space as the collection of that
in each time window.

Definition 8. MCM Scheduling Space for a Multi-model
Workload (SSSc(H))
For an MCM AI accelerator (H) and a multi-model workload
(Sc), the scheduling space (SSSc(H)) is defined as follows:

SSSc(H) ={(TW,SGTW , (SSTW (tw, SGTW (tw), H))|
TW ⊂ Sptw(Sc) ∧ SGTW (tw) ⊂ Spsg(tw)

∧ tw ∈ TW}

where SGTW refers to the set of layer segments for each time
window in TW

Definition 8 defines the entire scheduling space of an MCM
AI accelerator for a multi-model workload as the cross-product
of all possible time window partitioning, layer segmentation
for each time window, and corresponding scheduling space
within each time window.

D. Scheduling Problem

Based on Definition 8, we define a schedule instance as the
collection of spatial and temporal mapping for given valid time
windows (TW ) and segments for each time window (SGTW ).

Definition 9. MCM Schedule
A schedule instance (sched(Sc,H)) is defined as follows:

sched(Sc, TW,SGTW , H)={(TW,SGTW , s)|valid(TW,Sc)

∧ ∀tw ∈ TW : valid(SGTW (tw), tw)

∧ s ∈ SSTW (tw, SGTW (tw), H)}

where SGTW refers to the set of layer segments for each time
window in TW

Using Definition 9, we formulate the scheduling problem as
a minimization problem of an optimization metric of choice
(e.g., latency and energy), as follows:

Definition 10. MCM Scheduling Problem

argmin
TW,SGTW ,Sched

OptMetric(TW,SGTW , Sched,H)

where Sched = sched(Sc, TW, SGTW , H)

The optimization metric can be chosen by users depending
on the use case. In our scheduler, we adopt a comprehensive
and customizable score that thoroughly consider all of latency,
energy, and energy-delay product (EDP), allowing users to
configure their own optimization metrics, which can the men-
tioned frequently used metrics or a user-defined function that
takes a schedule instance and generates a custom metric.

E. Latency Modeling

To develop a scheduler based on the scheduling problem
formulation in Section III-C, we need to be able to evaluate
each schedule on target MCM AI accelerator hardware. For
that, we extend MAESTRO [24] to the chiplet domain and
model the latency of MCM AI accelerators concurrently
executing multi-model workloads on a shared MCM system
in a bottom-up fashion. We discuss our latency evaluation
methodology in detail, focusing on our extension for the MCM
and multi-model workloads.
Layer Latency. The latency incurred by an individual layer,
l, mapped onto an accelerator chiplet is defined as:

Lat(l) = Latip com(l) + Latcomp(l) + Latop com(l)

Latcomp(l) being the layer computation cost dependent on the
AI accelerator chiplet parameters Definition 2; Latip com(l)
is latency incurred from loading the layer operands (input
activations and weights), and Latop com(l) from transmitting
the output activation to a subsequent layer. As for Latcom, it
is defined as:

Latcom =


0, if same chiplet
Szdata
BWnop

+ nhops × Lathop + δ, if same package
Szdata
BWmem

+ nhops x Lathop + Latmem + δ, if offhcip

where assuming sufficient memory for double-buffering on
each chiplet accelerator, communication costs become incurred
when transmitting data to/from another chiplet on package or
the offchip memory. The first term Szdata

BW reflects transmission
latency; the second term is captures propagation latency across
nhops between the source and destination; δ is an additional
latency term for potential NoP traffic conflicts; Latmem is the
cost from read/write access of data at the offchip memory.
Time Window Latency. We first model a layer segment’s
latency in a time window as follows:

Lat(sg) =

N∑
n=1

Latcomp(ln)+Latip com(sg)+Latop com(sg)
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The first term represents the sum of individual layer computa-
tional latencies; Latip com is the initial external data transfer
loading costs of necessary off-chiplet input activation and
parameter weights; Latop com is the transmission latency from
transmitting segment output data to the next segment or writing
back to memory.

Based on the segment’s latency, the time window latency
can be defined as:

Lat(tw) = max
SGm⊂SG


∑

sgk∈SGm
Lat(sgk), if end-to-end

max
sgk∈SGm

Lat(sgk), if pipelining

where SGm represents the set of segments in a time window
associated with a model m. The latency of SGm can either
be the maximum out of all m segments if pipelining or their
summation in the base case. The latency of the entire window
is the max out of all SGm ⊂ SG.

