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ON MANIFOLDS WITH NONNEGATIVE RICCI CURVATURE

AND THE INFIMUM OF VOLUME GROWTH ORDER < 2

ZHU YE

Abstract. we prove two rigidity theorems for open (complete and noncom-

pact) n-manifolds M with nonnegative Ricci curvature and the infimum of

volume growth order < 2. The first theorem asserts that the Riemannian uni-

versal cover of M has Euclidean volume growth if and only if M is flat with an

n − 1 dimensional soul. The second theorem asserts that there exists a non-

constant linear growth harmonic function on M if and only if M is isometric

to the metric product R×N for some compact manifold N .

1. Introduction

Let M be an open n-manifold with nonnegative Ricci curvature. It is well known

that M has at least linear volume growth (Yau [18]) and at most Euclidean volume

growth (Bishop volume comparison [1]). That is, for some point p ∈ M , we have

C1R ≤ vol(BR(p)) ≤ ωnR
n, ∀R ≥ 1,

where C1 > 0 is a constant that may rely on p and ωn is the volume of the unit ball

in R
n. We say that M has linear volume growth, if vol(BR(p)) ≤ C2R for some

constant C2 > 0 and any R ≥ 1. We say that M has Euclidean volume growth or

M is noncollapsed, if vol(BR(p)) ≥ CRn for some constant C > 0 and any R ≥ 1.

In this paper, we will generalize two rigidity theorems that have been established

under the condition that M has linear volume growth.

In [19], the author proved the following geometric rigidity:

Theorem 1.1. [19] Let M be an open n-manifold with Ric ≥ 0 and linear volume

growth. Then the Riemannian universal cover of M is noncollapsed if and only if

M is flat with an n− 1 dimensional soul.

As the first main result of this paper, we obtain an optimal volume growth

condition on M such that Theorem 1.1 still holds.

Definition 1.2. We define

IV(M) = inf{s > 0 | lim inf
R→∞

vol(BR(p))

Rs
= 0},

SV(M) = sup{s > 0 | lim sup
R→∞

vol(BR(p))

Rs
> 0}.

We will refer to IV(M) (resp. SV(M)) as the infimum (resp. supremum) of volume

growth order of M .
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By definition, IV(M) < k if and only if there exists an α < k and a sequence

Ri → ∞ such that lim
i→∞

vol(BRi
(p))

Rα
i

= 0.

Our first main result is:

Theorem A. Let M be an open n-manifold with Ric ≥ 0 and IV(M) < 2. Then

the Riemannian universal cover of M is noncollapsed if and only if M is flat with

an n− 1 dimensional soul.

Theorem A is optimal in the sense that IV(M) = 2 does not imply flatness.

Indeed, we may consider the metric product M0 = N2 × Fn−2, where N is a 2-

manifold with Euclidean volume growth and positive sectional curvature, and F is a

compact flat manifold. Then IV(M0) = 2, the universal cover of M0 has Euclidean

volume growth, but M0 is not flat.

Assume that M has noncollapsed universal cover. By Theorem A, IV(M) < 2

implies that IV(M) = SV(M) = 1. This motivates the author to propose the

following question:

Question 1.3. Let M be an open manifold with Ric ≥ 0 and noncollapsed universal

cover. Is it true that IV(M) = SV(M) ∈ N+?

Let’s illustrate the idea to prove Theorem A. Let π : (M̃, p̃) → (M,p) be the

Riemannian universal cover with deck transformation group Γ. The volume growth

conditions on M and M̃ guarantee that the order of the orbit growth of Γ is strictly

larger than n−2 in some scales. This enables us to prove that for some equivariant

asymptotic cone ([7, 8]) of (M̃, p̃,Γ), say (Y, y,G), the orbit Gy has lower Box

dimension dimlb(Gy) > n − 2 (Proposition 2.2). Since M̃ has Euclidean volume

growth, Y is a metric cone by Cheeger-Colding [3]. By Cheeger-Colding splitting

theorem, Y ∼= R
k × C(Z) with diam(Z) < π. Now dimub(Gy) > n − 2 forces

Y ∼= R
n, and thus M̃ ∼= R

n as a corollary of Colding’s volume convergence [6]. This

proves Theorem A. A generalized version of Theorem A is given at the end of the

introduction, and we will prove it in Section 2.

