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Abstract. Different kinds of wave packet transforms are widely used for extracting multi-scale structures
in signal processing tasks. This paper introduces the quantum circuit implementation of a broad class of
wave packets, including Gabor atoms and wavelets, with compact frequency support. Our approach operates
in the frequency space, involving reallocation and reshuffling of signals tailored for manipulation on quantum
computers. The resulting implementation is different from the existing quantum algorithms for spatially
compactly supported wavelets and can be readily extended to quantum transforms of other wave packets
with compact frequency support.

1. Introduction

Various types of wave packets, such as wavelets [Mal99], Gabor atoms, curvelets [CD05], wavelet packets
[LM04], and wave atoms [DY07], have been extensively explored and applied to many applications. In contrast
to the Fourier and the Dirac bases, these wave packets exhibit locality in both the spatial and frequency
domains, along with a controlled level of smoothness, making them advantageous for image or other signal
processing tasks. Additionally, research has demonstrated that the structure of these wave packet bases offers
sparse representations for some differential operators, enabling their use as effective preconditioners for partial
differential equations and facilitating the development of rapid algorithms [CD03, DY09].

There has been emerging interest in quantum algorithms utilizing wavelet or other wave packet transformations.
Research works have demonstrated the applicability of quantum wavelet transforms in various areas of image
processing [YIVA16, ZYI+22], including image compression and encryption [ZHGZ20], image denoising
[CSCG20], and image watermarking [YGMW23, SWL+13, MWB+23, HNG+17]. Furthermore, quantum
wavelet transform has found applications in diverse fields such as quantum steganography [GZL22], quantum-
to-classical data decoding [JUIL+23], and signal reconstruction [MBDJ20]. Notably, quantum wavelet and
curvelet transforms have also been found valuable in encoding differential operators [KDPE+22, BNWAG23]
and in the domain of quantum sampling [Liu09].

Similar to the Fourier transform, quantum computing presents the potential for exponential speedup for wave
packet transforms. The implementations of various quantum wavelet transforms have been explored. Earlier
studies included well-known wavelets such as the Haar wavelet and Daubechies D4 wavelet [FW99, LFXS19].
Research has been extended to higher-order wavelets [BAG23] and a more general setting [ZK22]. The
exploration of multi-dimensional quantum wavelet transform has also been undertaken [LLX23, LFP+22,
LFX+18]. Wavelet packet transforms have been addressed in studies like [Kla99, CGFUPSRG23]. However,
there is a noticeable gap in research concerning other types of wave packet transforms. [Liu09] touched upon
the multi-dimensional curvelet transform and its potential applications, but the discussion remains somewhat
conceptual without a detailed exploration of its implementation.

1.1. Main contributions. Previous studies on quantum wavelet transforms have mostly utilized finite-size
filters in the spatial domain, which are only applicable to spatially compactly supported wavelets. On the
other hand, wave packet constructions with compact frequency support, such as the Meyer wavelet, exhibit
favorable characteristics in the frequency domain. As far as we know, no existing algorithm has explored their
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implementations on quantum computers. Our contribution lies in operating within the frequency domain and
executing the implementation of such wave packet constructions.

We first consider the Gabor atoms of uniform frequency partitioning, with both sharp and blended frequency
windows. The implementation given here is the first one on quantum computers and also serves as a
preparation for more advanced wave packets.

Next, we consider the wavelets of multiscale frequency partitioning with both sharp and blended frequency
windows. The two examples studied in detail are Shannon wavelets and Meyer wavelets. We show that
these wavelets may be realized with no more than three ancilla qubits, thanks to their favorable forms in the
frequency domain. In contrast, for the wavelets with compact spatial support, the number of ancilla qubits
typically grows with the order of the wavelet [BAG23].

1.2. Background on Gabor atoms and wavelets. Different tilings of phase-space diagrams result in
different basis sets, which can be collectively called wave packets. This work focuses on two such wave packets:
Gabor atoms and wavelets.

(a) (b)

Figure 1. (a) Illustration for Gabor atom tiling. Each pair of tiles symmetric with
respect to the x axis represents the essential support of a basis function ψj,p. The
red, orange, yellow, and green tiles represent ψ4,0, ψ3,0, ψ2,0, and ψ1,0 respectively.
All tiles with the same ω are at the same level j. For instance, the blue tile represents
ψ3,3. (b) Illustration for wavelet tiling. Each pair of tiles symmetric with respect to
the x axis represents the essential support of a basis function ψj,p. This diagram
shows the truncation up to n = 4. The red, orange, yellow, green, and blue tiles
represent ψ1,0, ψ2,0, ψ3,0, ψ4,0, and ψ2,3 respectively. The purple tiles represent
the scaling function.

1.2.1. Gabor atoms. Let us first consider a uniform phase-space tiling, as illustrated in Figure 1a. The
basis functions given by this uniform tiling are called Gabor atoms. A basis function can be indexed by its
frequency level j ∈ Z>0 and its space position p ∈ Z. As the simplest example, the Gabor atoms with sharp
frequency windows are given by

(1.1) ψ̂j,p(ω) =

√
A

2π
eiAωpχ[j π

A ,(j+1) π
A ](|ω|),
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where χ stands for the indicator function. Here, we adopt the convention

ψ̂(ω) =
1√
2π

∫
R
ψ(x)eiωxdx,

for continuous Fourier transform, and A ∈ Z>0 is a scaling parameter that can be arbitrarily chosen. Though
with perfect frequency localization, these atoms have slow spatial decay.

A smooth frequency windowing is needed for Gabor atoms with better spatial localization. For this purpose,
we can define a bump function

(1.2) g(s) =

{
cos(π2β(s/π)) if −π < s < π,
0 otherwise,

where the function β(s) should satisfy

(1.3) β(s) + β(1− s) = 1 and β(−s) = β(s).

The bump function g(s) can be viewed as a smoothed version of the characteristic function χ[−π
2 ,π2 ], and the

order of smoothness is determined by β. The Gabor atoms with blended frequency windows are given by

(1.4) ψ̂j,p(ω) =

√
A

2π
eiAωp

(
e−i 1

2 (Aω−(j+ 1
2 )π)g

(
Aω − (j +

1

2
)π

)
+ e−i 1

2 (Aω+(j+ 1
2 )π)g

(
Aω + (j +

1

2
)π

))
.

1.2.2. Wavelets. For wavelets, the phase-space tiling is given as in Figure 1b. More specifically, a wavelet
basis is given by a function ψ : R → C and its multiscale counterparts:

ψj,p(x) =
1√
2j
ψ

(
x− 2jp

2j

)
,

such that {ψj,p}(j,p)∈Z2 form an orthonormal basis of L2(R). As a result, their Fourier transforms

(1.5) ψ̂j,p(ω) =

√
2j

2π
ei2

jωpψ̂(2jω)

also form an orthonormal basis of L2(R). When the frequency window ψ̂(ω) is a sharp indicator function

(1.6) ψ̂(ω) = χ[−2π,−π]∪[π,2π](ω) = χ[π,2π](|ω|),
the resulting basis functions are the Shannon wavelets.

We may also consider smooth blended frequency windows, for example,

(1.7) ψ̂(ω) =


e−iω

2 g
(
3ω
2 − 2π

)
if 2π

3 ≤ ω ≤ 4π
3 ,

e−iω
2 g
(
3ω
4 − π

)
if 4π

3 ≤ ω ≤ 8π
3 ,

0 if 0 ≤ ω ≤ 2π
3 or ω ≥ 8π

3 ,
ψ̂(−ω)∗ if ω < 0,

where ψ̂(−ω)∗ means the conjugate of complex number ψ̂(−ω). This results in the famous Meyer wavelets
[Mal99, Chapter 7.2.2].

1.3. Notations and conventions. Let us first summarize the notations and conventions used in this paper,
which are compatible with the standard notations in quantum computing literature. We use ⊗ to denote
the tensor product and ⊕ for the direct product of matrices. Occasionally, ⊕ is also used as the notation of
modulo 2 plus in bit-wise operations, but the meaning should be clear based on the context. The notation
[M ] stands for the set {0, 1, . . . ,M − 1}. The matrix IM means the identity matrix of dimension M . We use
z∗ to represent the conjugate of a complex number z, and A† the conjugate transpose of matrix A.

We adopt Dirac’s notation |·⟩ to represent a quantum state as a column vector and ⟨·| as its conjugate
transpose. A qubit lives in the space C2 = span{|0⟩ , |1⟩}, where |0⟩ and |1⟩ represent [1, 0]T and [0, 1]T ,
respectively. For a non-negative integer x with binary representation x = (xm−1xm−2 · · ·x0)2, we denote the
m-qubit state

(1.8) |x⟩ := |xm−1xm−2 · · ·x0⟩ = |xm−1⟩ |xm−2⟩ · · · |x0⟩ = |xm−1⟩ ⊗ |xm−2⟩ ⊗ · · · ⊗ |x0⟩ .
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In this convention, we can identify any unit vector f ∈ CM as an m-qubit state
∑M−1

x=0 f(x) |x⟩. Due to the
basic assumptions of quantum mechanics, we always assume the vectors have norm 1, and all operators we
consider are unitary matrices correspondingly.

