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ABSTRACT
Quantum Federated Learning (QFL) is an emerging concept
that aims to unfold federated learning (FL) over quantum
networks, enabling collaborative quantum model training
along with local data privacy. We explore the challenges
of deploying QFL on cloud platforms, emphasizing quan-
tum intricacies and platform limitations. The proposed data-
encoding-driven QFL, with a proof of concept (GitHub Open
Source) using genomic data sets on quantum simulators,
shows promising results.1

1 INTRODUCTION
Quantum computing has unlocked unprecedented compu-
tational capabilities, offering solutions to problems beyond
classical computers’ reach [1]. This breakthrough holds par-
ticular promise in machine learning, where quantum algo-
rithms can vastly accelerate data processing, impacting sec-
tors like healthcare, finance, and cybersecurity [2, 3]. By
harnessing quantum computing, we can tackle previously
insurmountable challenges, marking a significant milestone
in computational science and its practical applications.
Our focus lies on Quantum Federated Learning (QFL),

a frontier merging federated learning (FL) principles with
quantummachine learning (QML) over quantumnetworks [4].
FL, designed to train models on decentralized devices while
preserving data privacy, offers a potent solution for data
analysis. By marrying FL with QML, our goal is to enhance
computational efficiency and model performance within the
quantum realm, all while safeguarding data privacy. Our
key contribution lies in crafting and implementing a QFL
algorithm, leveraging the potential of cloud-based quantum
computing platforms. The analysis of various quantum cloud
service providers is crucial to grasp the unique challenges
and opportunities in this burgeoning field. Understanding
existing quantum cloud infrastructures’ capabilities, limita-
tions, and progression roadmaps is paramount for translating
FL principles into practical quantum implementations.
In classic FL, each client trains its model locally, sending

model parameters to a global server for aggregation without

1Authors are from IoT & SE Lab, School of IT, Deakin University,
shiva.pokhrel@deakin.edu.au.
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Figure 1: A high level view of local learning in the pro-
posed QFL Process consisting of several key components.
The Feature Map ingests input data and encodes it into a
quantum state. Following this, the Ansatz comes into play
as a parameterized quantum circuit, with its parameters be-
ing iteratively fed by the Optimizer–optimization objective
function is driven by the outcomes from the Sampler.

sharing raw data [5]. Our paper demonstrates the feasibil-
ity of QFL using IBM’s Qiskit quantum computing library,
distinguishing itself by integrating FL into QML, specifically
in cloud-based platforms. Our contributions encompass an
in-depth analysis of current cloud-based quantum resources
for QFL suitability and a proposal for a data-encoding-driven
QFL implementation. By comparing state-of-the-art FL tech-
niques, we aim to surmount challenges associated with de-
ploying QFL algorithms.

The novelty of this research lies in its potential to expedite
QFL adoption, paving the way for quantum-enhanced ma-
chine learning models over the cloud trained efficiently in a
distributed setting while upholding local privacy. We design
a novel process, as illustrated with Qiskit components in
Fig. 1, that can be perceived as approximately transforming
input data into a quantum state, exploring and exploiting
it using a customizable parameterized quantum circuit, and
iteratively optimizing the parameters to steer and achieve
the desired outcome based on the global objective function.
The background details are discussed later in Sec. 3 with
implementation details deferred later in Sec. 3.2.
In the proposed QFL realization, clients transform their

unique data into quantum states using a Feature Map, then
process them with a parameterized quantum circuit (Ansatz)
where local training is conducted using Qiskit and the up-
dated weights are aggregated centrally, and global weights
are returned to clients for local model updates.
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2 STATE OF QUANTUM COMPUTING
Quantum computing and QML promise dramatic speedups
over classical machines for certain tasks. A prime example
is the popular Shor’s algorithm for factoring integers, where
quantum computing provides an exponential advantage over
the best-known classical methods [6]. Major tech firms are
currently racing to build proprietary quantum hardware and
offer cloud access. However, despite rapid progress quantum
hardware development is still in nascent development stages
[2].
Major tech companies like IBM, Amazon and Microsoft

now offer cloud-based access to quantum computers. This al-
lows users to experiment with the latest quantum algorithms
without investing in specialized labs or hardware. IBM has
emerged as an early front-runner, recently unveiling a 433-
qubit quantum processor that currently reigns as the most
powerful quantum system.2 In contrast, Amazon and Mi-
crosoft provide access to a diverse range of third-party quan-
tum processors, like IONQ’s Harmony and Rigetti’s Ankaa-1.
By using AWS Braket and Azure Quantum, researchers can
test algorithms on systems like IONQ’s 32-qubit Harmony
or Rigetti’s 80-qubit Ankaa processor. As underlying quan-
tum technologies continue rapidly improving, we should see
more powerful processors integrated into the cloud ecosys-
tems [7, 8].

