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COVARIANT SCHRÖDINGER OPERATOR AND L2-VANISHING

PROPERTY ON RIEMANNIAN MANIFOLDS

OGNJEN MILATOVIC

Abstract. Let M be a complete Riemannian manifold satisfying a weighted Poincaré inequal-

ity, and let E be a Hermitian vector bundle over M equipped with a metric covariant derivative

∇. We consider the operator HX,V = ∇
†
∇ + ∇X + V , where ∇

† is the formal adjoint of ∇

with respect to the inner product in the space of square-integrable sections of E , X is a smooth

(real) vector field on M , and V is a fiberwise self-adjoint, smooth section of the endomorphism

bundle End E . We give a sufficient condition for the triviality of the L2-kernel of HX,V . As a

corollary, putting X ≡ 0 and working in the setting of a Clifford bundle equipped with a Clifford

connection ∇, we obtain the triviality of the L2-kernel of D2, where D is the Dirac operator

corresponding to ∇. In particular, when E = ΛkT ∗M and D2 is the Hodge–deRham Laplacian

on k-forms, we recover some recent vanishing results for L2-harmonic k-forms.

1. Introduction

For many years mathematicians have studied the triviality property of the space K∆ of L2-

harmonic k-forms on complete Riemannian manifolds without boundary,

K∆ := {ω ∈ L2 : ∆ω = 0},

where ∆ := dδ + δd is the Hodge–deRham Laplacian acting k-forms (here, d and δ are the

standard differential and codifferential).

Topological significance of K∆ = {0} on a compact Riemannian manifold M is clear if we

remember that the space K∆ is isomorphic to the k-th de Rham cohomology group of M .

While this isomorphism is generally not present in the setting of a non-compact Riemannian

manifold M , it turns out that the triviality of K∆ may still offer some topological insights: for

example, the authors of [19] showed that if M has no parabolic ends and K∆ = {0}, where ∆

is Hodge–deRham Laplacian acting on 1-forms, then M is connected at infinity.

Some forty years ago, the author of [7] introduced an elegant method for tackling the prob-

lem of triviality of K∆ pertaining to k-forms on a complete Riemannian manifold M . Using

Weitzenböck formula (see (3.7) below) and a suitable sequence of cut-off functions (whose ex-

istence is guaranteed by the completeness of M ; see section 4.2 below for details), the author
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of [7] showed, among other things, that if the volume of M is infinite and the Weitzenböck

curvature operator RW is non-negative definite, then K∆ = {0}, generalizing an earlier result

of [26] pertaining to 1-forms.

In subsequent years, a number of authors have refined the integration by parts technique from [7],

aiming to accommodate various assumptions onM and RW (in the case of 1-forms, RW reduces

to Ricci tensor RicM ). About twenty years ago, in the context of 1-forms, the authors of [18],

showed that if M (with dimM = n) satisfies λ1(M) > 0 and RicM ≥ −nλ1(M)
n−1 + ε, for some

ε > 0, then K∆ = {0} (see (3.9) below for the definition of the first eigenvalue λ1(M)). Later,

this result was generalized in [16] to manifolds satisfying Poincaré inequality with a (continuous)

weight ρ ≥ 0:
∫

M

ρ(x)|f(x)|2 dνg(x) ≤
∫

M

|df(x)|2dνg(x), (1.1)

for all f ∈ C∞
c (M), where C∞

c (M) denotes smooth compactly supported functions on M and

dνg is the volume element on M induced by the metric g. The author of [16] imposed a certain

condition on the growth of ρ and the following condition on the Ricci tensor: RicM ≥ − nρ
n−1 + ε,

for some ε > 0.

Subsequent to [16], the author of [25] proved (see theorem 5 there) that K∆ = {0} for k-forms

under the following assumptions: M satisfies (1.1) (without growth-rate or sign restrictions

on ρ), M has infinite volume or ρ is not identically equal to 0, and Weitzenböck curvature

operator satisfies RW ≥ −aρ, where a ∈ [0, a0) is a constant (here, the constant a0 comes

from the refined Kato inequality for k-forms). A related vanishing result for Lq-harmonic (0, k)-

tensors with q ≥ 2 (here, “harmonic” is meant with respect to the Lichnerowicz Laplacian)

was established by the authors of [4] under the following assumptions: M satisfies (1.1), M is

non-parabolic, lim inf
x→∞

ρ(x) > 0, and the curvature condition C ≥ −aρ, where a ∈ [0, a0), with a0

depending (among other things) on q. (Here, C is a suitable curvature operator; see section 2

in [4] for details.) The paper [4] (see also [5] for the Kähler manifold setting) gives a number of

vanishing results (for (0, k)-tensors and k-forms) in which the requirement C ≥ −aρ is replaced

by more explicit conditions involving eigenvalues of C .

By performing a careful analysis of the Weitzenböck curvature operator, the author of [20]

established two types of vanishing results for k-forms: (i) theorems based on integral-type as-

sumptions on the Weyl curvature tensor W , traceless Ricci tensor E, and scalar curvature, and

(ii) theorems based on the assumption (1.1) and pointwise assumptions on W and E.

Over the last fifteen years, some authors have studied vanishing property assuming weighted

Poincaré inequality for k-forms (with continuous weight ρ ≥ 0):

∫

M

ρ(x)|ω(x)|2 dνg(x) ≤
∫

M

(|dω(x)|2 + |δω(x)|2) dνg(x), (1.2)

for all ω smooth compactly supported k-forms ω.
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Assuming (1.2) with some growth restrictions on ρ, the vanishing property for harmonic k-

forms was established in [8] and, subsequently, in [10]. Recently, the author of [27] proved

(see theorem 1.4 there) that K∆ = {0} under the following assumptions: M satisfies (1.2), ρ

is not identically equal to 0, and Weitzenböck curvature operator satisfies RW ≥ −aρ, where
a ≥ 0 is a constant. Recently, the authors of [22] established several vanishing theorems for

k-forms assuming (1.2) together with pointwise conditions on Weyl conformal curvature tensor

and traceless Ricci tensor.

