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Random defects do not constitute the unique source of electron localization in two dimensions.
Lattice quasidisorder generated from two inplane superimposed rotated, main and secondary, square
lattices, namely monolayers where moiré patterns are formed, leads to a sharp localized to delocalized
single-particle transition. This is demostrated here for both, discrete and continuum models of
moiré patterns that arise as the twisting angle θ between main and secondary lattices is varied in
the interval [0, π/4]. Localized to delocalized transition is recognized as the moiré patterns depart
from being perfect square crystals to non-crystalline structures. Extended single-particle states
were found for rotation angles associated with Pythagorean triples that produce perfectly periodic
structures. Conversely, angles not arising from such Pythagorean triples lead to non-commensurate
or quasidisordered structures, thus originating localized states. These conclusions are drawn from a
stationary analysis where the standard IPR parameter measuring localization allowed us to detect
the transition. While both, ground state and excited states were analyzed for the discrete model,
where the secondary lattice was considered as a perturbation of the main one, the sharp transition
was tracked back for the fundamental state in the continuous scenario where the secondary lattice
is not a perturbation any more.

I. INTRODUCTION

Since the achievement of its experimental assembly, ro-
tated graphene bilayers have attracted the attention not
just because of the diversity of quantum phases accessible
in them, but also by virtue of its fabrication simplicity
[1–5], as well as for the control achievable with respect to
other multicomponent materials. The quantum phases
that emerge as a result of the angle tuning include the
non-conventional superconducting, metal, and Mott in-
sulating states as a function of the carrier density [6],
correlated ferromagnetic phases [7–9], and also the ar-
rive of anomalous optical properties [10, 11]. Localization
of charge carriers is other phenomenon that can be ex-
plored in stacked layers of graphene [12–14]. In fact, it is
thought that a central mechanism affecting the electron
transport in moiré heterostructures is the appearance of
flat bands. Among other remarkable properties of elec-
tromagnetic character, is the negative magnetoresistance
appearing on twisted double bilayer graphene super lat-
tices, as a result of weak localization [15].

Single particle localization induced by disorder, was
first explained in the seminal work of Anderson within
the single electron theory [16]. Because of its intrin-
sic nature, namely, resulting from destructive wave in-
terference, the localization phenomenon manifests not
just in the degenerate quantum regime [17, 18], but in
any scenario in which the wave nature plays a main role
[19]. The understanding of the opposite localized and ex-
tended states has been addresed in many different ways
and schemes, both theoretically and experimentally, in-
corporating elements proper of the matter constituents.
Among these elements it can be recognized, length and
dimensionality of the lattice, inter-particle interactions
[20–23], long-range tunneling [24–27], and of course struc-

tural disorder created either, by random potentials or
quasicrystalline designs [28–30]. Because of the fact that
the lattice spatial dicretization must play a fundamen-
tal role, a natural question is to explore the influence of
the recently created moiré patterns on the emergence of
localized vs. extended states.

Ultracold bosonic atoms, largely known as quantum
simulators, are schemes were the superfluid to Mott in-
sulator transition in twisted-bilayer square lattices based
on atomic Bose-Einstein condensates loaded into spin-
dependent optical lattices can be tested [31, 32]. Sev-
eral theoretic proposals difficult to realize with crystals
have been planned with cold atoms to observe analogous
physics to its condensed matter counterpart [33]. The
opportunity of preparing macroscopic clouds of weakly
interacting atoms in two dimensions relies basically on
two facts, one is the possibility of having a strong con-
finement along a spatial direction, which in turns creates
a 2D Bose-Einstein condensate starting from a 3D cloud
[34, 35], and the other, is the chance of varying the atom-
atom interaction by tuning externally a magnetic field
where the scattering length is nearly zero [36], usually
occurring near a Feshbach resonance.

In this investigation we analyze the emergence of local-
ized vs extended states of a single particle in square moiré
lattices in two dimensions. For this purpose we consider
both, a discrete lattice as well as its continuum counter-
part in which a particle is confined in a two-dimensional
potential composed by a principal and a secondary square
lattices. Moiré patterns come up when the lattices lying
one on top of the other are rotated by an angle θ. Our
analysis comprises the study of stationary localization
properties.