QML shows promise but remains in early developmental
stages. While programming frameworks like IBM’s Qiskit
are emerging as robust tools, there is a lack of standard-
ization of different software libraries and limited developer
forums and up-to-date resources which pose challenges to
newcomers in the field. Cloud-based access aims to increase
experimentation by removing on-premises infrastructure
barriers. However, resource contention on shared quantum
hardware can result in prolonged queuing delays before al-
gorithms execute. This severely impacts techniques like QFL
( a full-fledge federation of QML) which require repeated
access to quantum circuits for the model training.

While QFL holds immense potential, the current landscape
faces challenges in hardware development, software stan-
dardization, and efficient cloud-based access for QFL. Look-
ing at specific QML roadmaps, IBM aims to unveil Quantum
System Two in 2024, a modular platform paving the way
for a scalable quantum-centric ecosystem. By 2025, IBM tar-
gets Quantum Condor, a processor with over 1,000 qubits.
IONQ focuses on practical quantum devices, projecting in-
creased algorithmic qubits in their Forte and Tempo systems.
Google’s focus on increasing qubits, achieving a logical qubit
prototype, and forming industry partnerships showcases

2IBM unveils 400 qubit-plus quantum processor and next-generation IBM
Quantum System Two, link

its commitment to practical quantum applications. Mean-
while, Rigetti Computing’s strides include launching Ankaa
and Lyra processors and collaborations to enhance quantum
cloud services, with plans to deploy testbeds at Fermilab by
2025.
Developed by IBM, Qiskit3 can play an important role in

driving the substantial research and development progress
of QFL. Its capabilities in quantum simulation and QML are
key factors in overcoming QFL operationalization challenges
and pushing the boundaries of this emerging field.

3 OPERATIONALIZING QFL IN QISKIT
In the realm of quantum computing, Qiskit’s quantum sim-
ulators [9] emerge as indispensable tools, empowering de-
velopers to test quantum algorithms on classical computers.
These simulators serve as flexible platforms that facilitate
robust algorithm development and testing processes. Their
accessibility benefits users of all levels of proficiency, reduc-
ing the iterative journey of algorithm refinement [10]. By
providing a means to test algorithms on classical machines,
they eliminate hardware access barriers while faithfully em-
ulating the expected behavior of actual quantum systems.
This capability accelerates rapid prototyping, empowering
developers to iterate and refinewithout incurring costly over-
head. Embracing Qiskit’s quantum simulators is not just a
choice, it is a strategic imperative for advancing distributed
quantum algorithms development efficiently and effectively.

3.1 Modeling QML Libraries
Advances in the Qiskit’s QML libraries will be cutting-edge
contributions to advancingQFL. The existing library includes
pre-built implementations of classifiers like the Variational
Quantum Classifier (VQC) and the Quantum Support Vector
Regressor (QSVR). Extending these classifiers are vital in
constructing QFL models, which form the foundation for
success of the framework proposed in this paper. By offering
ready-to-use modules, Qiskit simplifies the development cy-
cle, allowing researchers and developers to focus on tailoring
QFL models to specific application requirements.

Fig. 1 illustrates the quantummachine learning process en-
abled by extending the VQC. In our QFL implementation, the
VQC uses RawFeatureVector() as a feature map to encode
classical data into quantum states. This feature map trans-
forms classical input vectors into quantum states through a
series of quantum gates, effectively preparing the quantum
data for analysis. The Sampler() component executes the
quantum circuits on various backends, which can be either
simulators or real quantum hardware, thereby providing the
flexibility to test and run quantum machine learning models
in different environments. As shown in Fig. 1, the ansatz is a
3https://qiskit-community.github.io/qiskit-machine-learning/
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parameterized quantum circuit that is repeatedly run, where
each iteration or’rep’ applies a sequence of gates whose pa-
rameters are adjusted in each step of the optimization process.
The RealAmplitudes() in ansatz is used within variational
circuits to construct quantum states that are optimized for
our QFL operationalization. The optimization is performed
by employing the COBYLA() algorithm, a gradient-free opti-
mizer suitable for the noisy conditions of current quantum
technology. COBYLA iteratively adjusts the parameters of the
ansatz in an attempt to minimize a loss function, guiding
the model towards the most accurate classifications possible
given the input data. This synergy of components represents
the architecture of a VQC, which transforms classical data
for quantum processing, leverages quantum computation for
machine learning tasks, and optimizes its performance over
multiple iterations.4
It is worth noting that Qiskit’s quantum simulators and

libraries collectively empower researchers and developers
to develop and evaluate new QML and QFL algorithms eas-
ily. Furthermore, the inclusion of extended libraries within
Qiskit shows a broader commitment to the evolution of dis-
tributed quantum machine learning algorithms.

