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Microscopic colloidal particles are often used as probes to study the non-equilibrium activity
of living matter or other complex systems. In many of these contexts hydrodynamic interactions
between the probe particle and the system of interest play an important role. However little is known
about what effect such interactions could have on the overall non-equilibrium characteristics of the
system of interest. In this paper we study two simple models experimentally and theoretically, which
demonstrate that hydrodynamic interactions could either diminish or enhance the total entropy
production of the combined system. Importantly, we show that, our method of calculating entropy
production helps identify heat flows consistently, even in the presence of hydrodynamic interactions.
The results indicate that interactions can be finely tuned to optimize not only dynamic properties
but also irreversibility and energy dissipation, thereby opening new avenues for tailored control and
design of driven mesoscale systems.

Introduction.- Non-equilibrium systems operating in a
steady state are characterized by a continuous dissipa-
tion of heat, which in turn leads to an increase in en-
tropy production in the environment [1, 2]. This entropy
generation rate also serves as a viable measure of the ir-
reversibility of the underlying processes [3]. Computing
this quantity for systems with many interacting degrees
of freedom and understanding how the rate of entropy
production depends on the strength of the interactions
are critical open problems. Addressing these issues can
offer crucial insights into the emergence of irreversibil-
ity and spatiotemporal order in complex processes, espe-
cially in biophysical contexts [4].

The effect of interactions is also an important consid-
eration when the non-equilibrium characterization of a
complex dynamical system involves interactions with a
different system serving as a probe [5–7]. For example,
fluctuations of probe particles within cytoskeletal net-
works offer insights into nonequilibrium active mechan-
ics and responses to architectural changes [8, 9]. Car-
bon nanotubes similarly serve as probes for inferring spa-
tiotemporal nonequilibrium activity within cells [10]. In
addition, colloidal passive particles immersed in bacterial
baths show enhanced local dynamics, revealing nonequi-
librium responses [11]. Further, microrheological mea-
surements with attached probe particles help to infer
the active nature of red blood cell flickering [12]. Re-
cent works have shown that such probe-based approaches
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can be combined with model-dependent estimates to in-
fer dissipation from red blood cell flickering data [13]. A
probe, even a passive one, is however an invasive tool and
can substantially change the characteristics of the system
it is measuring via hydrodynamic or other interactions.

Naturally, there has been a significant theoretical inter-
est in understanding how interactions, defined in a broad
sense, contribute to the energetics and irreversibility of
dynamical processes in complex interacting systems. A
recent study addressed this issue by decomposing the sta-
tistical estimate of irreversibility into terms in successive
orders of interactions [14, 15]. These works show that
- given the fact that no two degrees of freedom of the
system can change their state simultaneously (multipar-
tite dynamics), the knowledge of higher-order interac-
tions between the degrees of freedom of the system can
only improve the estimation of the total entropy produc-
tion rate. Moreover, they provide an algorithm which
can decompose the estimate of the entropy production
rate into a sum of non-negative terms corresponding to
different orders of interactions. Such an approach, how-
ever, does not indicate how, for a fixed kind and order of
interaction between various degrees of freedom of the sys-
tem (or a system and the probe), the irreversibility of the
process and energy dissipation depends on the strength
of the interaction parameters.

Here, we demonstrate that for a specific class of pro-
cesses described using overdamped Langevin equations,
even interactions of the same kind could have varying im-
plications for estimated dissipation depending on the na-
ture of non-equilibrium driving. We explore systems with
co-evolving degrees of freedom in a single heat bath or at-
tached to multiple reservoirs, where non-multipartite dy-
namics can arise due to non-diagonal friction, mobility,
and diffusion tensors [16] resulting from hydrodynamic
interactions [17–20]. These interactions are widespread
in nature and pivotal in the self-organization of biological
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materials, such as protein folding [21]. Additionally, they
are known to facilitate the synchronization of microscopic
oscillators involved in collective ciliary or flagellar motion
[22, 23]. We demonstrate, through explicit examples of
both experimentally and analytically tractable systems,
that such interactions can both suppress and enhance the
overall irreversibility (energy dissipation) as compared to
the non-interacting limit, and can lead to situations with
non-monotonic dependencies. We also show that our es-
timates can be used to identify heat flow at the level of
single trajectories for these systems.