This paper is organized as follows. First in section
II we present the model for both, continuum and dis-
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crete cases. Since the lattice model is used to analyze
moiré patterns where the secondary lattice is considered
as a perturbation, being such a perturbative term an on-
site shift, a brief discusion on Wannier functions is in-
cluded. In Section III we focus on the analysis of shallow
moiré lattices and study both, ground and excited states.
Then, in Section IV we concentrate in deep moiré pat-
terns where the main and secondary lattices has the same
depth. Finally in section V a summary of our investiga-
tion is given.

II. MODEL

Our starting point is the two-dimensional continuum
single-particle Hamiltonian:

Ĥcont =
−ℏ2

2m
∇2

⊥ + Vopt(x, y), (1)

∇2
⊥ = ∂2x + ∂2y being the Laplacian operator in 2D and

m the particle mass. The optical potential Vopt(x, y) =
V1(x, y) + V2(x, y) is given by the superposition of two
square optical lattices with a relative rotation angle of
θ among them. Throughout the manuscript, we call
V1(x, y) the primary potential and V2(x, y) the secondary
potential, each one given as follows:

V1(x, y) = s1ER

(
sin2

πx1
a

+ sin2
πy1
a

)
,

V2(x, y) = s2ER

(
sin2

πx2
a

+ sin2
πy2
a

)
,

(2)

where a is the lattice constant, ER = ℏ2π2/2ma2 is the
recoil energy, and s1 and s2 are the depths of the optical
potentials. In terms of an unrotated frame of reference
(see Fig. 1a), the coordinates (x1, y1) and (x2, y2) are
given by:

x1 = x cos θ/2− y sin θ/2,

y1 = x sin θ/2 + y cos θ/2,

x2 = x cos θ/2 + y sin θ/2,

y2 = −x sin θ/2 + y cos θ/2.

(3)

Depending on the value of θ, the resulting optical poten-
tial Vopt(x, y) gives rise to periodic (commensurable) or
aperiodic (incommensurable) structures. Crucially, these
structures, called moiré lattices, always feature the rota-
tional symmetry of the underlying sublattices except for
θ = π/4, where a quasicrystal with octagonal rotation
symmetry is obtained. Commensurable moiré patterns
result from angles that come from a Pythagorean triple,
that is, cos θ = m/n, sin θ = b/c and m2 + n2 = l2

with m,n and l integers. For all other rotation angles,
Vopt(x, y) leads to an incommensurable but not neces-
sarily a disordered random lattice. In Figs. 1(b)-(f), we
illustrate the resulting moiré patterns for several rotation
angles.

Formation of moiré patterns as a function of rotation
angle gives rise to a particular spatial distribution of the

x

y

θ/2

θ/2

(a)

−5

0

5

y
/a

(f) θ = tan−13/4

−5

0

5

y
/a

(e) θ = tan−18/15

−5 0 5
x/a

(d) θ = π/4

−5 0 5
x/a

(c) θ = π/11

−5 0 5
x/a

−5

0

5

y
/a

(b) θ = π/
√

3

−3

0

3

FIG. 1. (a) Schematic representation of two square optical lat-
tices (blue and red) with a relative rotation angle of θ among
them. Black lines correspond to the axes of an unrotated
frame of reference. (b)-(f) Moiré patterns for several twist
angles.

local energy minima. Thus, the localized Wanneir func-
tions, fundamental in the tight-binding approximation
for nearest- or next nearest- neighbors, must be adapted
for moiré lattices. For instance, such a picture modifies
the inherent physics of band structure. Also, the trans-
port across the lattice must be modified by the presence
of the structured patterns.

A. Review of basic theory for Wannier functions

With the purpose of establishing the discrete version
of Hamiltonian (1), in this section we briefly review the
basic concepts of a single particle subject to a periodic
potential. In particular, we focus on the generation of
localized Wannier functions (WFs) and their connection
in the construction of a tight-binding description of a pe-
riodic Hamiltonian. A thorough discussion can be found
in any standard solid state reference [37–39]. For sim-
plicity, we consider a one-dimensional potential, and at
the end of this section, we discuss the generalization to
higher dimensions. The quantum problem of a particle
of mass m in a periodic potential V (x+ a) = V (x) with
periodicity a is described by the following Schrödinger
equation:[

− ℏ2

2m

d2

dx2
+ V (x)