Overall Latency. The overall Scenario latency can then be
estimated as the aggregate across all time windows:

Lat(Sc) =
∑

twj∈TW

Lat(twj)

F. Energy Modeling

Albeit similar to latency, Energy costs are always aggre-
gated. The base communication energy cost is defined as:

Ecom =


0, if same chiplet
Szdata × Etx bit × nhops, if same package
Szdata × Etx bit × nhops + Emem, if offchip

where the energy incurred from moving data across the pack-
age is equal to the product of data size, number of hops, and
the per-bit transmission energy (Etx bit). In case of an offchip
data transmission, the cost of memory access Emem is added.

The overall energy consumption across the entire time
windows can be computed as the sum of energies of its
constituent components as follows:

E(l) = Eip com(l) + Ecomp(l) + Eop com(l)

E(tw) =
∑

sgk∈SG

E(sgk), E(Sc) =
∑

twj∈TW

E(twj)

IV. SCHEDULING FRAMEWORK

We discuss our scheduling framework for multi-model
workloads on heterogeneous MCMs based on the hierarchical
search space characterization and problem formulation in
Section III. As illustrated in Figure 2, our scheduling algorithm
is a two-level approach: top-level and per-window searches.
Top-level search is responsible for selecting layers in each
model to be scheduled within a time window and determining
the initial number of chiplet nodes for each model. Per-window
search explores the spatial and temporal partitioning (i.e. tiles
or layer segments) of the layers in each model at the chiplet
granularity. To explore the chiplet granularity tiling space,
we generate valid inter-chiplet-pipelined schedules utilizing a
scheduling tree structure inspired by the RA Tree [4]. Each
schedule is evaluated using our custom heterogeneous MCM

cost model which provides feedback to the chiplet level tiling
(”layer segmentation” in Figure 2) with expected metrics
(latency, energy, EDP, etc.).

We codify our scheduling algorithm into a software frame-
work, as illustrated in Figure 3. As inputs, our scheduling
framework receives (1) description files of the multi-model
workloads (layer parameters, topology, dependencies, etc.) and
(2) a description file of the MCM hardware specification, such
as the number of chiplets, the shape, and dataflow organization
of the chiplet arrays, NoP bandwidth, on-chiplet memory size,
and so on. As outputs, our scheduling framework reports an
optimized schedule with expected metrics such as latency,
energy, EDP, or other user-defined metrics as a combination
of latency and energy. Our scheduling framework consists
of four software engines, which handle each step of the
scheduler discussed in this section. Each engine is responsible
for each step of our two-level scheduling method as illustrated
in Figure 2. We discuss each engine and our cost model
utilized by the framework next.

A. MCM Reconfiguration Engine (MCM-Reconfig)

The MCM-Reconfig engine at the top-level step receives
the multi-model workload descriptions with layer information
in each model, layer dependency, and expected latency and
energy of each layer on each chiplet class offline-analyzed by
MAESTRO [24]. The MCM-Reconfig engine is responsible
for the window assignment in Figure 2, which (1) generates
candidate time window partitioning strategies via sampling a
set of discrete points in time reflecting the boundary points
between execution windows and (2) assigns layers from mod-
els to each time window. As the final assignment of layers
to chiplets is not yet known, the decisions in MCM-Reconfig
engine are based on expected execution times. Formally, given
|DF | dataflow style classes, the expected execution latency for
a layer l is:

E(Lat(l)) =
|DF |∑
i=1

ndfi

|C|
× Lat(l → i) (1)

where ndfi indicates the number of class i chiplets integrated
onto the MCM having |C| chiplets in total; Latl→i is layer
l latency when scheduled on the class i chiplet, which is
retrieved offline from latency database generated by MAE-
STRO [24], [25]. The average execution time information
is utilized in MCM-Reconfig engine for window assignment
process illustrated in Figure 2.
Time Windows Characterization. MCM-Reconfig engine
first specifies the number of windows, which is the coarse-
grained scheduling granularity in our scheduling algorithm.
We define nsplits as a user-defined parameter to characterize
the number of time windows and explore proper cut points for
each model. For example, in Figure 2, the model A has a cut
after layer 6, which led to having layers 1-6 in Window 1. The
worst-case latency experienced by a model in the multi-model
workload is set as the time horizon which we partition into
periodic time windows.
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=0% =4.1% =7.4%

Fig. 4. Comparing top configurations from our periodic windowing against
layer-optimal using GPT2-L and UNet models. ∆ indicates the % difference.