Our second main result involves linear growth harmonic functions on M . Recall

that to say a harmonic function f on M has polynomial growth means |f | ≤

C(d(p, ·) + 1)k for some C, k > 0 and p ∈ M . In the particular case k = 1, we say

f has linear growth.

Sormani considered the harmonic functions on manifolds with linear volume

growth, and proved the following theorem:

Theorem 1.4. [17] Let M be an open n-manifold with Ric ≥ 0 and linear volume

growth. If there exists a nonconstant polynomial growth harmonic function on M ,

then M splits isometrically as M ∼= R×Nn−1.

We partially generalize Theorem 1.4 to the following:

Theorem B. Let M be an open n-manifold such that Ric ≥ 0 and IV(M) < 2.

Then there exists a nonconstant linear growth harmonic function on M if and only

if M splits isometrically as M ∼= R×Nn−1 for some compact manifold N .

When M has slow volume growth, Theorem B follows from Section 2 of Li-Tam

[11].
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Compared with Theorem 1.4, we propose the following question:

Question 1.5. Let M be an open n-manifold with Ric ≥ 0 and IV(M) < 2. If there

exists a nonconstant polynomial growth harmonic function on M , is M necessarily

isometric to R×N for some compact manifold N?

Let M be complete with Ric ≥ 0. Given an integer 0 ≤ k ≤ n, we say that

M is k-Euclidean at infinity, if any asymptotic cone of M split off an R
k factor.

Note that M is always 0-Euclidean at infinity. We recall the following result of

Cheeger-Colding-Minicozzi:

Theorem 1.6. [2] Let M be a complete manifold with Ric ≥ 0. If the space of linear

growth harmonic functions on M has dimension k + 1, then M is k-Euclidean at

infinity.

Theorem B is a by-product of Theorem 1.6 and our research on the relation

between the volume growth and the asymptotic cones (with renormalized limit

measure) of M .

We will prove the following volume growth gap result:

Theorem C. Let M be an open manifold with Ric ≥ 0. If Mn is k-Euclidean at

infinity, then M is of one of the following two types:

type I: M has unique asymptotic cone R
k.

type II: every asymptotic cone of M splits as R
k × Z with Z noncompact.

If M is of type I, then IV(M) = SV(M) = k. That is,

(1.7) lim
R→∞

vol(BR(p))

Rk−α
= ∞ and lim

R→∞

vol(BR(p))

Rk+α
= 0, ∀α > 0.

If M is of type II, then IV(M) ≥ k + 1. That is,

(1.8) lim
R→∞

vol(BR(p))

Rk+1−α
= ∞, ∀α > 0.

Theorem B follows from Theorem 1.6 and Theorem C. Let M be an open n-

manifold with Ric ≥ 0 and IV(M) < 2. By Theorem 1.6, if there exists a non-

constant linear growth harmonic function on M , then M is 1-Euclidean at infinity.

Since IV(M) < 2, by Theorem C, M can only be 1-Euclidean of type I, and thus

M ∼= R×N for some compact mianifold N (see Proposition 3.3).

The word k-Euclidean comes from Cheeger-Colding [4], where a point p in a

Ricci limit space is called k-Euclidean if any tangent cone at p split off an R
k.

The proof of Theorem C is divided into two steps.

In Section 3, we prove that if M is k-Euclidean at infinity, then either M has

unique asymptotic cone R
k or any asymptotic cone of M is isometric to R

k × Z

with noncompact Z. This is an application of the critical rescaling technique devel-

oped by Pan in [12]. See also Pan [13, 14, 15] for applications of critical rescaling

technique to the geometry and topology of open manifolds with nonnegative Ricci

curvature.