]
ψ(n)
p (x) = ε(n)p ψ(n)

p (x), (4)

where n labels the band number and p ∈ [−π/a, π/a]
is the quasi-momentum which is restricted to the first
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Brillouin zone. According to Bloch’s theorem, the solu-
tions of the above equation can be written as the product
of a plane wave times a periodic function with the same

periodicity of the potential, ψ
(n)
p (x) = eipxu

(n)
p (x). Intro-

ducing this ansatz into Eq. (4) yields to the Schrödinger

equation for u
(n)
p (x):[

ℏ2

2m

(
−i d
dx

+ p

)2

+ V (x)

]
u(n)p (x) =

ε(n)p u(n)p (x).

(5)

The above equation can be seen as a set of eigenvalue
problems, one for each p, with an infinite number of so-
lutions. The collection of all eigenvalues gives rise to the
corresponding band structure. Because Bloch functions
extend over the entire lattice, they are not helpful for
constructing a lattice Hamiltonian. Nevertheless, a con-
venient alternative is to use the so-called WFs. In terms
of the Bloch functions, the Wannier functions are given
as follows:

wn(x− xi) =
1√
L

∑
p

e−ipxiψ(n)
p (x), (6)

where xi = ia is the position of the i−th lattice site and L
is the number of lattice sites. A typical feature of WFs is
their relatively strong concentration around each lattice
minimum. Thus, they provide an attractive option for
building a lattice version of a periodic Hamiltonian. Ad-
ditionally, as it is easy to show, the collection of Wannier
functions form an orthonormal set∫

dx w∗
n(x− xi)wm(x− xj) = δn,mδi,j (7)

An important subtlety of Eq. (6) is the presence of a
gauge freedom that exists in the definition of Bloch func-

tions. That is, one can replace ψ̃
(n)
p → eiφpψ

(n)
p with-

out modifying the band structure. Nevertheless, such a
gauge transformation will change the spatial behavior of
the associated Wannier function. In one-dimension, one
can always choose the phase of the Bloch waves in such
a way that the corresponding WFs are real, have a well
defined parity, and decay exponentially away from the
central site (see Fig. 2(a)). In two and three dimensions
this is generally not possible [40]. However, for separable
potentials, the corresponding Wannier function is simply
the product of the one-dimensional Wannier functions as-
sociated with each direction (see Fig. 2(b)). It is impor-
tant to mention that even for non-separable potentials,
WFs can be generated using more elaborate procedures.
Recently, Wannier functions have been generated in a
quasicrystal structure, where the Bloch theorem is no
longer valid [41]. In section III Wannier functions will be
a key element to analyze the effect of lattice localization.
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FIG. 2. (a) Exponential decay of a one-dimensional Wan-
nier function, notice the log scale in the y-axis. (b) Two-
dimensional Wannier function w(x, y) = w(x)w(y) associated
with a square lattice.

III. SHALLOW MOIRÉ LATTICES

In this section, we study the case in which the sec-
ondary potential is weak in comparison with the primary
potential, i.e. s2 ≪ s1. For the sake of simplicity, we
consider the secondary lattice to be the only one that is
rotated by an angle θ. Since s2 ≪ s1, the minima of the
main lattice are not considerably affected by the presence
of the rotated lattice. Hence, we can safely use the asso-
ciated Wannier functions w(r) of the primary lattice to
build a discrete version of the Hamiltonian in Eq. (1). In
this scenario, the lowest-band lattice Hamiltonian reads

Ĥ = −
∑
i,j

Jij(b̂
†
i b̂j + h.c) +

∑
i

ϵin̂i, (8)

where i = (ix, iy) stands for a two-dimensional space co-
ordinate in which ix, iy run along the positions in a given
two-dimensional lattice of size Nsites = L × L and Jij is
the usual hopping amplitude

Jij =

∫
d2r w∗(r−ri)

(
− ℏ2

2m
∇2

⊥ + V1(r)

)
w(r−rj) (9)

The rotated potential V2(r) can be considered as a site-
dependent energy term ϵij:

ϵij = s2ER

∫
d2r w∗(r− ri)V2(r)w(r− rj). (10)