3.2 Implementation in Qiskit
In our pursuit of new strategies to operationalize QFL, we
embark on an evolutionary journey from traditional FL. Wit-
nessing the decentralization of model training in FL, where
clients actively contribute while preserving data privacy,
marks a pivotal phase. However, the transition to QFL intro-
duces practical challenges demanding a fresh perspective.
Currently, achieving QFL with quantum devices on each

client poses significant hurdles, primarily due to the absence
of small-scale quantum devices on client-side platforms. The
quantum computing landscape is dominated by technologies
like superconducting qubits and ion trap-based quantum
computers, which lack mobility.
In our current QFL implementation, client and global

model training occurs primarily on the server. Clients pro-
vide data utilized for training on the server, which then re-
turns client models. This orchestration, occurring after each
epoch, represents a pragmatic compromise balancing quan-
tum computing capabilities with the absence of client-side
quantum devices and edge computing limitations.
To pioneer the operationalization of QFL, we leverage

IBM’s quantum cloud platform, tapping into its array of
quantum processors and simulators. Utilizing Qiskit’s sim-
ulation capabilities forms the foundation for implementing
the QFL framework, opting for established frameworks such
as QFedAvg. Our proposed design and implementation of
QFL is shown in Figure 2 and is detailed in the following.

4https://qiskit-community.github.io/qiskit-machine-learning/

Figure 2: QFL Process. Each client in the setup trains models
locally and only shares its parameters with a central server
(step 1). The server aggregates these to enhance the global
model(step 2), then circulates the updated parameters back
to clients(step 3), preserving data privacy as client data stays
local.

We consider a server, as shown in Figure 2, coexists with
a set 𝐾 of quantum computing clients, collectively training a
distributed quantum neural network model (QNN) [11]. Each
client possesses a local dataset comprising quantum states
|𝜓𝑚⟩ and corresponding labels 𝑦𝑚 for𝑚 = 1, ..., 𝑀𝑘 , which
serve as the foundation for training an individual QCNN
with learnable parameters 𝜃𝑘 .

The model parameter vector, denoted as 𝜃𝑘 , encapsulates
all learnable parameters essential for both quantum circuit
operations and classical components. Our principal objective
lies in optimizing the QNN model’s performance, enabling
accurate predictions based on the quantum states within each
client’s dataset. This innovative approach sets the stage for
exploring the intricate intersection of quantum computing
and federated learning, opening avenues for transformative
advancements in QFL. For simplicity and tractability, we
utilize the mean squared error (MSE) loss function:

𝐽 (𝜃𝑘 ) =
1

2𝑀𝑘

𝑀𝑘∑︁
𝑚=1

(𝑦𝑚 − 𝑓𝜃𝑘 ( |𝜓𝑚⟩))2 (1)

and adopt locally via the VQC [12]. In the proposed approach,
each client device has access to its own dataset and trains its
model locally. The primary goal is along the lines of FL design
principles as to collectively train a global model without
sharing raw data among clients, thereby preserving data
privacy [13].
Figure 3 shows the federation process of the proposed

QFL, which involves the following stages:
3
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Local Training: Each client uses its quantum circuit to
process its part of the dataset. The local quantum model is
then trained using this data.
Parameter Sharing: Upon completion of training in each
epoch, clients send their quantum circuit parameters (model
weights) to a central server.
Aggregation: The server aggregates these local updates
using techniques like simple averaging, weighted averaging,
or best pick [13]. This aggregation results in an updated
global model.
Global Model Update: The updated weights of the global
model are sent back to the client devices.
Local Model Update: Each client updates its local model
using global weights. The weight updation formula evolves
as

𝜃h+1 = 𝛼 × 𝜃h + (1 − 𝛼) × global(𝜃h+1) (2)
where 𝛼 is a weighting factor determined by the current
epoch and specific to each client.

Figure 3: Details of the QFL framework. Each client possesses
unique data (V1, V2, V3), which undergoes transformation
into quantum states using a Feature Map of size 255. These
quantum states are then processed by a parameterized quan-
tum circuit (Ansatz) with a depth of 3 and 32 weights. Local
training using these quantum components is performed us-
ing the Qiskit Simulator. After training, the updated weights
from the Ansatz are sent to the server for aggregation, where
parameters from all clients are combined, and finally, the ag-
gregated global weights are returned to the clients for local
model updates.