As can be seen from the preceding paragraphs, in recent years there has been quite a bit of

activity on the L2-vanishing property for harmonic k-forms. For the corresponding studies in

the setting of p-harmonic k-forms, we refer the reader to [2, 9, 11, 21] and references therein.

(Here, a k-form ω is p-harmonic, p > 1, if dω = 0 and δ(|ω|p−2ω) = 0.) For Lq
f -vanishing results

(in some papers q = 2) in the context of 1-forms on smooth metric-measure spaces (Riemannian

manifolds (M,g) with metric g and measure e−f dνg, where f is a smooth function on M and

dνg is the volume measure induced by the metric g), see [3, 13, 24, 28, 29] and references therein.

Before describing the results of our article, we note the paper [1], which is situated in the setting

of a Hermitian vector bundle E (over a complete Riemannian manifold M), equipped with a

metric covariant derivative ∇; see section 2.3 below for details. Denoting by ΓL2(E) the square

integrable sections and by ∇† the formal adjoint of ∇ (with respect to the inner product in

ΓL2(E)), the author of [1] considered the covariant Schrödinger operator

HV = ∇†∇+ V,

where V is a fiberwise self-adjoint, smooth section of the endomorphism bundle End E . Let us

the denote L2-kernel of HV by

KHV
:= {u ∈ ΓL2(E) : HV u = 0}. (1.3)

In the paper [1] the author observed that in the case E = ΛkT ∗M , the Weitzenböck formula

(see (3.7) below) leads to the following equality: K∆ = KHV
, where V = RW and ∆ is the

Hodge–deRham Laplacian on k-forms (here, RW is the Weitzenböck curvature operator). Thus,

establishing the L2-vanishing property for k-forms amounts to proving that KHV
= {0}. In

particular, the author of [1] showed that KHV
= {0} provided that M satisfies a Sobolev p-type

inequality with p > 2, and that |V−| satisfies a certain integral-type condition (here, V− is the

negative part of V ). In the recent years, the operator HV has been studied extensively; see the

book [6].

In our article we consider the operator

HX,V = ∇†∇+∇X + V,

where ∇, ∇† are as in the preceding paragraph and X is a real, smooth (generally unbounded)

vector field on M and V is a fiberwise self-adjoint, smooth section of the endomorphism bundle

End E . We define KHX,V
as in (1.3) with HX,V in place of HV .
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In theorem 3.1 we prove that KHX,V
= {0} under the following assumptions: M satisfies (1.1),

M has infinite volume or ρ is not identically equal to zero, |X| ≤ â
√
ρ and V − divX ≥ −aρ,

with constants 0 ≤ â < 1 and 0 ≤ a < 1 − â (here, divX is the divergence of X). As a

corollary, putting X ≡ 0 and working in the setting of a Clifford bundle E equipped with a

Clifford connection ∇ (see section 3.2 below for details) we get KD2 = {0}, where D is the Dirac

operator corresponding to ∇ and KD2 is the L2-kernel of D2. In particular, when E = ΛkT ∗M

and D2 is the Hodge–deRham Laplacian on k-forms, we recover theorem 5 of [25] with ρ ≥ 0.

In theorem 3.6 we accomplish the same goal as in theorem 3.1, with the following hypotheses on

X and V : |X| ≤ â
√
ρ with 0 ≤ â < 1, V − divX ≥ −aρ− b with 0 ≤ a < 1− â and b ≥ 0, and

the condition λ1(M) > b/(1− a− â) (see (3.9) for the definition of the first eigenvalue λ1(M)).

As a corollary, putting X ≡ 0 and specializing to k-forms, we recover theorem 6 of [25] with

ρ ≥ 0.

In theorems 3.9 and 3.11 we work in the setting of a Clifford bundle E (over a complete Rie-

mannian manifoldM) equipped with a Clifford connection ∇. We extend some vanishing results

of [27] toD2, the square of the Dirac operatorD corresponding to∇, assuming weighted Poincaré

inequality for D (see (3.13) for precise formulation) and curvature conditions analogous to those

in [27].

The paper is organized into five sections. After describing the notations, operators, and function

spaces in section 2, we state the main results in section 3. The proofs of the main results are

carried out in sections 4 and 5.

2. Description of Notations, Function Spaces, and Operators

2.1. Basic Notations. In this paper we work in the setting of a connected Riemannian n-

manifold (M,g) without boundary. The symbol dνg denotes the volume measure on M : in local

coordinates x1, x2, . . . , xn, we have dνg =
√

det(gij) dx, where (gij) is the inverse of the matrix

g = (gij) and dx = dx1 dx2 . . . dxn is the Lebesgue measure.

We use the notations TM , T ∗M for tangent and cotangent bundles of M respectively. Addi-

tionally, ΛkT ∗M stands for the k-th exterior power of the cotangent bundle T ∗M . The metric

g = (gij) on TM gives rise (in the usual way) to the Euclidean structure on T ∗M , and this, in

turn, leads to the Euclidean structure on the bundle ΛkT ∗M .

Throughout the paper, E → M is a smooth Hermitian vector bundle over M equipped with a

Hermitian structure 〈·, ·〉, linear in the first and antilinear in the second variable. We use | · |x to

indicate the fiberwise norms on Ex, usually writing just |·| to simplify the notations. The symbols

ΓC∞(E) and ΓC∞
c
(E) denote smooth sections of E and smooth compactly supported sections of E ,

respectively. In particular, for smooth k-forms on M we use the symbol ΓC∞(ΛkT ∗M), and for

their compactly supported analogues, the symbol ΓC∞
c
(ΛkT ∗M). When talking about complex-

valued functions on M , the corresponding spaces will be indicated by C∞(M) and C∞
c (M).