For deep enough lattices, one can rely on the so-called
tight-binding approximation. In this limit, due to the
exponential decay of the Wannier functions, the hop-
ping amplitudes Jij strongly decay with the distance.
Therefore, we can ignore the tunneling terms beyond
the nearest neighbors. Furthermore, due to the trans-
lational symmetry of the primary lattice, the hopping
parameter becomes a constant J independent of the lat-
tice site. Analogously, the leading contribution of ϵij is
the i = j term, which corresponds to an on-site energy
shift ϵij = δi,j ϵi. After some straightforward algebra, one
can find the following expression for the on-site term:

ϵi = ∆[cos 2π(ix cos θ + iy sin θ)+

cos 2π(−ix sin θ + iy cos θ)],
(11)
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where ∆ is the amplitude of the on-site potential and is
given as follows:

∆ = −s2ER

2

∫
dxdy |w(x, y)|2×

cos

(
2πx

a
sin θ

)
cos

(
2πy

a
cos θ

)
.

(12)
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FIG. 3. (a) Absolute value of the on-site potential vs the
primary potential depth s1 for fixed s2 = 0.2. Panels (b)-(d)
illustrate the on-site potential in Eq. (11) as a function of the
lattice coordinates for different twist angles. In all panels we
fix |∆|/J = 1.

In Fig. 3(a), we plot the parameter ∆/J as a function
of the primary potential depth s1 for two different twist
angles. We consider a fixed value of s2 = 0.2 of the depth
of the secondary potential. Notice that ∆/J can be tuned
to a wide range of values without changing the depth of
the secondary lattice. Furthermore, the amplitude of the
on-site potential depends very weakly on the angle of
rotation. It is important to mention that the considered
depths of the optical potentials are easily achievable in
current experiments. Figs. 3(b)-3(c) illustrate the on-
site potential ϵi as a function of the lattice coordinates
for different twist angles.

Having established the Hamiltonian that takes into ac-
count the secondary lattice as a perturbation term, we
investigate the ground state localization properties of
it. A customary parameter that is used as a measure
of localization is the inverse participation ratio (IPR),
given a normalized wave function ψ its IPR is defined

as IPR =
∑Nsites

i=1 |ψ(i)|4. For extended states, the in-
verse participation ratio vanishes in the thermodynamic
limit as IPR ∝ N−1

sites, whereas for localized profiles is

always finite. In Fig. 4(a), we plot the IPR associated
with the ground state as a function of the twist angle θ
and the potential strength ∆/J . As shown in Fig. 4(a),
there is a sharp localized-delocalized transition (LDT) at
∆c/J ≃ 2. Below this threshold, the ground states are
extended regardless of the angle of rotation. In contrast,
for ∆/J > ∆c/J , the spatial behavior of the the ground
state becomes angle dependent. In particular, for angles
given by a Pythagorean triple, identified here and hence-
forth as θP , the fundamental mode is extended. In the
next section we shall go back to this point.
To show the accuracy of the lattice Hamiltonian (8),

in Fig. 4(b), we illustrate the IPR associated with the
ground state of the continuum Hamiltonian in Eq. (1) as
a function of the twist angle θ and the depth of the pri-
mary potential s1. The depth of the secondary potential
is considered the same as for the calculations in the lattice
Hamiltonian, that is we consider s2 = 0.2. Details about
the numerical calculations in the continuum model can
be found in Appendix A. As one can notice, the results
of the discrete and continuum models are in reasonable
qualitative agreement, extended vs localized states ap-
pear for the same rotation angles, and definite critical
values ∆c/J and s1 separates the opposite phases above
θ ≳ π/16. The quantitative difference between both cal-
culations is a consequence of the different values that the
IPR can take in a lattice and in continuous space, see
Appendix A.
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FIG. 4. (a) IPR associated with the ground state of the lat-
tice Hamiltonian in Eq. (8) as a function of the rotation angle
θ and the amplitude ∆/J . (b) Inverse participation ratio as-
sociated with the ground state of the continuum Hamiltonian
in Eq. (1) as a function of the twist angle and the depth of
the primary lattice. Both panels consider s2 = 0.2.

The building of the lattice Hamiltonian allows not only
to study the localization properties of the ground state
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but also of the entire spectrum. In Fig. 5, we plot in a
color scheme the inverse participation ratio as a function
of the rotation angle θ and position in the spectrum. As
one can notice, the eigenstates display a rich localization
structure. In particular, localized eigenstates start to
appear at the edges of the spectrum leaving half of the
spectrum with extended states.