The unitary manipulations are often drawn as boxes in the quantum circuits, where we use horizontal wires
to represent qubits. The ordering convention we are using here is the higher digit of the binary representation
(1.8) will correspond to the upper qubit when drawing the quantum circuit. More examples of quantum
circuits can be found in quantum computing textbooks [Lin22a, NC00]. In the present paper, we denote
n = log2N as the number of qubits utilized for implementing the wave packet transform in the space CN .
Additionally, M = 2m is often used for the dimension of matrices acting as intermediate steps, with the value
of M left temporarily unspecified.

X, Y , Z, and H represent the Pauli-X, Pauli-Y , Pauli-Z, and Hadamard matrices respectively, defined as

X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
, H =

1√
2

[
1 1
1 −1

]
.

We also extensively use some basic two-qubit gates. The |1⟩-controlled-NOT gate is |0⟩⟨0| ⊗ I2 + |1⟩⟨1| ⊗X,
and is usually just called the CNOT gate. In a quantum circuit, this gate is drawn as in Figure 2a, where
the filled node means only applying the lower gate when the upper qubit is |1⟩. We usually use “⊕” to
represent “X” in quantum circuits. The related |0⟩-controlled-NOT gate, |0⟩⟨0| ⊗X + |1⟩⟨1| ⊗ I2, is given
in Figure 2b, where the unfilled node has just the opposite meaning as the filled one. The swap gate
SWAP = |00⟩⟨00|+ |01⟩⟨10|+ |10⟩⟨01|+ |11⟩⟨11|, which swaps the value of two qubits, is shown as Figure 2c.
We sometimes also make use of the multi-qubit controlled gate, which can be built by single qubit gates and
CNOT gates [BBC+95]. For instance, |11⟩⟨11| ⊗ U + (I4 − |11⟩⟨11|)⊗ I is shown in Figure 2d.

X
=

(a) (b) (c)
U

(d)

Figure 2. (a) CNOT gate. (b) |0⟩-controlled-NOT gate. (c) SWAP gate. (d) An
example of a multi-qubit control gate |11⟩⟨11| ⊗ U + (I4 − |11⟩⟨11|)⊗ I. The two
filled nodes indicate that U is applied to the third qubit if and only if both the first
two qubits are at state |1⟩.

An (m+ n)-qubit unitary operator U is called a (γ,m, ϵ)-block-encoding of an N ×N matrix A, if

∥A− γ (⟨0m| ⊗ IN )U (|0m⟩ ⊗ IN )∥ ≤ ϵ.

In the matrix form, a (γ,m, ϵ)-block-encoding is a 2m+n dimensional unitary matrix

U =

(
Ã/γ ∗
∗ ∗

)
where ∗ can be any block matrices of the correct size, and ∥Ã−A∥ ≤ ϵ.

The inner product of two complex vectors f1 and f2 is denoted by

(1.9) ⟨f1|f2⟩ := ⟨f1, f2⟩ =
N−1∑
t=0

f1(t)f2(t)
∗.

We denote f(m1 : m2) as the restriction of vector f from the m1-th element to the m2-th element.

For any j in the computational basis, the (discrete) forward Fourier transform is defined as

UFT(N)|j⟩ =
1√
N

∑
k∈[N ]

ei2π
kj
N |k⟩,

which is widely used in the quantum computing literature but has a sign difference compared to the classical
signal processing convention.
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The indices of vectors in this paper are always considered in the modulo N sense, i.e., f(−k) = f(N − k). In
particular, we adopt the convention |−k⟩ = |N − k⟩ in the bracket notation.

For all matrices, the subscripts “G” and “W” indicate that they are related to Gabor atoms and wavelets,
respectively. The subscripts “S” and “B” stand for sharp and blended frequency windows, respectively. In
particular, the four main transformations in the paper are denoted as UGS, UGB, UWS, and UWB, i,e., sharp
Gabor atoms, blended Gabor atoms, Shannon (sharp) wavelets, and Meyer (blended) wavelets. For the
matrices that we want to specify the dimension, we write the dimension as a subscript. The italicized
subscripts representing dimensions, such as N , M , and B, can be readily distinguished from the Roman
subscripts denoting names, such as the aforementioned “G”, “W”, “S”, and “B”.

2. Gabor atoms

This section delves into the implementation of the quantum version of the Gabor atom transform. Specifically,
we will discuss the discretization and present the quantum circuits for both the sharp Gabor atoms (1.1) and
the blended Gabor atoms (1.4). Implementing the sharp Gabor atoms can be viewed as first reshuffling the
Fourier transform f̂ of the input and then performing an inverse Fourier transform for each sharp frequency
window. The blended Gabor atoms are more intricate due to the overlapping of neighboring packets. Our
approach entails first recombining parts of f̂ to the proper locations, which is a unitary process, and then
applying the circuit of the sharp Gabor atoms. The recombining process involves the implementation of
certain diagonal matrices, which will also be discussed in detail.

2.1. Sharp Gabor atoms. Given the basis functions (1.1), let us introduce the discrete sharp Gabor atoms
in the frequency domain. We restrict ω ∈ [−π, π) to grid points { 2π

N k}, where k = −N/2, . . . , N/2−1. Denote
B = N

2A and b = log2B. The discrete sharp Gabor atoms are defined in the (discrete) frequency space as

ψ̂j,p(k) :=
1√
2B

e2πi
pk
2B

[
χ[jB,(j+1)B)(k) + χ[−(j+1)B,−jB)(k)

]
,

where ψj,p is for the discrete basis function in order to distinguish from its continuous counterpart ψj,p. We

also point out that the discrete and continuous basis corresponds in the sense that ψ̂j,p(k) :=
√

2π
N ψ̂j,p(

2π
N k).

Only the basis function with indices j ∈ [A] and p ∈ [2B] are used in the discrete setting, which is in total N
basis functions. Typically, we may choose A = 2⌊n/2⌋ and B = 2⌊(n−1)/2⌋ to balance the resolution of space
and frequency, though other choices of A and B are also acceptable. To simplify indexing, we further denote
ψj,p as ψ2Bj+p, thereby aligning the basis functions with indices ranging from 0 to N − 1. More explicitly,
the Fourier coefficients of the sharp Gabor atoms basis are

(2.1) ψ̂2Bj+p(k) := ψ̂j,p(k),

for j ∈ [ N
2B ], p ∈ [2B], and k ∈ {−N

2 ,−
N
2 + 1, . . . , N2 − 1}. Here, χI means the characteristic function on

interval I. In some other literature, there may be an additional phase on the characteristic functions in the
sharp Gabor atoms, which is not adopted here and can be viewed as a special version of the blended Gabor
atoms discussed in Section 2.2.

For a signal f ∈ CN , one can expand f under this basis

(2.2) f =
∑

j∈[ N
2B ]

∑
p∈[2B]

a2Bj+pψ2Bj+p =

N−1∑
n=0

anψn,

where a2Bj+p’s are the Gabor atom coefficients. Notice that the ψ2Bj+p here is the discrete Fourier inverse
of (2.1), which is not the direct restriction of the continuous ψj,p in the space domain. The sharp Gabor
atom transform is defined as

(2.3) UGS : CN → CN : f 7→ a = (a0, a1, . . . , aN−1)
T .
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One can check that the basis given by (2.1) is orthonormal. Therefore, the coefficients of signal f are given
by the inner product

(2.4) a2Bj+p = ⟨f, ψ2Bj+p⟩ = ⟨f̂ , ψ̂2Bj+p⟩ =

(j+1)B−1∑
k=jB

+

−jB−1∑
k=−(j+1)B

 1√
2B

e−2πi pk
2B f̂(k),

where the second step is the Plancherel’s identity. When j is even, this gives

(2.5)

a2Bj+p =
1√
2B

(
B−1∑
k=0

e−2πi
p(k+jB)

2B f̂(k + jB) +

2B−1∑
k=B

e−2πi
p(k−(j+2)B)

2B f̂(k − (j + 2)B)

)

=
1√
2B

(
B−1∑
k=0

e−2πi pk
2B f̂(k + jB) +

2B−1∑
k=B

e−2πi pk
2B f̂(k − (j + 2)B)

)
.

Similarly, when j is odd,

(2.6) a2Bj+p =
1√
2B

(
B−1∑
k=0

e−2πi pk
2B f̂(k − (j + 1)B) +

2B−1∑
k=B

e−2πi pk
2B f̂(k + (j − 1)B)

)
.