Additionally, C(M) denotes continuous (complex-valued) functions on M .
4



We will also use basic “musical” isomorphisms coming from g: for a vector field Y on M , the

symbol Y ♭ indicates the one-form associated to Y , while ω♯ refers to the vector field associated

to the one-form ω.

Lastly, we recall that the Levi–Civita connection ∇LC on M induces the Euclidean covariant

derivative on ΛkT ∗M , which we also denote by ∇LC .

2.2. Description of Lp-spaces. For 1 ≤ p < ∞, the notation ΓLp(E) refers to the space of

p-integrable sections of E with the norm

‖u‖pp :=

∫

M

|u(x)|px dνg(x), (2.1)

where | · |x is the fiberwise norm in Ex.
In the case p = 2 we get a Hilbert space ΓL2(E) with the inner product

(u, v) =

∫

M

〈u(x), v(x)〉x dνg(x). (2.2)

For simplicity, we often drop the subscript x from 〈·, ·〉x and | · |x and simply write 〈·, ·〉 and | · |.
For the Lp-space of (complex-valued) functions on M we use the symbol Lp(M), and in the

formulas (2.1) and (2.2) we replace the fiberwise norm by the absolute value, and 〈u(x), v(x)〉x
by u(x)v(x), where z indicates the conjugate of a complex number z.

2.3. Covariant Schrödinger Operator. With the basic function spaces in place, we turn to

differential operators. The first operator is ∇ : ΓC∞(E) → ΓC∞(T ∗M ⊗ E), a (smooth) metric

covariant derivative on E . Next, we have ∇† : ΓC∞(T ∗M ⊗ E) → ΓC∞(E), the formal adjoint of

∇ with respect to (·, ·), the inner product (2.2). Composing the latter two operators produces

the so-called Bochner Laplacian ∇†∇. In the case of functions, we have the usual differential

d : C∞(M) → ΓC∞(T ∗M) and its formal adjoint d† : ΓC∞(T ∗M) → C∞(M), understood with

respect to the inner product (·, ·) in L2(M). The composition d†d, denoted by ∆M , is known as

the scalar Laplacian onM . We note that in our article ∇†∇ and ∆M are non-negative operators.

For a smooth vector field Y , we define the divergence of Y as

div Y := −d†(Y ♭). (2.3)

Let V ∈ ΓC∞(End E) such that V (x) : Ex → Ex is a self-adjoint operator for all x ∈ M , and let

X be a smooth, real vector field on M . We consider the expression

HX,V u := ∇†∇u+∇Xu+ V u. (2.4)

We call the operator HV covariant Schrödinger operator with potential V and drift X.
5



2.4. The Space KHX,V
. We define

KHX,V
:= {u ∈ ΓL2(E) : HX,V u = 0}. (2.5)

Since V and X are smooth and since HX,V is an elliptic operator, it follows (by local elliptic

regularity) that KHX,V
⊆ ΓL2(E) ∩ ΓC∞(E).

3. Statements of Results

In the first two theorems we assume that M satisfies a weighted Poincaré inequality, which we

describe as follows:

3.1. Hypothesis (P1). Let ρ : M → R. Assume that

(P1a) ρ is a continuous function such that ρ(x) ≥ 0 for all x ∈M ;

(P1b) for all f ∈ C∞
c (M) we have

∫

M

ρ(x)|f(x)|2 dνg(x) ≤
∫

M

|df(x)|2dνg(x), (3.1)

where | · | on the right hand side is the fiberwise norm in T ∗
xM .

We are ready to state the first result.

Theorem 3.1. Assume that M is a geodesically complete Riemannian manifold without bound-

ary. Assume that M satisfies the hypothesis (P1). Additionally, assume that one of the following

two conditions is satisfied:

(m1) ρ(x) is not identically equal to 0;

(m2) the volume vol(M) is infinite.

Let E be a Hermitian vector bundle over M equipped with a metric covariant derivative ∇. Let

X be a smooth, real vector field on M such that

|X(x)| ≤ â
√

ρ(x), (3.2)

for all x ∈M , where 0 ≤ â < 1 is a constant, and | · | is the norm in TxM .

Let V ∈ ΓC∞(End E) be a fiberwise self-adjoint endomorphism such that

V (x)− divX ≥ −aρ(x)Ix, (3.3)

for all x ∈ M , where 0 ≤ a < 1 − â is a constant, with â as in (3.2). (Here, divX is as

in (2.3), and Ix : Ex → Ex is the identity endomorphism. The inequality (3.3) is understood in

quadratic-form sense in Ex.)
Then, the set KHX,V

from (2.5) has the following property: KHX,V
= {0}.

As we will describe below, theorem 3.1, in conjunction with Weitzenböck formula, leads to a

vanishing result for the kernel of the square of the Dirac operator.
6



3.2. Clifford Bundle. By a Clifford bundle we mean a Hermitian vector bundle E over M

satisfying the following two properties:

(i) each fiber Ex is a module over the Clifford algebra C(TxM) and

〈ξ • u, v〉 = 〈u, ξ • v〉, for all ξ ∈ TxM and all u, v ∈ Ex,

where 〈·, ·〉 is the fiberwise inner product in Ex and “•” is the Clifford action.

(ii) E is endowed with a metric connection ∇ satisfying the property

∇X(Y • s) = (∇LC
X Y ) • s+ Y • (∇Xs),

for all s ∈ ΓC∞(E) and vector fields Y , X ∈ ΓC∞(TM), where “•” is the Clifford action

and ∇LC is the Levi–Civita connection on M .