Greedy Layer Packing Algorithm. Multi-model workload
introduces a challenge: the time window boundary determined
by the cut points of one model might not be aligned with other
models. Therefore, we adopt a first-fit greedy-packing heuristic
where layers are assigned to an execution window if their
execution time is expected to be within a time window (see
Algorithm 1), even if the start and finish time is not aligned
with those of a time window. Any layer with execution time
lies across two time windows is deferred to the next time
window. This approach not only solves the time window -
layer execution time misalignment problem, but also facilitates
(i) running low-latency layers in earlier windows, preventing
starvation of small workloads blocked by heavy workloads.
(ii) Dynamically controlling number of time windows when
needed by skipping trivial windows without any workloads.

Using a small multi-model workload entailing UNet [47]
and GPT-L [44] from Table II, we analyzed the efficacy of our
periodic window characterization with first-fit greedy packing
against a layer-optimal approach that considers every possible
layer from the workloads as a potential cut point. In Figure 4,
run our full scheduling algorithm and compare the top two
scheduling choices with minimal EDP. We observe the %
performance difference (∆) in EDP values between the two
strategies increase with a rising number of splits. However,

Algorithm 1 Greedy Layer Packing Algorithm
Input: M (workloads), T , C, DF
Output: L2W (Layer(s) to windows assignments)

1: Function LAYERASSIGNMENT(M , C, T )
2: for m ∈ M do
3: exec win = ()
4: win idx, used cycles = 0, 0
5: for l ∈ m do
6: E(Lat(l)) =

∑|DF |
i=1

ndfi
|C| × Lat(l → i)

7: while True do
8: if win idx == |T | then
9: Slack = None

10: else
11: Slack = ρ[win idx]− used cycles

12: if Slack == None or E(Lat(l)) <= Slack then
13: exec win += (l, )
14: used cycles += E(Lat(l))
15: Break
16: else
17: L2W [win idx][m] = exec win
18: used cycles = T [win idx]
19: exec win = ()
20: win idx += 1
21: L2W [win idx][m] = exec win

the overall rate of EDP improvement starts to stagnate after
4 splits. Based on this analysis, we set nsplits=4 (5 time
windows) as our default unless otherwise stated. Further
ablation is performed in the evaluation Section V.

B. Provisioner Engine (PROV)

The PROV engine is responsible for providing an initial
estimate on the number of chiplet needed by each model
workload in every time window given a candidate partition-
ing strategy. This assignment is agnostic to the underlying
chiplets’ resources or dataflow, and hence we refer to chiplet
resources in this state as nodes. We implement our PROV
engine for nodes’ distribution across various model workloads
using a set of rules. The rules are based on expected latency,
energy, EDP, or user-defined metric for each corresponding
window. This computational effort is associated with a spec-
ified performance optimization goal, denoted as P where
P ∈ {Lat,Ergy,EDP}, Following a uniform distribution
rule, the number of nodes Ni allocated to the ith model is:

Ni = round(
E(Pi)∑
j(E(Pj)

× |C|) (2)

where E(Pi) represents the expected value of the performance
optimization goal for model, computed in a manner similar
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to the expected execution latency formula in Equation (1),
whereas the sum term in the denominator represents the sum
of all expected values for every model workload in the current
time window. Though in principle other allocation strategies
can be implemented for the Provisioner, the benefits of having
a rule-based Provisioner as such are twofold:

• The Provisioner becomes specialized in warranting a fair
spatial distribution of resources per window across the
various model workloads, leaving temporal allocation
tasks to be handled through the other engines.

• Circumventing an additional top-level search space spec-
ification with a high degree of uncertainty, acting instead
as a regulator mid-way throughout the framework without
aggravating the search complexity.

To ensure the progression of all model workloads assigned
to a window, we enforce the allocation of at least one resource
per model per window to account for rounding errors in Equa-
tion (2) when a model workload assigned to the window has
negligible computational overhead compared to its peers. The
reallocation process iteratively reassigns nodes from models
with max number of resources until the constraint is satisfied.

C. Segmentation Engine (SEG)

As the first module in the per-window level, the SEG module
is instantiated for every time window, receiving topologically
sorted sets of layers from each model to be further partitioned
into segments. Segmentation is the process of partitioning a
set of layers into smaller subsets of layers (i.e., segments
or tiles) that can be mapped to a computing resource for
exclusive execution throughout the duration of a time window.
Different segmentation choices reflect various trade-off points
between the layer-sequential and layer-pipelining execution
features: the former controls the granularity of layers within
each segment to be co-located for sequential execution on
a single chiplet resource; the latter exploits inter-layer and
-chiplet pipelining opportunities between various segments.

Segmentation Search Space. As per our formulation in
Section III, a segmentation candidate is represented by a
sequence of splitting points, where candidate splitting points
are specified after each layer for each model’s set of layers pro-
vided to the SEG Given |Li| and |Ni| as the respective number
of layers and number of assigned nodes (from PROV) for a
model workload mi, the max number of segments that can be
generated for mi becomes upper bounded by Ni. Hence, the
overall segmentation space complexity is O(Πi |Li| × |Ni|),
with the Πi indicating the combinatorial space across all mod-
els. To aid in managing the rising multi-model segmentation
space complexity, we introduce the following heuristics.

