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HOMOTOPY RIGIDITY FOR QUASITORIC MANIFOLDS OVER A PRODUCT

OF d-SIMPLICES

XIN FU, TSELEUNG SO, JONGBAEK SONG, AND STEPHEN THERIAULT

Abstract. For a fixed integer d ≥ 1, we show that two quasitoric manifolds over a product of

d-simplices are homotopy equivalent after appropriate localization, provided that their integral

cohomology rings are isomorphic.

1. Introduction

A quasitoric manifold M is a smooth, compact 2n-dimensional manifold endowed with a locally

standard T n-action, such that the orbit space M/T n is an n-dimensional simple polytope P . Here

T n = (S1)n is the compact torus of rank n. The Cohomological Rigidity Problem in toric topol-

ogy [MS] poses the question of whether two quasitoric manifolds are homeomorphic or diffeomorphic

if their integral cohomology rings are isomorphic. Special cases have provided positive evidence, such

as four-dimensional quasitoric manifolds [OR, Fre], Bott manifolds [CHJ], certain generalized Bott

manifolds [CMS], quasitoric manifolds with second Betti number equal to 2 [CPS], and 6-dimensional

quasitoric manifolds associated with Pogorelov polytopes [BEM+] or a 3-cube [Has].

As cohomology rings are homotopy invariant, it is more natural to ask whether two quasitoric

manifolds are homotopy equivalent if their cohomology rings are isomorphic. In theory, this should

be a more accessible problem, while providing a test as to whether two quasitoric manifolds with

isomorphic cohomology rings are homeomorphic or diffeomorphic.

Question 1.1. Let M and N be two quasitoric manifolds. If their integral cohomology rings are

isomorphic, are they homotopy equivalent?

In fact, one can ask the question above for a broader class of spaces with torus actions, such as

toric orbifolds [DJ, Section 7]. No counterexamples are known while several affirmative results have

been established. For instance, one can deduce a positive answer for weighted projective spaces from

the work in [BFNR], and the first three authors proved an affirmative answer for four dimensional

toric orbifolds whose homology groups have no 2-torsion [FSS].

In this paper we focus on 2n-dimensional quasitoric manifolds M with orbit space P =
∏ℓ

i=1 ∆
d,

a product of d-dimensional simplices ∆d, where n = ℓd. Notably, the class of quasitoric manifolds
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in this context includes certain generalised Bott manifolds Bℓ for d ≥ 1 that arise from a sequence

Bℓ
πℓ−→ Bℓ−1 → · · · → B1

π1−→ B0 = point,

where each πi : Bi → Bi−1 for i = 1, . . . , ℓ is a CP d-fibration. However, not every quasitoric manifold

over
∏ℓ

i=1 ∆
d is a generalized Bott manifold; see [Has, Section 5].

A simple polytope P can be associated with a moment-angle manifold ZP . This manifold comes

with a Tm-action, where m is the number of facets (that is codimension-one faces) of the polytope P .

A quasitoric manifold M over P can be regarded as a quotient

M = ZP /T
m−n

by a freely acting subtorus Tm−n of Tm on ZP , where n is the dimension of P . This process results

in a principal Tm−n-fibration

Tm−n −→ ZP −→ M.

Throughout the paper, H∗(M) denotes the integral cohomology ring of M unless specified oth-

erwise. Now, we introduce our main result as follows.

Theorem 1.2. Let M and N be 2n-dimensional quasi-toric manifolds with orbit space
∏ℓ

i=1 ∆
d

for some d ≥ 1 and let P be the set of primes p ≤ n − d + 1. If there is a ring isomorphism

H∗(M) ∼= H∗(N) then, after localizing away from P, there is a homotopy equivalence M ≃ N .

Two remarks should be made. First, if Φ: M → N is a homotopy equivalence obtained from

Theorem 1.2, then it induces an isomorphism Φ∗ : H∗(N ;Q) → H∗(M ;Q) and hence is a ratio-

nal homotopy equivalence. For specific values of d and ℓ, Theorem 1.2 shows that this rational

equivalence occurs after localizing away from a small number of primes.

Second, Theorem 1.2 should be compared to the original cohomological rigidity results for Bott

manifolds [CHJ], 2-stage generalized Bott manifolds [CMS], and quasitoric manifolds over a cube [Has].

