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Abstract

Prediction models can improve efficiency by automating decisions such as the approval
of loan applications. However, they may inherit bias against protected groups from the
data they are trained on. This paper adds counterfactual (simulated) ethnic bias to real
data on mortgage application decisions, and shows that this bias is replicated by a machine
learning model (XGBoost) even when ethnicity is not used as a predictive variable. Next,
several other de-biasing methods are compared: averaging over prohibited variables, tak-
ing the most favorable prediction over prohibited variables (a novel method), and jointly
minimizing errors as well as the association between predictions and prohibited variables.
De-biasing can recover some of the original decisions, but the results are sensitive to whether
the bias is effected through a proxy.

1. Introduction

Prediction models can be used to automate decisions previously made by people. But if a
model is trained to replicate historical decisions that were biased against certain prohibited
basis groups (“PBGs”) such as racial or ethnic groups, the model predictions may perpetuate
that bias. Even if group membership is not used as a predictive variable in the model, the
model can learn to weight the predictive variables it does use in a way that replicates
the bias. This paper demonstrates using real data that this can occur in the context of
mortgage underwriting, and then studies the performance of several solutions capable of
removing some of the bias, including one (maximum over prohibited groups) that is new to
the literature.

Many of the relevant inputs to making an underwriting decision are standardized and
quantifiable, making approving loan applications a candidate for automation. To do so, a
lender might create a model which mimics historical underwriting decisions made by loan
officers. Another application of this paper might be a lender or regulatory agency modeling
underwriting decisions as a baseline against which to identify outliers, for quality control
or as part of fair lending monitoring. This paper studies the case of modeling approval
decisions rather than modeling loan performance, avoiding the sample selection challenge
that occurs in trying to make inferences about performance when it is only observed for
approved applicants.1

∗. The views expressed in this paper are my own and do not represent the views of the OCC, the Department
of the Treasury, or the United States government.

1. Grau and Vergara (2021) and Hull (2021) study how outcomes can be used to overcome this selection
issue. The methods studied in this paper may also be useful in de-biasing models trained on perfor-
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First, this paper demonstrates that a model trained on historical decision data can repli-
cate bias against a group even if group membership is not used as a predictive variable.
Simulated bias against Hispanic and Latino applicants is added to data on mortgage ap-
plication decisions, and a machine learning model is trained on the biased decisions using
only standard underwriting variables (but not borrower ethnicity). While the bias added
is artificial, the data are otherwise real—this demonstrates that in the context of mortgage
underwriting in the US, the correlations between prohibited basis group and other predic-
tive variables are strong enough to allow a machine learning model to replicate bias even
when it does not explicitly use the group as a predictor.2

Next, the paper tests several methods of removing bias: averaging over the protected
group (adapting the technique of Pope & Sydnor, 2011 to the machine learning context), reg-
ularization to reduce the association between protected group and outcome (FairXGBoost—
Ravichandran, Khurana, Venkatesh, & Edakunni, 2020), and a novel method: taking the
most favorable prediction over protected groups. In this last method, a model is trained
using all available information (including prohibited characteristics), and then de-biased by
changing the prediction from deny to approve for any case in which a prohibited variable
was the deciding factor (see Section 4.4 for more detail). None of these de-biasing methods
results in a model which uses a PBG as a predictive variable. That is, two applicants with
the same credit score, debt-to-income ratio, etc. will receive the same prediction from a
given model regardless of their race or ethnicity. Prohibited basis group is only used for
de-biasing, to determine how much the model should depend on other predictive variables.
The legality of using prohibited basis group information, even for de-biasing, is beyond the
scope of this paper.

The literature on bias mitigation in machine learning and statistics is vast; Hort,
Chen, Zhang, Sarro, and Harman (2022) survey the former. Some proposals involve “pre-
processing” of the training data, such as modifying the training data, as in Kamiran and
Calders (2009) or Verma, Ernst, and Just (2021), re-weighting the training data3, as in
Calders, Kamiran, and Pechenizkiy (2009), or creating a “fair representation” of the data
for training that loses information about the protected group while retaining other infor-
mation, as in Zemel, Wu, Swersky, Pitassi, and Dwork (2013). By contrast, “in-processing”
approaches alter the objective of training. One way to do this is a “regularization” ap-
proach, jointly optimizing the accuracy of the predictions4 and a measure of disparity
between groups, such as the FairXGBoost algorithm tested in this paper (Ravichandran
et al., 2020) or Kamishima, Akaho, and Sakuma (2011). Another is to add a constraint
that cannot be breached during optimization, as in Celis, Huang, Keswani, and Vishnoi
(2019). “Post-processing” methods mitigate bias by altering the model or predictions once

mance data (e.g. mortgage delinquencies rather than mortgage approvals)—future work will explore this
possibility.