Results.- We first consider a system with two hydro-
dynamically coupled particles trapped in two separate
parabolic potentials while the mean position of one of
the traps is modulated by the active Ornstein-Uhlenbeck
(OU) noise. We call it ‘OU-noise driven model’ for fur-
ther discussions. In this system, detailed balance is al-
ways violated, leading to a non-equilibrium steady state
(NESS) over time, even when particles are well separated
with minimal hydrodynamic interaction. [24–27]. In ad-
dition, the strength of the hydrodynamic interaction can
be tuned by changing the mean separation between the
two particles.

To realise the system experimentally, two trapping po-
tentials with a separation d are created by tight-focusing
two separate Gaussian beams (wavelength, λ = 1064 nm)
- emanating from solid-state lasers of opposite linear po-
larisation states - through an objective lens of high nu-
merical aperture (NA = 1.3, 100X, oil-immersion) po-
sitioned in a conventional inverted microscope (Olym-
pus XI ). One of the trapping beams is passed through
an acousto-optic modulator (AOM) which is externally
modulated by active OU noise of different amplitudes
and timescales. Polystyrene microparticles (diameter,
2a = 3 µm) - sparsely dispersed in double-distilled water
- are trapped inside a sample holder placed on the stage of
the microscope. To detect the position fluctuations of the
trapped microparticles, two detection beams of different
wavelengths ( 650 nm and 780 nm), co-propagating with
the trapping beams, are loosely focused onto the trapped
particles. The back-scattered light from both particles
is separately projected on separate ‘balanced-detection’
systems constructed using high-gain photo-diodes [28].
In this way, the trajectories of both particles are inde-
pendently recorded at 1 nm − 10 kHz spatio-temporal
resolution.

The dynamics of the system can be written as a multi-
dimensional linear Langevin equation: ẋ(t) = −F.x(t) +
ξ(t), with ⟨ξ(t) : ξ(t′)⟩ = 2δ(t − t′)D. Here, x(t) ≡
[x1(t), x2(t), λ(t)]

T consists of the fluctuating positions
(x1(t), x2(t)) of the two particles measured with respect
to the center of each optical traps having stiffness con-
stants k1 and k2, and λ(t) is the OU noise that is expo-
nentially correlated with the relaxation timescale τe and

amplitude De with ⟨λ(t)λ(t′)⟩ = De

τe
exp(− t−t′

τe
). The

vector ξ(t) ≡ [η1(t), η2(t), η3(t)]
T contains the random

Brownian forces of the system. The drift (F) and dif-
fusion (D) tensors can be expressed in terms of the hy-

(a) (b)

(c) (d)

FIG. 1. (a) Schematic of the hydrodynamically coupled
particles in dual traps of different stiffness constants. The
mean position of the trap with stiffness constant ‘k1’ is mod-
ulated with an Ornstein-Uhlenbeck noise (‘λ(t)’) while the
trap with stiffness constant ‘k2’ remains unperturbed. k1 =
17.2±0.2 pN/µm and k2 = 12±0.4 pN/µm are fixed through-
out the experiments. (b) The probability density functions
of normalised positional fluctuations of the particles trapped
in two traps (d = 4.2 µm) are plotted. The experimentally
recorded fluctuations of both particles are normalised with
the equilibrium standard deviations (σi =

√
kBT/ki) of cor-

responding traps. (c) The non-zero probability current corre-
sponding to the particle in the driven trap is shown. (d) The
probability current also appears to be non-zero corresponding
to the particle in the fixed trap.

drodynamic coupling constant ϵ ≡ 3a
2d (considering first

order of the Oseen tensor [18]) and the Stokes friction co-
efficient of the medium γ ≡ 6πηa with viscosity η, such
that