In Section 4, we establish the volume growth estimate (1.7) and (1.8). To achieve

this, we shall consider the space of all asymptotic cones with renormalized limit

measure and establish the relationship between volume growth and renormalized
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limit measure. To obtain the volume growth estimate of manifolds with k-Euclidean

at infinity property of type II, we must use the splitting theorem of RCD(0, n)

spaces, which is proved by Gigli in [9]. Compared with the splitting theorem for

Ricci limit spaces proved by Cheeger-Colding in [3], an advantage of this version

is that it proved that the remaining space after a line splitting is a CD(0, n − 1)

space, thus enables us to use volume comparison on it.

Finally, we pointed out that using the k-Euclidean at infinity condition, we can

generalize Theorem A in the following way:

Theorem D. Let M be a complete n-manifold with Ric ≥ 0 and noncollapsed

universal cover. Assume that M is k-Euclidean at infinity. Then IV(M) < k + 2

if and only if M is flat and is isometric to R
k ×Nn−k, where N is flat and either

closed or open with an n− k − 1 dimensional soul.

Remark 1.9. Note that Schwarzschild metric on Nk+1 = Sk−1 ×R2 is k-Euclidean

of type I, and thus IV(N) = SV(N) = k by Theorem C, but N is not flat. This

shows the necessity of the noncollapsed condition on the universal cover in Theorem

D.

Indeed, put k = 0 in Theorem D, we obtain Theorem A.

Acknowledgement. The author would like to express his sincere gratitude to

Professor Xiaochun Rong for his continuous encouragement. The author would like

to thank Professor Jiayin Pan for helpful discussions and suggestions.
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2. Proof of Theorem D

In this section, we prove Theorem D. Let M be a complete n-manifold with

Ric ≥ 0. Let π : (M̃, p̃) → (M,p) be the Riemannian universal cover with deck

transformation group Γ. Denote by

Γ(R) = {g ∈ Γ | d(p̃, gp̃) ≤ R}.

We define the supremum of the orbit growth order of Γ, denoted by SO(Γ), by

SO(Γ) = sup{s | lim sup
R→∞

#(Γ(R))

Rs
> 0}.

We recall the definition of lower Box dimension. For a metric spaceX , a bounded

subset A ⊂ X , and an ǫ > 0, the ǫ-capacity of A is defined by

Cap(A; ǫ) = sup{k | there are x1, · · · , xk ∈ A such that d(xi, xj) ≥ ǫ, ∀i 6= j}.
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The lower Box dimension of A, denoted by dimlb(A), is given by

dimlb(A) = lim inf
ǫ→0

−
lnCap(A; ǫ)

ln ǫ
.

We also define the lower box dimension of X as dimlb(X) = sup
A

dimlb(A), where A

run over all bounded subset of X .

The following slope lemma 2.1 is inspired by Gromov [10].

Lemma 2.1. Let f : [0,∞) → R be a function that is upper bounded on any finite

interval: f |[0,R] ≤ C(R) < ∞ for any R > 0. Assume that f(si) ≥ ksi for some

k > 0 and a sequence si → ∞. Then for any l ≥ 1, we can find a sequence ri → ∞

such that

f(ri)− f(t) > (k − l−1)(ri − t), ∀t ∈ [ri − l, ri − 1].

Proof. Assume the Lemma does not hold for some l ≥ 1. That is, there is an

N(l) > 0, such that for any r > N(l), we have

f(r)− f(tr) ≤ (k − l−1)(r − tr)

for some tr ∈ [r − l, r − 1]. Then for r0 = si > N(l), we can find a r1 such

that r0 − l ≤ r1 ≤ r0 − 1 and f(r0) − f(r1) ≤ (k − l−1)(r0 − r1). If we still

have r1 > K(l), then we can find an r2 such that r1 − l ≤ r2 ≤ r1 − 1 and

f(r1)− f(r2) ≤ (k− l−1)(r1 − r2). Inductively, we can find r0 = si, r1, · · · , rki
such

that the follow hold:

1. rj − l ≤ rj+1 ≤ rj − 1;

2. f(rj)− f(rj+1) ≤ (k − l−1)(rj − rj+1) for every j = 0, · · · , ki − 1;

3. rki−1 > K(l), and rki
≤ K(l).