2. Whether or not a given model will actually replicate bias in the decisions it is being trained to predict
is an empirical question, depending on both the data and the model in question. Some models may not
be flexible enough to discriminate between certain groups, and some groups may not differ sufficiently
in the predictive variables for even the most flexible model to tell them apart.

3. In this case, the training data consist of the historical loan applications and loan officer decisions used
to train the model.

4. The FairXGBoost method studied in this paper measures accuracy as cross-entropy loss between the
model predictions and the actual data.
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it has been trained, e.g. Calders and Verwer (2010). Taking an average or maximum over
protected groups, both studied in this paper, are examples of post-processing methods.

Much of the existing literature on bias takes data on outcomes as given, sometimes even
referring to them as the “ground truth,” and formulates notions of bias that compare how
well model predictions align with the training data for one group versus another. Berk,
Heidari, Jabbari, Kearns, and Roth (2021) discuss different statistical notions of fairness,
and show that they can be impossible to jointly optimize.

By contrast, this paper considers the case in which the outcome data used to train the
model include decisions that are biased against one group—e.g. loan applications that were
denied despite the creditworthiness of the applicant. This approach explicitly distinguishes
disparities in model predictions that owe to such biases in the training data from those
arising from disparities in predictive variables.5 Even if one wants to minimize both, they
may warrant very different policy responses. Equalizing denial rates for mortgage lending
may be insufficient to close the racial wealth gap,6 for example. Furthermore, in the context
of lending, giving members of a disadvantaged group loans they will be unable to repay
may not improve the welfare of the group. Narrowing disparities in underlying indicators
of creditworthiness may require policy interventions outside the scope of model de-biasing.

The US mortgage market is an important context, with $1.8trn in new originations in
2018 (CFPB, 2019). Racial and ethnic disparities in mortgage credit access have been a
source of concern for decades (see e.g. Ladd, 1998), and the stakes are indeed high: dispar-
ities in homeownership contribute to racial differences in wealth (Akbar, Hickly, Shertzer,
& Walsh, 2022) and intergenerational wealth mobility (Toney & Robertson, 2021). This
paper contributes to the literature on discrimination in lending (see e.g. Bartlett, Morse,
Stanton, & Wallace, 2021 and Zhang & Willen, 2021) as well as the literature in statistics
and machine learning on model fairness and de-biasing (surveyed by e.g. Mehrabi, Morstat-
ter, Saxena, Lerman, & Galstyan, 2019), showing that while machine learning models can
replicate biased decisions in this context, the bias can (with some important caveats) be
mitigated. The focus of this paper is methods of mitigating bias in underwriting models,
leaving other fair lending concerns (such as bias in pricing) to future work.

Section 2 describes the mortgage application context and the HMDA data used to study
it. Section 3 describes several ways in which disparities can arise in model predictions
between groups, even when sufficient data are available. Section 4 describes some methods
of de-biasing models to address these disparities. Section 5 compares the performance of
each de-biasing method.

2. Context and Data

The real-world context which we consider is modeling mortgage underwriting in the US.
Mortgage applications include a variety of quantifiable data used to judge the creditwor-
thiness of the application, including the loan-to-value ratio of the prospective loan, the
borrower’s debt-to-income ratio, and the borrower’s credit score. Crucially for the purposes
of this paper, the Home Mortgage Disclosure Act (HMDA) also requires that lenders ask for

5. Jiang and Nachum (2020) study a similar problem, though they constrain the bias to solve a particular
constrained optimization problem.

6. See Derenoncourt, Kim, Kuhn, and Schularick (2021).
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information about borrowers’ race and ethnicity,7 though by law8 the decision to approve
or deny a loan must not hinge on this prohibited basis.

This paper uses HMDA mortgage application data from 2018. The data include the
standard underwriting variables mentioned earlier as well as other information about the
property such as its location, value, type, and construction method (the predictive variables
used in the models are described in Section 5.1.1). The sample is restricted to conventional9

fully-amortizing 30-year home-purchase loans, excluding those for business or commercial
purpose. This results in a sample of 2,067,993 applications, with an average denial rate
of 6.5%. In terms of prohibited basis groups, this paper considers two groups: applicants
whose ethnicity is reported as Hispanic or Latino (7.2% of the sample), and those of other
ethnicity.

3. Sources of disparities in model predictions

This section discusses several ways in which group disparities in predicted denial rates can
emerge in this context, focusing on disparities unrelated to data availability or the ability of
a model to approximate its training data, which are addressed elsewhere in the literature.10

Throughout, assume that modelers have access to data and models capable of producing the
expected value of an outcome given a set of predictive variables. The challenges addressed
in this paper thus apply even when sample size is not a limitation.

