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Abstract: Safe control for dynamical systems is critical, yet the presence of unknown dynamics poses significant challenges. In
this paper, we present a learning-based control approach for tracking control of a class of high-order systems, operating under the
constraint of partially observable states. The uncertainties inherent within the systems are modeled by kernel ridge regression,
leveraging the proposed strategic data acquisition approach with limited state measurements. To achieve accurate trajectory
tracking, a state observer that seamlessly integrates with the control law is devised. The analysis of the guaranteed control
performance is conducted using Lyapunov theory due to the deterministic prediction error bound of kernel ridge regression,
ensuring the adaptability of the approach in safety-critical scenarios. To demonstrate the effectiveness of our proposed approach,
numerical simulations are performed, underscoring its contributions to the advancement of control strategies.
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1 Introduction

Dynamical systems control has garnered significant atten-

tion due to its versatility and profound impact across diverse

domains, ranging from robotics and electrical engineering to

building management [1–4]. Despite the prevalent adoption

of mechanistic models, they fail to capture precise parame-

ters and provide a comprehensive description of system dy-

namics [5]. This discrepancy is further exacerbated by the

omnipresence of uncertainties and varying environments.

In recent times, there has been a growing inclination to-

ward integrating machine learning methodologies to address

aforementioned challenges in the context of unknown sys-

tem control [6]. Machine learning techniques facilitate the

discernment of latent patterns and the derivation of models

from data, thereby augmenting the control performance in

the face of incomplete system knowledge. A majority of

studies employ neural networks (NNs) to either identify the

system dynamics [7] or fit adaptive controllers [8, 9]. How-

ever, the rigorous guaranteed prediction is inadequate due to

finite and patchy features. Furthermore, the parametric mod-

els including NN models suffer from limited complexity and

flexibility, requiring intensive training and extensive data to

effectively estimate complex systems.

Conversely, non-parametric techniques, an alternative av-

enue, leverage the kernel trick to ascertain the inner prod-

uct, thereby encapsulating an infinite-dimensional feature

space [10]. Such methods are more adaptable and accurate

in modeling scenarios with limited data availability. More-
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over, kernel methods offer a distinctive advantage by pro-

viding theoretical error bounds [11, 12] making significant

contributions to the domain of safety-critical control sce-

narios [13]. Instances of such applications include the uti-

lization of kernel ridge regression (KRR) in model predic-

tive control [14], support vector regression in conjunction

with PID control [15], and cooperative control incorporat-

ing Gaussian process regression [16–18], etc. However, the

applicability of the literature above is contingent upon the

feasibility of obtaining a complete state measurement, which

presents practical challenges in real-world applications.

In response to the inherent challenge of incomplete system

state measurements, observers are employed to estimate the

complete state based on limited measurements. The field has

explored the application of neural observer-based adaptive

control [19, 20], where the control performance is strongly

related to the accuracy of the chosen features. However, the

error induced by imprecise and truncated features lacks ana-

lytical results, hindering its application in safety-critical sce-

narios [21–23]. While certain endeavors have been made

to leverage kernel methods with state observation [24, 25],

there remains a conspicuous gap in the literature considering

the interplay between the learning-based control of dynami-

cal systems and observers.

In this study, we introduce a kernel-based control method

for a class of high-order systems with unknown dynamics,

especially those with partially observable states. Moreover,

a tailored data acquisition strategy is proposed to facilitate

the limitation of state measurements, enabling the applica-

tion of KRR to effectively model the uncertainties within the

discrete-time system. By incorporating the learning-based

control law with a state observer, the analytical ultimate

bounds for both tracking error and observation error are pro-

vided. The numerical simulation confirms the effectiveness

of the proposed approach, emphasizing a notable enhance-
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ment in tracking performance.