F =

 k1/γ ϵk2/γ −k1/γ
ϵk1/γ k2/γ −ϵk1/γ
0 0 1

τe

 , D =

D0 ϵD0 0
ϵD0 D0 0
0 0 De

τ2
e

 ,

(1)
as D0 = kBT

γ (kB is the Boltzmann’s constant). The ra-

tionale behind the dynamical equations is explicitly dis-
cussed in SI A.
A schematic of the system of our interest is shown

in Fig.1(a). We primarily focus on the entropy produc-
tion rate of the system after it reaches a nonequilibrium
steady state defined by the joint probability distribution
(Pss(x)) and non-zero probability current (jss(x)) corre-
sponding to the whole phase space of the system. The
marginal steady-state distributions of both the particles
in the ‘driven’ (x1) and ‘fixed’ (x2) traps are Gaussian.
The variance of the particle in the ‘driven’ trap is ex-
pectedly larger than the same in a fixed trap as shown
in Fig.1(b) for a typical experimental trajectory. The
recorded positional fluctuations of both particles are ex-
pressed as dimensionless quantities z1,2 ≡ x1,2/σ1,2 as

σ1,2 =
√
kBT/k1,2. The non-zero probability current
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(b) (c)(a)

FIG. 2. Entropy production rate (Π) of the ‘OU-noise driven model’ : (a) Inferred Π from the experimental data monotonically
increases with the strength of the external noise (parametrised as θ) at two different separations between the particles. The
entropy production rate of the system decreases with the increasing hydrodynamic interaction (ϵ) as shown for two different
noise strengths (b) θ = 0.42 and (c) θ = 0.49. Corresponding theoretical estimations are shown with the solid lines.

(as shown in Fig.1(c)) is strongly prevalent in (x1, λ)
space as the particle in the first trap is driven by the
OU noise. However, the probability current also prevails
in the (x2, λ) space (Fig.1(d)), even though the external
noise does not directly drive the particle in the second
trap. This indicates the appearance of induced nonequi-
librium dynamics through hydrodynamic interactions.

To check the effects of interactions, we perform the ex-
periments at two different separations (d = 4.2 µm and
d = 7.5 µm) between the traps (k1 = 17.2± 0.2 pN/µm
and k2 = 12 ± 0.4 pN/µm) by varying the strength of

the external noise (parameterized by θ =
De/τ

2
e

D0
). Then

we estimate the entropy production rate from the experi-
mental and numerical data using the short-time inference
technique [26, 29–32] based on the thermodynamic uncer-
tainty relation [33]. This technique is model-independent
and particularly advantageous to estimate the entropy
production rate from the experimental trajectories as it
does not require any calibration factor to transform the
measurements in positional units [26]. The technique is
also briefly discussed in SI B.

We find that the entropy production rate is monoton-
ically increasing with θ at both separations (Fig.2(a)).
However, the entropy generation rate for the separation
d = 4.2 µm at any θ is found to be slightly lower than the
same for d = 7.5 µm as shown in Fig.2(b) and Fig.2(c).
This observation suggests that if the separation between
two particles is reduced, the total entropy production
rate of the system will also be decreased, even though
the hydrodynamic coupling strength is enhanced in this
process.

The analytically calculated total entropy production
rate (in units of kB/s) for the system [34],

Π =

∫
dx

D−1j2ss(x)

Pss(x)

=
Dek

2
1(γ + (1− ϵ2)k2τe)

D0γτe(γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e )
,

(2)

also corroborates our observation as shown in the plots

of Fig.2. If the hydrodynamic interaction becomes negli-
gible (ϵ→ 0), the entropy production rate will be,

[Π]ϵ→0 =
Dek

2
1

D0γτe(γ + k1τe)
, (3)

which is greater than Π - indicating the reduction of en-
tropy production rate in the presence of hydrodynamic
interactions. This occurs since the motion of the ‘driven’
particle gets constricted due to the other particle placed
close to it - which results in a lower entropy production
rate. Similar observations were made in Ref.[26] where
the energy dissipation in a driven particle was found to be
reduced due to hydrodynamic flows close to a microbub-
ble.
Note that we could think of our two-particle system as

a composite system consisting of the driven particle (x1)
- which has an intrinsic energy dissipation rate [Π]ϵ→0 -
being the system of interest, and the other particle (x2)
being a probe brought close to it. This demonstrates that
interactions with a probe, which by itself does not dissi-
pate energy, could significantly reduce the energy dissi-
pation to the environment from nonequilibrium systems.