Formally, let y ∈ {0, 1}N be the outcomes of N loan applications, where yi = 1 indicates
that applicant i was approved and yi = 0 denotes denial. Let Xi be the characteristics of
application i available to use in a model (predictive variables, or features). Let gi denote
i’s group, which may be a protected basis group such as a racial or ethnic group. Let yfair

be a (possibly counterfactual) set of fair outcomes, which we can think of as the outcomes
that would occur in the absence of lender bias.11 Let ŷ denote the modeler’s (possibly
de-biased) estimates of y and ϵ denote residual variables that enter lenders’ decisions but
are not available for modeling, such that yi = ŷi + ϵi. Typically the modeler will specify
a cutoff value y such that applicants with estimated ŷi of at least y are predicted to be
approved and the rest are predicted to be denied.

3.1 Explicit use of prohibited factors

If some loan officers denied applications from a prohibited basis group (such as a racial
or ethnic group) more often than justified by indicators of creditworthiness, then a model
trained on their decisions may replicate that bias. Even if the variables used in the model

7. Specifically, “Regulation C, 12 CFR § 1003.4(a)(10)(i), requires that a financial institution collect the eth-
nicity, race, and sex of a natural person applicant or borrower, and collect whether this information was
collected on the basis of visual observation or surname.” See https://www.consumerfinance.gov/policy-
compliance/guidance/hmda-implementation/home-mortgage-disclosure-act-faqs/

8. Fair Housing Act (42 U.S.C. §§ 3601-19) and Equal Credit Opportunity Act (12 CFR § 1002).
9. Guidelines for HMDA reporting define “conventional” as not insured or guaranteed by the FHA, VA,

RHS, or FSA.
10. For example, Chen, Johansson, and Sontag (2018) study the ability of data collection to ameliorate

disparities in model predictions.
11. Characterizing fair outcomes is beyond the aims of this paper; instead, we study the extent to which

statistical de-biasing methods can eliminate bias relative to a known baseline.

4



do not include race or ethnicity, the model may use other variables (such as location or
property type) to better match model predictions to the biased decisions. If some loan
officers explicitly used prohibited basis group g in their decisions, then yi < yfairi for some
members of group g. As the model developers may be unaware which if any decisions were
biased, studying methods that may prevent the model from replicating any such bias is the
focus of this paper.12

3.2 Group differences in predictors

There may exist aggregate group differences in factors used by lenders to determine cred-
itworthiness, such as credit score, employment history, and cash reserves. So even if lender
decisions are not biased (y = yfair), the indicators of creditworthiness on which they base
their decisions may reflect upstream bias such as labor market discrimination or home ap-
praisal bias, resulting in higher denial rates for one group than another.13 In other words,
the distribution of X differs by group, and so E (y|g) does as well. 14

3.3 Proxies for prohibited factors

Another way in which disparities in model predictions might arise is if the loan officer
decisions used to train the model were based on a proxy for a prohibited basis group, rather
than group membership itself. For example, the loan officers may have denied applicants
from a certain neighborhood because of the race or ethnicity of the people living there. A
related concept is redlining, where a lender avoids certain neighborhoods because of the
race or ethnicity of the people living there (HUD, OFHEO, DOJ, Treasury, OCC, OTS,
Federal Reserve System, FDIC, FHFB, FTC, & NCUA, 1994). Aaronson, Hartley, and
Mazumder (2021) study some long-lasting effects of historical redlining, and contemporary
examples exist as well (e.g. United States v. Cadence Bank, N.A. (N.D. Ga.), 2021). In
this case individual outcomes may not depend on group conditional on predictive variables
(E (y|X, g) = E (y|X, g′)), but decisions are still biased in the sense that one group is more
likely to receive unfairly adverse outcomes (yi < yfairi ) than the other. Discrimination by
proxy is distinguished from explicit use of prohibited factors as the implications for de-
biasing can be quite different, as Section 5.2 will show. Discrimination by proxy can also
include the use of a predictive variable that is correlated with a protected group but of little
use in predicting the outcome of interest.

12. Blank, Venkatachalam, McNeil, and Green (2005) provide direct evidence that some loan officers report
perceived differences in creditworthiness between protected groups. Bohren, Haggag, Imas, and Pope
(2019) study inaccurate statistical discrimination.

13. Lewis-Faupel and Tenev (2022) describe such disparities in the HMDA data. Derenoncourt et al. (2021)
trace the historical evolution of the racial wealth gap in the US. Bertrand and Mullainathan (2004)
produce experimental evidence of discrimination in job search, and Tenev (2020) studies labor market
inequality induced by differences in social networks.