0
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π/4

θ

(a) ∆ = 3 (b) ∆ = 4

0 0.5 1
Eigenstate number/Nsites

0

π/8

π/4
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(c) ∆ = 6

0 0.5 1
Eigenstate number/Nsites

(d) ∆ = 8

0.00

0.25

0.50

0.75

1.00

FIG. 5. IPR as a function of the rotation angle θ for the
spectrum associated with Hamiltonian (8).

IV. DEEP MOIRÉ LATTICES

In this section, our focus is on the case where the po-
tential amplitude of the secondary lattice is comparable
or larger than that of the main lattice. In this particular
scenario, the secondary potential ceases to be a mere per-
turbation, leading to a significant impact on the minima
of the principal potential. Consequently, the Wannier
functions associated with the principal potential are no
longer suitable for constructing a lattice Hamiltonian.

For the analysis we solve the continuous Schrödinger
equation for Hamiltonian (1) considering lattices having
Nsites = 50 × 50. As in previous section, we investigate
the IPR as a function of the rotation angle for the ground
state. In figure 6 we plot in a density color scheme the
IPR as a function of both, the rotation angle and the
lattice depth s1 = s2. As can be apreciated from this fig-
ure, the behavior is similar, qualitatively, to that found
for shallow moiré lattices analyzed in the previous sec-
tion. Starting from a certain angle, a sharp LDT for
the ground state again occurs at a given potential am-
plitude. Instead of finding the transition at s1 ≈ 8 as in
the shallow moiré lattice case, one observes that the LDT
appears at s1 ≈ 2.0. The behavior of the IPR for small

angles near the LDT, say θ ≲ π/16, signals the presence
of an extended ground state disregarding the twisting an-
gle (see dark blue region). The dark blue region (for small
rotation angles) suggesting extended states nearly above
s1 ≈ 8 for shallow moiré lattices, and s1 ≈ 2.0 for deep
moiré lattices, is, as we argue below, a result of the im-
possibility of exploring moiré lattices arising from small
rotation angles. In other words, limitations imposed by
numerical calculations for small twisting angles prevent
us to have reliable predictions. Certainly, as the poten-
tial depth grows, it is expected that the ground state be
a localized one because tunneling across sites must suffer
a reduction.

0 π/16 π/8 3π/16 π/4

θ

1

2

3

4

s 1
=
s 2

0

1

2

3

FIG. 6. IPR as a function of the rotation angle θ for the
ground state of Hamiltonian (1). The values of the potential
depths in main and secondary lattices are equal (see Eq. (2)),
s1 = s2.

As described previously, rotation angles associated
with Pythagorean triples θP produce crystalline moiré
patterns, being the lattice constant of those periodic ar-
rays given by aMC = a/ sin θ [42, 43], where a is the lat-
tice constant of the main square lattice. Since the lattice
constant grows as the rotation angle becomes smaller, a
larger number of sites is needed to allow an appropriate
exploration of the lattice space, and thus determine if the
fundamental state is localized or extended. We analyzed
lattices having a larger number of sites, as well as con-
sidering a smallest grid for the rotation angle between
main and secondary lattices. In figure 7 we plot the IPR
for θ < π/8 for 2D lattices having Nsites = 110 × 110
sites. As can be seen from this figure, several new sharp
regions appear, indicating extended states not advised
previously. These extended states correspond to other
Pythagorean triads as described above. It appears in fig-
ure 7 that the LDT occurs at s1 = s2 ≈ 1.75, but such
an appearance must be attributed to the color scheme,
as can be appreciated from the color bar. In figure 8
we illustrate the LDT for as a function of the potential
depth s2. The points correspond to the value of s1 at
which the ground state becomes localized, such a critical
value was chosen as the point at which the IPR is no
longer zero. The blue line corresponds to an exponential
fit sc1 = Ae−Bs2 + C [44]. At the inset of this figure we
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include several IPR curves associated with given values
of s2 indicated in colors.
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FIG. 7. IPR as a function of the rotation angle 0 < θ < π/8
for the ground state of Hamiltonian (1). The values of the
potential depths in main and secondary lattices are equal (see
Eq. (2)), s1 = s2. The lattice has Nsites = 110× 110 sites.