Additionally, it is important to note that the energy
balance of the interacting system should hold such that
input power estimated as, ⟨Ẇ ⟩ = k1⟨λ(t) ◦ ẋ1(t)⟩ is ex-
actly equal to the total dissipated heat.This can be easily
computed from the increase in entropy of the medium as
−⟨Q̇⟩ = −⟨Q1 + Q2⟩ = kBTΠm ≡ kBT ⟨D−1(Fx) ◦ ẋ⟩)
(see SI C for the details of the calculation). Note that
it would not have been possible to establish energy
balance in this system through the approach of applying
trajectory energetics to langevin equations of individual
variables, as has been previously done in Refs. [35–38].
Since the thermal noises involved in hydrodynamically
coupled systems are cross-correlated (this leads to the
non-diagonal form of the diffusion matrix), defining heat
flow at the subsystem level (Q1 and Q2) for this system
still remains unclear [16].
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(a) (b) (c)

FIG. 3. ‘Two-temperature model’ : (a) Schematic of the hydrodynamically coupled particles in dual traps of different stiffness
constants. The particle trapped in the potential with stiffness constant ‘k1’ is in temperature T + ∆T while the particle in
the trap with stiffness constant ‘k2’ remains in temperature T . (b) Theoretical estimation of the entropy production rate of
the system is plotted with ∆T and hydrodynamic coupling strength ϵ. [k1 = 17.2pN/µm, k2 = 12pN/µm] (c) Estimation of
entropy production rate as a function of ϵ - using the short-time inference scheme from numerical trajectories of the system for
fixed ∆T . The solid lines indicate corresponding theoretical predictions. The non-monotonic feature of Πtw with ϵ is shown as
the insets.

Next, we theoretically discuss the role of hydrodynamic
interactions in a system of two particles where the par-
ticles are at different temperatures. We call this model
the ‘two-temperature model ’ for further discussion. The
dynamics of this system can be similarly expressed as a
coupled Langevin equation with drift (Ftw) and diffusion
(Dtw) tensors of following forms [35] -

Ftw =

(
k1/γ ϵk2/γ
ϵk1/γ k2/γ

)
, Dtw =

(
kB(T+∆T )

γ ϵkB(T+∆T )
γ

ϵkB(T+∆T )
γ

kB(T+ϵ2∆T )
γ

)
,

(4)
where the particle in the trap of stiffness k1 feels the
temperature T + ∆T and the other particle in the trap
of stiffness k2 feels a lower temperature T . The underly-
ing rationale for the dynamical equations of this system
is elegantly explained in Refs. [35, 39]. This model is
also experimentally viable and studied in detail in sev-
eral Refs. [35, 36]. In these studies, the two-temperature
configuration was created by forcing one of the parti-
cles by random white noise while the other particle was
kept in close proximity. The effect of the random white
noise is assimilated as an ‘effective temperature’ which is
attributed to the different temperatures of the two par-
ticles. The total entropy production rate of this system
can be analytically computed as (with the same formal-
ism used for the ‘OU-noise driven model’ ),

Πtw =
k22∆T

2ϵ2(1− ϵ2)

(k1 + k2)γT (T +∆T )
, (5)

and is found to be non-monotonic in ϵ with a maxima
at ϵ = 1/

√
2 ≡ 0.707 as shown in Fig.3(b) and Fig.3(c).

This indicates that the entropy production rate of the
system is enhanced with the increased hydrodynamic
coupling up to a certain separation before it goes down
even though the interaction is enhanced.

Interestingly, by combining this formula with the en-
ergy balance condition, we can straightforwardly obtain

an expression for the rate of heat dissipated by the hot
particle = −⟨Q̇1⟩ (which, if energy balance holds, will be

the same as the heat absorbed by the cold particle ⟨Q̇2⟩
with a minus sign) as,

⟨Q̇1⟩ = −⟨Q̇2⟩ = kB
Πtw

1
T − 1

T+∆T

,

=
k22ϵ

2(1− ϵ2)

(k1 + k2)γ
kB∆T

≡ −⟨Q̇⟩.