2 Preliminaries

2.1 System Description and Objective

In this paper, we consider a class of high-order discrete-

time nonlinear dynamical systems described as follows

xi(tk+1) = xi(tk) + xi+1(tk)T, ∀i = 1, · · · , n− 1, (1)

xn(tk+1) = f(x(tk)) + u(tk), (2)

y(tk) = x1(tk) + v(tk), (3)

where x(tk) = [x1(tk), · · · , xn(tk)]
T ∈ X ⊂ Rn with

xi(tk) ∈ R, ∀i = 1, · · · , n denotes the system state within

compact domain X, u(tk) ∈ R represents the system input

and y(tk) ∈ R is the measured output at any time instance

tk ∈ R≥0 with k ∈ N. The time interval T = tk+1 − tk ∈
R+ is fixed, and the measurement noise v(tk) is indepen-

dently and identically bounded, i.e., |v(tk)| ≤ v̄, ∀k ∈ N,

with v̄ ∈ R≥0. Although the structure of the system is

known, the nonlinear function f(·) : X → R is unknown

but estimated by the kernel-based learning function result-

ing in µ(·) : X → R illustrated in Section 2.2. Moreover, it

satisfies the following assumption.

Assumption 1. Given a symmetric positive kernel κ(·, ·) :
X×X→R+, the function f(·) belongs to the unique corre-

sponding reproducing kernel Hilbert space (RKHS) Hκ with

defined inner-product 〈·, ·〉κ. Additionally, the RKHS norm

of f(·) is bounded by B∈R+, i.e., ‖f‖κ=
√

〈f, f〉κ≤B.

Assumption 1 indicates the unknown function is in the

form as f(·)=∑∞
j=1 αjκ(xj, ·), whereαj ∈R, ∀j=1,· · ·,∞

are the coefficients. Despite a similar form as linear regres-

sion, the assumption implies the non-parametricity of the un-

known function f(·) considering that κ(xi, ·) only reflects

the correlation between the two points, which requires less

prior information and cover larger function classes than para-

metric models, e.g., neural networks. Indeed, some kernel

functions, e.g., square exponential kernel, have the property

of universal approximation, which means they can approxi-

mate any continuous function with arbitrary accuracy. More-

over, the RKHS norm ‖·‖κ indicates the smoothness of the

function set, and therefore the existence of the upper bound

can be regarded as the demand on f(·) to be Lipschitz. Note

that the Lipschitz continuity in the compact X is easy to

achieve by only requiring the function f(·) to be continuous.

Therefore, Assumption 1 imposes no practical restrictions.

The control task is to track a desired trajectory with a form

si(tk+1) = si(tk) + si+1(tk)T, ∀i = 1, · · · , n− 1, (4)

and sn(tk+1) = r(tk), where the function r(·) : R0,+ → R

is predefined and si(tk) ∈ R, ∀i = 1, · · · , n. Specifi-

cally, the object is to let x(tk) → s(tk) with a bounded

neighborhood holds as tk → ∞ for ∀x(t0) ∈ X, where

s = [s1, · · · , sn]T ∈ X denotes the state of the reference.

Moreover, to infer the unknown function f(·) in (2), the

function µ(·) is employed for prediction using collected data

set denoted as D satisfying the following assumption.

Assumption 2. The data set D is composed of N ∈ N data

pairs {x(ι), z(ι)} for ι ∈ {1,· · ·, N}, where z(ι)= f(x(ι))+
w(ι) for ∀ι = 1,· · ·, N . The measurement noise w(ι) ∈ R is

bounded by w̄∈R0,+, i.e., |w(ι)|≤ w̄, ∀ι=1,· · ·, N .

While Assumption 2 is a common assumption in machine

learning requiring full input observation, obtaining x(ι) is

practically hard for our system (1) due to limited measure-

ments as y. Moreover, Assumption 2 admits the bounded

measurement noise on z(ι) as w̄, which is directly inherited

from bounded noise v in (1). To tackle the challenge arising

from the constrained measurement of y and unspecified w̄,

we introduce a data collection strategy and analyze the noise

propagation from v̄ to w̄ in Section 3.1.

2.2 Kernel Ridge Regression

Owing to the advantageous properties of balance between

achieving accurate data fitting and effectively mitigating

the impact of uninformative fluctuations, KRR emerges as

a widely adopted non-parametric machine learning tech-

nique. Given a kernel function κ(·, ·) and a data set D =
{x(ι), z(ι)}ι=1,··· ,N , KRR aims to find the optimal solution

from the corresponding RKHS Hκ with the following opti-

mization problem as

µ=argmin
h∈Hκ

N−1
∑N

ι=1

(

z(ι)−h(x(ι))
)2

+w̄2‖h‖2κ (5)

with the penalty coefficient w̄ ∈ R+ in Assumption 2. The

closed-form solution of (5) is derived as follows.