14. When a facially neutral model disproportionately excludes certain persons on a prohibited basis, it may
be described as having a disparate impact. While it is beyond the scope of this paper to comment on the
legality of models used in lending or any other context, OCC (2023) discusses other factors that may be
relevant as well, “including whether there is a robust causal link between the neutral policy or practice
and the adverse effect(s) on members of a protected class and whether the policy or practice is necessary
to achieve a legitimate business objective.” See also 12 CFR § 1002.6.
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3.4 Model selection bias

Given the differences in endowments and obstacles faced by different groups (see Section
3.2), it may be the case that the relationship between historical outcomes and predictive
variables differs by group for reasons other than disparate treatment by lenders. For exam-
ple, the relationship between loan-to-value ratio and approval may be weaker for a prohib-
ited basis group if highly levered (high loan-to-value) applicants from that group tend to
compensate by having more stable employment history (not recorded in the HMDA data,
but typically observed by lenders).15 Training a model without prohibited basis group as a
predictive variable will often result in more accurate predictions for the majority group (see
e.g. Chen et al., 2018). This may mean that the model predicts denial for some minority
applicants even though their characteristics are not as predictive of denial for the minority
group. Importantly, this can occur even given infinite data for all groups.

We define model selection bias as a model having less accurate predictions for one group
than another because of the model selection process (e.g. optimizing overall accuracy).
Our mortgage application data do exhibit characteristics indicative of this sort of model
selection bias. For example, while Hispanic or Latino applicants have a higher denial rate
overall and the chance of denial is generally increasing in debt-to-income (DTI) ratio for all
groups, the denial rate for Hispanic or Latino applicants with high DTI ratios (above 80%)
is actually lower (75%) than it is for other applicants (80%). This suggests that the group
with the highest denial rate at a given credit score, DTI, etc. may not have the highest
denial rate for other values of those variables.

4. De-biasing methods

This section describes several methods of de-biasing a model of approval decisions, including
one (maximum over prohibited variables, Section 4.4) that is new to the literature. Section 5
will report empirical results for each method’s success in removing counterfactual bias from
mortgage application data. The methods considered here are only a subset of a growing
literature, partially summarized in Section 1.

4.1 Exclusion of prohibited variables

A simple method of attempting a de-biased model is to simply exclude prohibited basis
group from the predictors used to train the model: ŷ = E(y|X). This method does provide
predictions which do not depend explicitly on prohibited basis group (so it avoids explicit
use of prohibited factors). However, Pope and Sydnor (2011) show that the exclusion of
prohibited basis group from the list of predictors may result in the model overweighting other
variables that are correlated with group, resulting in predictions that are more favorable to
one group than another. Section 5 will demonstrate this empirically for the case of modeling
mortgage approvals.

15. A related concept is noise: Blattner and Nelson (2021) show that credit scores are noisier indicators of
loan performance for minority groups than for others
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4.2 Jointly optimizing accuracy and disparity between groups

One popular method of de-biasing machine learning models is training the model to optimize
not just accuracy alone but some weighted combination of accuracy and some measure of
disparity between groups, sometimes called “regularization.” The specific method tested in
this paper is FairXGBoost, proposed by Ravichandran et al. (2020), which jointly optimizes
the cross-entropy loss between the model predictions and the training data as well as the
negative cross-entropy between the model predictions and the prohibited basis group.16

This method thus balances the accuracy of its predictions against association between the
prohibited basis group and the adverse outcome. However, such methods may fail to harness
the full predictive power of variables associated with prohibited basis group, even if they
are not directly related to the bias in the training data. Among the methods tested in this
paper, only regularization requires the modeler to choose a parameter which determines the
balance between disparity and accuracy.

4.3 Averaging over prohibited variables

Building on work by Ross and Yinger (2002), Pope and Sydnor (2011) propose a method
for de-biasing regression models that can be adapted to the machine learning context as
follows. If X are acceptable predictive variables and g are prohibited predictive variables,
then define the averaging over prohibited variables method as:

Eavg (yi|Xi) ≡
1

N

N∑
j=1

E (yi|Xi, gj) . (1)

The main advantage of this method is that unlike regularization, it retains the within-
group predictive power of the predictive variables. However, it can suffer from the model
selection bias described in Section 3.4. If a prohibited basis group is a very small minority
group, the de-biased predictions will simply approximate the expected outcomes for the
majority group,17 and may fail to reflect the relationship between predictive variables and
outcomes for the minority group.18 In particular, it may be the case that the de-biased
model would deny a member of a prohibited basis group despite the modeler’s best estimate
(E (y|X, g)) being that the person is in fact creditworthy enough for approval.