(6)

Note that this approach was not taken in previous stud-
ies, and it was argued that there is a violation of the
First Law in such systems with some amount of heat be-
ing lost in interactions, except for the case where k1 = k2
[36, 37]. We, however, compute the entropy production
rate and assume that the First Law should hold, which
enables us to obtain an expression for heat consistently.
The derived expression is the same as the expression for
heat flow from hot particle to cold particle previously ob-
tained in Refs. [36, 37]. In addition, we argue that the
estimated heat flow needs to be entirely associated with
the heat dissipated by the hot particle, as well as the
heat absorbed by the cold particle such that the energy
balance condition is automatically satisfied (See SI C for
further details).
This system will reach an equilibrium steady state if

the two particles are well-separated with negligible hy-
drodynamic interaction. The hydrodynamic interaction
combined with the difference in temperatures breaks the
detailed balance, resulting in the transfer of heat from the
relatively ‘hot’ particle to the ‘cold’ one as the particles
are placed closer to each other. If the separation between
particles is so small that the motion of the particles is af-
fected, the entropy production rate decreases, resulting
in a non-monotonic dependence of entropy production on
the interaction strength.
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As a corollary, note that - considering either one of the
interacting particles as a probe (having interactions with
the other) - our particular system highlights the impor-
tance of ensuring that the probe’s temperature matches
that of the system. This guarantees that the interaction
with the probe alone does not make the system appear
out of equilibrium, not does it add additional contribu-
tions to dissipation.

Conclusions.- In conclusion, we unravel the effects of
hydrodynamic interactions influencing the irreversibil-
ity of two mesoscopic systems with different origins of
nonequilibrium characteristics. We specifically find that
the entropy production rate shows completely different
features for the two systems as a function of the strength
of the hydrodynamic interactions. Moreover, we resolve
the issues related to the energy balance for hydrodynam-
ically coupled systems with the energetics estimated di-
rectly from the entropy production rate.

Our observations suggest that even first-order inter-
actions between subsystems can bring forth surprising
behaviours in the irreversibility of a system with only a
few degrees of freedom. In this context, the details of the
dynamics are crucial in discerning the role of certain in-

teractions in nonequilibrium systems with multiple reser-
voirs or co-evolving degrees of freedom in a single heat
bath. Notably, it will be interesting to test the effects of
higher-order interactions on the irreversibility of out-of-
equilibrium processes in similar steady states as well as
in different time-dependent configurations [40]. Also, the
impact of such interactions in the context of information
transfer in biochemical signalling networks [41, 42] and
optimising protocols for non-equilibrium control prob-
lems [43–45] will be quite interesting to investigate.
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where Hij (i, j = 1, 2) are the constant elements of a hydrodynamic coupling tensor of the form H =

(
1/γ ϵ/γ
ϵ/γ 1/γ

)
-

considering that the displacements of the particles (x1(t), x2(t)) are small compared to the mean separation between
the traps (d). Here ϵ ≡ 3a

2d denotes the coupling coefficient taken as the lower order component of the Oseen tensor
[17, 18] for longitudinal motions and γ ≡ 6πηa is the viscous drag coefficient of the medium. The terms ξ1(t) and
ξ2(t) are delta-correlated random Brownian forces such that ⟨ξi(t)⟩ = 0, ⟨ξi(t)ξj(t)⟩ = 2kBT (H)−1

ij δ(t− t′). kB is the
Boltzmann’s constant.

Without any external perturbation, the coupled particles will be in thermal equilibrium with the bath of temperature
T . Following Ref. [35], Eq.(7) can be rewritten as,

ẋ1(t) = b1(x1(t), x2(t)) + η1(t)

ẋ2(t) = b2(x1(t), x2(t)) + η2(t),
(8)

with

bi(xi, xj) = − 1

γ
kixi −

ϵ

γ
kjxj ,

η1 =
1

γ
(ξ1 + ϵξ2),

η2 =
1

γ
(ξ2 + ϵξ1).

(9)

The Fokker-Planck equation corresponding to the time evolution of the joint probability distribution (ρeq(x1, x2, t))
of this (thermally) equilibrium configuration can be written as,

∂tρeq(x1, x2, t) = −∂x1
(b1ρeq)− ∂x2

(b2ρeq) + α11∂
2
x1
ρeq + α22∂

2
x2
ρeq + 2α12∂

2
x1x2

ρeq, (10)

with α11 = α22 ≡ kBT
γ and α12 = α21 ≡ ϵkBT

γ are the elements of the equilibrium diffusion matrix (Deq) of the

system such that ⟨ηi(t)ηj(t′)⟩ = 2(Deq)ijδ(t− t′).