The composition

ΓC∞(E) ∇−→ ΓC∞(T ∗M ⊗ E) g−→ ΓC∞(TM ⊗ E) •−→ ΓC∞(E)

defines a first-order differential operator

D : ΓC∞(E) → ΓC∞(E), (3.4)

called the Dirac operator corresponding to the Clifford bundle (E ,∇).

Remark 3.2. SinceM is geodesically complete, by theorem II.5.4 in [17], it follows that D|ΓC∞
c

(E)

is an essentially self-adjoint operator in ΓL2(E) whose self-adjoint closure in ΓL2(E) we denote

(again) by D.

Defining

KD2 := {u ∈ ΓL2(E) : D2u = 0} (3.5)

and using local elliptic regularity we see that KD2 ⊆ ΓL2(E) ∩ ΓC∞(E).
Referring again to theorem II.5.4 in [17], we have

KD2 = KD, (3.6)

where

KD := {u ∈ ΓL2(E) : Du = 0}

Before stating a corollary of theorem 3.1, we recall a formula linking the Bochner Laplacian on

a Clifford bundle E with the square D2 of the corresponding Dirac operator D.

3.3. Weitzenböck formula. In the Clifford-bundle setting of section 3.2 we have (see propo-

sition 10.4.1 in [23])

D2u = ∇†∇u+ R
Wu, (3.7)

and RW ∈ ΓC∞(End E) is a fiberwise self-adjoint endomorphism.
7



More explicitly (see the formula (10.4.15) in [23]), if {ej}nj=1 is a local orthonormal frame field

and {vj}nj=1 is the corresponding dual frame (here, n = dimM), then

R
Wu = −1

2

n
∑

j,k=1

vjvkR
∇(ej , ek)u,

for all u ∈ ΓC∞(E), where R∇ is the curvature tensor corresponding to the connection ∇.

For future reference, in this paper we call RW Weitzenböck curvature operator.

The formula (3.7) and theorem 3.1 with X ≡ 0 and V = RW lead to the following corollary:

Corollary 3.3. Assume that M is a geodesically complete Riemannian manifold without bound-

ary. Assume that M satisfies the hypothesis (P1). Additionally, assume that one of the following

two conditions holds:

(i) ρ(x) is not identically equal to 0;

(ii) the volume vol(M) is infinite.

Let E be a Clifford bundle over M equipped with a Clifford connection ∇, and let D be the

associated Dirac operator. Assume that the Weitzenböck curvature operator RW satisfies the

inequality

R
W (x) ≥ −aρ(x)Ix, (3.8)

for all x ∈M , where 0 ≤ a < 1 is a constant. (Here, Ix : Ex → Ex is the identity endomorphism,

and the inequality (3.8) is understood in quadratic-form sense in Ex.)
Then, the set KD2 from (3.5) has the following property: KD2 = {0}.

Remark 3.4. Corollary 3.3 can be applied in the setting of a spin manifold M and the associated

spinor bundle E , with D being the so-called classical Dirac operator. In this situation (see

proposition 10.4.4 in [23]), RW = scalM/4 where scalM is the scalar curvature of M (that is,

the trace of the Ricci tensor). Corollary 3.3 can also be applied in the setting of the bundle

E = ΛkT ∗M over an oriented Riemannian manifold M . As explained in section 10.1 of [23], the

bundle E = ΛkT ∗M (with its natural metric and connection ∇LC , as mentioned in section 2.1

above), has the structure of a Clifford bundle. In this situation, the associated Dirac operator

D is the so-called Gauss–Bonnet operator operator d+ δ, where

d : ΓC∞(ΛkT ∗M) → ΓC∞(Λk+1T ∗M), δ : ΓC∞(ΛkT ∗M) → ΓC∞(Λk−1T ∗M).

are the standard differential and codifferential respectively.

In this setting, the operator D2 becomes D2 = dδ+ δd, the so-called Hodge–deRham Laplacian

acting on k-forms, and the set KD2 from (3.5) is known as the space of L2-harmonic k-forms.

Furthermore, in the setting E = ΛkT ∗M , the operator RW depends on the Riemannian curvature

tensor of M , and, by proposition 10.4.2 in [23], in the case E = Λ1T ∗M we have RW = RicM ,

where RicM is the Ricci tensor of M .
8



Thus, in the case E = ΛkT ∗M and the Gauss–Bonnet operator D = d+δ , corollary 3.3 recovers

theorem 5 from [25] with ρ ≥ 0, a vanishing result concerning L2-harmonic k-forms on M .

Before stating the second theorem, we recall the concept of the first eigenvalue of M :

3.4. The First Eigenvalue of M . The first eigenvalue of M , denoted as λ1(M), is defined as

λ1(M) := inf
f∈C∞

c (M)

∫

M |df(x)|2 dνg(x)
∫

M |f(x)|2dνg(x)
(3.9)

Remark 3.5. By (3.9) we have

λ1(M)

∫

M

|f(x)|2dνg(x) ≤
∫

M

|df(x)|2 dνg(x), (3.10)

for all f ∈ C∞
c (M), where dνg is the volume element on M corresponding to the metric g.

We now state the second theorem.

Theorem 3.6. Assume that M is a geodesically complete Riemannian manifold without bound-

ary. Assume that M satisfies the hypothesis (P1).

Let E be a Hermitian vector bundle over M equipped with a metric covariant derivative ∇. Let

X be a smooth, real vector field on M satisfying the condition (3.2).

Let V ∈ ΓC∞(End E) be a fiberwise self-adjoint endomorphism such that

V (x)− divX ≥ −(aρ(x) + b)Ix, (3.11)

for all x ∈M , where 0 ≤ a < 1− â and b ≥ 0 are constants, with 0 ≤ â < 1 as in (3.2). (Here,

divX is as in (2.3), and Ix : Ex → Ex is the identity endomorphism. The inequality (3.11) is

understood in quadratic-form sense.)