Heuristic 1. Product to summation reduction. We enable
SEG to navigate the segmentation search space with reduced
complexity through a two-step process: (1) SEG leverages the
independence of segments from different models to initially
explore the segmentation subspace for each model separately
(2) Segmentation point candidates from the top-k configura-
tions for each model are used to construct a smaller search
space for the combinatorial co-exploration of the segmentation
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Fig. 5. Schedules creation through the SEG and SCHED engines.

space. Through this heuristic, a sizable reduction in the search
space complexity can be realized from O(Πi |Li|×|Ni|) down
to O(max(|Li| × |Ni|)).

Heuristic 2. Node allocation constraint. We designate
an additional user-specified constraint to restrict the number
of nodes provisioned to a model within a window based on
its number of layers. The constraint is particularly beneficial
in cases where there is mismatch between the multi-models’
distribution of computational efforts across their respective
layers. For instance, a scenario may arise where a single
compute-intensive layer may be assigned to same window
alongside dozens of layers from smaller models, leading to
an unnecessary explosion in the segmentation search space.
The enforcement of this constraint is performed by the PROV.

D. Scheduling Engine (SCHED)

The innermost Scheduling engine (SCHED) is responsible
for generating the final mapping of layer segments to the
physical chiplet accelerators on the target MCM.
Scheduling Search Space. As illustrated in Figure 5,
the scheduling search space for the mapping of M model
workloads onto C chiplets can be represented as a forest of
scheduling trees. Throughout this sub-section, we use three
terms to describe different parts of the scheduling search
space: (i) forest; as the entire collection of search trees. (ii)
tree; characterizing a single scheduling tree modeling with all
the M models involved. (iii) subtree; representing a subset part
of each tree exclusively associated with a model mi ∈ M .
Scheduling Tree Composition. every node in a schedul-
ing tree corresponds to a unique chiplet resource on the
MCM showcasing its distinctive heterogeneous features (i.e.,
dataflow). Each chiplet is assigned a unique identifier based
on a row-major order traversal across the MCM grid. Tree
edges are constructed based on each chiplet’s XY neighbors
connected directly through an interposer. Though a node j can
be replicated throughout the tree, it can only be visited once,
indicating its exclusive occupancy by a model.
Trees Distinction. within each tree, the root nodes of the sub-
trees specify different chiplets as potential starting positions
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TABLE I
MCM MICROARCHITECTURE PARAMETERS FROM [40], [48]. ALL
NUMBERS ARE SCALED TO 28 NM PROCESS NODE TECHNOLOGY.

Offchip
Memory

DRAM latency 200 ns
DRAM energy 14.8 pJ/bit

DRAM bandwidth 64 GB/s

Package
NoP intercon. latency 35 ns/hop
NoP intercon. energy 2.04 pJ/bit

NoP intercon. bandwidth 100 GB/s/Chiplet

for candidate model schedules. This is particularly relevant
when the underlying pattern of heterogeneity is non-uniform,
causing scheduling options to be dependent on the starting
position (see Figure 5). Thus, the scheduling space coverage
starts by selecting a tree, represented by a permutation se-
quence of subtrees’ root nodes – e.g., permutation sequence
[i,j,k] indicates exploring scheduling candidates for a tree with
scheduling candidates starting at chiplet positions i, j, and k
for a 3-model workload. The depth of model i’s subtree is
determined by its number of provisioned resources Ni.
Candidate Schedules Generation. Through traversing each
subtree, we can obtain candidate execution schedules for each
model by assigning segments orderly to the subtree’s nodes.
Starting from the root node of the first model’s subtree, a
constrained depth first search (DFS) is performed generating
a candidate schedule path once the full subtree depth (Ni) has
been reached. This traversal is repeated for each subsequent
subtree, constrained on the preceding subtree’s prior visited
nodes. Traversal paths from each subtree are then aggregated
to form the overall scheduling candidate.
Encoding and Search Algorithm. As shown in Figure 5,
use a 2 × |M |-length tuple to represent the final scheduling
encoding, where the first M entries reflect segmentation de-
cisions for each model mi, and the latter |M | entries reflect
schedule mappings of segments to chiplets for each workload.
This form of encoding facilitates supports having different
search algorithms for each engine. We tested both brute-force
and evolutionary algorithms as will be shown in Section V.
Schedules Starting Positions. We constrain the number of
scheduling trees to chiplet nodes that satisfy either of the
following two conditions: (i) chiplets that maintain a direct
link to an offchip DRAM memory interface (as in the right
and left-most chiplets of the MCM in Figure 5). (ii) ending
chiplet positions from the preceding window, which enable
leveraging data locality across time windows.
Search Space Complexity. Given |M | as the number of
models in a given window, |T | the number of scheduling
trees in the search space, d is a traversal path’s degree of
freedom, and Nmax representing the max number of resources
allocated to any model in this window. The scheduling search
complexity can be given by O(|M | × |T | × dNmax).