This form implies that if we permute the elements of f̂ , then a2Bj+p can be obtained from an inverse Fourier
transform of size 2B. Specifically, let SG(N,B) be the permutation matrix such that for j ∈ [ N2B ], k ∈ [B], we
have

(2.7)

SG(N,B) |Bj + k⟩ =

{
|2Bj + k⟩ if j is even,
|2Bj +B + k⟩ if j is odd,

SG(N,B) |B(
N

B
− 1− j) + k⟩ =

{
|2Bj + k⟩ if j is odd,
|2Bj +B + k⟩ if j is even.

.

After acting SG(N,B) on f̂ , we have

(2.8) a2Bj+p =
1√
2B

(
2B−1∑
k=0

e−2πi pk
2B (SG(N,B)f̂)(k + 2Bj)

)
,

which is just an inverse Fourier transform of size 2B as desired. This process is shown in Figure 3.

መ𝑓 ① ② ③ ④ ⑤ ⑥ ⑦ ⑧

0 B 2B 3B -4B -3B -2B -B

𝑆𝑃 𝑁,𝐵
መ𝑓 ① ⑧ ⑦ ② ③ ⑥ ⑤ ④

𝑎

𝑓

Fourier transform

Reshuffle

inv. FT inv. FT inv. FT inv. FT

Figure 3. The process of sharp Gabor atoms transform. Reshuffle the indices in
the frequency domain, and then perform an inverse Fourier transform on each of the
2B-size blocks.
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As an intermediate step of the implementation of SG(N,B), we first introduce another permutation matrix.
For an integer m and M = 2m, let GG(M) be the M ×M permutation matrix such that

(2.9)
GG(M) |j⟩ = |2j⟩ ,

GG(M) |M − 1− j⟩ = |2j + 1⟩ ,

for j ∈ [M/2]. Notice that GG(M) can be represented by the bit manipulation

(2.10)
|xm−1xm−2 · · ·x0⟩ 7→ |xm−1(xm−2 ⊕ xm−1) · · · (x0 ⊕ xm−1)⟩

7→ |(xm−2 ⊕ xm−1) · · · (x0 ⊕ xm−1)xm−1⟩ ,
therefore it can be implemented on the quantum computer by m − 1 CNOT-gates followed by m − 1
SWAP-gates.

Now let us come back to the implementation of matrix SG(N,B). One can see that SG(N,B) only operates on
the first n− b qubits, and can be factorized as

SG(N,B) = SG(N
B ,1) ⊗ I2b = (I2n−b−2 ⊗ CNOT⊗ I2b)(GG(N/B) ⊗ I2b).

Here, the extra CNOT-gate is used for deciding whether the j in (2.7) is even or odd. If j is odd, we need an
extra switch between |2Bj + k⟩ and |2Bj +B + k⟩ after applying GG(N/B) on the first n− b qubits.

Finally, the complete circuit from f to a is given by

(2.11) UGS = (I2n−b−1 ⊗ U†
FT(2B))(I2n−b−2 ⊗ CNOT⊗ I2b)(GG(N/B) ⊗ I2b)UFT(N),

which is demonstrated in Figure 4.

|x5⟩
|x4⟩
|x3⟩
|x2⟩
|x1⟩
|x0⟩

UFT(N)

SG(N
B

,1)

U†
FT(2B)

UFT(N)

U†
FT(2B)

=

Figure 4. The circuit of UGS when N = 64 and B = 4.

2.2. Blended Gabor atoms. As discussed in Section 1.2, the aim of introducing the blended Gabor atoms
is to incorporate blended frequency windows, resulting in rapid decay in the space domain. Typically, a
blended Gabor atom basis function consists of two frequency bumps symmetrically positioned about the
origin, such as the second and seventh bump in Figure 5.

To define the discrete blended Gabor atoms, we restrict ω onto a grid and represent the index (j, p) as 2Bj+p
for convenience in ordering. The Fourier transform of a discrete blended Gabor atom is defined by
(2.12)

ψ̂2Bj+p(k) =
1√
2B

e2πi
pk
2B

[
e

1
2πi(

1
2−

k−Bj
B )gper

(
π

(
k −Bj

B
− 1

2

))
+ e

1
2πi(−

1
2−

k+Bj
B )gper

(
π

(
k +Bj

B
+

1

2

))]
for j ∈ [ N2B ], p ∈ [2B], where

(2.13) gper(x) =
∑
q∈Z

g(x+ qπ
N

B
)

is the periodic version of g defined in (1.2). Here, gper is used instead of g due to the considerations of
boundary conditions. This periodization also automatically makes ψ̂2Bj+p(k) = ψ̂2Bj+p(N + k) hold for any
integer k, which is compatible with our convention.

We also point out that, akin to the sharp Gabor atom, this discrete basis function corresponds to its continuous
counterpart through ψ̂j,p(

2π
N k) =

√
2π
N ψ̂j,p(k), except for those k values near the boundary.
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0 B 2B 3B 4B-B-2B-3B-4B

Figure 5. Illustration of reallocation when N = 8B. Each basis function ψ̂2Bj+p

contains two bumps supported at [(j − 1
2 )B, (j +

3
2 )B) and [−(j + 3

2 )B,−(j − 1
2 )B).

The arrows indicate how the small tails are transposed such that all the relevant
f̂(k)’s are placed in [jB, (j + 1)B) ∪ [−(j + 1)B,−jB) with correct proportion. All
these reallocations are unitary manipulations. This figure exclusively illustrates
magnitude transpositions, omitting the change of phase. In particular, the self-
transpositions are, in fact, phase rotations.

One can make straightforward calculations to show that ψ0, . . . , ψN−1 form an orthonormal basis of CN .
Similar to the sharp case, the coefficients of a vector f are a2Bj+p = ⟨f̂ , ψ̂2Bj+p⟩, and the blended Gabor
atom transform is defined as

(2.14) UGB : CN → CN : f 7→ a = (a0, a1, . . . , aN−1)
T .

In this scenario, the support of different basis functions may intersect. Therefore, we first reallocate f̂ to
the correct position. Subsequently, we perform the rearrangement of indices, identical to the procedure for
sharp Gabor atoms. This reallocation process is shown in Figure 5. To make it mathematically concrete, we
introduce the intermediate variable h(k) defined as

(2.15) h(jB + q) = f̂(jB + q)g
(
−π
2
+ q

π

B

)
e

i
2 (−

π
2 +q π

B ) + f̂(−jB + q)g
(π
2
+ q

π

B

)
e

i
2 (

π
2 +q π

B ),

(2.16) h((j +
1

2
)B + q) = f̂((j +

1

2
)B + q)g

(
q
π

B

)
e

i
2 (q

π
B ) + f̂(−(j +

3

2
)B + q)g

(
−π + q

π

B

)
e

i
2 (−π+q π

B )

for j = − N
2B ,−

N
2B + 1, . . . , N

2B − 1, q ∈ [B2 ]. This reallocation process guarantees that

(2.17)

(j+1)B−1∑
k=jB

+

−jB−1∑
k=−(j+1)B

 1√
2B

e−2πi pk
2B h(k) = ⟨f̂ , ψ̂2Bj+p⟩ = a2Bj+p.

The proof is provided in Section 4.1. Despite its complex appearance, the formulas for h(k) are derived in
reverse to satisfy (2.17), so the proof is straightforward calculations.

Notice that (2.17) and (2.4) share the same form, so we can reuse the circuit in Section 2.1, and conclude
that the complete circuit from blended Gabor atom transform UGB : f 7→ a is given by

(2.18) UGB = (I2n−b−1 ⊗ U†
FT(2B))SG(N,B)TGUFT(N),

where TG is the transition matrix from f̂ to h, and can be written down following the definitions in (2.15)
and (2.16).

Let us now focus on the implementation of TG. Since TG has the potential block-diagonal structure, as
shown in Figure 6a, we shall first rearrange the order of the computational basis to reveal this structure. At
this stage, we do not need to deal with the last b − 1 qubits. For an integer M = 2m, we may define the
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(a) (b)

Figure 6. (a) Magnitude of elements in TG with N = 32, B = 4. (b) Magnitude of
elements in VG with N = 32, B = 4.

permutation matrix QG(M) as

(2.19)

QG(M) |j⟩ = |2j⟩ , for j ∈ [M/2],
QG(M) |M − 1⟩ = |M − 1⟩ ,
QG(M) |M/2⟩ = |1⟩ ,

QG(M) |M − 2j⟩ = |4j + 1⟩ , for j = 1, 2, . . . ,M/4− 1,
QG(M) |M − 2j − 1⟩ = |4j − 1⟩ , for j = 1, 2, . . . ,M/4− 1.