We have

kr0 ≤f(r0)

≤(f(r0)− f(r1)) + (f(r1)− f(r2))+

· · ·+ (f(rki−1)− f(rki
)) + f(rki

)

≤(k − l−1)(r0 − rki
) + C(K(l)).

When i → ∞, we have r0 = si → ∞, this leads to a contradiction.

�

Lemma 2.1 allows us to prove the following general Proposition that relates orbit

growth and asymptotic geometry of universal cover.

Proposition 2.2. There exists an equivariant asymptotic cone of (M̃, p̃,Γ), de-

noted by (Y, y,G), such that the lower box dimension of Gy, dimlb(Gy) ≥ SO(Γ).

Proof. We denote m = SO(Γ). By definition, for every positive integer i and

mi = m − 1
i
, there exists a sequence Rij → ∞ such that #(Γ(Rij)) > emiRmi

ij .

Assume that Rij ∈ [ekij , ekij+1), then

#(Γ(ekij+1)) ≥#(Γ(Rij))

>emiRmi

ij

≥(ekij+1)mi .
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Put f(k) = ln(#(Γ(ek)), rij = kij + 1, then f(rij) > mirij . Using Lemma 2.1, we

find a sequence aij → ∞ such that

f(aij)− f(t) > (mi −
1

i
)(aij − t), ∀t ∈ [aij − i, aij − 1].

That is,

(2.3)
#(Γ(eaij ))

#(Γ(eaij−t′))
> e(mi−

1
i
)t′ for t′ = [1, i].

We choose aiji → ∞ and put ri = eaiji . Let d be the dinstance function

on M̃ , we denote by Γip̃ the orbit Γp̃ equipped with the distance di(g1p̃, g2p̃) :=

r−1
i d(g1p̃, g2p̃). For x ∈ Γp̃ and r > 0, we put

Bi
r(x) = {y ∈ Γip̃ | di(x, y) ≤ r}.

For l ≥ 1, we choose x1, x2, · · · , xs ∈ Bi
1(p̃) such that

s = Cap(Bi
1(p̃); e

−l), di(xa, xb) ≥ e−l for any a 6= b.

We have Bi
1(p̃) ⊂

s
⋃

q=1
Bi

e−l(xq). Since #Bi
r(xa) = #Bi

r(xb) for any xa, xb ∈ Γp̃, we

have

(2.4) Cap(Bi
1(p̃); e

−l) ≥
#(Bi

1(p̃))

#(Bi
e−l(p̃))

=
#(Γ(ri))

#(Γ(e−lri))
.

After passing to a subsequence, consider the equivariant point Gromov-Hausdorff

convergence ([7, 8]) (r−1
i M̃, p̃,Γ) → (Y, y,G). Denote by B∞

r (y) = {w ∈ Gy |

dY (y, w) ≤ r}. By (2.3) and (2.4), we have

Cap(B∞

1 (z); e−l) ≥ lim sup
i→∞

Cap(Bi
1(p̃); e

−l) ≥ eml, for any l ≥ 1.

This implies that dimlb(Gz) ≥ dimlb(B1(z)) ≥ m. �

Remark 2.5. In Proposition 4.2 of [16], Pan-Ye proved that for any asymptotic cone

(Y, y,G) of (M̃, p̃,Γ), Gy has hausdorff dimension l, under the condition that Γ has

stable orbit growth of order l: c1R
l ≤ #(Γ(R)) ≤ c2R

l, ∀R ≥ 1.

Proof of Theorem D. Assume that IV(M) < k + 2. By a fundamental domain

argument (see Theorem 4 (1.2) in [19] and its proof), we have:

#(Γ(2R)) ≥
vol(BR(p̃))

vol(BR(p))
.