E. Cost Model and Scoring

We implement a cost model for evaluating scheduling
candidates on different performance efficiency metrics.
Cost Model. The overall cost model constitutes three distinc-
tive cost model components: offchip communication model,
inter-chiplet communication model, and intra-chiplet cost

TABLE II
OUR EXPERIMENTAL MULTI-MODEL WORKLOAD SCENARIOS FOR

DATACENTER AND AR/VR USE-CASES INSPIRED BY MLPERF [37], [46]
AND XRBENCH [27] BENCHMARKS. ‘SL’ INDICATES SEQUENCE LENGTH

Use-Case Scenario Models Batch Size

Datacenter
(MLPerf)
[37], [46]

(1) LMs GPT-L [44] (sl=128) 1
BERT-L [7] (sl=128) 3

(2) LMs +
Image (light)

GPT-L [44] (sl=128) 1
BERT-L [7] (sl=128) 3

ResNet-50 [14] (224×224×3) 1

(3) LMs +
Image (heavy)

GPT-L [44] (sl=128) 1
BERT-L [7] (sl=128) 3

ResNet-50 [14] (224×224×3) 32
(4) LMs +
Segmentation
+ Image
(heavy)

GPT-L [44] (sl=128) 8
BERT-L [7] (sl=128) 24

U-Net [47] (512×512×1) 1
ResNet-50 [14] (224×224×3) 32

(5) LMs +
Segmentation
+ Image
(heavy)

GPT-L [44] (sl=128) 8
BERT-L [7] (sl=128) 24

BERT-base [7] (sl=128) 24
U-Net [47] (512×512×1) 1

ResNet-50 [14] (224×224×3) 32
GoogleNet [50] (224×224×3) 32

AR/VR
(XRBench)
[27]

(6) AR
Assistant

D2GO [34] (Object Det.) 10
PlaneRCNN [29] (Plane Det.) 15

MiDaS [45] (Depth Est.) 30
Emformer [49] (Speech Rec.) 3
HRViT [9] (Semantic Seg.) 10

(7) AR
Gaming

PlaneRCNN [29] (Plane Det.) 15
Hand S/P [11] (Hand Track.) 45

MiDaS [45] (Depth Est.) 30

(8) Outdoors D2GO [34] (Object Det.) 30
Emformer [49] (Speech Rec.) 3

(9) Social
EyeCod [59] (Gaze Est.) 60

Hand S/P [11] (Hand Track.) 30
Sp2Dense [32] (Depth Ref.) 30

(10) VR
Gaming

EyeCod [59] (Gaze Est.) 60
Hand S/P [11] (Hand Track.) 45

Simba(Shi.) Het-Sides Het-CrossHet-CBSimba(NVD.)

Fig. 6. The evaluated MCM chiplet organizations.

model. We follow our latency and energy modeling char-
acterization in Section III-E and Section III-F, and use the
architectural parameters provided in [40], [48] for the offchip
and inter-chiplet communication costs as shown in Table I.
For the intra-chiplet cost model, we utilize the open-source
accelerator cost model, MAESTRO [24], [25], to evaluate
intra-chiplet performance based on a chiplet’s underlying
dataflow and hardware parameters.
Scoring. Scores are estimated based on latency, energy, or
EDP metrics following Section III modeling. The SCHED
aggreages scores for each model’s schedule, and returns the
top performing configuration to the SEG engine to rank
segmentation strategies. Top segmentation strategies in each
window are aggregated to score the overall scheduling strategy
at MCM-Reconfig (see the scoring flow in Figure 3).