Furthermore, assume that

λ1(M) >
b

1− a− â
, (3.12)

where λ1(M) is as in (3.9) and 0 ≤ â < 1 is as in (3.2).

Then, the set KHX,V
from (2.5) has the following property: KHX,V

= {0}.

The formula (3.7) and Theorem 3.6 with X ≡ 0 and V = RW lead to the following corollary:

Corollary 3.7. Assume that M is a geodesically complete Riemannian manifold without bound-

ary. Assume that M satisfies the hypothesis (P1).

Let E be a Clifford bundle over M equipped with a Clifford connection ∇, and let D be the

associated Dirac operator. Assume that the inequality (3.11) is satisfied with X ≡ 0 and the

Weitzenböck curvature operator RW in place of V . Furthermore, assume that

λ1(M) >
b

1− a
.

9



Then, the set KD2 from (3.5) has the following property: KD2 = {0}.

Remark 3.8. In the case E = ΛkT ∗M and the Gauss–Bonnet operator D = d+δ (see remark 3.4

for the notations), corollary 3.7 recovers theorem 6 from [25] with ρ ≥ 0, a vanishing result

concerning L2-harmonic k-forms on M .

For the remainder of this section, E is a Clifford vector bundle over M equipped with a Clifford

connection ∇, and D is the associated Dirac operator.

In the next two theorems we make the following assumption on D:

3.5. Hypothesis (P2). Let ρ : M → R be a continuous function. Assume that

(P2a) ρ(x) ≥ 0 and ρ(x) is not identically equal to 0;

(P2b) for all u ∈ ΓC∞
c
(E) we have

∫

M

ρ(x)|u(x)|2 dνg(x) ≤
∫

M

|Du(x)|2dνg(x), (3.13)

where | · | is the fiberwise norm in Ex.

Theorem 3.9. Assume that M is a geodesically complete Riemannian manifold without bound-

ary. Let E be a Clifford bundle over M equipped with a Clifford connection ∇, and let D be the

associated Dirac operator. Assume that the hypothesis (P2) is satisfied.

Furthermore, assume that the Weitzenböck curvature operator RW satisfies the inequality

R
W (x) ≥ −aρ(x)Ix, (3.14)

for all x ∈ M , where a ≥ 0 is a constant. (Here, Ix : Ex → Ex is the identity endomorphism,

and the inequality (3.14) is understood in quadratic-form sense in Ex.)
Then, the set KD2 from (3.5) has the following property: KD2 = {0}.

Remark 3.10. In the case E = ΛkT ∗M and the Gauss–Bonnet operator D = d+δ (see remark 3.4

for the notations), theorem 3.9 recovers theorem 1.4 from [27], a vanishing result concerning L2-

harmonic k-forms on M .

Theorem 3.11. Assume thatM is a geodesically complete Riemannian manifold without bound-

ary. Let E be a Clifford bundle over M equipped with a Clifford connection ∇, and let D be the

associated Dirac operator. Assume that the hypothesis (P2) is satisfied. Furthermore, assume

that the Weitzenböck curvature operator RW satisfies the inequality

R
W (x) ≥ −(aρ(x) + b)Ix, (3.15)

for all x ∈ M , where a ≥ 0 and b ≥ 0 are constants. (Here, Ix : Ex → Ex is the identity

endomorphism, and the inequality (3.15) is understood in quadratic-form sense in Ex.)
Furthermore, assume that

λ1(M) > b, (3.16)
10



where λ1(M) is as in (3.9).

Then, the set KD2 from (3.5) has the following property: KD2 = {0}.

Remark 3.12. In the case E = ΛkT ∗M and the Gauss–Bonnet operator D = d+δ (see remark 3.4

for the notations), theorem 3.11 recovers theorem 4.1 from [27], a vanishing result concerning

L2-harmonic k-forms on M .

4. Proofs of Theorems 3.1 and 3.6

We begin with a description of Sobolev spaces on M .

4.1. Sobolev Space Notations. We define

W 1,2(M) := {v ∈ L2(M) : dv ∈ ΓL2(Λ1T ∗M)}.
A local Sobolev space W 1,2

loc (M) consists of distributions v on M such that ψv ∈ W 1,2(M), for

all ψ ∈ C∞
c (M). The space of compactly supported elements of W 1,2

loc (M) will be indicated by

W 1,2
comp(M).

Remark 4.1. Let E be a Hermitian vector bundle over M . The following observation will be used

in the sequel: if u ∈ ΓC∞(E) then |u| ∈ C(M) ∩W 1,2
loc (M), where C(M) stands for continuous

functions on M and |u(x)| is the fiberwise norm in Ex.

We also need a sequence of cut-off functions:

4.2. Cut-Off Functions. On a geodesically complete Riemannian manifoldM without bound-

ary, there exists (see theorem III.3(a) in [6]) a sequence of functions χk ∈ C∞
c (M) with the

following properties:

(c1) for all x ∈M , we have 0 ≤ χk(x) ≤ 1;

(c2) for all compact sets G ⊂ M , there exists n0(G) ∈ N such that for all k > n0, we have

χk|G ≡ 1;

(c3) sup
x∈M

|dχk(x)| ≤
C

k
, where C > 0 is a constant independent of k, and | · | is the fiberwise

norm in T ∗
xM .

Remark 4.2. From the property (c2) it follows that lim
k→∞

χk(x) = 1, for all x ∈M .

We now state a key lemma whose parts (ii) and (iii), in the presence of a vector field X, extend

lemmas 1 and 2 from [25].

Lemma 4.3. Assume thatM is a geodesically complete Riemannian manifold without boundary.

Let ρ : M → R be a continuous function such that ρ(x) ≥ 0 for all x ∈ M . Furthermore, let X

be a smooth, real vector filed on M such that

|X(x)| ≤ â
√

ρ(x), (4.1)
11



for all x ∈M , where 0 ≤ â < 1 is a constant.