Lemma 1 (Representer theorem). Given a kernel κ(·, ·)
with corresponding RKHS Hκ and a data set D =
{x(ι), z(ι)}ι=1,··· ,N , the solution of (5) is presented as

µ(·) = kT (·)α∗ with α∗ = (K +Nw̄2IN )−1z, (6)

where k(·)=[κ(x(1), ·),· · ·, κ(x(N), ·)]T , z= [z(1),· · ·, z(N)]T

and K = [κ(x(p),x(q))]p,q=1,··· ,N

The closed form of µ provided in Lemma 1 is truncated,

i.e., only using the kernels κ(x(ι), ·) related to the given data

set D. Therefore, the evaluation of µ in (6) at any point

x ∈ X is practically possible with time complexity O(N).
Moreover, the prediction accuracy of the obtained µ(x) is

quantified by a defined power function as follows.

Definition 1. The data-dependent power function is defined

as P 2(x) = κ(x,x) − kT (x)(K + Nw̄2IN )−1k(x) with

positive definite P (·), i.e., P (·) : X → R+.

The positivity of P 2(·) is shown in [26] by observing its

Lagrange form as in [27], ensuring the real-valued power

function. On the other hand, P (·) can be regarded as the

marginal probability of the distribution at x conditioned by

data set D by comparing its expression with posterior vari-

ance from Gaussian process regression. With the power

function, we are able to assess the deterministic prediction

error bound, which is shown as follows.

Lemma 2. Consider an unknown function f(·) satisfying As-

sumption 1 with kernel κ and RKHS norm bound B, which

is predicted using KRR solving (5) with data set under As-

sumption 2. Then, the prediction error is bounded as

|µ(x)−f(x)|≤βP (x), ∀x ∈ X (7)

with β=
√

B2−zT (K+Nw̄2IN )−1z+1.

Proof. Define the data-dependent kernel function as

κD(x,x
′) = κ(x,x′)−kT (x)(K+Nw̄2IN )−1k(x′) such



that the RKHS norm w.r.t κD following [28] is written as

‖µ−f‖2κD
=‖µ−f‖2κ+(Nw̄2)−1‖µD−fD‖2, (8)

implying κD is also a kernel function with HκD
=Hκ shown

in [28]. The concatenated prediction and value of unknown

function are expressed as µD=[µ(x(1)),· · ·, µ(x(N))]T and

fD = [f(x(1)),· · ·, f(x(N))]T , respectively. Moreover, ap-

ply the expression of f and µ from Assumption 1 and (6)

respectively and consider

‖µ− f‖2κ = ‖f‖2κ + ‖µ‖2κ − 2〈µ, f〉κ
= ‖f‖2κ + (α∗)TKα∗ − 2fT

D
α∗, (9)

µD − z = −Nw̄2α∗, (10)

then the RKHS norm in (8) is further bounded as

‖µ−f‖2κD
=‖f‖2κ + (α∗)TKα∗ − 2fT

D
α∗ (11)

+(Nw̄2)−1
(

‖µD−z‖2+‖w‖2+2wT(µD−z)
)

=‖f‖2κ + (α∗)TKα∗ − 2zTα∗ + 2wTα∗

+(Nw̄2)−1
(

N2w̄4‖α∗‖2+‖w‖2−2Nw̄2wTα∗
)

=‖f‖2κ−(α∗)T(K+Nw̄2IN )α∗+(Nw̄2)−1‖w‖2

=‖f‖2κ−zT (K+Nw̄2IN )−1z+(Nw̄2)−1‖w‖2.

Furthermore, considering the boundness of ‖f‖2κ in Assump-

tion 1 and ‖w‖2≤Nw̄2, we can directly derive

‖µ−f‖2κD
≤ B2−zT (K+Nw̄2IN )−1z+1=β2 (12)

Finally, considering the Cauchy-Schwarz inequality and the

definition of the data-dependent power function, the absolute

prediction error at x is bounded as

|µ(x)− f(x)| = |〈µ(·)− f(·), κD(x, ·)〉κD
| (13)

≤ ‖µ− f‖κD

√

κD(x,x),

which leads to the result in (7).