While we impose stronger conditions by localizing away from certain primes and consider only ho-

motopy equivalences, the benefit of Theorem 1.2 is that it works for a larger class of quasitoric

manifolds. For instance, if d = 1 then P = Iℓ is an ℓ-dimensional hypercube. Two quasitoric man-

ifolds M and N over Iℓ are homotopy equivalent if there is a ring isomorphism H∗(M) ∼= H∗(N)

and localization occurs away from primes p ≤ ℓ. In particular, this works if M and N are Bott

manifolds. Moreover, setting d = 1 and ℓ = 3, Theorem 1.2 gives a homotopy version of Hasui’s

result [Has] after localizing away from 2 and 3.

The main result also works for ℓ-stage generalized Bott manifolds Bℓ that are constructed from

iterated CP d-fibrations πi : Bi → Bi−1 for i = 1, . . . , ℓ starting from B0 = {pt}. In this case, the

associated simple polytopes are P =
∏ℓ

i=1 ∆
d. For instance, two 3-stage generalized Bott manifolds

over
∏3

i=1 ∆
2 having isomorphic cohomology rings are homotopy equivalent after localizing away

from 2, 3 and 5. It is worth noting that the original cohomological rigidity problem in toric topology
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is true for 2-stage generalized Bott manifolds [CMS, Theorem 1.3], which are quasitoric manifolds

over the product of two simplices. Theorem 1.2 provides positive evidence that this extends to

higher-stage generalized Bott manifolds.

2. Preliminary information

2.1. A review of quasitoric manifolds. This section defines terms and makes some preliminary

observations. We start with moment-angle manifolds from simple polytopes following Buchstaber

and Panov [BP, Section 6.2]. See also [DJ, Section 4]. Let P be an n-dimensional simple polytope.

In other words P is a convex polytope having exactly n facets intersecting at each vertex. Let

F(P ) = {F1, . . . , Fm}

be the set of facets of P .

The moment-angle manifold ZP is the quotient space

ZP = P × Tm/∼.

Here (x, t) ∼ (x′, t′) if and only if x = x′ and t−1t′ ∈
∏

i∈I(x) S
1
i , where I(x) = {i | x ∈ Fi}. There

exists a Tm-action on ZP given by

(1) Tm ×ZP → ZP , (g, [x, t]) 7→ [x, gt]

for g ∈ Tm and the equivalence class [x, t] ∈ ZP of (x, t) ∈ P × Tm.

Next, we define a quasitoric manifold following Davis and Januszkiewicz [DJ]. A 2n-dimensional

manifold has a locally standard T n-action if locally it is the standard action of T n on Cn. A quasitoric

manifold over P is a closed, smooth 2n-dimensional manifold M that has a smooth locally standard

T n-action for which the orbit space M/T n is homeomorphic to P as a manifold with corners.

A characteristic pair (P, λ) consists of an n-dimensional simple polytope P and a function

λ : F(P ) → Zn

satisfying:

• λ(Fi) is primitive for i = 1, . . . ,m;

• the set {λ(Fi1 ), . . . , λ(Fik )} extends to a basis of Zn whenever Fi1 ∩ · · · ∩ Fik 6= ∅.

Such a function is called a characteristic function. For a face F = Fi1 ∩ · · · ∩ Fik of codimension k,

let TF denote the k-dimensional subtorus of T n spanned by {λ(Fi1 ), . . . , λ(Fik )}. If F = P , then TF

is the trivial subgroup.

For a characteristic pair (P, λ), define the quotient space

M(P, λ) = P × T n/∼λ

by the equivalence relation: (x, t) ∼λ (x′, t′) if and only if x = x′ and t−1t′ ∈ TF , where F is the

unique face such that x = x′ lies in its relative interior. Notice that every quasitoric manifold M
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over P can be constructed as such a quotient space. Here, T n acts on the torus factor of P ×T n/∼λ
,

similarly to (1).

Moment-angle manifolds and quasitoric manifolds are linked. A characteristic function

λ : F(P ) → Zn, Fi 7→ (λ1i, . . . , λni),

defines a linear map of lattices

Λ: Zm → Zn, ei 7→ (λ1i, . . . , λni),

where {e1, . . . , em} is the standard basis of Zm. Take the exponential of Λ to get a homomorphism

expΛ: Tm → T n of tori sending (t1, . . . , tm) to (tλ11

1 tλ12

2 · · · tλ1m
m , . . . , tλn1

1 tλn2

2 · · · tλnm

m ). By [BP,

Proposition 7.3.13], the kernel of expΛ is isomorphic to Tm−n, which acts freely on ZP and a 2n-

dimensional quasitoric manifold M is T n-equivariantly homeomorphic to the quotient ZP / ker expΛ

equipped with the residual T n-action. This implies that there is a principal Tm−n-fibration

Tm−n −→ ZP −→ M.