As machine learning models typically include interactions between predictive variables,
unlike in the separable case considered by Pope and Sydnor (2011) there is no guarantee
that Equation 1 will produce unbiased probabilities (that is, it may be that Eavg (y|X) ̸=
E(y|X)). In practice this can be addressed by scaling the predictions of the model.

4.4 Maximum prediction over prohibited variable

To address the potential for model selection bias in method 4.3 as well as bias owing to
explicit use of prohibited factors, consider the following novel form of de-biasing. A model

16. Note that this is just one of many possible measures of disparity, and may not be an appropriate measure
of fair lending risk.

17. That is, E (y|X) ∼ E
(
y|X, gmajority

)
.

18. Specifically, if Ng is the size of group g and Ng′ is the size of group g′, then

limNg→∞
1

Ng+Ng′

∑Ng+Ng′
i=1 E (y|X, gi) =

1
Ng

∑Ng

i:gi=g E (y|X, gi).
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(the “full model”) is estimated using all available predictive variables, including prohibited
basis group. Then, the debiased model predicts rejection for an applicant only if the full
model predicts rejection for someone with those application characteristics regardless of
which group they belong to.

Formally, max-over-groups prediction is defined as follows. If E (yi|Xi, gi) is the expec-
tation of outcome yi (where higher yi is favorable) for individual i given observed charac-
teristics Xi and membership to group gi, then the max-over-groups prediction is

Emax (yi|Xi, gi) ≡ γmax
g

E (yi|Xi, g) . (2)

Here γ is a scaling factor that can be set to 1 for un-scaled predictions or scaled to
ensure that the ensuing predictions are not biased upwards for all prohibited basis groups.

This de-biasing method has the following intuitive properties. First, max-over-groups
predictions are invariant to group (no explicit use of prohibited factors, as required by law8 in
lending).19 Second, anyone whose predicted approval in the full model hinges on prohibited
basis group membership (all else constant) is approved in the de-biased model.20 This can
address both bias owing to explicit use of prohibited factors as well as model selection bias.
The method is also easy to implement for data that include group membership. While
this paper focuses on just two groups in the empirical section below, the method is easily
implemented with multiple groups.

The max-over-groups predictions will have lower accuracy than a model which uses group
as a predictor (though that is illegal in lending8), and will be biased upwards (favorable to
applicants) for all individuals. They can be renormalized down to remove the overall bias,
but this may actually result in wider disparities in denial rates compared to the group-blind
model. Max-over-groups prediction is asymmetric in that it favors one outcome (approval)
over the other. This may be to applicants’ advantage in some cases, but may sometimes be
a disadvantage—for example, if someone is approved for a loan they have trouble repaying.

Of the methods discussed above, only the first (which does not include prohibited vari-
ables) does not require data on prohibited group membership.21 Using prohibited basis
group information for de-biasing purposes may present additional risks, legal and other-
wise, depending on the context. This paper does not endorse any of the de-biasing methods
studied, nor does it comment on the legality of these or any other methods which may use
protected basis group data for de-biasing.

5. Empirical Methods and Results

5.1 Random bias

To evaluate the performance of each de-biasing method, counterfactual bias is added to
mortgage decision data, randomly switching approvals to denials for Hispanic or Latino
applicants such that the counterfactual denial rate for this group (19.1%) is twice that

19. That is, Emax (yi|Xi, gi) = Emax (yi|Xi, g
′
i) for gi ̸= g′i.

20. In other words, if the full model predicts approval for one applicant and rejection for another and
prohibited basis is the only difference between the two applicants (i.e. they have the same credit score,
debt-to-income ratio, etc.), both are approved in the de-biased model.

21. Some regularization methods use proxies for prohibited basis and thus do not require prohibited basis
data for all instances—see e.g. Gupta, Cotter, Fard, and Wang (2018).
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observed in the data (9.5%). Decisions for applicants in other groups were left as in the
original data. It is beyond the scope of this paper to evaluate the extent to which the
mortgage underwriting decisions in the HMDA sample reflect bias.22 However, testing each
de-biasing method’s ability to recover the original decisions from the counterfactually biased
data should be a useful test of performance.

5.1.1 Excluding prohibited variables

Next, this section demonstrates that a machine learning model trained on biased historical
decision data can replicate that bias, even if the basis for the bias (e.g. ethnicity) is not
used in the model, similar to Zhang (2022). A popular machine learning model, XGBoost,
is trained to predict the counterfactually biased decisions (see Section 7.1 for details).

The predictive variables (features) used are credit score (the lowest, if more than one
applicant), combined loan-to-value ratio, debt-to-income ratio, income, property value, con-
struction method, property type, total number of units, state, and county. More detail on
these variables and the HMDA data in general is available from the Federal Financial In-
stitutions Examination Council (2018).