Lemma 2 provides a deterministic error bound for KRR,

where the coefficient β can also be formulated as data inde-

pendence by considering β2 ≤ B+1. Moreover, this lemma

not only provides the prediction guarantee for safety-critical

control discussed in Section 3.2, but also signifies a robust

avenue for performance enhancement through the augmen-

tation of data collection efforts as proven in [29].

3 Learning-based Safe Control with KRR

3.1 Data Acquisition and Analysis

Due to the partial measurements of the system, the acqui-

sition of training data solely through direct measurements

alone proves to be a non-trivial task. Therefore, we intro-

duce auxiliary state variables x̃i(tk), which exhibit a struc-

ture akin to that described in (1), formulated as

x̃i+1(tk) = T−1
(

x̃i(tk+1)− x̃i(tk)
)

, (14)

for i = 1, · · · , n− 1 and x̃1(tk) = y(tk). Thus, the concate-

nated auxiliary variable x̃(tk) = [x̃1(tk), · · · , x̃n(tk)]
T is

defined in association with the current system state x(tk).
Subsequently, the bounded measurement is calculated as

Algorithm 1 Data acquisition

Initialize with D = ∅;
1: Reset the initial state such that x(0) ∈ S with predefined safety

set S ⊆ X;

2: Choose an arbitrary control law u from U, and run experiments

until x(k∗) /∈ S with k∗ ∈ N;

3: Collect Y = {y(tk)}k=0,··· ,k∗
and U = {u(tk)}k=0,··· ,k∗

;

4: if k∗ ≥ n then

5: Calculate x̃(tk) for k = 0, · · · , k∗ − n from (14);

6: Calculate z(tk) = x̃n(tk)− u(tk) for k = 0, · · · , k∗ − n;

7: D← {D, {x̃(tk), z(tk)}k=0,··· ,k∗−n}
8: end if

Repeat Step 1 to 8.

z(tk) = x̃n(tk) − u(tk). Utilizing the variables x̃ and z,

the data acquisition strategy is designed in Algorithm 1. Fur-

thermore, to ensure the safety of the data acquisition process,

a predefined safe set S is defined as a subset of X, such that

x(tk+1) ∈ X if x(tk) ∈ S for any control law u(tk) in U.

Remark 1. Algorithm 1 allows online data collection during

the operation. However, the data pair obtained using Algo-

rithm 1 is delayed, i.e., at k ≥ n only {x̃(tk−n), z(tk−n)}
is available and no data pair for k < n. It is unlikely to the

instant acquirement of data pair {x, z} in continuous-time

setting [30], which can be used to improve the prediction

performance immediately.

As the measurement noise v is constrained by v̄, it is intu-

itive to expect that the noise in the data set generated through

Algorithm 1 is also bounded. Moreover, Assumption 2 re-

quires precise state measurement and transfers the noise into

the variable z. This noise transformation is challenging due

to the presence of an unknown function f(·) characterized

by discontinuous behavior. Consequently, the limited varia-

tion of f(·) indicates the necessity of Lipschitz continuity of

f(·), which is elucidated in the subsequent lemma.

Lemma 3 ([31]). Let f(·) satisfy Assumption 1 for a locally

Lipschitz kernel κ with Lipschitz constant Lκ ∈ R+ induced

by the Euclidean norm, i.e., sup
x∈X

‖∇κ(x)‖ ≤Lκ. Then,

the function f(·) is also Lipschitz, i.e., ‖∇f(x)‖≤Lf , ∀x∈
X with Lipschitz constant written as Lf =

√
2LκB.

Given the established Lipschitz continuity of f(·), the

consideration turns to the noisy measurement z(ι) associ-

ated with f(·). Notably, z(ι) should be obtained via f(x̃(ι)),
wherein the auxiliary state x̃(ι) is utilized, instead of f(x(ι))
involving the true state x(ι). Furthermore, it is demonstrated

that the upper bound w̄ of the measurement noise w for z
is directly inherited from v̄. The precise expression of this

inheritance is expounded upon in the subsequent lemma.

Lemma 4. Consider a n-order discrete-time system (1) with

Lipschitz f(·) and measurement noise on y bounded by v̄.