As this is principal, it is classified by a map M → BTm−n and there is a homotopy fibration

(2) ZP −→ M −→ BTm−n.

The cohomology of M was calculated in [DJ]. They showed that there is a ring isomorphism

H∗(M) ∼= Z[x1, . . . , xm]/I + J

where each xi has degree 2, the ideal I is generated by monomials xi1 · · ·xik for which the intersection

of Fi1 , . . . , Fik is empty, which is often called the Stanley–Reisner ideal of P , and J is an ideal of

linear relations λj1x1 + λj2x2 + · · · + λjmxm for j = 1, . . . n. The cohomological properties of M

that will be relevant to us are:

• H2(M) has rank m− n;

• H∗(M) is multiplicatively generated by degree-two elements.

Note that these two properties also imply that M is simply-connected. We record a simple property

of M that follows immediately from the homotopy fibration (2) and the fact that Tm−n is an

Eilenberg–MacLane space K(Zm−n, 1).

Lemma 2.1. Let M be a quasitoric manifold associated to a characteristic pair (P, λ). Then the

map ZP → M in (2) induces an isomorphism πt(ZP ) ∼= πt(M) for t ≥ 3. �

We will need an identification of ZP in the special case when P = P1 × P2 is a product of two

simple polytopes P1 and P2. The following statement can be found in [BP2, Proposition 6.4]; we

give a brief proof.
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Lemma 2.2. There is a homeomorphism

ZP1×P2
∼= ZP1

×ZP2
.

In particular, if P =
∏ℓ

i=1 ∆
d is a product of d-simplices ∆d, then ZP

∼=
∏ℓ

i=1 S
2d+1.

Proof. The first homeomorphism follows directly from the definition of a moment-angle manifold.

In the simplex case we have Z∆d
∼= S2d+1. Therefore Z∏

ℓ

i=1
∆d

∼=
∏ℓ

i=1 S
2d+1. �

2.2. Homotopy theory of quasitoric manifolds. Consider the quasitoric manifold M with orbit

space P =
∏ℓ

i=1 ∆
d as in Theorem 1.2. As ZP

∼=
∏ℓ

i=1 S
2d+1, by (2), there is a homotopy fibration

(3)

ℓ∏

i=1

S2d+1 −→ M
δ

−→ BT ℓ.

Since M is simply-connected, it has a CW -structure in which each cell corresponds to a homology

class. Fix such a CW -structure and for 1 ≤ t ≤ 2n, let skel t(M) be the t-skeleton of M . Since the

cohomology of M is concentrated in even degrees, there are homotopy equivalences

skel 2k+1(M) ≃ skel 2k(M)

for any k. Therefore, we may focus only on the skeletons indexed by even integers. Consider the

homotopy cofibrations

(4)
∨

S2k−1 fk−→ skel 2k−2(M) −→ skel 2k(M)

for 2 ≤ k ≤ n. Note that skel 0(M) ≃ ∗ and skel 2n(M)≃M .

First we study the homotopy groups of skel 2k(M).

Lemma 2.3. Let M be a quasitoric manifold as in Theorem 1.2, and let P be the set of primes

p ≤ n − d + 1. Fix an integer k such that k ≥ d + 1. If 2d + 1 < i ≤ 2k then the homotopy

group πi(skel 2k(M)) is a finite group of an order divisible only by primes in P. Consequently, after

localizing away from P, there is an isomorphism

πi(skel 2k(M)) ∼= 0.

Proof. The fibration sequence (3) induces a long exact sequence of homotopy groups. Since πi(BT ℓ)

is trivial for i > 2, we have

πi(M) ∼= πi(

ℓ∏

j=1

S2d+1) ∼=

ℓ⊕

j=1

πi(S
2d+1).