0.4 0.8 1.2 1.6
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sc 1
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R

(a)

(b)

s2 = 0.5

s2 = 0.8

s2 = 1

s2 = 1.4

s2 = 1.7

FIG. 8. In (a) black dots are the critical value of the amplitude
sc1 that signals the LDT vs. the amplitude of the secondary
lattice amplitude appears. Blue curve in this inset fits the
black dots. (b) IPR as a function of potential depth s1 for
several laticce sizes is plotted. The lattice size used isNsites =
50× 50.

The reason behind the appearance of extended states
for Pythagorean triples, namely crystalline moiré struc-
tures, is a direct consequence of its periodicity. As stated

by the Bloch theorem, all the single-particle eigenstates
are extended, particularly the ground state. Thus one
reaches the conclusion that all of the moiré lattices com-
ing from rotation angles associated with Phytagorean
triples lead to extended states. It is worth to mention
here that for θ ∈ [0, π/4) one can find an infinite num-
ber of Phytagorean triples [45]. The Pythagorean an-
gles appearing in figures 4 and 6 are those captured by
our numerical grid. Conversely, deviation of commen-
surate structures, leads to obtain localized states above
a certain treshold value of s1. This result is reminis-
cent of the findings exhibited by the Aubry-André model
for quasicrystalline lattices, which establishes that above
a critical disorder strenght all the states are localized,
and in particular the ground state [46]. This behavior
can be understood from the potential landscape where
the single-particle moves. As shown in figure 9, non-
crystalline structures are such that consequtive potential
minima are quite appart with respect to those associated
with perfectly commensurate lattices (see figures 9(c) and
9(d)). In summary, a moiré lattice that departs from a
perfect crystal, and becomes a non periodic structure,
shows in good agreement with the seminal result of An-
derson, localized states starting from a certain threshold.
At this point one can mention that our quasidisordered
moiré lattices do not show critical states as those exhib-
ited in the 2D generalized Aubry-André model [47].

-4.0     -2.0      0      2.0      4.0

-4.0

-2.0

0

2.0

4.0

(a) (b)

(c) (d)

x/a

FIG. 9. Contour curves of potential in Eq. (2) for a) θ
(1)
P =

arctan 3/4, (b) θ = arctan 3/4+0.01, (c) θ
(8)
P = arctan 33/56,

and (d) θ = arctan 33/56 + 0.01. The values of the potential
depths are the same for each panel s1 = s2 = 1.5

Not less important is the particular feature exhibited
by certain twisting angles generating crystalline moiré
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lattices. As can be seen from figures 4 and 6, the white

line indicating θ
(1)
P = arctan 3/4 is the center of a wider

region signaling extended states, in comparison with
other angles associated to different Pythagorean triads,

as θ
(2)
P = arctan 5/12 and θ

(3)
P = arctan 8/15, for which

the region of extended states is narrower. The explana-
tion is the following. The minima of moiré crystals, that
is the spatial regions where the potential Vopt(x,y) takes
its minumum values, are separated among them by a dis-
tance determined by the Pythagorean triad that defines
a given structure. Such a separation is the hypotenuse
of the right triangle m2 + n2 = l2, being m, n and l in-
teger multiples of the lattice constant a. Some examples
of these Pythagorean triples and its associated angles are

θ
(1)
P → (3, 4, 5), θ

(2)
P → (5, 12, 13), θ

(2)
P → (8, 15, 17), and

θ
(11)
P → (33, 56, 65), where the label in parenthesis has
been asigned considering the increasing size of the hy-
potenuse. Let us consider the origin and the rotation
center coincide with one of the potential minima asso-
ciated to a given Pythagorean angle θP . When a small
rotation around θP is performed, namely θP ± δθ, the
nearest potential minima apart each other by a distance
∼ ±lδθ. Therefore, for the same δθ, the minima will be
further away as the hypotenuse grows, which breaks the
potential periodicity. In the neigborhood of the rotation
center appreciable variations of the potential can be ap-
preciated. This is illustrated in a density color scheme in
Figure 9. There, we show the contour curves of Vopt(x, y)
of Eq. (2) for a couple of angles θP . As can be seen from
panels in this figure, detectable changes are seen between

(c) and (d) corresponding to θ
(11)
P = arctan 33/56 and

θ = arctan 33/56 + 0.01 respectively, while impercepti-

ble changes appear for the cases θ
(1)
P = arctan 3/4 and

θ = arctan 3/4 + 0.01 illustrated in figures (a) and (b)
respectively.