5.1.2 Other de-biasing methods

The other de-biasing methods are then tested as follows. FairXGBoost is trained on the
counterfactually biased data with a parameter value (the weight given to reducing asso-
ciation between the outcome and protected group) of 0.2. While this choice is somewhat
arbitrary, in practice the original decisions will not be available to tune this parameter.

The average-over-groups method is executed by first training an XGBoost model includ-
ing the prohibited basis group indicator (Hispanic/Latino). A prediction for each applicant
is then generated as follows. 500 instances of prohibited basis group are drawn at random
from the population, and a prediction is generated for the applicant assuming they belong
to that group; the ultimate de-biased prediction is the average over these 500 predictions.
In the case of two groups this is essentially equivalent to a simple weighted average (with
population weights) of the prediction for a Hispanic applicant and the prediction for a non-
Hispanic applicant with otherwise identical characteristics, but see Section 5.2 to see how
this method works in a more complicated case.

Finally, to test the de-biasing power of max-over-groups prediction in this context, an
XGBoost model is trained using the same predictive variables, again including Hispanic or
Latino ethnicity. Then, two predictions are generated for each individual: the first assuming
the individual is Hispanic or Latino, and the second assuming they are not. The maximum
over groups prediction (hereafter, “max-over-groups”, or “max”) for that individual is then
whichever of these two predicted approval probabilities is higher.

In terms of accuracy, how do the de-biased models compare? Table 1 shows the AUCs
(area under the receiver operating characteristic curve) for each de-biasing method, all
trained on the counterfactually biased data. The “Biased” row for each method shows
how well the method predicts biased data, giving the AUCs for that method’s predictions
compared to the counterfactually biased decision data (both on the held-out test sample).

22. For efforts in that direction, see e.g. Bhutta, Hizmo, and Ringo (2022)
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The “Actual” row (in blue) gives the AUCs comparing the predictions to the original data,
showing how well the method is able to recover the original decisions.

Of the de-biasing methods, taking the maximum or average prediction over PBGs per-
form very similarly and provide the highest AUCs compared to the actual data. The
Exclusion method performs nearly as well. Furthermore, these methods perform as well
(in terms of AUC with respect to the actual data) as an XGBoost model trained on all
actual data, including PBG indicators (results not shown in this table). The FairXGBoost
regularization method has the least predictive power, as it sacrifices predictive power to
reduce the association between the predicted outcomes and the protected group. However,
note that these and subsequent comparisons lack confidence intervals to give a sense of how
confident we should be in the rank ordering.

(1) (2) (3)

De-biasing method Compared to Hispanic/Latino Not Hispanic/Latino All

None Biased 0.625 0.785 0.798

Actual 0.765 0.785 0.780

Exclude PBG Biased 0.626 0.784 0.776

Actual 0.765 0.784 0.784

FairXGB Biased 0.585 0.706 0.688

Actual 0.676 0.706 0.704

Avg. over PBG Biased 0.626 0.784 0.770

Actual 0.770 0.784 0.785

Max. over PBG Biased 0.627 0.785 0.770

Actual 0.769 0.785 0.785

Note: Models trained on approval data including random counterfactual denials of Hispanic or Latino applicants.
AUCs compare de-biased predictions on held-out test sample to outcomes with counterfactual bias (rows marked
“Biased”) and without (rows marked “Actual”).

Table 1: AUC

The XGBoost model generates a score corresponding to the likelihood that each appli-
cation would have been denied (including the counterfactually biased denials). The AUC
results above measure accuracy of predictions across all possible thresholds for approval.
To see how each method performs for a specific, realistic cutoff threshold, assume that the
lender sets a cutoff score for denial which results in a predicted denial rate that matches
the overall denial rate in the biased training data, 7.2%.

Table 2 shows the denial rates for the predictions using each de-biasing method and
the threshold described above, as well as the denial rates in the biased data used to train
the models (penultimate row) and the actual data from which the biased data were derived
(last row). By design, the overall denial rates for each method (right column) very nearly
match the overall denial rate in the training data, with some slight error coming from the
fact that the denial rates for the predictions were computed on the held-out test subsample
of the data rather than the training subsample.
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Hispanic/Latino Not Hispanic/Latino All

Exclude PBG 17.3 6.4 7.1

Predictions FairXGB 10.9 6.9 7.2

Avg. over PBG 13.5 6.7 7.2

Max. over PBG 13.6 6.7 7.2

Biased training data 19.3 6.2 7.2

Actual data 9.5 6.2 6.5

Table 2: Denial rates

Simply excluding the PBG (ethnicity indicators) from the training data is insufficient to
remove the counterfactual bias: the predicted denial rate for Hispanic or Latino applicants
using this method is nearly as high as in the biased training data. FairXGBoost results in
the smallest raw disparity in predicted denial rates between the two groups. However, it
is unclear from looking at raw denial rates whether this comes from correctly identifying
applicants who were counterfactually denied.