It is known that πi(S
2d+1) is a finite group when i 6= 2d + 1, and the first nontrivial p-torsion

element in π∗(S
2d+1) occurs in π2(p+d−1)(S

2d+1) (see [To]). By definition, P consists of all the

primes that divide the order of πt(S
2d+1) for any 2d+ 1 < t ≤ 2n. Hence the lemma holds true for

skel 2n(M) ≃ M .
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Let k be such that d + 1 ≤ k < n. Let Fk be the homotopy fibre of the skeletal inclusion

skel 2k(M) → M . Since the first cells in M that are not in skel 2k(M) occur in dimension 2k + 2,

the space Fk is 2k-connected. Therefore, skel 2k(M) → M induces an isomorphism πi(skel 2k(M)) ∼=

πi(M) for all i ≤ 2k. In particular, for 2d + 1 < i ≤ 2k, as πi(M) is a finite group of an order

divisible only by primes in P , the same is true for πi(skel 2k(M)). �

Next we record two cohomological properties for the map δ : M → BT ℓ.

Lemma 2.4. The ring homomorphism δ∗ : H∗(BT ℓ) → H∗(M) is a surjection that induces an

isomorphism in degree 2.

Proof. As BT ℓ ≃
∏ℓ

i=1 CP
∞, it follows that H∗(BT ℓ) is a polynomial algebra generated by degree 2

elements. By (3), the homotopy fibre of δ is at least 2-connected. Therefore δ induces an isomorphism

on π2. Since M and BT ℓ are both simply-connected, the Hurewicz Theorem implies that δ induces

an isomorphism on H2. Simple-connectivity also implies, by the Universal Coefficient Theorem,

that H2 is the dual of H2. Therefore δ∗ : H2(BT ℓ) → H2(M) is an isomorphism. Since H∗(M) is

generated as an algebra by degree 2 elements, this implies that δ∗ is surjective. �

Lemma 2.5. Let δ2d : skel 2d(M) → skel 2d(BT ℓ) be the restriction of M
δ

−→ BT ℓ to 2d-skeletons.

Then it is a homotopy equivalence and induces an isomorphism in cohomology.

Proof. In fibration sequence (3), since the base is 1-connected and the fibre is 2d-connected, the

Serre exact sequence (see [A, Theorem 6.4.4], for example) implies that δ induces an isomorphism in

homology in degrees ≤ 2d. Thus δ2d induces an isomorphism in homology in all degrees, implying

that it is a homotopy equivalence by Whitehead’s theorem. �

3. The strategy for the proof of Theorem 1.2

For d ≥ 1, let ∆d be a d-simplex and let P =
∏ℓ

i=1 ∆
d be a product of d-simplices. For two

quasitoric manifolds M and N over P , assume that there is a ring isomorphism

(5) γ : H∗(N ;Z) → H∗(M ;Z).

The goal is to determine whether there is a homotopy equivalence M ≃ N . We will show that this

is true after localizing away from P . A similar local approach was taken in [Th] in the special case

of Bott manifolds when d = 1; our methods are different and generalize the result to all quasitoric

manifolds over products of d-simplices for d ≥ 1.

The argument proceeds by an induction on skeletons. Consider the homotopy cofibrations

∨
S2k−1 fk−→ skel 2k−2(M) −→ skel 2k(M)

∨
S2k−1 f ′

k−→ skel 2k−2(N) −→ skel 2k(N)
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for 2 ≤ k ≤ n. We will construct a homotopy equivalence

Φ2k : skel 2k(M) −→ skel 2k(N)

by different methods in two cases: (i) k = d and (ii) d+ 1 ≤ k ≤ n.

Case 1: k = d. In Proposition 4.2, it will be shown that the ring isomorphism γ : H∗(M) → H∗(N)

gives rise to a homotopy equivalence Φ2d : skel 2d(M) −→ skel 2d(N). No localization is needed.

Case 2: d+1 ≤ k ≤ n. In Proposition 5.6 an induction on skeletons and novel methods relating the

cohomology and homotopy groups of CW -complexes with only even dimensional cells will be used

to show that, after localization away from P , there is a homotopy equivalence Φ2k : skel 2k(M) →

skel 2k(N).

Granting Propositions 4.2 and 5.6, we can prove the main result in the paper.

Proof of Theorem 1.2. Since skel 2n(M) ≃ M and skel 2n(N) ≃ N , the k = n instance of Case 2

implies that after localizing away from P there is a homotopy equivalence M ≃ N . �

4. Construction of the homotopy equivalence Φ2d

Given a ring isomorphism γ : H∗(N) → H∗(M), its restriction to degree 2 is a group isomorphism

γ : H2(N) ∼= Zℓ → H2(M) ∼= Zℓ.