Since M̃ has Euclidean volume growth and IV(M) < k + 2, we conclude that

SO(Γ) > n− k − 2. By proposition 2.2, we can find a sequence ri → ∞ such that

for the equivariant Gromov-Hausdorff convergence

(r−1
i M̃, p̃,Γ)

GH
−−−−→ (Y, y,G)





y

πi





y

π

(r−1
i M,p)

GH
−−−−→ (Z = Y/G, z)
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we have dimlb(Gy) > n−k−2. Since M is k-Euclidean at infinity, we have (Z, z) ∼=

(Rk × Z ′, (0k, z′)). Since π is a submetry, we can write (Y, y) = (Rk × Y ′, (0k, y′)).

Note that π preserves the R
k factor, thus we have G · y ⊆ {0k} × Y ′.

Since M̃ is noncollapsed, Y is a metric cone with vertex y. So we can write

Y = R
k × Y ′ = R

k × (Rm × C(X)) = R
k+m × C(X)

and y = (0k, 0m, v), where C(X) does not contain any line and v is the unique vertex

of C(X). we have inclusion Gy ⊆ R
k+m × {v}. Together with Gy ⊆ {0k} × Y ′, we

derive

Gy ⊆ {0k} × R
m × {v}.

As Gy has lower box dimension dimlb > n− k − 2, we have m ≥ n− k − 1. Thus

Y splits off an R
n−1 factor. By Cheeger-Colding [4], the set of singular points in Y

has codimension at least 2, thus Y ∼= R
n. By Colding [6], M̃ itself is isometric to

R
n. So M is flat. Since M is k-Euclidean at infinity, M is isometric to R

k ×Nn−k

for some flat manifold N . Since IV(M) < k + 2, N is either closed or an open flat

manifold with an n− k − 1 dimensional soul. �

3. k-Euclidean at infinity

In this section, we prove the first part of Theorem C:

Proposition 3.1. If M is k-Euclidean at infinity, then either M has unique asymp-

totic cone R
k, or any asymptotic cone M∞ split as Rk ×Z, where Z is noncompact

and may rely on M∞.

Proof. We will prove the following claim:

Claim 3.2. Let Y1 = R
k, Y2 = R

k × Z, where Z is noncompact, then at most one

of them can be an asymptotic cone of M .

Assume Claim 3.2 holds. If (X, x0) = (Rk ×K, (0, a)) with K 6= {pt} compact

occurs as an asymptotic cone ofM , then a tangent cone ofX at x0 is R
k×K ′, where

K ′ is noncompact. Meanwhile, the asymptotic cone of X is Rk. Since any tangent

cone at x0 or asymptotic cone of X is an asymptotic cone of M , this contradicts

Claim 3.2. Now Proposition 3.1 follows from Claim 3.2.

Now we turn to the proof of Claim 3.2. Denote by Ω the set of all asymptotic

cones of M .

Assume that Claim 3.2 does not hold, that is, both Y1 and Y2 belong to Ω. Then

there is an ǫ > 0 such that the ǫ neigberhood of (Y1, o1) (according to pointed

Gromov-Hausdorff distance) in Ω, Bǫ((Y1, o1)) contains no elements like R
k × Z ′

with Z ′ noncompact.

Choose ri → 0, si → 0 such that

lim
i→∞

(siM,p) = (Y1, o1), lim
i→∞

(riM,p) = (Y2, o2).

Write Ni = riM , li = r−1
i si. Then

lim
i→∞

(Ni, p) = (Y2, o2), lim
i→∞

(liNi, p) = (Y1, o1).

After passing to a subsequence, we can always assume that li → ∞.
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Set Li = {t ∈ [1, li] | dpGH((tNi, p), (Y1, o1)) ≤
ǫ
2}, then li ∈ Li for i large. Let

hi = inf Li ∈ Li.

We claim that hi → ∞. If not, (after passing subsequence) the limit lim
i→∞

(hiNi, p)

will be (rY2, o2) for some r ≥ 1. Since rY2 = R
k × (rZ) with rZ noncompact, we

have dpGH((rY2, o2), (Y1, o1)) ≥ ǫ. This contradicts with hi ∈ Li for i large.

Note that hiri ≤ liri = si → 0, so we can write

lim
i→∞

(hiNi, p) = lim
i→∞

(hiriM,p) = (Rk ×K, o3) ∈ Ω.