V. EVALUATION

A. Experimental Settings

Multi-Model Workloads. Our evaluations are performed on
multi-model workload scenarios based on models from (i)
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MLPerf inference benchmark [37], [46] for the datacenter
multi-tenancy setting; (2) XRBench [27] for AR/VR work-
loads. The full list of scenarios is provided in Table II covering
a wide range of use-cases with varying degrees of diversity and
complexity. We implement our MLPerf following datacenter
usage trends in [13], [19], [42].
MCM System. We follow Simba’s on-package chiplet ar-
rangement to implement our MCM experimental templates
[48]. Simba comprises a total of 36 chiplets connected through
a Mesh topology and arranged as four 3×3 groups of chiplets.
We implement (1) 3×3, and (2) 6×6 MCM templates for our
experiments. For each, we adopt XY routing for on-pacakge
data movement, and integrate further memory interfaces on
the sides of the outer chiplets, providing direct links to the
offchip DRAM via double-sided memory channels as in [10].
We consider 4096 PEs/chiplet and 256 PEs/chiplet for the
datacenter and AR/VR settings, respectively. We set the L2
shared memory size in each chiplet to 10 MB, inspired by the
on-chip memory size in a recent mobile accelerator [43].
Baselines and Heterogeneity Patterns. We choose Shi-
diannao [8] and NVDLA [39] dataflow styles for our acceler-
ator chiplets. We accordingly implement two baselines:

• Standalone. Each model in a multi-model workload is
assigned a single chiplet for execution, all chiplets posses
the same dataflow.

• Simba-like Pipelining. In each time window, Model work-
loads can be assigned to more than one chiplet to leverage
pipelining benefits. All chiplets posses the same dataflow.

We implement several patterns for the heterogeneous on-
package integration of Shi-diannao and NVDLA chiplet ac-
celerators. As shown in Figure 6, we test heterogeneous
checkerboard, sides, and cross patterns.
Optimization Targets. We perform our search space explo-
ration experiments to target optimizing a single metric at a
time, coining the terms Latency Search, Energy Search, and
EDP Search. EDP Search is our default experiment.
Search Algorithms and Evaluation. We adopt a brute-force
search for all experiments entailing the 3× 3 MCM template.
For the scaled 6×6 experiment, we implement an evolutionary
algorithm for the SEG module as a meta-heuristic approach
to navigate the rising complexity. We set the population size
and max number of generations to 10 and 4, respectively.
The evaluation criteria follows the scoring function based on
hierarchical latency and energy models derived in Section III.

B. Search Space Exploration Analysis

We compare the 3×3 MCM brute-force search experiments
for the heterogeneous and baseline configurations across the
different optimization targets for the datacenter and AR/VR
usage scenarios. All evaluations are normalized by the stan-
dalone NVDLA baseline. Though we performed experiments
for all use-cases listed in Table II, we focues our analysis
on a subset of experiments in Figures 7 and 8 due to space
limitations: Scenarios 3 and 4 from the datacenter use cases,
and the AR Gaming, Outdoors, and VR gaming scenarios from
the AR/VR use-cases.
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Fig. 7. Comparing brute force scheduling space exploration processes across
various MCM configurations for various search targets for scenarios 4 and 5
from Table II. standalone Shi-diannao and standalone NVDLA indicate cases
where execution is performed on a single chiplet supporting said dataflow.
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VR 

Gaming
Outdoors

AR 

Gaming

AR 

Assistant

Fig. 8. Pareto optimal results on the EDP search experiments for the labeled
XRBench usage scenarios. Results normalized by standalone NVDLA

Pipelining Speedups. We observe that the combination of
pipelining and chiplet heterogeneity lead to Pareto-optimal
operating points that offer performance improvement oppor-
tunities. In Figure 7, we see that pipelining individually
can offer speedups over standalone baselines. For example,
Scenario 3 (Latency Search) – top-left most sub-Figure –
shows Simba (NVDLA) realizing configurations achieving up
to 4× speedup over the standalone NVDLA. This results from
potential multiple chiplet assignments per window to each
model, speeding up compute-intensive layers of GPT-L,BERT-
L, and the 32-batch ResNet-50 models.
Heterogeneous Integration Synergy. As the density of multi-
model workloads increase (Scenario 4 from Figure 7), we
observe the effectiveness of homogeneous pipelining drops due
to the increased competition for chiplet resources from heavier
workloads. Heterogeneous MCM solutions become viable in
such cases as they add another dimension for boosting per-
formance through heterogeneous pipelining schedules, which
compensate for the rising complexity through considering the
varying affinities of diverse model layers, improving both
latency and energy efficiency as seen in their respective
search experiments. This benefits of heterogeneous pipelining
also hold for the AR/VR scenarios as seen by up to 1.25×
execution speedups in Figure 8.
Model Suite Diversity. The degree of diversity within the
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Fig. 9. Comparing latency, energy, and EDP evaluations for the top-scoring
candidates from every search experiment with different optimization criteria
across every scenario in Table II. Values normalized by NVDLA standalone.