Assume that h : M → R is a function belonging to C(M)∩W 1,2
loc (M)∩L2(M) and satisfying the

distributional inequality

h∆Mh ≤ −(Xh)h − (divX)h2 + aρh2 + bh2, (4.2)

where a ≥ 0 and b ≥ 0 are constants. (Here, ∆M is the non-negative Laplacian acting on

functions, and the notation Xh means dh(X), the action of dh on X.)

Then, the following hold:

(i) If h satisfies (4.2) with X ≡ 0, then
∫

M

|dh(x)|2 dνg(x) ≤ a

∫

M

ρ(x)h2(x) dνg(x) + b

∫

M

h2(x) dνg(x). (4.3)

(ii) Assume, in addition, that the hypothesis (P1) is satisfied. Furthermore, assume that

0 ≤ a < 1− â, with â as in (4.1). Then,
∫

M

|dh(x)|2 dνg(x) ≤
b

1− a− â

∫

M

h2(x) dνg(x). (4.4)

(iii) Assume, in addition, that the hypothesis (P1) is satisfied. Furthermore, assume that

0 ≤ a < 1 − â, with â as in (4.1). Assume also that h is not identically equal to 0 and

that h satisfies (4.2) with b = 0. Then, M has finite volume and ρ is identically equal to

0.

Proof. The assertion (i) was proved in lemma 2.4 in [27]. We remark that in lemma 2.4 of [27]

the author assumes h ∈ C∞(M) and
∫

B(x0,R)
h2dνg = o(R2),

as R→ ∞, where B(x0, R) is the geodesic open ball centered at x0 ∈M with radius R.

An inspection of the arguments used in the quoted lemma reveals that they work without changes

under the hypothesis h ∈ C(M) ∩ L2(M) ∩W 1,2
loc (M).

We now prove the assertion (ii). As in lemmas 1 and 2 of [25], we use the integration-by-parts

method, modified to account for the presence of the vector field X. Using the cut-off functions

{χk} from section 4.2, we multiply both sides of (4.2) by χ2
k and integrate each term over M .

In particular, remembering that the scalar Laplacian ∆Mw = d†dw is a non-negative operator

and performing integration by parts on the left hand side of (4.2) we have, after using the

product rule on d(χ2
kh),

∫

M

|dh|2χ2
k dνg + 2

∫

M

〈hdχk, χkdh〉 dνg (4.5)

where 〈·, ·〉 is the fiberwise inner product in T ∗
xM .
12



Furthermore, performing integration by parts in the term with integrand −(Xh)hχ2
k on the right

hand side of (4.2) and using the formula (see proposition 1.4 in appendix C of [23])

X†w = −Xw − (divX)w,

where X† is the formal adjoint of the action of X on a function w, the right hand side of (4.2)

becomes
∫

M

[X(χ2
kh)]hdνg +

∫

M

(divX)χ2
kh

2 dνg −
∫

M

(divX)χ2
kh

2 dνg

+ a

∫

M

ρ(χkh)
2 dνg + b

∫

M

(χkh)
2 dνg

= 2

∫

M

(Xχk)χkh
2 dνg +

∫

M

(Xh)χ2
khdνg

+ a

∫

M

ρ(χkh)
2 dνg + b

∫

M

(χkh)
2 dνg, (4.6)

where we used the product rule

X(χ2
kh) = 2χk(Xχk)h+ χ2

kXh.

Remembering that (4.5) is less than or equal to (4.6), we obtain after some rearranging

∫

M

|dh|2χ2
k dνg ≤ −2

∫

M

〈hdχk, χkdh〉 dνg

+ 2

∫

M

(Xχk)χkh
2 dνg +

∫

M

(Xh)χ2
khdνg + a

∫

M

ρ(χkh)
2 dνg

+ b

∫

M

(χkh)
2 dνg. (4.7)

Our next goal is to use the hypotheses of part (ii) of the lemma to estimate (from above) the

terms on the right hand side of (4.7), and if, as a result of those estimates, we get terms with

integrand |dh|2χ2
k, make sure that those terms have as small coefficients as possible (with a total

sum less than 1), so that after transferring those terms to the left hand side we a get a positive

coefficient in front of the integral of |dh|2χ2
k.

Before doing this we record a useful inequality for (real) numbers α, β, and ε > 0:

αβ ≤ εα2

2
+
β2

2ε
(4.8)

Using (4.8) and the (fiberwise) inequality (for one-forms ω and η)

|〈ω, η〉| ≤ |ω||η|,
13



we estimate the first term on the right hand side of (4.7) as

− 2

∫

M

〈hdχk, χkdh〉 dνg

≤ ε

∫

M

|dh|2χ2
k dνg + ε−1

∫

M

|dχk|2h2 dνg. (4.9)

Using the hypothesis (4.1), the inequality (here, f is a function)

|Xf | ≤ |X||df |,

and (4.8), we estimate the second term on the right hand side of (4.7) as

2

∫

M

[X(χk)]χkh
2 dνg ≤ 2â

∫

M

√
ρ|dχk|χkh

2

≤ âε

∫

M

ρ(χkh)
2 dνg + âε−1

∫

M

|dχk|2h2 dνg (4.10)

Using the hypothesis (4.1) and the inequality (4.8) with ε = 1, we estimate the third term on

the right hand side of (4.7) as
∫

M

(Xh)χ2
khdνg ≤ â

∫

M

√
ρ|dh|χ2

khdνg

≤ â

2

∫

M

ρ(χkh)
2 dνg +

â

2

∫

M

χ2
k|dh|2 dνg (4.11)

We keep the fourth and the fifth term on the right hand side of (4.7) in their present form.