Since hi ∈ Li, K must be compact. Choose 0 < c < 1 such that (Rk × (cK), o3) ∈

B ǫ
3
(Y1). We have lim

i→∞

(chiNi, p) = (Rk × (cK), o3), thus chi ∈ Li for i large. This

is impossible since hi = inf Li. �

The following result is well-known, we put a proof here for readers’ convenience:

Proposition 3.3. If M has unique asymptotic cone R, then M is isometric to

R×N for some compact manifold N .

Proof. Fix a point p ∈ M , then for any sequence ri → ∞, we have pointed Gromov-

Hausdorff convergence

(r−1
i M,p)

GH
−−→ (R, 0).

Let qi,+, qi,− ∈ r−1
i M such that qi,+ → 1, qi,− → −1. Let γi be a minimal geodesic

connecting qi,− and qi,+ and let ai be a point on γi that is closest to p. Then

d(qi,−, qi,+)

ri
→ 2,

d(ai, p)

ri
→ 0.

Now if d(p, ai) < C for some constant C > 0, then γi converge to a line in

M . Thus M ∼= R × N by Cheeger-Gromoll splitting theorem [5]. Since R is the

asymptotic cone of M , N must be compact.

If d(p, ai) → ∞, we put si = d(p, ai) and consider the convergence

(s−1
i M,p)

GH
−−→ (R, 0).

Since sir
−1
i → 0, passing to subsequence γi converge to a line γ∞ such that

d(0, γ∞) = lim
i→∞

s−1
i d(p, γi) = 1. Such a line cannot exist on R. So d(p, ai) → ∞

will not happen. �

4. Volume growth and asymptotic cone

To prove the volume growth part of Theorem C, we shall study the relation be-

tween the renormalized limit measures (see Section 1 of [4] for definition) on asymp-

totic cones and the volume growth of M . Let ri → ∞ such that lim
i→∞

(r−1
i M,p) =

(X, o, v), where (X, o) is the pointed Gromov-Hausdorff limit of (r−1
i M,p) and v is

a renormalized limit measure on X . Then for any R > 0, we have

v(BR(o)) = lim
i→∞

vol(B
r
−1
i

M

R (p))

vol(B
r
−1
i

M

1 (p))
= lim

i→∞

vol(BriR(p))

vol(Bri(p))
,
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where the existence of the limit is ensured by the construction of v. In particular,

v(B1(o)) = 1. Note that an asymptotic cone (X, o) may have different renormalized

limit measures on it.

Let Ω be the set of all (X, o, v), where (X, o) is an asymptotic cone of M , and v

is a renormalized limit measure on X .

For l > 0, l 6= 1, define kl,Kl by

lkl =min{v(Bl(o)) | (Z, o, v) ∈ Ω},

lKl =max{v(Bl(o)) | (Z, o, v) ∈ Ω}.

Note that by volume comparison and v(B1(o)) = 1, we have 0 ≤ kl ≤ Kl ≤ n when

l > 1, and 0 ≤ Kl ≤ kl ≤ n when 0 < l < 1.

Lemma 4.1.

lkl = lim inf
R→∞

vol(BlR(p))

vol(BR(p))
≤ lim sup

R→∞

vol(BlR(p))

vol(BR(p))
= lKl .

Proof. Since

vol(BlR(p))

vol(BR(p))
=

vol(BR−1M
l (p))

vol(BR−1M
1 (p))

.

�

Proposition 4.2. If l > 1, then ∀α > 0, we have

(4.3) lim
R→∞

vol(BR(p))

RKl+α
= 0,

(4.4) lim
R→∞

vol(BR(p))

Rkl−α
= ∞.

If 0 < l < 1, then ∀α > 0, we have

lim
R→∞

vol(BR(p))

Rkl+α
= 0, lim

R→∞

vol(BR(p))

RKl−α
= ∞.

Proof. If l > 1: By Lemma 4.1, ∀ǫ > 0, we can choose N large enough such that

R ≥ N ⇒

lkl − ǫ <
vol(BlR(p))

vol(BR(p))
< lKl + ǫ.