Apply the classifying space functor B(−) twice to obtain a homotopy equivalence

(6) Γ: BT ℓ → BT ℓ.

Recall from (3) that there are homotopy fibrations

ℓ∏

i=1

S2d+1 −→ M
δ

−→ BT ℓ and
ℓ∏

i=1

S2d+1 −→ N
δ′

−→ BT ℓ.

Lemma 4.1. There is a commutative diagram

H∗(BT ℓ)
(δ′)∗

//

Γ∗

��

H∗(N)

γ

��

H∗(BT ℓ)
δ∗

// H∗(M).

(7)

Proof. Observe that Diagram (7) commutes in degree 2 by definition of Γ. The fact that both

H∗(BT ℓ) and H∗(M) are generated as algebras by degree 2 elements then implies the diagram

commutes in all degrees since all maps are algebra maps. �
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Restricting BT ℓ Γ
−→ BT ℓ to 2d-skeletons gives a map

Γ2d : skel 2d(BT ℓ) → skel 2d(BT ℓ).

Using the homotopy equivalences skel 2d(M)
δ2d−−→ skel 2d(BT ℓ) and skel 2d(N)

δ′2d−−→ skel 2d(BT ℓ) from

Lemma 2.5, define the map Φ2d by the composite

(8) Φ2d : skel 2d(M)
δ2d−−→ skel 2d(BT ℓ)

Γ2d−−→ skel 2d(BT ℓ)
(δ′2d)

−1

−−−−−→ skel 2d(N).

By definition of Φ2d, there is a commutative diagram

(9)

H∗(skel 2d(BT ℓ)) H∗(skel 2d(N))

H∗(skel 2d(BT ℓ)) H∗(skel 2d(M)).

(δ′2d)
∗

Γ∗

2d Φ∗

2d

δ∗2d

Proposition 4.2. The map skel 2d(M)
Φ2d−→ skel 2d(N) is a homotopy equivalence.

Proof. Recall from (6) that Γ is a homotopy equivalence, so Γ∗ is an isomorphism and so is Γ∗
2d. As

H∗(BT ℓ) is concentrated in even degrees, the Universal Coefficient Theorem implies that H∗(BT ℓ) is

dual to H∗(BT ℓ), and therefore (Γ2d)∗ is also an isomorphism. Hence Γ2d is a homotopy equivalence

by Whitehead’s Theorem. By Lemma 2.5 both δ2d and δ′2d are homotopy equivalences. Therefore

the composite Φ2d is a homotopy equivalence. �

5. Construction of the homotopy equivalence Φ2k for k ≥ d+ 1

We begin with a general lemma that is of interest in its own right.

Lemma 5.1. Let X be a connected CW complex having only even dimensional cells. For each k ≥ 1

there is a group homomorphism

gX : H2k+2(X) → π2k+1(skel 2k(X))

sending the homology class of a (2k+2)-cell [eα] to the homotopy class of its attaching map fα : ∂eα →

skel 2k(X). This satisfies the following properties:

(a) if the standard maps of pairs H2k+2(X) → H2k+2(X, skel 2k(X)) and π2k+2(X, skel 2k(X)) →

π2k+1(skel 2k(X)) are both isomorphisms then so is gX ;

(b) if Y is another CW-complex having only even dimensional cells and f : X → Y is a map

then there is a commutative diagram

H2k+2(X)
gX

//

f∗

��

π2k+1(skel 2k(X))

(f2k)∗

��

H2k+2(Y )
gY

// π2k+1(skel 2k(Y )).

(10)
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Proof. First we define gX . The pair (X, skel 2k(X)) induces a long exact sequence of relative homo-

topy groups

· · · −→ πj(skel 2k(X)) −→ πj(X)
π
−→ πj(X, skel 2k(X))

∂π−→ πj−1(skel 2k(X)) −→ · · ·

and a long exact sequence of relative homology groups

· · · −→ Hj(skel 2k(X)) −→ Hj(X)
H
−→ Hj(X, skel 2k(X))

∂H−→ Hj−1(skel 2k(X)) −→ · · ·

SinceX has cells only in even dimensions, the pair (X, skel 2k(X)) is (2k+1)-connected and skel 2k(X)

is simply-connected. Therefore, by [Hat, Proposition 4.28] for example, there is an isomorphism

π2k+2(X, skel 2k(X)) ∼= π2k+2(X/skel 2k(X)).