We now look at the right hand side of (4.7) and the estimates (4.10) and (4.11). Adding the

coefficients of the terms with integrand ρ(χkh)
2, we get

âε+ 2−1â+ a. (4.12)

As h ∈ W 1,2
loc (M) and χk ∈ C∞

c (M), we have (χkh) ∈ W 1,2
comp(M). Thus, using Friedrichs

mollifiers (with the help of a finite partition of unity, we may assume that χkh is supported in

a coordinate neighborhood) and the hypothesis (3.1), it follows that
∫

M

ρ|χkh|2 dνg ≤
∫

M

ρ|d(χkh)|2dνg.

The latter inequality, together with the estimate,

|d(χkh)|2 = |χkdh+ hdχk|2 ≤ |χkdh|2 + 2|hdχk||χkdh| + |hdχk|2

≤ (1 + ε)χ2
k|dh|2 + (1 + ε−1)|dχk|2h2,

where we used (4.8), yield
∫

M

ρ|χkh|2 dνg ≤ (1 + ε)

∫

M

χ2
k|dh|2νg + (1 + ε−1)

∫

M

|dχk|2h2 dνg. (4.13)
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We now go back to (4.7), refer to the estimates (4.9), (4.10), (4.11) and (4.13), remembering

the coefficient (4.12) in front of the sum of the terms with integrand ρ(χkh)
2. As a result, we

obtain, after moving all terms with integrand χ2
k|dh|2 to the left hand side,

[1− ε− 2−1â− (âε+ 2−1â+ a)(1 + ε)]

∫

M

|dh|2χ2
k dνg

≤ [(âε+ 2−1â+ a)(1 + ε−1) + (â+ 1)ε−1]

∫

M

|dχk|2h2 dνg + b

∫

M

(χkh)
2 dνg. (4.14)

Since 0 ≤ a < 1− â, we can choose a small enough ε > 0 so that

1− ε− 2−1â− (âε+ 2−1â+ a)(1 + ε) > 0. (4.15)

Letting k → ∞ in (4.14) and using the properties of χk from section 4.2, together with the

assumption h ∈ L2(M), we get

[1− ε− 2−1â− (âε+ 2−1â+ a)(1 + ε)]

∫

M

|dh|2 dνg

≤ b

∫

M

h2 dνg. (4.16)

Finally, letting ε→ 0, we obtain (4.4).

We now prove the assertion (iii). With (4.16) at our disposal, we can repeat the argument from

the end of the proof of lemma 1 in [25]. Putting b = 0 in (4.16) and keeping in mind (4.15), we

get
∫

M

|dh|2 dνg ≤ 0.

This shows that exists c̃ ∈ R such that h(x) = c̃ for all x ∈ M . By assumption in part (iii) of

the lemma we have c̃ 6= 0 and h ∈ L2(M). The only way the last sentence can be true is that

vol(M) be finite. Furthermore, using (3.1) with f = χk, we have
∫

M

ρχ2
k dνg ≤

∫

M

|dχk|2 dνg.

Letting k → ∞ in the latter inequality and using the properties of χk from section 4.2, we obtain

(remembering that vol(M) is finite)
∫

M

ρ dνg ≤ 0,

which, together with the hypothesis ρ(x) ≥ 0, tells us that ρ(x) = 0 for all x ∈ M . This

concludes the proof of assertion (iii) of the lemma. �

4.3. Bochner Formula. Before moving forward, we record the following Bochner formula: For

u ∈ ΓC∞(E) we have

∆M

( |u|2
2

)

= 〈∇†∇u, u〉 − |∇u|2, (4.17)
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where ∆M is the non-negative Laplacian (acting on functions), 〈·, ·〉 is the fibrewise inner product
in Ex, | · | on the left hand side is the norm in Ex, and | · | on the right hand side is the norm in

(T ∗M ⊗ E)x.
Using the formula

∆M (f ◦ w) = −f ′′(w)|dw|2 + f ′(w)∆Mw (4.18)

with real-valued functions w ∈W 1,2
loc (M) and f ∈ C∞(R), we rewrite (4.17) as

|u|∆M |u| − |d|u||2 = 〈∇†∇u, u〉 − |∇u|2. (4.19)

4.4. Proof of Theorem 3.1. Starting with u ∈ KHX,V
, that is,

∇†∇u = −∇Xu− V u,

and using (4.19), we obtain

|u|∆M |u| = −〈∇Xu, u〉 − 〈V u, u〉
+ |d|u||2 − |∇u|2. (4.20)

Taking the real part on both sides of (4.20), keeping in mind that X is real, and using the

property

X(|u|2) = X〈u, u〉 = 〈∇Xu, u〉+ 〈u,∇Xu〉 = 2Re〈∇Xu, u〉, (4.21)

together with the chain rule (here Xf means df(X)),

X(|u|2) = 2|u|(X|u|), (4.22)

we can rewrite (4.20) as

|u|∆M |u| = −(X|u|)|u| − 〈V u, u〉
+ |d|u||2 − |∇u|2. (4.23)

Using the hypothesis (3.3) and the so-called Kato’s inequality (see formula (1.32) in [12] or

formula (1) in [15])

|d|u(x)|| ≤ |(∇u)(x)|, (4.24)

the formula (4.23) leads to

|u|∆M |u| ≤ −(X|u|)|u| − (divX)|u|2 + aρ|u|2.

The last inequality and remark 4.1 tell us that the function h(x) := |u(x)| satisfies the hypotheses
of part (iii) of lemma 4.3. Hence, looking at the conditions (m1) and (m2) of theorem 3.1, we

infer that |u(x)| = 0 for all x ∈M . This shows that u = 0, that is, KHX,V
= {0}. �
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4.5. Proof of Theorem 3.6. Starting with u ∈ KHX,V
and arguing as in the proof of the-

orem 3.1, we obtain (4.23). The latter formula, together with the inequality (4.24) and the

hypothesis (3.11), lead to

|u|∆M |u| ≤ −(X|u|)|u| − (divX)|u|2 + aρ|u|2 + b|u|2.