Figure 1 shows, for each de-biasing method, the denial rate by PBG and disposition
in the original data. The left panel shows denial rates for those applications that were
approved in the original data. The height of each bar shows the denial rate for each de-
biasing method (on the horizontal axis) and ethnicity (denoted by the color of the bar).
The middle panel shows denial rates for the counterfactual denials—applications that were
approved in the original data, but labeled “denied” in the training data to simulate bias.
The right panel shows applications denied in both the original data and the biased training
data.

In this visualization, a well-performing model will have low denial rates for the first
two panels (which were approved in the actual data) and high denial rates for the third.
The faded bars with dashed borders marked Exclusion (the leftmost within each panel)
give denial rates for a model trained on the actual data (though still excluding PBG as a
predictor), which gives a benchmark against which to measure the de-biasing performance
of the models trained on the biased data.

Here we see that excluding the PBG from the set of predictors results in the highest
denial rates for Hispanic/Latino applicants regardless of their disposition in the original
data, emphasizing that this de-biasing method is insufficient to prevent biased training
data from resulting in biased predictions. Note that the model predictions for the Exclusion
method are perfectly explained by factors other than prohibited basis group. However, it
would be erroneous to conclude from this (in the context of a fair lending exercise, for
example) that either the model or the previous predictions are unbiased.

FairXGBoost regularization results in the fewest denials of Hispanic/Latino applicants
who were approved in the actual data. However, this comes at the cost of identify-
ing the fewest actual denials (right panel of Figure 1), and denying more approved non-
Hispanic/Latino applicants than any other model (left-most panel). In this case, lower
accuracy means a denial rate closer to average regardless of the disposition in the training
data.
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Note: Biased training data includes random counterfactual denials of Hispanic/Latino applicants. Apart from
FairXGB, the different de-biasing methods are labeled according to how they treat the PBG, ethnicity: “Exclusion”
excludes the PBG from the set of predictive features; “Maximum” takes the maximum prediction over different
PBGs; “Average” takes the average prediction over PBGs.

Figure 1: Predicted denial rates by actual disposition, model, and ethnicity

Taking the maximum approval prediction over prohibited basis groups results in the
next-lowest denial rate for the counterfactual denials, with similar accuracy in identifying
actual denials to the average-over-PBG method. This demonstrates that these methods are
able to recover some original decisions from biased data, while still preserving predictive
power similar to that of a model trained on the original data (represented by the faded bars
at the left of each panel).

One benefit of taking the maximum over groups rather than the average is the ability to
address model selection bias of the form discussed in Section 3.4, by approving applicants
from minority groups in regions of the feature space in which they tend to have better
outcomes than the majority. In this exercise, however, the counterfactual bias mostly
precludes any opportunity for correcting this sort of model selection bias. For 97% of the
sample Hispanic or Latino applicants, the max.-over-groups prediction assigned is the non-
Hispanic/Latino prediction. So in this case, the method gives almost everyone a prediction
as if they belonged to the majority group. This would not be the case with less bias,
however—when a model is trained on the actual data (rather than the biased data), the
max.-over-groups method assigns the Hispanic/Latino prediction to 18% of Hispanic or
Latino applicants, demonstrating that model selection bias is indeed a concern.

5.2 Bias based on location

Section 5.1 showed that de-biasing methods can remove bias that takes the form of random
adverse decisions against a particular group. Historically, however, bias against a particu-
lar group can alternatively be targeted through a proxy—variables correlated with group
membership, such as location (see Section 3.3). This section shows that the success of de-
biasing methods depends crucially on how bias was targeted: in the case of bias based on
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property location, some methods can (without additional modification) actually result in
worse disparities than the baseline model.

A new set of biased training data is generated as follows. Applications in the census
tracts with the highest proportions of Hispanic or Latino residents are counterfactually
switched to denial until the total number of counterfactual denials matches that in Section
5.1. This simulates location bias: denial of applications based on predominant neighborhood
ethnicity. Since these counterfactual denials target applicants based on geography, they
affect non-Hispanic or Latino applicants as well (though proportionally much less).