On the other hand, the usual isomorphism Hm(X,A) ∼= H̃m(X/A) for pairs of spaces (X,A) and

any m ≥ 0 implies in our case that there is an isomorphism

H2k+2(X, skel 2k(X)) ∼= H2k+2(X/skel 2k(X)).

Observe that the inclusion
∨
S2k+2 →֒ X/skel 2k(X) of the bottom cells is a (2k + 3)-equivalence,

implying that there are isomorphisms

π2k+2(X/skel 2k(X)) ∼= π2k+2(
∨

S2k+2) and H2k+2(X/skel 2k(X)) ∼= H2k+2(
∨

S2k+2).

The Hurewicz homomorphism π2k+2(X/skel 2k(X)) → H2k+2(X/skel 2k(X)) is therefore an isomor-

phism. Combining these isomorphisms then gives an isomorphism

hur : π2k+2(X, skel 2k(X)) → H2k+2(X, skel 2k(X)).

Now define gX : H2k+2(X) → π2k+1(skel 2k(X)) by the composite

gX : H2k+2(X)
H
−→ H2k+2(X, skel 2k(X))

hur−1

−−−−→ π2k+2(X, skel 2k(X))
∂π−→ π2k+1(skel 2k(X)).

Since gX is the composite of three group homomorphisms it too is a homomorphism, and by construc-

tion gX sends the homology class of a (2k + 2)-cell eα to its attaching map fα ∈ π2k+1(skel 2k(X)).

For part (a), the composite defining gX implies that if both H and ∂π are isomorphisms then, as

hur is also an isomorphism, so is gX .

For part (b), consider the diagram

H2k+2(X)
H

//

f∗

��

H2k+2(X, skel 2k(X))
hur−1

//

f∗

��

π2k+2(X, skel 2k(X))
∂π

//

f∗

��

π2k+1(skel 2k+2(X))

(f2k+2)∗

��

H2k+2(Y )
H

// H2k+2(Y, skel 2k(Y ))
hur−1

// π2k+2(Y, skel 2k(Y ))
∂π

// π2k+1(skel 2k+2(Y )).

The left, middle and right squares commute by the naturality of ∂π, H and hur respectively. The

composites along the top and bottom rows are the definitions of gX and gY respectively. Thus we

obtain the commutativity of (10). �
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We apply Lemma 5.1 to the case M
δ
−→ BT ℓ in (3). Recall that P is the set of primes p ≤ n−d+1.

Corollary 5.2. For k ≥ 1, there is a commutative diagram

H2k+2(M)
gM

//

δ∗

��

π2k+1(skel 2k(M))

(δ2k)∗

��

H2k+2(BT ℓ)
g
BTℓ

// π2k+1(skel 2k(BT ℓ)),

(11)

where gM is an injection and gBT ℓ is an isomorphism. Furthermore, if k > d then

gM : H2k+2(M) → π2k+1(skel 2k(M))

is an isomorphism after localizing away from P.

Proof. The commutativity of (11) is immediate from Lemma 5.1 by taking f to be δ : M → BT ℓ.

To show that gBT ℓ is an isomorphism, we consider the pair (BT ℓ, skel 2k(BT ℓ)), which induces an

isomorphism H2k+2(BT ℓ) → H2k+2(BT ℓ, skel 2k(BT ℓ)) for skeletal reasons. It also induces a long

exact sequence of relative homotopy groups

· · · πj(BT ℓ) πj(BT ℓ, skel 2k(BT ℓ)) πj−1(skel 2k(BT ℓ)) πj−1(BT ℓ) · · · .

For k ≥ 1, both π2k+2(BT ℓ) and π2k+1(BT ℓ) are trivial, which implies that π2k+2(BT ℓ, skel 2k(BT ℓ))

and π2k+1(skel 2k(BT ℓ)) are isomorphic. Thus, the map gBT ℓ is an isomorphism by Lemma 5.1(a).

Next, the map δ∗ : H2k+2(M) → H2k+2(BT ℓ) in (11) is an injection by Lemma 2.4. Therefore,

the commutativity of (11) implies that gM is an injection.