The detailed implementation of QG(M) is shown in Section 2.2.1. We can use the permutation matrix
QG( 2N

B ) ⊗ I2b−1 to rearrange the nonzero elements in TG and define a new matrix

(2.20) VG = (QG( 2N
B ) ⊗ I2b−1)†TG(QG( 2N

B ) ⊗ I2b−1),

which is a block-diagonal matrix as shown in Figure 6b. A detailed description of VG and its implementation
is discussed in Section 2.2.2. Combining (2.18) and (2.20), we can draw the complete circuit of UGB in
Figure 7.

|x5⟩
|x4⟩
|x3⟩
|x2⟩
|x1⟩
|x0⟩

UFT(N)

Q†
G( 2N

B
)

VG

QG( 2N
B

)

SG(N
B

,1)

U†
FT(2B)

Figure 7. The circuit of UGB when N = 64 and B = 4.
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2.2.1. The implementation of QG(M). Let L be the M ×M shift matrix

(2.21) L =



0 0 . . . . . . 1

1 0 0
. . . 0

... 1
. . . . . .

...
...

. . . . . . . . .
...

0 0 . . . 1 0


,

which can be implemented easily within O(m2) gate complexity, as shown in [CLVBY22, Figure 6]. If one is
allowed to use one ancilla qubit, then L can be implemented within O(m) gate complexity as in [Kla99].

Notice that QG(M) has the same M/2 columns as the matrix GG(M) introduced earlier, so it is natural to
reuse the circuit of GG(M) in the construction of QG(M). Straightforward calculations show that G−1

G(M)QG(M)

is a permutation matrix that switches |M − 2j⟩ and |M − 2j − 1⟩ for j = 1, 2, . . . , M4 − 1, and also switches
|M − 1⟩ and |M/2⟩. Therefore, we have G−1

G(M)QG(M) = |0⟩⟨0| ⊗ IM/2 + |1⟩⟨1| ⊗ (L(IM/4 ⊗X)L†). Finally,
noticing that the controls on L and L† are unnecessary since they will be canceled, we conclude

(2.22) QG(M) = GG(M)(I2 ⊗ L)
(
|0⟩⟨0| ⊗ IM/2 + |1⟩⟨1| ⊗ IM/4 ⊗X

)
(I2 ⊗ L)†,

where
(
|0⟩⟨0| ⊗ IM/2 + |1⟩⟨1| ⊗ IM/4 ⊗X

)
is just the CNOT gate on the first and the last qubits. Figure 8

illustrates the circuit implementation of QG(M).

L† L
GG(M)

Figure 8. The circuit of QG(M) for M = 32.

2.2.2. Implementation of VG. To help the following discussion, we define two diagonal matrices D+ =

diag{0, 1
B ,

2
B , . . . ,

(B/2−1)
B } and D− = D+ − 1

2I.

As illustrated in Figure 6b, the matrix VG is a block-diagonal matrix with N
B blocks, with each block of size

B ×B. By the definitions in (2.15) and (2.16) together with the permutation matrix QG(M), we can write
down the blocks explicitly.

(2.23)

The 0-th block = K̂e := I2 ⊗ e
i
2 (πβ(D−)+πD−).

The (2j)-th block = Ke :=

[
cos(π2β(D−))e

i
2πD− i sin(π2β(D−))e

i
2πD−

i sin(π2β(D−))e
i
2πD− cos(π2β(D−))e

i
2πD−

]
= (H ⊗ IB/2)

[
e

i
2 (πβ(D−)+πD−) 0

0 e
i
2 (−πβ(D−)+πD−)

]
(H ⊗ IB/2),

for j = 1, 2, . . . ,
N

2B
− 1.

The (2j − 1)-th block = Ko :=

[
cos(π2β(D+))e

i
2πD+ −i sin(π2β(D+))e

i
2πD+

−i sin(π2β(D+))e
i
2πD+ cos(π2β(D+))e

i
2πD+

]
= (H ⊗ IB/2)

[
e

i
2 (−πβ(D+)+πD+) 0

0 e
i
2 (πβ(D+)+πD+)

]
(H ⊗ IB/2),

for j = 1, 2, . . . ,
N

2B
− 1.

The (
N

B
− 1)-th block = K̂o := I2 ⊗ e

i
2 (−πβ(D+)+πD+).
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The remaining challenge lies in implementing these diagonal matrices. Usually, β(x) will be chosen as a
polynomial on [0, 12 ] and then extend to [−1, 1] according to (1.3). Typical choices include β(x) = x or
β(x) = 2x2 in the interval [0, 12 ]. For such low-degree β, one can use the method introduced in Section 2.2.3 to
implement the required diagonal matrices. If one wants to pursue higher regularity with more sophisticated
β(x), such as

(2.24) β(x) = x4(35− 84x+ 70x2 − 20x3), for x ∈ [0, 1],

or even non-polynomial functions, the method in Section 2.2.4 could be used.

Finally, the circuit of VG is presented in Figure 9. Here, we need to implement the multi-qubit controlled
version of a unitary. A naive way is to do the multi-qubit controlled version of every gate in this unitary in
order. However, this approach results in very high gate complexity. Instead, we may introduce an ancilla
qubit to make the implementation using mainly single qubit controls, as demonstrated in Figure 10.

Ke K†
eK̂e Ko K†

oK̂o

Figure 9. The circuit of VG when N = 64 and B = 4.

U

ancilla |0⟩

U

=

|0⟩

Figure 10. The circuit of implementing multi-qubit controlled unitaries using one
ancilla qubit.

2.2.3. Implementation of the exponential of a pure imaginary polynomial via bit manipulations. Now we
focus on the general problem of implementing diagonal matrices exp(iq(A)), where A = diag{0, 1, . . . ,M − 1}
for some M = 2m, and q is a real polynomial. Since polynomials are the sum of monomials, we only need
to consider the special case q(A) = rAs, where r ∈ R and s ≥ 0 is integer. The case s = 0 is trivial. The
case s = 1 is discussed in [LNY23, Section 5.1], which exploits the following observation. Let x ∈ [M ] and
x = (xm−1 · · ·x0)2 be its binary representation, then

(2.25) exp(irA) |x⟩ = exp(irx) |x⟩ =
m−1⊗
j=0

(
exp(irxj2

j) |xj⟩
)
=

m−1⊗
j=0

(
Rz(2

jr) |xj⟩
)
.

Where Rz(θ) :=

(
1

eiθ

)
is the single-qubit rotation gate. This means exp(irA) can be implemented by

simply applying an Rz(2
jr) on the j-th qubit.
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For general s, a similar approach can be utilized, but it may involve multi-qubit gates due to the cross terms.
Specifically, we have

(2.26)

xs =

m−1∑
j=0

2jxj

s

=
∑

k0+k1+···+km−1=s; kj≥0

(
n

k0, k1, . . . , km−1

)m−1∏
j=0

(2jkjx
kj

j )

=
∑

k0+k1+···+km−1=s; kj≥0

(
n

k0, k1, . . . , km−1

)
(

m−1∏
j=0

2jkj )
∏
kj>0

xj .

Therefore, to implement exp(irxs), we only need to implement the terms look like exp(ic
∏

j∈J xj), where J
is an index set, and c is a real number. This 2|J| dimensional matrix can be realized as a controlled version of
Rz(c), which is

(2.27) diag{1, 1, . . . , 1, eic} = |1|J|−1⟩ ⟨1|J|−1| ⊗Rz(c) + (I − |1|J|−1⟩ ⟨1|J|−1|)⊗ I.

Note that it does not matter which |J | − 1 qubits serve as control qubits since this matrix will not change
under different choices.

To demonstrate this clearly, we give an example for m = 3, s = 3, r = 1. In this case,

(2.28) exp(ix3) |x⟩ = exp(i(x0 + 8x1 + 64x2 + 18x0x1 + 60x0x2 + 144x1x2 + 48x0x1x2)) |x2x1x0⟩ ,
which can be implemented as Figure 11.

|x2⟩

|x1⟩

|x0⟩

Rz(64)

Rz(8)

Rz(1)

Rz(144)

Rz(60) Rz(18) Rz(48)

Figure 11. The implementation of the unitary
∑7

x=0 exp(ix
3) |x⟩⟨x|.

This method’s advantage is that it does not use any ancilla qubit and does not introduce any approximation,
so it is desirable as long as we have a moderate value of s.

2.2.4. Implementation of the exponential of a pure imaginary polynomial via QSVT. The complexity of the
implementation given in Section 2.2.3 is O(ms), where m is the number of qubits, and s is the degree of
polynomial q. This complexity is unaffordable when the degree s is large.

For polynomial q of higher degrees, one may resort to QSVT [GSLW18] for better asymptotic complexity
scaling at the expense of introducing approximations and extra ancilla qubits. To be specific, we shall
construct a (

√
2, 3, ϵ)-block encoding of the desired unitary matrix using QSVT, where ϵ is the tolerable error,

and then use the “perfect amplitude amplification” [BAG23] to extract the desired matrix. (One may refer to
Section 1.3 for the terminology regarding block encoding.)