V. CONCLUSIONS

This investigation has deal with the identificaction of
extended vs. localized phases of a single particle con-
fined in two superimposed square lattices rotated one
with respect to the other by an angle in the interval
(0, π/4]. The lattices lying in the same plane are such
that the amplitude of the secondary lattice can be ei-
ther, shallow or equal to that of the main lattice. The
patterns that result from the superposition, the so called
moiré structures, can be classified in two types; crys-
talline and quasidisorderdered lattices. While the former
result from twisting angles associated with the so called
Pythagorean triples (satisfying a diphantine equation)
and lead to perfect commensurability among main and
secondary lattices, the later correspond to arbitrary an-
gles and produce non-commensurate or quasidisordered
structures. As described below, the structure plays a
crucial role on the localized to delocalized transition.

Localized and delocalized phases were detected from

stationary properties, considering two approaches: the
discrete or lattice model, and the continuous one. In
the case of the lattice model we constructed a Hamil-
tonian that considers the secondary lattice as an onsite
perturbation term, obtained from the Wannier functions
of the main lattice. Localized to delocalized transition
was tracked from the standard IPR parameter as a func-
tion of the rotation angle and the potential depth of main
and secondary laticces. Properties of both, fundamen-
tal and excited states were investigated for the lattice
model. Regarding the continuous model, we concentrate
in studying the ground state for both, shallow and deep
moiré lattices.

The information provided by the IPR parameter leads
us to reach the following conclusions. Extended phases
emerge for crystalline moiré structures, while local-
ized ones are identified for non-commensurate structures
starting from certanin potential depths. The identifica-
tion of such a critical potential amplitude, for both shal-
low and deep moiré lattices, at which a sharp localized-
delocalized transitiosn occurs suggest that moiré patterns
are the generalization of the one-dimensional Aubry-
André model. Finaly, it is worth to mention that the
existence of particular twisting Pythagorean angles for
which robust extended states emerge, as for instance
θ = arctan 3/4. As the Pythagorean triad associated
with a given structure is such that the hypotenuse be-
comes larger, the narrower becomes the line signaling the
extended phase.

Similarly to light propagation phenomena in moiré ar-
rays, one finds that matter confined in moiré patterns
offers also new possibilities regarding the transport and
localization properties. For instance, moiré heterostruc-
tures greatly enhance the appearance of new types of
phenomena that are under current investigation in 2D
materials.

ACKNOWLEDGEMENTS

This work was partially funded by Grant No. IN108620
from DGAPA (UNAM). C.J.M.C acknowledges CONA-
CYT scholarship. G.A.D.-C. acknowledge support of the
Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) under Germany’s Excellence Strat-
egy – EXC-2123 QuantumFrontiers – 390837967.

Appendix A: Continuum Calculations

In this appendix, we provide further details on the con-
tinuum calculations. For the ground state and determi-
nation of IPR we consider the parameters that appear in
the following tables.



8

Name Symbol Value

Number of grid points in the x
direction

Nx 512-2048

Number of grid points in the y
direction

Ny 512-2048

Spatial extension of the numer-
ical grid in the x direction

Lx 50-200 a

Spatial extension of the numer-
ical grid in the y direction

Ly 50-200 a

Step size used in real time
evolution

dτ 0.005

TABLE I. Parameters for the numerical simulation

Name Symbol Value

Lattice constant a 532 nm
Potential depth V0 0-11 ER

TABLE II. Physical parameters used in the numerical simu-
lation

A brief comment regarding our numerical calculations
is in order. While the number of commensurate lattices
that arise from two rotated square lattices is infinite,
namely angles originating crystalline structures, numeri-
cal restrictions impede both, to employ lower angle grids,
and the use of larger lattices.
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[43] C. Madroñero and R. Paredes, Phys. Rev. A, 107, 033316

(2023).
[44] The values of the fit paremeters are: A = 9.186, B =

2.154 and C = 1.594.
[45] J. J. Fallas, Revista digital Matemática, Educación e In-
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