3.3 Analyzing Aggregation Schemes
Threeweight aggregation schemes are employed to refine the
global model by managing client updates effectively. Firstly,
Simple Averaging calculates the average of all local model
updates. Mathematically, the new global model parameters

𝜃ℎ+1 are determined as the mean of parameters from indi-
vidual client models, represented by 𝜃ℎ

𝑘
for the 𝑘𝑡ℎ client’s

model in the ℎ𝑡ℎ iteration.

𝜃ℎ+1 =
1
𝐾

𝐾∑︁
𝑘=1

𝜃ℎ
𝑘

(3)

This method assumes equal contribution from all clients,
regardless of the size or diversity of their local datasets.

Weighted Averaging improves the aggregation process by
considering the relative importance of each client’s update.
It assigns weights based on the significance of each client’s
contribution, resulting in a weighted sum of individual client
model updates. This approach allows for a more tailored
integration of contributions, accounting for variations in
client performance. In this technique, each client’s update
is weighted by a factor𝑤𝑘 reflecting its significance in the
learning process as

𝜃ℎ+1 =
𝐾∑︁
𝑘=1

𝑤𝑘𝜃
ℎ
𝑘
, (4)

where 𝜃ℎ+1 represents the updated parameters of the model
after the ℎ-th iteration. The parameters are updated as a
weighted sum of the parameters from 𝐾 client models, de-
noted by 𝜃ℎ

𝑘
, where each model’s contribution is scaled by a

weight𝑤𝑘 .
Finally, the Best Pick scheme adopts a selective approach,

incorporating updates only from clients meeting a prede-
fined performance criterion. The resulting global model is a
weighted sum of selected client updates, prioritizing accu-
racy and reliability. By setting a performance threshold, only
updates surpassing this threshold contribute to the global
model. The global model update can be represented as:

𝜃ℎ+1 =
∑︁
𝑘∈S

𝑤𝑘𝜃
ℎ
𝑘

(5)

where summation is taken over the set S, which represents
the subset of clients whose updates satisfy the criterion. The
weighting factor𝑤𝑘 assigned to each client model’s param-
eters, 𝜃ℎ

𝑘
, is determined by the performance of the client,

emphasizing updates from clients deemed more accurate or
reliable, potentially enhancing the overall performance and
efficiency of the model.

3.3.1 Datasets. In our experiments, we use a genomic
dataset to train a decentralized QFL model, crucial to un-
derstanding genomic sequences, consisting of labeled data
points (𝑋,𝑌 ) representing different genomic characteristics.
We chose this dataset due to its sufficient sample size for
algorithm testing and the promising potential of genomics
for future QFL applications. Our algorithm, demonstrated on
the IBM Cloud platform, utilizes multiple QML models and

4
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Algorithm 1 Proof of Concept QFL over IBM Cloud
Input: Data (𝑋,𝑌 ), Max iterations 𝐼 , Initial client weights
𝑤𝑖

𝑛
𝑖=1, Initial global weights𝑤𝑔, Number of clients 𝑛

1: Procedure Initialize
2: Split genomic data into user-specific datasets:
3: (𝑥𝑖 , 𝑦𝑖 ) ∼ (𝑋,𝑌 ) for 𝑖 = 1, . . . , 𝑛

——————————————-
1: Procedure QFL Learning with Training
2: for 𝑒𝑝𝑜𝑐ℎ = 1, . . . , 𝐼 do
3: Select a subset of participating clients, say𝑚 clients
4: for each client 𝑖 in the selected subset do
5: Initialize client-specific quantum circuit 𝑄𝑖
6: Encode client data 𝑥𝑖 into quantum states 𝑋𝑞𝑖
7: Optimize client’s model to minimize loss and

update weights:𝑤𝑖
8: 𝑤𝑖 = minimize loss(𝑓𝑄𝑖

(𝑋𝑞𝑖 ), 𝑦𝑖 )
9: Upload local updates𝑤𝑖 to the global server
10: end for
11: Aggregate local updates at the global server:
12: Broadcast updated global weights𝑤𝑔 to all clients
13: for each client 𝑖 do
14: Update local model weights with global weights:
15: end for
16: end for

follows the essential steps outlined in Algorithm 1, encom-
passing data preparation, model training, and aggregation of
updates from multiple clients. Each client, in our proposed
QFL implementation, utilizes a quantum circuit to process
genomic data and update model weights based on its local
dataset, subsequently aggregated by the server to refine the
global model, ensuring data privacy while leveraging collec-
tive learning.