Referring to remark 4.1, the last inequality tells us that the function h(x) := |u(x)| satisfies the
hypotheses of part (ii) of lemma 4.3. Therefore, by (4.4) we have

∫

M

|d|u||2 dνg ≤ b

1− a− â

∫

M

|u|2 dνg. (4.25)

In particular, this estimate tells us |u| ∈ W 1,2(M). As M is geodesically complete, the space

C∞
c (M) is dense in W 1,2(M); see theorem 3.1 in [14]. Thus, the inequality (3.10) holds with |u|

in place of f . Consequently, combining (3.10) and (4.25) yields

λ1(M)

∫

M

|u|2 dνg ≤ b

1− a− â

∫

M

|u|2 dνg,

which upon rearranging leads to
(

λ1(M)− b

1− a− â

)
∫

M

|u|2 dνg ≤ 0.

The latter inequality and the hypothesis (3.12) lead to |u(x)| = 0 for all x ∈ M , that is,

KHX,V
= {0}. �

5. Proofs of Theorems 3.9 and 3.11

In this section we work in the context of a Clifford bundle E over M , equipped with a Clifford

connection ∇ and the associated Dirac operator D. We first recall the product rule for D.

5.1. Product Rule. By lemma II.5.5 in [17], for all u ∈ ΓC∞(E) and all ψ ∈ C∞(M), we have

D(ψu) = (dψ)♯ • u+ ψDu, (5.1)

where “•” is the Clifford multiplication and (dψ)♯ is the vector field corresponding to dψ via the

metric g.

The following lemma is a Dirac-operator analogue of lemma 2.2 from [27].

Lemma 5.1. Assume thatM is a geodesically complete Riemannian manifold without boundary.

Let E be a Clifford bundle over M equipped with a Clifford connection ∇, and let D be the

associated Dirac operator. Assume that D satisfies the hypothesis (P2). Furthermore, assume

that u ∈ ΓC∞(E) ∩ ΓL2(E) is a solution of the equation Du = 0. Then,
∫

M

ρ|u|2 dνg ≤ 0. (5.2)
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Proof. Let {χk} be as in section 4.2 and let u ∈ ΓC∞(E). Then, χku ∈ ΓC∞
c
(E), and we can

use (3.13) to get
∫

M

ρχ2
k|u|2 dνg ≤ ‖D(χku)‖22

= ‖(dχk)
♯ • u+ χkDu‖22 = ‖(dχk)

♯ • u‖22 ≤
C

k2
‖u‖22, (5.3)

where C > 0 is a constant and ‖ · ‖2 is the norm in ΓL2(E). Here, in the first equality we

used (5.1), in the second equality we used the assumption Du = 0, and in the third inequality

we used the property (c3) from section 4.2. Letting k → ∞ in (5.3) we obtain (5.2). �

Our last ingredient is a geometric formula.

5.2. Bochner-Weitzenböck Formula. Combining (4.19) and (3.7) we get

|u|∆M |u| − |d|u||2 = 〈D2u, u〉 − 〈RWu, u〉 − |∇u|2. (5.4)

We are now ready to prove theorem 3.9.

5.3. Proof of Theorem 3.9. Starting with u ∈ KD2 and using (5.4), we get

|u|∆M |u| = −〈RWu, u〉+ |d|u||2 − |∇u|2

≤ aρ|u|2, (5.5)

where the last estimate (with a ≥ 0) follows from the hypothesis (3.14) and the inequality (4.24).

Looking at the inequality (5.5) and recalling remark 4.1 we can see that the function h(x) :=

|u(x)| satisfies the hypotheses of part (i) of lemma 4.3 with b = 0. Therefore, appealing to (4.3)

with b = 0, we get
∫

M

|d|u||2 dνg ≤ a

∫

M

ρ|u|2 dνg,

which in combination with lemma 5.1 (remember (3.6), that is, Du = 0) yields
∫

M

|d|u||2 dνg ≤ a

∫

M

ρ|u|2 dνg ≤ 0.

Thus, there exists a number c̃ ≥ 0 such that |u(x)| = c̃ for all x ∈ M . Assume for a moment

that c̃ > 0.

Since (see hypothesis (P2a)) the function ρ is not identically equal to 0, we have
∫

M

ρ dνg > 0.

On the other hand (5.2) yields

0 ≥
∫

M

ρ|u|2 dνg = c̃

∫

M

ρ dνg,
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that is (since we assumed c̃ > 0),
∫

M

ρ dνg ≤ 0.

The obtained contradiction says that c̃ must equal 0, that is, KD2 = {0}. �

5.4. Proof of Theorem 3.11. Starting with u ∈ KD2 and using (5.4), we get

|u|∆M |u| = −〈RWu, u〉+ |d|u||2 − |∇u|2

≤ aρ|u|2 + b|u|2, (5.6)

where the last estimate (with a ≥ 0) follows from the hypothesis (3.15) and the inequality (4.24).

The estimate (5.6) and remark 4.1 tell us that the function h(x) := |u(x)| satisfies the hypotheses
of part (i) of lemma 4.3. Therefore (4.3) gives

∫

M

|d|u||2 dνg ≤ a

∫

M

ρ|u|2 dνg + b

∫

M

|u|2 dνg.

Remembering (3.6), that is, Du = 0, and using lemma 5.1, the last estimate leads to
∫

M

|d|u||2 dνg ≤ b

∫

M

|u|2 dνg.

From hereon, we use (3.16) and argue in the same way as in the last stage of the proof of

theorem 3.6 to infer that KD2 = {0}. �
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