Next, as before, an XGBoost model is trained on the counterfactually biased data and
each de-biasing method is tested. In this case, for the average-over-groups method the
average is taken over both ethnicity indicators as well as the geography variables (county
indicators). In other words,

Eavg (yi|Xi) ≡
1

N

N∑
j=1

E
(
yi|Xi, gj , countyj

)
(3)

where in this case X is all the predictive variables excluding ethnicity and county. If the
modeler is aware that the data may be biased based both on ethnicity and geography, they
can include these variables in the list of prohibited variables that are averaged over, at the
cost of sacrificing their predictive power.

The max.-over-groups method will still take the most favorable prediction over just the
two ethnicity groups as before. Since there are so many combinations of county/ethnicity in
the data, taking the most favorable one would likely result in approval for all applicants—an
unhelpful result. This highlights an important limitation of the max.-over-groups method:
it may not be useful when there are a large number of prohibited variables. The exclusion
method will exclude ethnicity but not county, to demonstrate the insufficiency of narrowly
focusing on only the protected group but ignoring likely proxies.

Figure 2 shows, for the models trained on the simulated location bias data, the de-
nial rates for each de-biasing method and disposition in the original data. As before, the
thresholds for denial are set such that the average denial rates match that of the training
sample.

For the simulation of bias based on location, excluding PBG alone is again insufficient
to remove the bias, resulting in high denial rates for applicants who were counterfactually
denied (middle panel). This is true despite the bias being enacted at a level (census tract)
finer than the geographic variables included as predictors in the model (county). The
FairXGBoost method predicts few denials for those approved in the actual data, but is
again worse than the other methods at identifying those who were actually denied (right
panel).

The max.-over-groups method is noticeably worse at removing bias based on location
than it was at removing direct bias in the training data. This method fails to remove 2

3 of the
counterfactual denials of Hispanic or Latino applicants (middle panel), and replicates nearly
half of the counterfactual denials of other applicants. Intuitively, the max.-over-groups
removes bias by giving applicants the most favorable outcome observed in a particular region
of the feature space. Since location bias affects members of all groups in certain areas, the
lack of approvals in areas with high concentrations of Hispanic or Latino residents prevents
this method from effectively removing the bias.
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Note: Biased training data includes counterfactual denials of applicants in census tracts with high Hispanic
populations.

Figure 2: Predicted denial rates by actual disposition, model, and ethnicity

By contrast, the average-over-groups method performs much better, resulting in low de-
nial rates for approved and counterfactually denied applicants while maintaining reasonably
high denial rates for those actually denied in the original data. This demonstrates that if
modelers are able to identify variables that might have been used to enact bias, it can be
effectively mitigated by averaging over those variables.

6. Conclusion

Practitioners often want to automate decisions, but if a model is trained to replicate de-
cisions that are biased against a certain group then the model may replicate that bias.
This paper uses counterfactually biased mortgage decision data to empirically test several
methods of mitigating such bias, including adapting one to a machine learning context
(averaging over prohibited variables à la Pope & Sydnor, 2011) and introducing another
(max.-over-groups) that can mitigate bias by treating applicants as if they belong to the
group that would result in the most favorable outcome for them.

Excluding prohibited basis group from the list of predictors is shown to be an insuffi-
cient form of bias mitigation, as a sufficiently flexible model can find proxies with which to
replicate the bias. Regularization that jointly optimizes disparity and accuracy can reduce
inter-group disparities in model predictions, but at a cost of accuracy. This may be coun-
terproductive in some contexts such as lending, where being approved for a loan one cannot
repay may be worse than denial. Taking the average or most favorable prediction over
prohibited groups can mitigate bias against a protected group, and the latter can mitigate
model selection bias as well, rewarding minority applicants who are more creditworthy than
others with similar characteristics. But when bias against a group is enacted via a proxy,
averaging over both protected group and the problematic predictive variable may better
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mitigate the bias.23 These results highlight the importance of context: understanding the
forms that bias can take can be essential to its mitigation.
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7. Appendix

7.1 Machine learning model details

XGBoost, a scalable end-to-end tree boosting system (Chen & Guestrin, 2016) was imple-
mented in R. The hyperparameters listed in Table 3 were found via 5-fold cross-validation
to produce the maximum test AUC of 0.798 (see Table 1) on the counterfactually biased
data (using no de-biasing), across a grid of possible combinations of parameter values. Ta-
ble 3 gives the grid of hyperparameters that were tried, as well as the final values chosen to
produce the maximum test AUC.

Table 3: Hyperparameters chosen by cross-validation

Grid

Min Step Max Value chosen

Number of rounds 1 1 500 363

η 0 0.1 0.3 0.2

Maximum depth 2 2 10 8

Minimum child weight 1 5x 625 25

Other XGBoost settings were left at default values. These hyperparameters were used
for all models. Each model was trained on a 80% sample, and all reported results (Tables
1 and 2) refer to model predictions on a held-out 20% sample.
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