3.4 Encoding driven QFL
In our implementation of QFL, data encoding stands out
as a critical step, transforming classical data into a format
compatible with quantum processing. Our QFL implemen-
tation using a genomic dataset showcases the potential of
quantum facilities to manage complex, high-dimensional
data. By employing amplitude encoding, we simplify model
training with our 200-feature dataset, leveraging only a frac-
tion of the qubits typically required. This approach proves
particularly advantageous in genomic data analysis, where
traditional computing methods may struggle with data scale
and complexity.
We consider three primary encoding techniques: basis

encoding, amplitude encoding, and angle encoding, as fol-
lows. Basis encoding, while straightforward, suffers from
inefficiencies in qubit usage, particularly for larger datasets.

Figure 4: Comparision of the evolution of Top-1 Accuracy
over epochs for the global model and clients models using
the averaging technique.

Figure 5: Evolution of Top-1 Accuracy and Loss over epochs
for clients using the averaging technique.

Amplitude encoding emerges as a more efficient alterna-
tive, especially for handling substantial data volumes. This
technique capitalizes on the amplitudes of a quantum state
to represent data points, offering a compact representation
that can encode vast amounts of information with minimal
qubits. For instance, our 200-feature genomic dataset can be
effectively encoded using just 8 qubits, making amplitude en-
coding a practical choice within current quantum computing
limitations. This method proves invaluable in quantum ma-
chine learning, offering a streamlined approach to represent
high-dimensional data.
In contrast, angle encoding, akin to basis encoding in its

reliance on one qubit per feature, falls short in scalability
for larger datasets due to its demanding qubit requirements.
Given these considerations, we opt for amplitude encoding,
which efficiently utilizes qubits and aligns with the 25-qubit
limit of Qiskit’s aer_simulator utilized in our research.

As shown in Step 6, our Algorithm 1 efficiently uses quan-
tum circuits for data encoding and processing, presenting
a novel methodology for genomic data analysis within a

5
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Figure 6: Evolution of Top-1 Accuracy for the global model
and individual clients using the Best Pick scheme.

Figure 7: Temporal evolution of the training scores and
losses for all clients using the Best Pick.

federated learning framework. Utilizing the IBM Cloud plat-
form for quantum computing, our implementation offers
scalability and accessibility, potentially paving the way for
transformative advancements in genomic research.

3.5 Performance Evaluation
We conducted a series of experiments to train the developed
Quantum Federated Learning (QFL) framework using three
distinct global aggregation methods: Averaging, Best Pick,
and Weighted Averaging. The results of these experiments
are depicted in Figures 4 to 9 and are detailed below.
In Figure 4 averaging method exhibited varying Top-1

accuracy between clients, with the global model’s accuracy
typically positioned between the clients’ accuracies. Both the
high and low performances of the individual client models
directly influenced the global model, placing its accuracy
within the range of the client’s accuracy. The accuracy and
training loss patterns for all clients demonstrated in Figure 5
exhibit a consistent decrease in loss and a tractable improve-
ment in accuracy over epochs.

Figure 8: Temporal evolution of the Top-1 Accuracy for
the global model and individual clients using the Weighted
Averaging.

In contrast, the best pick method demonstrated a more
selective behavior in Figure 6 of our experiments, often re-
sulting in the global model’s accuracy surpassing individual
clients’ accuracies. This observation suggests that the global
model performance was driven by the highest-performing
clients, with minimal or no contributions from poorly per-
forming ones. The decreasing loss and increasing accuracy
observed in Figure 7 over epochs indicated progressive im-
provements in the training of clients.

With weighted averaging, see the results in Figures 8 and
9. The QFL performance closely matched the highest per-
forming clients. This approach minimally affected the global
model’s performance by poor-performing clients while sig-
nificantly benefiting fromhigher-performing ones. Thismethod
ensures that the globalmodel takes advantage of the strengths
of the higher performing clients while mitigating the impact
of the lower performing ones. Training scores and losses
exhibited a steady trend of reduced loss and improved accu-
racy.

Figure 9: Temporal evolution of training scores and losses
for all clients using the Weighted Averaging.

6
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4 CONCLUSION
This article highlights the efficacy of different aggregation
methods in the operationalization of QFL over Qiskit, demon-
strating how data encoding and weighted averaging en-
hance overall performance by leveraging the strengths of
high-performing clients while mitigating the impact of low-
performing ones. More research is needed to refine QFL tech-
niques, Qiskit implementation, and transition from simula-
tors to real quantum hardware for successful implementation
on cloud computing infrastructure.
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