To drive the system out of equilibrium, the particle trapped in the potential with stiffness constant k1 is modulated
with an Ornstein-Uhlenbeck (OU) noise (λ(t)). The external modulation is exponentially correlated with the relaxation

timescale τe and amplitude De as ⟨λ(t)λ(t′)⟩ = De

τe
exp(− t−t′

τe
) and it is derivable from following dynamical equation,

λ̇(t) = −λ(t)
τe

+

√
2De

τe
η3(t), ⟨η3(t)⟩ = 0, ⟨η3(t)η3(t′)⟩ = δ(t− t′). (11)

Now, the dynamics of the perturbed system with the external OU modulation can be expressed with a system of
Langevin equations with λ(t) as another degree of freedom in addition to x1(t) and x2(t) such that,

ẋ1(t) =H11[−k1(x1(t)− λ(t)) + ξ1(t)] +H12[−k2x2(t) + ξ2(t)]

ẋ2(t) =H21[−k1(x1(t)− λ(t)) + ξ1(t)] +H22[−k2x2(t) + ξ2(t)]

λ̇(t) =− λ(t)

τe
+

√
2De

τe
η3(t).

(12)

Here, ⟨ξ1(t)η3(t′)⟩ = ⟨ξ2(t)η3(t′)⟩ = 0 =⇒ ⟨η1(t)η3(t′)⟩ = ⟨η2(t)η3(t′)⟩ = 0. Moreover, Eq.(12) can be rewritten in
the following matrix form, ẋ1(t)ẋ2(t)

λ̇(t)

 = −

 k1/γ ϵk2/γ −k1/γ
ϵk1/γ k2/γ −ϵk1/γ
0 0 1

τe

x1(t)x2(t)
λ(t)

+

η1(t)η2(t)
η3(t)

 (13)

=⇒ ẋ(t) = −F.x(t) + ξ(t), (14)

with ⟨ξ(t) : ξ(t′)⟩ = 2δ(t− t′)D. Therefore, the drift (F) and diffusion (D) matrices for the ‘OU-noise driven model’
are of following forms,

F =

 k1/γ ϵk2/γ −k1/γ
ϵk1/γ k2/γ −ϵk1/γ
0 0 1

τe

 , D =

D0 ϵD0 0
ϵD0 D0 0
0 0 De

τ2
e

 , (15)
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with D0 = kBT
γ .

Steady state distribution.- The probability of finding the particle in a configuration x at a certain time t can be
determined in terms of probability distribution function P (x, t) which follows the Fokker-plank equation of the form

∂tP (x, t) = −∇ · (−FxP (x, t)−D∇P (x, t))
≡ −∇ · j(x, t)

(16)

where, j(x, t) denotes the probability current in the phase space.
Starting from an arbitrary initial condition for x, the system will reach a non-equilibrium steady state in the long

time (lim t→ ∞) with a characteristic probability distribution and current given by,

Pss(x) = (2π
√
detC)−1e−

1
2x

TC−1x

jss(x) = (−Fx+DC−1x)Pss(x),
(17)

in terms of the long-time limit of the covariance matrix C(t).
Covariance matrix.- Note that the diffusion tensor is not proportional to an identity matrix as Dii ̸= Djj , Dij ̸= 0,
which indicates the system to be non-multipartite [16]. Following the technique introduced in [46], the steady-state
covariance matrix C is given by

C = F−1(D+Q), (18)

where Q is an antisymmetric 3× 3 matrix that can be uniquely determined by

FQ+QFT = FD−DFT . (19)

If Q is nonzero in the NESS, it implies the violation of the detailed balance in the system. Now the elements of the
steady state (lim t→ ∞) covariance matrix for this system will be,

C11 ≡ ⟨x1x1⟩ =
D0γ

k1
+
Dek1(γ(k1 + k2 − ϵ2k2) + (1− ϵ2)k2(k1 + k2)τe)

(k1 + k2)(γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e )
,

C12 ≡ ⟨x1x2⟩ =
ϵDeγk

2
1

(k1 + k2)(γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e )
,

C13 ≡ ⟨x1λ⟩ =
Dek1(γ + (1− ϵ2)k2τe)

(γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e )
,

C21 ≡ ⟨x2x1⟩ = C12,

C22 ≡ ⟨x2x2⟩ =
D0γ

k2
+

ϵ2Deγk
2
1

(k1 + k2)(γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e )
,

C23 ≡ ⟨x2λ⟩ =
ϵDeγk1

γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e
,

C31 ≡ ⟨λx1⟩ = C13,

C32 ≡ ⟨λx2⟩ = C23,

C33 ≡ ⟨λλ⟩ = De

τe
.

(20)

If the particles are well separated such that hydrodynamic coupling is negligible (ϵ → 0), the covariance matrix will
be,

C =


D0γ
k1

+ Dek1

γ+k1τe
0 Dek1

γ+k1τe

0 D0γ
k2

0
Dek1

γ+k1τe
0 De

τe

 (21)

Moreover, we can find the covariance matrix corresponding to the out-of-equilibrium situation with the hydro-
dynamic coupling where the external modulation is Gaussian white noise - by taking τe → 0 (with De ̸= 0) in
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Eq.(20),

[C11]tw =
D0γ

k1
+
Dek

2
1

γk1
− ϵ2

k2
k1

Dek
2
1

γ(k1 + k2)
,

[C12]tw = ϵ
Dek

2
1

γ(k1 + k2)
,

[C22]tw =
D0γ

k2
+ ϵ2

Dek
2
1

γ(k1 + k2)
.

(22)

If we consider Dek
2
1 = kB∆Tγ to match the noise correlation of the external Gaussian modulation of Ref. [35],

Eqs.(22) will be transformed to,

[C11]tw =
kBT

k1
+
kB∆T

k1
− ϵ2

k2
k1

kB∆T

(k1 + k2)
,

[C12]tw = ϵ
kB∆T

(k1 + k2)
,

[C22]tw =
kBT

k2
+ ϵ2

kB∆T

(k1 + k2)
,

(23)

which match exactly with the Eqs.(14) of Ref.[35]. Moreover, Eq. (23) are the elements of the steady state covariance
matrix of the ‘two-temperature model’ we discussed in the main text.

It is also clear that the steady-state cross-variances will be non-zero only in the out-of-equilibrium configuration.
In an equilibrium situation (De = 0 or ∆T = 0), the two particles will be statistically independent with the variance
kBT
k1

and kBT
k2

respectively.

B. Entropy production rate and Short-time inference technique

The entropy production rate for a nonequilibrium system in a steady state with the probability density ρss(x) and
current jss(x) is analytically estimated as [34]

Π =

∫
dx

D−1j2ss(x)

Pss(x)
, (24)

which we use to compute the entropy production rate for both models and discuss their dependency on the interac-
tion strength. However, estimating the entropy production rate from the experimental or numerical trajectories is
nontrivial using the above formula. We have used an indirect technique based on the thermodynamic uncertainty
relation [33]. The short-time inference technique was first introduced for overdamped Langevin dynamics in Ref.
[29] and rigorously proved in Refs. [30, 31]. It was subsequently used to estimate the entropy production rate from
experimental trajectories in Ref. [26]. Moreover, this technique is effectively applicable to systems with nonlinear
potential landscapes [32] and to inferring the activity of biological cells [47]. Using this technique, we can estimate
the entropy production rate of a system in a non-equilibrium steady state as

Π = lim
dt→0

max
J

[
2kB⟨J⟩2

dt Var(J)

]
, (25)

where J is a weighted scalar current - that can be computed from the time discretized experimental or numerical
trajectory data (xi) sampled at an interval of dt - as

J = f

(
xi+1 + xi

2

)
·
(
xi+1 − xi

)
. (26)

Motivated by the linearity of the systems, we have approximated f(x) as the linear combination of linear basis
functions ψm(x) of different dimensions (equal to the number of degrees of freedom considered in a model) as f(x) =



10∑M
m=1 amψm(x). For any such adequate representation of f(x), an analytical solution to the maximisation problem

of Eq.(25) is known [30] and given by,

Π =
2⟨ψk⟩(Ξ−1)k,l⟨ψl⟩

dt
, (27)

where, (Ξ)k,l = ⟨ψkψl⟩ − ⟨ψk⟩⟨ψl⟩. To find more details about the method, we refer to Sec. II B of Ref. [30] and to
Sec. III of Ref. [32].