Define function φ(R) : (N,∞) → N+ by N ≤ R
lφ(R) < lN . We have

vol(BR(p)) =
vol(BR(p))

vol(BR
l
(p))

·
vol(BR

l
(p))

vol(B R

l2
(p))

· · ·
vol(B R

lφ(R)−1
(p))

vol(B R

lφ(R)
(p))

· vol(B R

lφ(R)
(p)).

So

(lkl − ǫ)φ(R)vol(BN (p)) < vol(BR(p)) < (lKl + ǫ)φ(R)vol(BlN (p)).

Now ∀α > 0, we have

vol(BR(p))

RKl+α
<
(lKl + ǫ)φ(R)vol(BlN (p))

(Nlφ(R))Kl+α

=

(

lKl + ǫ

lKl+α

)φ(R)
vol(BlN (p))

NKl+α
.
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Let ǫ be small enough such that lKl+ǫ
lKl+α < 1, we obtain (4.3).

Similarly, we have

vol(BR(p))

Rkl−α
>
(lkl − ǫ)φ(R)vol(BN (p))

(lNlφ(R))kl−α

=

(

lkl − ǫ

lkl−α

)φ(R)
vol(BN (p))

(lN)kl−α
,

Let ǫ be small enough such that lkl−ǫ

lkl−α > 1, we obtain (4.4).

When 0 < l < 1, we obtain from Lemma 4.1 that

l−Kl ≤ lim inf
R→∞

vol(BR(p))

vol(BlR(p))
≤ lim sup

R→∞

vol(BR(p))

vol(BlR(p))
≤ l−kl .

The rest of the derivation is similar.

�

Corollary 4.5. If (M,p) has unique asymptotic cone with unique renormalized

limit measure (X, o, v), then there exists a unique k ≥ 0 such that

(1) v(Bl(o)) = lk, ∀l > 0.

(2) the volume growth of M satisfies (1.7).

Proof. Fix an l > 0, l 6= 1, then v(Bl(o)) = lkl = lKl . We obtain from Proposition

4.2 that ∀α > 0,

lim
R→∞

vol(BR(p))

Rkl+α
= 0, lim

R→∞

vol(BR(p))

Rkl−α
= ∞.

But the kl satisfying the above volume growth is unique, if exists. So k := kl is

independent of l. �

Now we can prove the volume growth part of Theorem C:

Proposition 4.6. If M is k-Euclidean at infinity, then:

(1) if M has unique asymptotic cone R
k, then the volume growth of M satisfies

(1.7).

(2) if any asymptotic cone is an R
k×Z for some noncompact Z, then the volume

growth of M satisfies (1.8).

Proof. (1) If M has unique asymptotic cone R
k, then the renormalized limit mea-

sure v on R
k is unique and must be the renormalized k-dimenisional Lebesgue mea-

sure 1
ωk

Lk on R
k by Cheeger-Colding [4] Proposition 1.35, where ωk = Lk(B1(0

k)).

So v(Bl(0
k)) = lk for any l > 0. Inequality (1.7) now follows from Corollary (4.5).

(2) Let (T, o, v) = (Rk × Z, (0k, z), ω−1
k Lk × mZ) be an asymptotic cone of M .

From the splitting theorem in RCD(0, n) spaces ([9]), we know that (Z, z,mZ) is a

CD(0, n− k) space, hence the volume comparison applies.

Now v(B1(o)) = 1 from the definition of renormalized limit measure. So we have

mZ(B1(z)) = v(B1(0
k)×B1(z)) ≥ v(B1(o)) = 1.
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Let γ be a ray in Z starting from z, we have

mZ(B2R(z)) ≥mZ(B1(z))
mZ(BR−1(γ(R)))

mZ(BR+1)(γ(R))−mZ(BR−1(γ(R)))

≥
(R− 1)n−k

(R + 1)n−k − (R− 1)n−k

≥ cnR, ∀R ≥ dn,

where cn, dn > 0 are contants depends only on n. Thus

v(BR(o)) ≥ ω−1
k Lk(BR

2
(0))×m(BR

2
(z)) ≥ c′nR

k+1, ∀R ≥ dn.