Finally, suppose that k > d. By Lemma 2.3, after localizing away from P , homotopy groups πs(M)

are trivial for 2d+ 1 < s ≤ 2n. As d < k < n we have 2d+ 1 < 2k+ 1 ≤ 2n, so both π2k+1(M) and

π2k+2(M) are trivial. Therefore the boundary map π2k+2(M, skel 2k(M)) → π2k+1(skel 2k(M)) in

the long exact sequence of relative homotopy groups is an isomorphism. Since skel 2k(M) has trivial

homology in degrees larger than 2k, the map H2k+2(M) → H2k+2(M, skel 2k(M)) in the long exact

sequence of relative homology groups is also an isomorphism. Therefore, by Lemma 5.1 (a), gM is

an isomorphism. �

Lemma 5.3. If there is a ring isomorphism γ : H∗(N) → H∗(M) then there is a commutative

diagram

H2d+2(M)
gM

//

γ∨

��

π2d+1(skel 2d(M))

(Φ2d)∗

��

H2d+2(N)
gN

// π2d+1(skel 2d(N))

(12)

where γ∨ is the dual of γ.
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Proof. As in (6), γ induces a map Γ: BT ℓ → BT ℓ. Consider the diagram

(13)

H2d+2(BT ℓ) π2d+1(skel 2d(BT ℓ))

H2d+2(M) π2d+1(skel 2d(M))

H2d+2(N) π2d+1(skel 2d(N))

H2d+2(BT ℓ) π2d+1(skel 2d(BT ℓ)).

g
BTℓ

Γ∗ (A)

(D)

(Γ2d)∗(C)

gM

γ∨

δ∗

(Φ2d)∗

(δ2d)∗

gN

δ′
∗

(δ′2d)∗

g
BTℓ

(B)

Observe that Diagram (12) is located in the inner square. The outer square is obtained by applying

Lemma 5.1 to the map Γ: BT ℓ → BT ℓ, and hence it is commutative. Diagram (A) is the dual of (7),

and hence it is also homotopy commutative. Diagrams (B) and (D) are commutative by Corollary 5.2.

Diagram (C) commutes by the definition of Φ2d, see (8). Therefore, from the commutativity of (13),

we obtain

(δ′2d)∗ ◦ gN ◦ γ∨ = gBT ℓ ◦ Γ∗ ◦ δ∗ = (Γ2d)∗ ◦ gBT ℓ ◦ δ∗ = (δ′2d)∗ ◦ (Φ2d)∗ ◦ gM .

Since δ′2d is a homotopy equivalence by Lemma 2.5, we then obtain gN ◦ γ∨ = (Φ2d)∗ ◦ gM , which is

the equality asserted by the lemma. �

To construct homotopy equivalences Φ2k : skel 2k(M) → skel 2k(N) for k ≥ d+1, we prepare more

explicit notations for the map gM : H2k+2(M) → π2k+1(skel 2k(M)) of Lemma 5.1. For each k ≥ 1,

enumerate (2k + 2)-cells of M as e1, . . . , esk , whose attaching maps are f1, . . . , fsk , respectively.

To each ei there is a homology class [ei] ∈ H2k+2(M), giving a group isomorphism H2k+2(M) ∼=

Z〈[e1], . . . , [esk ]〉. Define a linear map

(14) Z〈f1, . . . , fsk〉 −→ Z〈[e1], . . . , [esk ]〉
∼= H2k+2(M)

by sending fi to [ei]. Since gM sends [ei] to the homotopy class of its attaching map, the composite

(15) g : Z〈f1, . . . , fsk〉 −→ Z〈[e1], . . . , [esk ]〉
∼= H2k+2(M)

gM
−−→ π2k+1(skel 2k(M))

sends fi to its homotopy class.

The same logic applies to N , so that we have a group isomorphism H2k+2(N) ∼= Z
〈
[e′1], . . . , [e

′
sk
]
〉

where [e′1], . . . , [e
′
sk
] are homology classes of cycles representing (2k + 2)-cells e′1, . . . , e

′
sk

of N . The

composite

(16) g′ : Z〈f ′
1, . . . , f

′
sk
〉 −→ Z〈[e′1], . . . , [e

′
sk
]〉 ∼= H2k+2(N)

gN
−−→ π2k+1(skel 2k(N))

sends f ′
i to its homotopy class.