Simba (NVD)Simba (Shi) Het. CB Het. Sides

Fig. 10. EDP and Latency comparison for the AR/VR usage scenario on
various MCM templates for the EDP search experiment.

multi-model use-case also influences the overall performance
improvement. In Scenario 3 (Figure 7 top), GPT-L and BERT-
L were dominant transformer-based workloads with strong
affinities towards the NVDLA dataflow style, contributing to
the homogeneous Simba (NVDLA) solutions dominating the
Pareto frontier. Scenario 4 (Figure 7 bot) and the AR/VR
(Figure 8), more diversification of the layer workloads set
lead more heterogeneous pipelining solutions to dominate the
Pareto frontier.
Target Optimization. As illustrated in Figure 7, the domi-
nance of MCM configurations is also dependent on the target
optimization metric. For instance in Figure 7 Scenario 4,
the Standalone NVDLA baseline is the most energy-efficient
solution as it does not incur NoP data movement costs from
pipelining. However for Energy Search experiment, Het-Sides
configuration identifies scheduling solutions that become the
most energy efficient ones by leveraging heterogeneity to
overcome extra NoP costs.

C. Top Performing Schedules Comparison

We compare the top-performing scheduling configurations
for each MCM configuration across the various scenarios.
NoP and Inter-chiplet Pipelining. We take barplot A1 in
Figure 9 as an example and and zoom in on the Simba
(NVDLA) configuration (2nd category) in each scenario. In
Scenarios 1-3, the small number of models and limited diver-
sity lead the benefits of inter-chiplet pipelining to outweigh the
added NoP costs, enhancing throughput and achieving latency
speedups over the standalone NVDLA baseline reaching 1.4×,
1.4×, 3.3×, respectively. Scenarios 4 and 5 sustain larger

TABLE III
END-TO-END LATENCY BREAKDOWN IN SECONDS FOR THE TOP
PARTITIONING CANDIDATE IN FIGURE 11. ‘IDEAL‘ INDICATES

INDIVIDUAL MODEL LATENCIES UNCONDITIONED ON WINDOW TIMES.
W0 W1 W2 W3 W4 ideal tot #layers

GPT-L 0.23 0.21 1.02 0.28 0.23 1.97 3.1 120
BERT-L 0 0 1.47 0.4 0.90 2.77 3.76 60
U-Net 0.21 0.14 0.46 0 0 0.8 1.45 23
ResNet 0.78 0.17 0.11 0 0 1.1 1.1 66
Window 0.78 0.21 1.47 0.4 0.9 - 3.8 269
#layers 60 30 131 25 23 - -

NoP overheads due to the increased traffic contention from
more workloads, causing Simba (NVDLA) 1.05× slowdown
compared to the baseline in both scenarios.
Heterogeneity Pattern Choices. Across the heterogeneous
MCM scheduling options in Figure 9 (Het-CB and Het-Sides),
we notice that in the majority of cases, Het-Sides outperforms
Het-CB. The reason being is that Het-Sides presents workloads
with inter-chiplet pipelining options that can either be homo-
geneous or heterogeneous based on the chiplets heterogeneous
arrangement . This is especially beneficial in cases where are
sequences of layers that can benefit from pipelining while
sharing the same dataflow affinities, unlike Het-CB which can
only offer the heterogeneous pipelining option.
Scenario and Optimization Target. In all matching criteria
plots (A1, B2, and C3), Het-Sides configuration at the most
compute-intensive and diverse scenarios 4 and 5 consistently
outperforms all baselines. For example, Scenario 4 EDP in
barplot C3 is reduced by factors of 2.3× and 2.6× compared to
Simba (NVDLA) and Simba (Shi-diannao), respectively, while
being 9.25× less than the standalone NVDLA. We also show
in Figure 10 the matching EDP barplot for the AR/VR exper-
iments. We observe that Het-Sides option remains the most
efficient option compared to the Simba baselines, achieving
on average 5.2% improvement over the standalone NVDLA.
Het-Sides Top Scheduling Strategy. In Figure 11, we
illustrate the overall scheduling strategy for the top-scoring
Het-Sides solution from the EDP search in Scenario 4. The
Figure depicts the per-window inner schedules and the pro-
gression of accumulative latency for processing the workloads
packed into each window. The distinguishing feat from this
top scheduling strategy is the non-uniformity of time windows
resulting from the greedy-packing heuristic, where smaller
workloads (ResNet-50) are assigned to the earlier windows
at the expense of larger workloads (e.g., from BERT-L) being
delayed to subsequent windows. This facilitates (i) optimizing
the schedules of smaller workloads at a finer level of granu-
larity; (ii) avoiding starvation of smaller workloads. Starting
from window 2, GPT-L and BERT workloads dominate the
schedule, having their segmentation and mapping strategies
optimized to minimize the experienced EDP in each window.
In Table III, we breakdown how the latency of each window
is estimated alongside their assigned number of layers.