Now write v(BR(o)) = Rk(R). Since

Rk(R) ≥ c′nR
k+1, ∀R ≥ dn,

for any β > 0, there is a C(n, β) such that

R ≥ C(n, β) ⇒ k(R) > k + 1− β.

We conclude that kR ≥ k+1− β, ∀R ≥ C(n, β) (recall that RkR = min{v(BR(o)) |

(Z, o, v) ∈ Ω}). The volume growth estimate (1.8) now follows from Proposition

4.2 (4.4). �

References

[1] R. L. Bishop and R. J. Crittenden. Geometry of manifolds, volume 15 of Pure Appl. Math.,

Academic Press. New York and London: Academic Press, 1964.

[2] J. Cheeger, T. H. Colding, and W. P. II Minicozzi. Linear growth harmonic functions on

complete manifolds with nonnegative Ricci curvature. Geom. Funct. Anal., 5(6):948–954,

1995.

[3] Jeff Cheeger and Tobias H. Colding. Lower bounds on Ricci curvature and the almost rigidity

of warped products. Ann. of Math. (2), 144(1):189–237, 1996.

[4] Jeff Cheeger and Tobias H. Colding. On the structure of spaces with Ricci curvature bounded

below. I. J. Differ. Geom., 46(3):406–480, 1997.

[5] Jeff Cheeger and Detlef Gromoll. The splitting theorem for manifolds of nonnegative Ricci

curvature. J. Differ. Geom., 6:119–128, 1971.

[6] Tobias H. Colding. Ricci curvature and volume convergence. Ann. Math. (2), 145(3):477–501,

1997.

[7] Kenji Fukaya. Theory of convergence for Riemannian orbifolds. Jpn. J. Math., New Ser.,

12:121–160, 1986.

[8] Kenji Fukaya and Takao Yamaguchi. The fundamental groups of almost nonnegatively curved

manifolds. Ann. Math. (2), 136(2):253–333, 1992.

[9] Nicola Gigli. The splitting theorem in non-smooth context. arXiv:1302.5555, 2013.

[10] Mikhael Gromov. Groups of polynomial growth and expanding maps. Appendix by Jacques

Tits. Publ. Math., Inst. Hautes Étud. Sci., 53:53–78, 1981.

[11] Peter Li and Luen-Fai Tam. Linear growth harmonic functions on a complete manifold. J.

Differ. Geom., 29(2):421–425, 1989.

[12] Jiayin Pan. Nonnegative Ricci curvature, stability at infinity and finite generation of funda-

mental groups. Geom. Topol., 23(6):3203–3231, 2019.

[13] Jiayin Pan. On the escape rate of geodesic loops in an open manifold with nonnegative Ricci

curvature. Geom. Topol., 25(2):1059–1085, 2021.

[14] Jiayin Pan. Nonnegative Ricci curvature and escape rate gap. J. Reine Angew. Math.,

782:175–196, 2022.

[15] Jiayin Pan. Nonnegative ricci curvature, metric cones, and virtual abelianness, 2022.



12 ZHU YE

[16] Jiayin Pan and Zhu Ye. Nonnegative Ricci curvature, splitting at infinity, and first Betti

number rigidity. arXiv:2404.10145, 2024.

[17] Christiana Sormani. Harmonic functions on manifolds with nonnegative Ricci curvature and

linear volume growth. Pac. J. Math., 192(1), 2000.

[18] Shing-Tung Yau. Some function-theoretic properties of complete Riemannian manifold and

their applications to geometry. Indiana Univ. Math. J., 25:659–670, 1976.

[19] Zhu Ye. Maximal first Betti number rigidity for open manifolds of nonnegative Ricci curva-

ture. J. Geom. Anal., 34(4):12, 2024.

(Zhu Ye) School of Mathematical Sciences, Capital Normal University, Beijing, China.

Email address: 2210501006@cnu.edu.cn


	1. Introduction
	2. Proof of Theorem D 
	3. k-Euclidean at infinity
	4. Volume growth and asymptotic cone
	References