Using the data collection strategy in Algorithm 1, then the

measurement noise in Assumption 2 is bounded by

w̄=
(( 2

T

)n−1

+ Lf

√

1− (2/T )2n/1− (2/T )2
)

v̄ (15)

with the time interval T and Lf in Lemma 3.

Proof. It is evident that x̃i(tk) constitutes a noisy repre-

sentation of xi(tk), expressed as x̃i(tk) = xi(tk)+vi(tk),



∀i = 1,· · ·, n, where v1(tk) = v(tk). Moreover, the noisy

f(x(tk)) is constructed by z(tk)= x̃n(tk)−u(tk), such that

vi(tk) inherited from v(tk) is iteratively calculated as

vi+1(tk) = x̃i+1(tk)− xi+1(tk)

= T−1
(

(x̃i(tk+1)−xi(tk+1))−(x̃i(tk)−xi(tk))
)

= T−1
(

vi(tk+1)− vi(tk)
)

. (16)

Considering the fact that

z(tk)− f(x(tk)) = vn(tk) = T 1−n
n−1
∑

i=0

(

i

n− 1

)

v(tk+i),

then the bound between the collected z and the function f(·)
associated with the auxiliary state variable x̃ is derived as

|z(tk)−f(x̃(tk))|≤|vn(tk)|+ |f(x(tk))− f(x̃(tk))|
≤(2/T )n−1v̄+Lf‖x(tk)−x̃(tk)‖. (17)

Note that ‖x(tk)− x̃(tk)‖ is bounded as

‖x(tk)− x̃(tk)‖2 =

n
∑

i=1

v2i (tk) ≤
n
∑

i=1

(2/T )i−1v̄2 (18)

= (1 − (2/T )2n)(1 − (2/T )2)−1v̄2.

Substitute (18) into (17), then (15) is derived.

3.2 Tracking Control with Performance Guarantee

To achieve the control objective, we propose a learning-

based control law with a state observer as

u(tk) = −µ(x̂(tk)) + r(tk) + φT (x̂(tk)− s(tk)) (19)

with the state observer for estimating x as

x̂(tk+1) =(A+ bφT )(x̂(tk)− s(tk)) + s(tk+1) (20)

+ θ(x̂1(tk)− y(tk)),

where x̂ = [x̂1(tk), · · · , x̂n(tk)]
T is the estimated state. The

control gain and observer gain denotes φ ∈ Rn
>0 and θ ∈

Rn
>0, respectively. The matrix A and vector b are written as

A =

[

In−1 0(n−1)×1

01×(n−1) 0

]

+

[

0(n−1)×1 TIn−1

0 01×(n−1)

]

,

b = [01×(n−1), 1]
T .

To evaluate the system performance, the tracking error e=
x−s and the observation error ê= x̂−x are introduced, whose

dynamics combining (1), (19) and (20) are written as

e(tk+1) =(A+ bφT )e(tk) + bφT ê(tk)

+ b(f(x(tk))− µ(x̂(tk))), (21a)

ê(tk+1) =(A+ θcT )ê(tk) + θv(tk)

− b(f(x(tk))− µ(x̂(tk))), (21b)

where c = [1,0T
(n−1)×1]

T . Moreover, all eigenvalues ofA+

bφT and A + θcT lie inside the unit circle by the designed

control gain and observer gain. The existence of φ and θ is

guaranteed by considering that the pair (A, b) is controllable

and (A, cT ) is observable from the system structure in (1).

With given desired eigenvalues, φ and θ can be obtained by

using Ackermann’s formula.

Combining the dynamics of tracking and observation error

in (21), the concatenated tracking error dynamics denotes

ẽ(tk+1)=Ãẽ(tk)+b̃(f(x(tk))−µ(x̂(tk)))+θ̃v(tk), (22)

where ẽ(tk) = [eT (tk), ê
T (tk)]

T and

Ã =

[

A+ bφT bφT

0n×n A+ θcT

]

, b̃ =

[

b

−b

]

, θ̃ =

[

0n×1

θ

]

.

Note that Ã is also a Schur matrix, whose proof is straight-

forward by considering {λi(Ã)}i=1,··· ,2n = {{λi(A +
bφT )}i=1,··· ,n, {λi(A+θcT )}i=1,··· ,n} due to its block tri-

angular structure. The control performance by using the pro-

posed controller in (19) and (20) is shown as follows.