Recall that β is a polynomial on [−1, 1] satisfying (1.3), and a typical example is (2.24). Therefore,
γ(x) := 2β(x+ 1

2 )− 1 is an odd polynomial. The diagonal matrices that we need to implement in (2.23) are
e

i
2 (πβ(D−)+πD−), e

i
2 (−πβ(D−)+πD−), e

i
2 (−πβ(D+)+πD+), and e

i
2 (πβ(D+)+πD+).

Now we consider e
i
2 (πβ(D−)+πD−) as an example since the implementations for the other three matrices are

analogous. In this case, the number of qubits is m = b− 1 = log2B − 1. Noticing that

e
i
2π(β(D−)+D−) = e

i
2π(−β(−D−)+D−) = e

i
2π(−

1
2 (γ(−D−− 1

2 )+1)+D−) = e−
iπ
4 γ(−D−− 1

2 )e−
iπ
4 + iπ

2 D− ,

where e−
iπ
4 + iπ

2 D− can be easily implemented using the method in Section 2.2.3, we focus on

e−
iπ
4 γ(W ) = cos(

π

4
γ(W ))− i sin(

π

4
γ(W )),

where W := −D− − 1
2 for the simplicity of notations. We need to first implement the (1, 2, ϵ)-block encodings

of cos(π4 γ(W )) and sin(π4 γ(W )), and then use LCU [Lin22b, Section 7.3] to get a (
√
2, 3, ϵ)-block encoding of

e−
iπ
4 γ(W ). Below, we explain this idea in more detail.
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For the (1, 2, ϵ)-block encoding of cos(π4 γ(W )), we outline the procedure following the methodology detailed
in [LNY23, Section 5.1]. First, we can use the method in Section 2.2.3 to construct the (1, 1, 0)-block encoding
of sin(W ), given by[

sin(W ) −i cos(W )
−i cos(W ) sin(W )

]
= (H ⊗ I)

[
−iI 0

iI

] [
eiW 0
0 e−iW

]
(H ⊗ I).

As − 1
2I ≤W ≤ 1

2I, we seek an ϵ accurate polynomial approximation of the even function cos(π4 (γ(arcsin(x))))

for x ∈ [− sin( 12 ), sin(
1
2 )] to utilize QSVT on sin(W ) to obtain a (1, 2, ϵ)-block encoding of cos(π4 (γ(W ))).

Let mγ = max− 1
2≤x≤ 1

2
|γ′(x)|. By truncating the Taylor series of arcsin(x) at x = 0 to degree O(log( 2mγ

ϵ )),
we get a polynomial w(x) satisfying |w(x) − arcsin(x)| ≤ ϵ

2mγ
for |x| ≤ sin( 12 ). Consequently, |γ(w(x)) −

γ(arcsin(x))| ≤ ϵ
2 . We can also expand cos(π4 y) as Taylor series at y = 0 and truncate at degree O(log 1

ϵ ) to
obtain a polynomial r(y) such that |r(y)− cos(π4 y)| ≤

ϵ
2 for |y| ≤ 1. Given that |γ(x)| ≤ 1 for x ∈ [− 1

2 ,
1
2 ],

we finally derive ∣∣∣r(γ(w(x)))− cos(
π

4
(γ(arcsin(x))))

∣∣∣
≤
∣∣∣r(γ(w(x)))− cos(

π

4
γ(w(x)))

∣∣∣+ ∣∣∣cos(π
4
γ(w(x)))− cos(

π

4
(γ(arcsin(x))))

∣∣∣
≤ ϵ

2
+
ϵ

2
max

y

∣∣∣∣d cos(π4 y)dy

∣∣∣∣ ≤ ϵ.

Therefore, this polynomial r(γ(w(x))) of degee O(log( 1ϵ ) log(
2mγ

ϵ ) deg(γ)) is an ϵ accurate polynomial ap-
proximation of the even function cos(π4 (γ(arcsin(x)))). After this polynomial is constructed, we can find
the corresponding phase factors and implement QSVT, which we refer to [Yin22, DLNW22, DLNW23] for
details. Typically, γ is a smooth function of moderate degree, so we may regard mγ and deg γ as O(1)
and conclude that the total cost of implementing a (1, 2, ϵ)-block encoding of cos(π4 γ(W )) is O(b log( 1ϵ )

2),
taking the encoding cost of sin(W ) into account. The (1, 2, ϵ)-block encoding of sin(π4 γ(W )) follows the same
routine, and the only difference is one shall approximate the odd function sin(π4 (γ(arcsin(x)))). Using LCU,
we can implement a (

√
2, 3, ϵ)-block encoding of e

i
2 (πβ(D−)+πD−) within O(b log( 1ϵ )

2) cost. When measuring
the ancilla qubits, we get the desired matrix for probability 1

2 . A naive way to extract the desired unitary
matrix is to repeat the whole process until success. However, a better way is to use the “perfect amplitude
amplification” [BAG23] to boost the success probability to 1 deterministically with a constant overhead.
Therefore, we conclude that we can implement e

i
2 (πβ(D−)+πD−) within O(b log( 1ϵ )

2) = O(n log( 1ϵ )
2) cost.

2.3. Complexity analysis. The circuit complexity of our Gabor atom implementation is analyzed below,
assuming single-qubit and two-qubit gates as elementary building blocks. The circuit of the sharp Gabor
atoms, shown in Figure 4, is O(n2), comprising O(n) operations flanked by two Fourier transform circuits,
each with O(n2) complexity. For blended Gabor atoms, the complexity remains at most O(poly(n)), even
if we always use the exact implementations and do not use any ancilla qubit as in Figure 10. For instance,
selecting β(x) as x or 2x2 for 0 ≤ x ≤ 1

2 and employing the method in Section 2.2.3 for diagonal matrix
implementation still yields O(n2) complexity, since we can check that each block in Figure 7 costs no more
than O(n2).

If we allow for an ϵ error and use three ancilla qubits, then the overall complexity is only O(n(log n+log(ϵ−1)2)).
A step-by-step examination of Figure 7 verifies this. The Fourier transform can be performed using an
O(n log(nϵ−1)) algorithm [NSM20]. QG(M) has an O(n) complexity since GG(M) is O(n) and L can also
be implemented within O(n) complexity using one ancilla qubit [Kla99]. In the implementation of VG, the
multiple qubit controls can be implemented as in Figure 10, and the required diagonal matrices can be
implemented within O(n log(ϵ−1)2) for general β(x) using three ancilla qubits as discussed in Section 2.2.4.

3. Wavelets

This section gives the discretization of the (sharp) Shannon wavelets and (blended) Meyer wavelets and
presents the corresponding quantum circuits. The discretization of the Shannon wavelet is straightforward, and
its circuit implementation can be viewed as a recursive process. For the Meyer wavelets, a phase adjustment
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is necessary to ensure orthogonality when imposing periodic boundary conditions. When implementing its
quantum circuit, we first reallocate the Fourier coefficient f̂(k)’s into the correct positions and then apply the
circuit for the Shannon wavelet, akin to our approach with Gabor atoms. However, the reallocation process
involves multiple levels of control, and sometimes the control occurs at N

3·2j rather than powers of 2, which
makes it more technical.

3.1. Shannon wavelets (sharp). In the continuous setting, the Shannon wavelet basis ψ̂j,p is given by
(1.5) and (1.6). The Fourier transforms of discrete Shannon wavelets are given by

(3.1) ψ̂j,p(k) =
1√
2n−j

e2πi
pk

2n−j
[
χ[−2n−j ,−2n−j−1)(k) + χ[2n−j−1,2n−j)(k)

]
,

for j = 1, 2, . . . , n and p ∈ [2n−j ]. In particular, when j = n and p = 0, ψ̂j,p = χ{−1}. In addition, the last
basis functions are given by the scaling function

(3.2) ϕ̂n,0 = χ{0}.

We remark that, similar to the sharp Gabor atom case, it holds that ψ̂j,p(k) =
√

2π
N ψ̂j,p(

2π
N k) for k =

−N/2, . . . , N/2− 1.

All the ψ̂j,p’s together with ϕ̂n,0 form an orthonormal basis of CN since the supports of ψ̂j,p at different level j’s
are disjoint. Some version of Shannon wavelets may have extra phases multiplied on these χ[−2n−j ,−2n−j−1)(k)
and χ[2n−j−1,2n−j)(k) [Mal99, Chapter 7.2], but we do not adopt them here.

By orthogonality, the wavelet coefficients of signal f are

(3.3) aj,p = ⟨f, ψj,p⟩ = ⟨f̂ , ψ̂j,p⟩ =

 2n−j−1∑
k=2n−j−1

+

−2n−j−1−1∑
k=−2n−j

 1√
2n−j

e−2πi pk

2n−j f̂(k).

and

(3.4) an+1,0 = ⟨f, ϕn,0⟩ = ⟨f̂ , ϕ̂n,0⟩ = f̂(0).