C. Validation of thermodynamic laws

For the ‘OU-noise driven model’, the input power can be estimated as,

⟨Ẇ ⟩ =k1⟨λ(t) ◦ ẋ1(t)⟩

=
Dek

2
1(γ + (1− ϵ2)k2τe)

τe(γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e )
,

(28)

which should be exactly equal to the total rate of heat flow between the particles to validate the first law of thermo-
dynamics. since there is no change in the internal energy of the particles in a steady state. However, we find that

heat fluxes due to the respective particles, defined as Qi(tm) =
∫ tm
0

dt (γẋi− ηi) ◦ ẋi, do not add up to the total input
power of the system. Since the thermal noises involved in hydrodynamically coupled systems are cross-correlated (this
leads to the non-diagonal form of the diffusion matrix), defining heat flow at the subsystem level for a system with
even few degrees of freedom is not at all straightforward [16] and that may lead to the wrong estimation of the total
rate of heat flow defined as a direct sum of such heat fluxes corresponding to the individual subsystems. To avoid the
anomaly regarding the first law of thermodynamics, it will be useful to look at the increase in entropy of the medium
as it directly relates to the heat dissipation of a steady-state system [16, 34] such that,

⟨Q̇⟩
kBT

=Πm ≡ ⟨D−1(Fx) ◦ ẋ⟩

=⇒ Πm =

∫
dx D−1(Fx)jss(x).

(29)

The medium entropy production rate for the ‘OU-noise driven model’ is estimated to be,

Πm =− Dek
2
1(γ + (1− ϵ2)k2τe)

D0γτe(γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e )
,

=⇒ ⟨Q̇⟩ =D0γΠm

=− Dek
2
1(γ + (1− ϵ2)k2τe)

τe(γ2 + γ(k1 + k2)τe + (1− ϵ2)k1k2τ2e )
,

(30)

as D0γ = kBT . It is now evident that the estimated heat dissipation validates the first law of thermodynamics as,
−⟨Q̇⟩ = ⟨Ẇ ⟩ [Eq. (28) with appropriate sign convention].

For the ‘two-temperature model’, heat fluxes due to the respective particles was estimated as Qi(tm) =
∫ tm
0

dt (γẋi−
ηi)◦ ẋi in Refs. [35–37]. These studies showed that the heat released from the ‘hot’ particle was not fully exhausted by
the ‘cold’ one if the particles were trapped in potentials with different stiffnesses - leading to the ‘apparent’ violation
of the energy balance relation. It was also indicated that energy would not be conserved for this system due to
the dissipative nature of the coupling and energy conservation could be restored if the two particles are trapped in
potentials with equal stiffnesses as the system will then be indistinguishable from those with conservative coupling
[37].

Here we compute the heat fluxes of the particles from the knowledge of the total entropy production rate of the
system. If the rate of heat dissipated by the ‘hot’ particle is ⟨Q̇1⟩ and the rate of heat absorbed by the ‘cold’ particle

is ⟨Q̇2⟩, the total entropy production rate for the system (Πtw) in NESS will be,

Πtw = − ⟨Q̇1⟩
kB(T +∆T )

− ⟨Q̇2⟩
kBT

. (31)
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Now, according to the energy balance condition, −⟨Q̇1⟩ = ⟨Q̇2⟩ = ⟨Q̇⟩. So Eq. (31) reduces to,

−⟨Q̇⟩
(
1

T
− 1

T +∆T

)
= kBΠtw

=⇒ ⟨Q̇⟩ = −kBΠtw
T (T +∆T )

∆T

= −k
2
2ϵ

2(1− ϵ2)

(k1 + k2)γ
kB∆T.

(32)

The derived expression is the same as the expression for heat flow from hot particle to cold particle previously obtained
in Refs. [36, 37]. However, in addition, we argue that it needs to be entirely associated with the heat dissipated by
the hot particle, and the heat absorbed by the cold particle such that the energy balance condition is automatically
satisfied.
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