Theorem 1. Consider a discrete-time system (1) satisfying

Assumption 1, and using the proposed learning-based con-

troller with a state observer in (19) and (20) to track a prede-

fined trajectory (4). The prediction µ of unknown f used in

(19) is obtained via KRR for the optimization problem in (5)

with a data set satisfying Assumption 2. Choose the control

and observation gains φ, θ and symmetric positive matrix

Q, such that ξ0 > 0 with

ξ0 = λ(Q)−2
√
2Lf‖ÃTP ‖ − 2L2

f‖P ‖, (23)

where Lf is the Lipschitz constant of f(·) from Lemma 3

and P ∈ R2n×2n denote the unique solution of discrete-

time Lyapunov equation ÃTPÃ − P = −Q for a given

symmetric positive matrix Q ∈ R2n×2n. The operator λ(·)
returns the minimal eigenvalue of the matrix. Then, there

exists k̄ ∈ N such that the tracking error and the observation

error are both ultimately bounded, i.e.,

‖e(tk)‖ ≤ χξ
(
√
2βP̄+‖θ‖v̄

)

, (24)

‖ê(tk)‖ ≤ χξ
(
√
2βP̄+‖θ‖v̄

)

, (25)

for ∀k ≥ k̄, where χ = (λ̄(P )/λ(P ))1/2, ξ = ξ−1
0 ξ1+(1+

ξ−1
0 ξ2)

1/2 and P̄ = sup
x∈X

P (x) with

ξ1 = ‖ÃTP ‖+ 2βLf‖P ‖P̄ +
√
2Lf‖P ‖‖θ‖v̄,

in which ξ2 = ‖P ‖ and β is defined in Lemma 2.

Proof. The control performance is analyzed using Lyapunov

theory, where the Lyapunov candidate is chosen as V (tk) =
ẽT (tk)P ẽ(tk) with the symmetric positive definite P . The

existence and uniqueness of P is proved by considering

that Ã is a Schur matrix. Applying the concatenated er-

ror dynamics in (22), the difference of Lyapunov function

∆V (tk) = V (tk+1)− V (tk) between two consecutive time

instances is written as

∆V (tk)=−ẽT(tk)Qẽ(tk) (26)

+ 2ẽT(tk)Ã
TP

(

b̃(f(x(tk))−µ(x̂(tk)))+θ̃v(tk)
)

+
(

b̃(f(x(tk))−µ(x̂(tk)))+θ̃v(tk)
)T

P
(

θ̃v(tk)

+b̃(f(x(tk))−µ(x̂(tk)))
)

.
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Using the properties of eigenvalue and singular value, the

difference ∆V (tk) is bounded by

∆V (tk)≤ −λ(Q)‖ẽ(tk)‖2

+2‖ÃTP ‖‖ẽ(tk)‖
(

‖b̃‖|f(x(tk))−µ(x̂(tk))|+‖θ̃‖|v(tk)|
)

+‖P ‖
(

‖b̃‖|f(x(tk))−µ(x̂(tk))|+‖θ̃‖|v(tk)|
)2
, (27)

where the prediction error bound using estimated system

states x̂ is bounded as

|f(x)−µ(x̂)|≤|f(x)−f(x̂)|+|f(x̂)−µ(x̂)| (28)

≤ Lf‖ê‖+ βP (x̂) ≤ Lf‖ẽ‖+ βP (x̂),

such that ∆V (tk) is further bounded as

∆V (tk)≤−
(

λ(Q)−2Lf‖ÃTP ‖‖b̃‖−L2
f‖P ‖b̃‖2

)

‖ẽ(tk)‖2

+2
(

‖ÃTP ‖+βLf‖P ‖‖b̃‖2P (x̂(tk))

+Lf‖P ‖‖b̃‖‖θ̃‖|v(tk)|
)

‖ẽ(tk)‖ (29)