The Shannon wavelet transform is defined as

(3.5) UWS : CN → CN : f 7→ a = (a1,0, . . . , a1,N/2−1, a2,0, . . . , a2,N/4−2, . . . , an−1,0, an−1,1, an,0, an+1,0)
T .

Since the calculation (3.3) first involves a Fourier transform of f , we introduce

(3.6) SW(N) : CN → CN : f̂ 7→ a,

which satisfies UWS = SW(N)UFT(N). Notice that when N = 2, SW(2) = X is the Pauli X matrix.

Consider the rearrangement of the index of f̂ as follows:

GW(N) : (f̂(0), . . . , f̂(N/2− 1), f̂(−N/2), . . . , f̂(−1))T

7→ (f̂(−N/2), . . . , f̂(−N/4− 1), f̂(N/4), . . . , f̂(N/2− 1), f̂(0), . . . , f̂(N/4− 1), f̂(−N/4), . . . , f̂(−1))T ,

which is the transposition of the first and the third quarter of the indices. The matrix form of GW(N) can be
written explicitly as GW(N) = P1,3 ⊗ IN/4, where

P1,3 :=


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

 =

is just a |0⟩ controlled-NOT gate. After this rearrangement, when j = 1, (3.3) becomes

(3.7) a1,p =

2n−1−1∑
k=0

1√
2n−1

e−2πi pk

2n−1 (GW(N)f̂)(k),

which is an inverse Fourier transform of size N
2 on the first half of GW(N)f̂ .
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Moreover, the latter half of GW(N)f̂ is exactly the middle half of f̂ , i.e., the second and third quarters of f̂ .
By definition (3.3), we notice that the second half of the coefficient vector a, denoted as

(3.8) a(N/2 : N − 1) = (a2,0, . . . , a2,N/4−2, . . . , an−1,0, an−1,1, an,0, an,1)
T ,

only depends on (GW(N)f̂)(N/2 : N − 1) = f̂(−N/4 : N/4− 1), and this dependence follows the same pattern
as (3.3) except for N is replaced by N/2. More specifically,

(3.9) SW(N/2)(GW(N)f̂)(N/2 : N − 1) = a(N/2 : N − 1).

Therefore, SW(N) can be implemented recursively, as shown in Figure 12, and we have

(3.10) SW(K) =
(
|0⟩⟨0| ⊗ U†

FT(K/2) + |1⟩⟨1| ⊗ SW(K/2)

)
GW(K)

for K = N,N/2, N/4, . . . , 4, with the base case SW(2) = X being the Pauli X matrix. This can be implemented
in the quantum circuit as Figure 13. The fully expanded circuit is shown in Figure 14. This circuit also
contains multi-qubit controlled unitary matrices, which can be implemented as in Figure 10.

0 1 2 3 4 5 6 7 -8 -7 -6 -5 -4 -3 -2 -1

-8 -7 -6 -5 4 5 6 7 0 1 2 3 -4 -3 -2 -1

-8 -7 -6 -5 4 5 6 7 -4 -3 2 3 0 1 -2 -1

-8 -7 -6 -5 4 5 6 7 -4 -3 2 3 -2 1 0 -1

inv. FT inv. FT inv. FT X

Figure 12. The illustration of SW(K). It contains a reshuffling process, followed by
inverse Fourier transforms. The inverse Fourier transforms can also be performed
right after the corresponding reshuffling process.

SW(K)
U†

FT(K/2)
SW(K/2)

=

Figure 13. The recursive definition of SW(K). The base case is SW(2) = X.

|x3⟩
|x2⟩
|x1⟩
|x0⟩

UFT(16)
U†

FT(8) U†
FT(4) U†

FT(2) X

Figure 14. The fully expanded circuit of UWS when N = 16. Here, for multiple
qubit control gates, the controlling qubits may be located both on the upper wires
and lower wires of the controlled qubit.
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3.2. Meyer wavelets (blended). In the continuous setting, the Meyer wavelets are given by (1.7). In order
to impose a periodic boundary condition here and maintain the orthogonality, we need to introduce a phase
shift and define

(3.11) ψ̂ms(ω) =


ei

π
4 −iω

2 g
(
3ω
2 − 2π

)
if 2π

3 ≤ ω ≤ 4π
3 ,

ei
π
4 −iω

2 g
(
3ω
4 − π

)
if 4π

3 ≤ ω ≤ 8π
3 ,

0 if 0 ≤ ω ≤ 2π
3 or ω ≥ 8π

3 ,
ψ̂ms(−ω)∗ if ω < 0.

Now we can define the discrete Meyer wavelet base functions ψj,p by assigning its Fourier coefficients as

(3.12) ψ̂j,p(k) =
1√
2n−j

e2πi
pk

2n−j

∑
q∈Z

ψ̂ms

(
2j+1π

(
k

N
+ q

))
, (k = −N

2
,−N

2
+ 1, . . . ,

N

2
− 1),

for j = 1, 2, . . . , n and p ∈ [2n−j ]. One can check that these N − 1 functions, together with the scaling
function

(3.13) ϕ̂n,0 = χ{0}

form an orthonormal basis of CN . While the orthogonality can be calculated directly, it can also be seen
as a corollary of the following discussions, in which we will illustrate that the expansion under this basis is
unitary. When k = −N

2 ,−
N
2 + 1, . . . , N2 − 1, (3.12) can also be formulated as

(3.14) ψ̂j,p(k) =

 1√
2n−j

e2πi
pk

2n−j
∑1

q=−1 ψ̂ms

(
2j+1π

(
k
N + q

))
if j = 1,

1√
2n−j

e2πi
pk

2n−j ψ̂ms

(
2j+1π k

N

)
if j = 2, 3, . . . , n.

We also point out that if we ignore the range of k in (3.12), it still holds ψ̂j,p(k) = ψ̂j,p(k + N), which is
compatible with our convention. Our objective is to calculate the wavelet coefficients

(3.15) aj,p = ⟨f, ψj,p⟩ = ⟨f̂ , ψ̂j,p⟩

and

(3.16) an+1,0 := ⟨f, ϕn,0⟩ = ⟨f̂ , ϕ̂n,0⟩ = f̂(0).

Then the wavelet transform in a matrix form is

(3.17) UWB : CN → CN : f 7→ a = (a1,0, . . . , a1,N/2−1, a2,0, . . . , a2,N/4−2, . . . , an−1,0, an−1,1, an,0, an+1,0)
T .

Figure 15. This figure demonstrates the reallocations of f̂(k) in the first few levels.
ψ̂j,p is shown as two bumps supported at [− 2n−j+2

3 ,− 2n−j

3 ) and [ 2
n−j

3 , 2
n−j+2

3 ). After
the transpositions, the relevant f̂(k)’s would be placed at [−2n−j ,−2n−j−1) ∪
[2n−j−1, 2n−j) with correct proportions.

Similar to the blended Gabor atom case, the support of basis functions at adjacent levels are overlapping.
Therefore, we reallocate a portion of each f̂(k), which is illustrated in Figure 15. To write down this
reallocation process precisely, we introduce an intermediate variable h ∈ CN , which is given by

(3.18) h(
N

2j
− q) = −e−iπ

4 −iπq2j

N g(
π

2
− 3πq2j−1

N
)f̂(

N

2j
− q)− ei

π
4 −iπq2j

N g(−π
2
− 3πq2j−1

N
)f̂(−N

2j
− q),



QUANTUM WAVE PACKET TRANSFORMS WITH COMPACT FREQUENCY SUPPORT 17

(3.19) h(−N
2j

− q) = ei
π
4 −iπq2j−1

N g(−π
2
− 3πq2j−1

N
)f̂(

N

2j
− q) + e−iπ

4 −iπq2j−1

N g(
π

2
− 3πq2j−1

N
)f̂(−N

2j
− q),

for j = 2, 3, · · · , n and 1 ≤ q < N
3·2j . Similarly, we define

(3.20) h(
N

2j
+ q) = ei

π
4 +iπq2j−1

N g(−π
2
+

3πq2j−1

N
)f̂(

N

2j
+ q) + e−iπ

4 +iπq2j−1

N g(
π

2
+

3πq2j−1

N
)f̂(−N

2j
+ q),

(3.21) h(−N
2j

+ q) = −e−iπ
4 +iπq2j

N g(
π

2
+

3πq2j−1

N
)f̂(

N

2j
+ q)− ei

π
4 +iπq2j

N g(−π
2
+

3πq2j−1

N
)f̂(−N

2j
+ q),

for j = 2, 3, · · · , n and 0 ≤ q < N
3·2j .

For the first level j = 1, there is a little bit of difference since there is no higher level and the indices −N
2 + q

and N
2 + q are the same. Therefore, we only adopt (3.18) and (3.21) for j = 1 and 0 ≤ q < N

3·2j . Finally, let
h(0) = f̂(0) for the scaling function component. We denote this transformation from f̂ to h as TW, which is
h = TWf̂ .