D. Ablation on Windowing and Chiplets Scaling

Ablation Study on Time Partitioning. Using Scenario 4
and Het-Sides EDP Search experiments, we study how perfor-
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Fig. 11. Illustration of the top-scoring partitioning strategy for the scenario 4 experiments given the heterogeneous-sides configuration. Each window showcases
the top-performing schedule within, and the mapping of models onto chiplets. Time boundaries between successive windows are computed over 500 MHz.

Fig. 12. Sweep of nsplits for the 3× 3 Heterog-Sides MCM configuration
under EDP search showing EDP and latency results for each case’s top choice.

Fig. 13. Comparing EDP and Latency at nsplits ∈ {2, 3} for the 6 × 6
MCM for target EDP optimizaiton and an evolutionary search algorithm.

mance changes when varying nsplits and repeating the experi-
ment in Figure 12. We observe the rate of EDP improvements
starts to plateau after nsplits=4 similar to our analysis in Figure
4, where EDP of the top candidate is reduced from nsplits=4
to nsplits=5 by a factor of 1.04×.

Ablation on Greedy Packing Algorithm. Using Scenario 4
and Het-Sides configuration, We tested the efficacy of our first-
fit greedy layer packing algorithm against a uniform packing
baseline, which uniformly distributes layers from each model
across time windows in a uniform fashion. The Greedy layer
packing algorithm was superior, improving execution speedups
and energy efficiency by 21.8% and 8.6%, respectively.

Scalability. We assess the scalability of our search framework
using the full 6×6 Simba MCM system, where we implement
an evolutionary algorithm for the SEG considering the rising
problem complexity from the inclusion of more chiplets. We
perform the search for our default experimental settings and
Scenario 4 given nsplits ∈ {2, 3}. We employ a Heterog-
Cross pattern and compare it against the Simba baselines in
Figure 13. We find that the Heterog-Cross top-scoring schedule
outperforms those from the Simba baselines in all cases across
all metrics. At nsplits=3, Heterog-Cross leads to 2.3× and 1.9
× reduction in EDP; 2.1× and 1.8× reduction in latency; over
Simba (Shi-diannao) and Simba (NVDLA) and, respectively.

TABLE IV
COMPARISON AGAINST PRIOR RELATED SCHEDULING WORKS.

Work Chiplet-based Multi- Inter-Layer Heterog-
Systems Models Pipelining Aware

Simba [48] ✓ ✓
Tangram [10] ✓
NN-baton [52] ✓
SET [4] ✓
Gemini [5] ✓ ✓
Herald [26] ✓ ✓
MAGMA [22] ✓ ✓
Planaria [12] ✓ ✓
Veltair [30] ✓
MoCA [23] ✓
This Work ✓ ✓ ✓ ✓

VI. RELATED WORKS

Scheduler for Accelerators. Table IV compares our work
against prior scheduling works. As shown, the related works
can be categorized into two groups: one which has considered
aspects of inter-layer pipelining and chiplet-based systems [4],
[5], [10], [48], [52], while the other category of works focused
on multi-model workloads on heterogeneous platforms [12],
[22], [23], [26], [30]. Only this work addressed MCM, multi-
model workloads, inter-layer pipelining, and heterogeneous
dataflow.
Multi-chiplet Modules. Several works have proposed
to address the performance scalability challenge for high-
performance computing and DNN acceleration via MCM
integration [1], [18], [40], [48], [52]. Simba [48] is one
notable workload which pioneered a scalable deep learning
inference accelerator employing MCM integration leverag-
ing non-uniform work partitioning, communication-aware data
placement, and cross-layer pipelining.
Intra- and Inter-layer Parallelism. Numerous works have
explored intra-layer parallelism to maximize performance ef-
ficiency and resource utilization by partitioning DNN layers
into smaller parallelizable tiles [15]–[17], [31], [41], [57], [58].
Other works have studied the inter-layer scheduling space to
compensate for workloads characterized by low degrees of
parallelism [4], [10], [21], [33], [60].

VII. CONCLUSION

In this work, we explored the scheduling space of a new
class of MCM accelerator architecture, heterogeneous MCM
AI accelerator, targeting multi-model AI workloads. We iden-
tify that the scheduling problem is intractably large but multi-
level problem formulation and heuristics we proposed are
effective for the extended scheduling problem. The results also
show that heterogeneous MCM accelerator is beneficial multi-
model workloads, which motivates further exploration.
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