+‖P ‖
(

β‖b̃‖P (x̂(tk))+‖θ̃‖|v(tk)|
)2

≤− ξ0‖ẽ(tk)‖2+ξ2
(

β‖b̃‖P (x̂(tk))+‖θ̃‖|v(tk)|
)2

+2ξ1‖ẽ(tk)‖
(

β‖b̃‖P (x̂(tk))+‖θ̃‖|v(tk)|
)

considering ‖b̃‖ =
√
2 and ‖θ̃‖ = ‖θ‖. Recall the assump-

tions of positive coefficients ξ0, ξ1 and ξ2 in the theorem,

which leads the right-hand side as a concave function w.r.t

‖ẽ(tk)‖, and therefore the positive range of ‖ẽ(tk)‖ ensur-

ing the negativity of ∆V (tk) is written as

‖ẽ(tk)‖ ≥ ξ−10
(

ξ1+
√

ξ21+ξ0ξ2
)(

β‖b̃‖P̄+‖θ̃‖v̄
)

= ξ
(
√
2βP̄+‖θ‖v̄

)

, (30)

ignoring the invalid negative part of ‖ẽ(tk)‖. Considering

λ̃‖ẽ‖2≤V≤λ̄‖ẽ‖2, the decay of the Lyapunov function is in-

dicated using (30) when V (tk)≥λ̄(P )ξ2P̄ 2, resulting V (tk)
is ultimately bounded by V (tk)≤ λ̄(P )ξ2P̄ 2 and therefore

‖ẽ(tk)‖2≤λ̄(P )/λ(P )ξ2P̄ 2. The proof is concluded con-

sidering ‖e(tk)‖≤‖ẽ(tk)‖ and ‖ê(tk)‖≤‖ẽ(tk)‖.

4 Simulation

To demonstrate the effectiveness of the proposed control

law (19), discrete-time dynamics as in (1) is considered with

n = 2 and T = 0.2. The measurement noise of the sys-

tem output y is bounded by v̄ = 0.01. Moreover, the un-

known function is considered as f(x) = 0.5(sin(0.2x1) −
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Fig. 2: The plots of states x with KRR and its error bound

(orange), without KRR (blue), and the desired trajectory

(black dashed). The partial magnification plots (right).
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Fig. 3: The curves of ‖e(t)‖ and ‖ê(t)‖ over time t.

1) + 1/(1 + exp(x2)) and the kernel function is chosen as

κ(x,x′) = σ2
f exp(−0.5l−2‖x− x′‖2) with σf = 0.5 and

l = 5 such that the corresponding RKHS norm is bounded

by B = 0.3. The tracking reference trajectory is given with

r(tk) = 50(sin(0.1k + 0.2)− sin(0.1k + 0.1)). To achieve

such control task, the control gain φ and observation gain

θ are determined using Ackermann’s formula, such that the

eigenvalues of A + bφT and A + θcT are set as [0.8, 0.7]
and [0.01, 0.02], respectively. Note that this choice of φ

and θ ensures ξ0 > 0 in Theorem 1. The prediction µ of

the unknown f is predicted using KRR, where the training

data set is collected through Algorithm 1 by choosing the

controller similar to (19) with the same coefficients. In to-

tal, 200 training samples are collected, whose distribution is

shown in Fig. 1. The simulation is initialized at k = 0 with

x(0) = [0, 50 sin(0.1)]T and lasts 200 steps.

We conduct a comparative analysis of trajectories both

with and without KRR, representing the tracking perfor-

mance in the state position in Fig. 2, where µ(·) = 0 for

the case without learning. Moreover, Fig. 3 shows the norm

of tracking error e and observation error ê for with/without

methods and a controller with exact dynamics. Notably, the

controller incorporating KRR demonstrates a substantial ad-

vancement, manifesting a remarkable 10 times reduction in

both tracking and estimation errors when compared to the

controller operating without learning techniques.

5 Conclusion

In summary, this paper presents a novel kernel-based con-

trol method for the safe tracking of high-order systems with

unknown dynamics and partially observable states. Leverag-

ing KRR and a tailored data collection strategy, the proposed

approach effectively models system uncertainties with lim-

ited state measurements. Our proposed learning-based con-

trol law integrated with a state observer ensures the deter-



ministic bounds for both tracking and observation errors and

underscores its adaptability in safety-critical control tasks.

The simulations show that there is a significant improvement

in the tracking performance, which validates the effective-

ness of the proposed method.
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