We may calculate that

(3.22)

 2n−j−1∑
k=2n−j−1

+

−2n−j−1−1∑
k=−2n−j

 1√
2n−j

e−2πi pk

2n−j h(k) = ⟨f̂ , ψ̂j,p⟩ = aj,p.

The proof is in Section 4.2. Noticing that the left-hand side of (3.22) is exactly the same as applying SW(N)

on h, we conclude

(3.23) UWB = SW(N)TWUFT(N).

Therefore, the only remaining problem is to implement the matrix TW.

3.3. The implementation of TW. The idea of implementing TW is similar to TG in the Gabor atom
implementation, exploiting the block diagonal structure and using the technique of encoding the exponential
of pure imaginary polynomials. However, the main challenge here is the ranges of indices are not power of 2.
A plausible choice to get around this difficulty is to further restrict the support of g(x) to [− 7π

8 ,
7π
8 ], and also

adjust the phase rotation factors e−iω
2 in (1.7) in order to restrict the non-trivial part of the operations in

blocks of size of power of 2. However, because this choice makes the wavelet different from what is commonly
used, we choose to present a method that can implement TW without any restrictions.

Figure 16. Magnitude of elements in TW with N = 32.
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From the formulas (3.18) - (3.21), we see that TW has a block-diagonal structure. This can also be seen from
Figure 16. Let us write the unitary block explicitly as

(3.24) TW =

n∏
j=1

Rj

n∏
j=1

Lj

where Rj is the unitary corresponding to (3.20) and (3.21) for level j, and Lj is the unitary corresponding to
(3.18) and (3.19) for level j. Notice that R1 and L1 are only defined by (3.21) and (3.18), respectively. Since
the support of all Rj ’s and Lj ’s are disjoint, they are all commutative, and thus the order of product does
not matter.

By definition, Rj is acting non-trivially on the indices ±N
2j + q for 0 ≤ q < N

3·2j . However, this range is not
convenient for quantum implementation since it is not a power of 2. Therefore, we may first enlarge the range
of q to 0 ≤ q < N

2j and pad the extra slots by identity. In the binary representation, this range contains the
binary strings beginning with 0 · · · 0︸ ︷︷ ︸

(j−1) of 0’s

1 and 1 · · · 1︸ ︷︷ ︸
(j−1) of 1’s

1. When j ≥ 2, we shall first group these two ranges

together and then perform the desired unitary transformation. To be specific, we need a permutation matrix
QW(2j) such that

(3.25) QW(2j) | 0 · · · 0︸ ︷︷ ︸
(j−1) of 0’s

1⟩ = | 1 · · · 1︸ ︷︷ ︸
(j−1) of 1’s

0⟩ and QW(2j) | 1 · · · 1︸ ︷︷ ︸
(j−1) of 1’s

1⟩ = | 1 · · · 1︸ ︷︷ ︸
(j−1) of 1’s

1⟩ .

There are different choices of QW(2j), and we adopt the following

(3.26)

|xn−1xn−2 · · ·xn−j+1xn−j⟩
7→ |xn−1(xn−2 ⊕ xn−1 ⊕ 1) · · · (xn−j+1 ⊕ xn−1 ⊕ 1)(xn−j ⊕ xn−1 ⊕ 1)⟩
7→ |(xn−j ⊕ xn−1 ⊕ 1)(xn−2 ⊕ xn−1 ⊕ 1) · · · (xn−j+1 ⊕ xn−1 ⊕ 1)xn−1⟩ ,

which is illustrated in Figure 17.

Figure 17. The circuit for QW(32).

After applying QW(2j), the relevant indices begin with 1 · · · 1︸ ︷︷ ︸
(j−1) of 1’s

0 and 1 · · · 1︸ ︷︷ ︸
(j−1) of 1’s

1. Therefore, when j ≥ 2, the

matrix Rj can be written as

(3.27) Rj = (Q†
W(2j) ⊗ I2n−j )(IN−2n−j+1 ⊕K2n−j+1)(QW(2j) ⊗ I2n−j )

where K2n−j+1 is a 2n−j+1 dimensional matrix that can be determine according to (3.20) and (3.21). Let D
be a ⌈ N

3·2j ⌉ dimensional diagonal matrix D = diag{− 1
2 + 3q2j−1

N : 0 ≤ q < N
3·2j }, then

(3.28) K2n−j+1 =


eiπ(

1
3D+ 5

12 ) cos(π2β(D)) 0 −eiπ( 1
3D− 1

12 ) sin(π2β(D)) 0
0 I 0 0

eiπ(
2
3D+ 1

12 ) sin(π2β(D)) 0 −eiπ( 2
3D+ 7

12 ) cos(π2β(D)) 0
0 0 0 I

 ,
where I stands for the N

2j − ⌈ N
3·2j ⌉ dimensional identity matrix. Note that as this matrix only depends on the

value of n− j, it makes sense to write K2m+1 without specifying n and j.

When j = 1, the matrix R1 is different from the (3.27). According to (3.21), we have

(3.29) R1 = IN/2 ⊕ K̃N/2
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with

(3.30) K̃N/2 =

[
eiπ(−

5
12+

2
3D+ 1

2β(D)) 0
0 I

]
,

where D = diag{− 1
2 + 3q

N : 0 ≤ q < N
6 }, and I stands for the N

2 − ⌈N
6 ⌉ dimensional identity matrix.

Next, we focus on implementing (3.27) and (3.30). We first discuss the latter one since it has a more simple
form. The idea is to use an ancilla qubit to filter the binary representations of numbers smaller than N

6 .
Recall that K̃N/2 is of dimension N

2 and the largest number less than N
6 is given by the binary representation

0101 · · ·︸ ︷︷ ︸
(n−1) bits

. Therefore, all numbers less than N
6 have the binary representation begin with 00, or 0100, or

010100, or so on. Once we use control gates to encode these conditional statements into the ancilla qubit,
we can perform a controlled version of eiπ(−

5
12+

2
3Dp+

1
2β(Dp)), where Dp is the padded version of D, namely

Dp = diag{− 1
2 + 3q

N : 0 ≤ q < N
2 }. This Dp can be implemented using the method discussed in Section 2.2.3.

Finally, one should go through the uncompute process to restore the ancilla to |0⟩ and discard it. The
complete circuit is shown in Figure 18.

Next, let us construct the circuit of matrix K2n−j+1 . We similarly introduce the padded diagonal matrix
Dp = diag{− 1

2 + 3q2j−1

N : 0 ≤ q < N
2j }. One may also introduce an ancilla qubit to record whether the binary

number given by the last n− j qubits is less than N
3·2j . Therefore, under the control of the ancilla qubit, the

matrix to be implemented is

(3.31)
[
eiπ(

1
3Dp+

5
12 ) cos(π2β(Dp)) −eiπ( 1

3Dp− 1
12 ) sin(π2β(Dp))

eiπ(
2
3Dp+

1
12 ) sin(π2β(Dp)) −eiπ( 2

3Dp+
7
12 ) cos(π2β(Dp))

]
,

which can be further decomposed as

(3.32)
[
eiπ(

1
3Dp+

5
12 ) 0

0 eiπ(
2
3Dp− 5

12 )

] [ I√
2

I√
2

I√
2

− I√
2

] [
e

iπ
2 β(Dp) 0

0 e−
iπ
2 β(Dp)

][ I√
2

I√
2

I√
2

− I√
2

]
.

These four unitary matrices are either Hadamard gates or the exponentials of pure imaginary polynomials,
which are constructed in Section 2.2.3. Therefore, we only need to perform the controlled version of them
and finally do the uncomputation. The complete circuit is shown in Figure 19.

Having described the implementation of all the building blocks, we conclude by drawing the circuit of∏n
j=1Rj = RnRn−1 · · ·R1 in Figure 20. Note that there would be cancellations at the consecutive (Q†

W(2j+1)⊗
I2n−j−1)(QW(2j) ⊗ I2n−j ), which saves some gates.

For the implementation of
∏n

j=1 Lj , the method of implementation is very similar to
∏n

j=1Rj . Therefore, we
omit the details.

ancilla |0⟩

|x4⟩

|x3⟩

|x2⟩

|x1⟩

|x0⟩

eiπ(− 5
12

+ 2
3
Dp+

1
2
β(Dp))

|0⟩

Figure 18. The circuit for K̃32.

3.4. Complexity analysis. Here, we briefly discuss the complexity of the quantum wavelet transform
circuits. For the exact implementation, the complexity is of O(poly(n)), and the degree may depend on the
degree of β, which is similar to the Gabor atom case.
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ancilla |0⟩

|x3⟩

|x2⟩

|x1⟩

|x0⟩

H

ei
π
2
β(Dp)) e−iπ

2
β(Dp))

H

eiπ( 5
12

+
Dp
3

) eiπ(− 5
12

+
2Dp
3

)

|0⟩

Figure 19. The circuit for K16.

K̃16 K16
K8

K4
K2

Figure 20. The circuit of
∏n

j=1Rj when N = 32.

If we allow for an ϵ error, it is possible to reduce the complexity as in the Gabor atom case. In particular,
we may use the inexact Fourier transform [NSM20], implement the multi-qubit control by Figure 10, and
implement the required diagonal matrices using the method in Section 2.2.4. For the Shannon wavelet, the
corresponding complexity is O(n2 log(nϵ−1)) since we need to perform n (inverse) Fourier transforms. For
the Meyer wavelet, we claim that the complexity is O(n2(log n + log(ϵ−1)2)) by examining each term in
(3.23) as follows. The SW(N) is of complexity O(n2 log(nϵ−1)) as discussed in the Shannon wavelet. The TW
part is mainly composed of implementing O(n) diagonal matrices, and each of them costs O(n log(ϵ−1)2) as
discussed in Section 2.2.4.

Notice that for the implementation of a required diagonal matrix, one needs an ancilla qubit, as shown in
Figure 18 and Figure 19. At the same time, one extra ancilla qubit is needed for unwrapping the multi-qubit
control on the diagonal matrices. Therefore, in total two extra ancilla qubits are required.

4. Proofs

4.1. Proof of Equation (2.17). We may further split the sum of the left-hand side into four terms

(4.1)

 ∑
k∈[jB,(j+ 1

2 )B)

+
∑

k∈[(j+ 1
2 )B,(j+1)B)

+
∑

k∈[−(j+1)B,−(j+ 1
2 )B)

+
∑

k∈[−(j+ 1
2 )B,−jB)

 1√
2B

e−2πi pk
2B h(k).

The right-hand side is the sum on the support of ψ̂2Bj+p

(4.2)

⟨f̂ , ψ̂2Bj+p⟩ =

 ∑
k∈[(j− 1

2 )B,(j+ 3
2 )B)

+
∑

k∈[−(j+ 3
2 )B,−(j+ 1

2 )B)

 f̂(k)ψ̂2Bj+p(k)
∗

=

 ∑
k∈[jB,(j+ 1

2 )B)

∪[−jB,(−j+ 1
2 )B)

+
∑

k∈[(j+ 1
2 )B,(j+1)B)

∪[−(j+ 3
2 )B,−(j+1)B)

+
∑

k∈[−(j+1)B,−(j+ 1
2 )B)

∪[(j+1)B,(j+ 3
2 )B)

+
∑

k∈[−(j+ 1
2 )B,−jB)

∪[(j− 1
2 )B,jB)

 f̂(k)ψ̂2Bj+p(k)
∗.
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Using the definition of h, we can check that the four summations in (4.1) and (4.2) are equal, respectively.
For instance, the first summation

(4.3)

∑
k∈[jB,(j+ 1

2 )B)

∪[−jB,(−j+ 1
2 )B)

f̂(k)ψ̂2Bj+p(k)
∗

=
∑

q∈[0,B2 )

f̂(jB + q)ψ̂2Bj+p(jB + q)∗ +
∑

q∈[0,B2 )

f̂(−jB + q)ψ̂2Bj+p(−jB + q)∗

=
∑

q∈[0,B2 )

f̂(jB + q)
1√
2B

e−2πi
p(jB+q)

2B e
i
2 (−

π
2 +q π

B )g
(
−π
2
+ q

π

B

)
+

∑
q∈[0,B2 )

f̂(−jB + q)
1√
2B

e−2πi
p(−jB+q)

2B e
i
2 (

π
2 +q π

B )g
(π
2
+ q

π

B

)
=

∑
q∈[0,B2 )

1√
2B

e−2πi
p(jB+q)

2B h(jB + q) (used (2.15))

=
∑

k∈[jB,(j+ 1
2 )B)

1√
2B

e−2πi pk
2B h(k).

The other three summations can be checked similarly. Therefore, we have proved Equation (2.17).

4.2. Proof of Equation (3.22). To verify this, we may further split the sum of the left-hand side into
(4.4) ∑

k∈[− 4
3 2

n−j−1,−2n−j−1)

+
∑

k∈[−2n−j ,− 2
3 2

n−j)

+
∑

k∈[ 23 2
n−j ,2n−j)

+
∑

k∈[2n−j−1, 43 2
n−j−1)

 1√
2n−j

e−2πi pk

2n−j h(k).

The right-hand side is the sum on the support of ψ̂j,p

(4.5)

⟨f̂ , ψ̂j,p⟩ =

 ∑
k∈[ 23 2

n−j−1, 43 2
n−j)

+
∑

k∈[− 4
3 2

n−j ,− 2
3 2

n−j−1)

 f̂(k)ψ̂j,p(k)
∗

=

 ∑
k∈[− 4

3 2
n−j−1,−2n−j−1)

∪[ 23 2
n−j−1,2n−j−1)

+
∑

k∈[−2n−j ,− 2
3 2

n−j)

∪[2n−j , 43 2
n−j)

+
∑

k∈[ 23 2
n−j ,2n−j)

∪[− 4
3 2

n−j ,−2n−j)

+
∑

k∈[2n−j−1, 43 2
n−j−1)

∪[−2n−j−1,− 2
3 2

n−j−1)

 f̂(k)ψ̂j,p(k)
∗.
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We shall show the four summations in (4.4) and (4.5) are equal, respectively. For the first summation, we
have

(4.6)

∑
k∈[− 4

3 2
n−j−1,−2n−j−1)

∪[ 23 2
n−j−1,2n−j−1)

f̂(k)ψ̂j,p(k)
∗

=
∑

q∈(0, 13 2
n−j−1]

f̂(−2n−j−1 − q)ψ̂j,p(−2n−j−1 − q)∗ +
∑

q∈(0, 13 2
n−j−1]

f̂(2n−j−1 − q)ψ̂j,p(2
n−j−1 − q)∗

=
∑

q∈(0, 13 2
n−j−1]

1√
2n−j

f̂(−2n−j−1 − q)e2πip(−2n−j−1−q)/2n−j

ψ̂ms(2
j+1−nπ(−2n−j−1 − q))∗

+
∑

q∈(0, 13 2
n−j−1]

1√
2n−j

f̂(2n−j−1 − q)e2πip(2
n−j−1−q)/2n−j

ψ̂ms(2
j+1−nπ(2n−j−1 − q))∗

=
∑

q∈(0, 13 2
n−j−1]

1√
2n−j

f̂(−2n−j−1 − q)e2πip(−2n−j−1−q)/2n−j

e−iπ
4 −iπq2j

N g(
π

2
− 3πq2j

N
)

+
∑

q∈(0, 13 2
n−j−1]

1√
2n−j

f̂(2n−j−1 − q)e2πip(2
n−j−1−q)/2n−j

ei
π
4 −iπq2j

N g(−π
2
− 3πq2j

N
)

=
∑

q∈(0, 13 2
n−j−1]

1√
2n−j

e2πip(−2n−j−1−q)/2n−j

h(−2n−j−1 − q)

=
∑

k∈[− 4
3 2

n−j−1,−2n−j−1)

1√
2n−j

e−2πi pk

2n−j h(k).

Therefore, the first summation in (4.4) and (4.5) are equal. The remaining three summations are also equal,
respectively, by a similar argument. Thus, we have proved (3.22).

5. Conclusion and Discussions

This paper presents the quantum circuit implementation of wave packets, such as Gabor atoms and wavelets,
with compact frequency support. The implementations for those with sharp frequency windows are rather
straightforward, with the help of quantum Fourier transform. For those with blended frequency windows, our
method first reallocates the Fourier coefficients to the correct location in the frequency domain, followed by
applying the transformation for the sharp-windowed versions.

There are many other kinds of wave packets, such as wave atoms [DY07] and curvelets [CD05], which give
tiling in space-frequency diagram different from Figure 1. Our method can be extended to accommodate these
wave packets as well. Another possible future direction is about higher-dimensional wave packet transforms,
which could find applications in solving wave equations or the Schrödinger equation. While 2D or 3D versions
of compactly supported wavelets have been discussed [LFP+22, LLX23], little has been explored regarding
Meyer-type wavelets or wave packets in higher dimensions.

Another more detailed possible improvement is in the implementation of the unitary diagonal matrices
discussed in Section 2.2.4. We anticipate the complexity can be reduced to O(n log(ϵ−1)). Additionally,
considering that QSVT can potentially handle complex polynomials directly rather than splitting them into
real and imaginary parts and using LCU to combine them [GSLW18], it may be feasible to find a polynomial
that can approximate the even function e−

iπ
4 γ(arcsin(x)) directly while satisfying the conditions in [GSLW18,

Theorem 4]. The QET-U technique [DLT22] may also help since we start from a unitary matrix eiD− .
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