We are now ready to construct homotopy equivalences.
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Lemma 5.4. Given k ≥ 1, consider the maps g and g′ defined above and suppose there is a homotopy

equivalence Φ2k : skel 2k(M) → skel 2k(N). If there is a linear isomorphism A : Z〈f1, . . . , fsk〉 →

Z〈f ′
1, . . . , f

′
sk
〉 making the diagram

Z〈f1, . . . , fsk〉
g

//

A

��

π2k+1(skel 2k(M))

(Φ2k)∗

��

Z〈f ′
1, . . . , f

′
sk
〉

g′

// π2k+1(skel 2k(N))

(17)

commute, then there is a homotopy equivalence Φ2k+2 : skel 2k+2(M) → skel 2k+2(N).

Proof. The linear isomorphism A : Z〈f1, . . . , fsk〉 → Z〈f ′
1, . . . , f

′
sk
〉 can be geometrically realized

by a homotopy equivalence ϕA :
∨sk

i=1 S
2k+1 →

∨sk
i=1 S

2k+1 as follows. If A(fi) =
∑sk

j=1 aijf
′
j for

coefficients aij ∈ Z, then define ϕA on the ith-wedge summand to be the sum Σsk
j=1aijιj where aij

is a map of degree aij and ιj : S
2k+1 →

∨sk
l=1 S

2k+1 is the inclusion of the jth-wedge summand. We

claim that (17) is then geometrically realized by a homotopy commutative diagram

∨sk
i=1 S

2k+1

∨sk

i=1
fi
//

ϕA

��

skel 2k(M)

Φ2k

��∨sk
i=1 S

2k+1

∨sk

i=1
f ′

i

// skel 2k(N).

(18)

To see this, restrict to the ith sphere of
∨sk

i=1 S
2k+1. By (17), we have ((Φ2k)∗ ◦ g) (fi) = (g′ ◦A) (fi).

Since A(fi) =
∑sk

j=1 aijf
′
j and g′ is linear, we obtain ((Φ2k)∗ ◦ g) (fi) =

(∑sk
j=1 aijg

′

)
(fj). Since

g sends fi to its homotopy class and g′ sends each f ′
j to its homotopy class, we obtain Φ2k ◦ fi ≃

∑sk
j=1 aijf

′
j. The right side may be rewritten as

(∨sk
j=1 f

′
j

)
◦ (

∑sk
j=1 aijιj), which by definition of ϕA

then equals
(∨sk

j=1 f
′
j

)
◦ ϕA ◦ ιi. Thus (18) homotopy commutes when restricted to the ith-wedge

summand. As i was arbitrary, (18) homotopy commutes.

The homotopy commutativity of (18) implies that there is a homotopy cofibration diagram

∨sk
i=1 S

2k+1

∨sk

i=1
fi
//

ϕA

��

skel 2k(M)

Φ2k

��

// skel 2k+2(M)

Φ2k+2

��∨sk
i=1 S

2k+1

∨sk

i=1
f ′

i

// skel 2k(N) // skel 2k+2(N)

where Φ2k+2 is an induced map of cofibres. Since ϕA and Φ2k induce isomorphisms in homology,

so does Φ2k+2 by the Five Lemma. Since all spaces are simply-connected, Φ2k+2 is therefore a

homotopy equivalence by Whitehead’s Theorem. �

Remark 5.5. There is a local version of Lemma 5.4: in the statement and proof simply localize

spaces away from P and change all instances of Z to the integers localized away from P .
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Proposition 5.6. Let M and N be 2n-dimensional quasitoric manifolds with orbit space P =
∏ℓ

i=1 ∆
d. If there is a ring isomorphism H∗(M) ∼= H∗(N), then after localizing away from P, there

is a homotopy equivalence Φ2k : skel 2k(M) → skel 2k(N) for each d+ 1 ≤ k ≤ n.

Proof. Suppose that k = d+ 1. Define A by the composite

A : Z〈f1, . . . , fs〉
∼=
−→ H2d+2(M)

γ∨

−→ H2d+2(N)
∼=
−→ Z〈f ′

1, . . . , f
′
s〉

where the left map is from (14), γ∨ is the dual of γ, and the right map is the inverse of (14) with

respect to N . As A is a composite of linear isomorphisms, it too is a linear isomorphism. Now

consider the diagram

Z〈f1, . . . , fs〉
∼=

//

A

��

H2d+2(M)
gM

//

γ∨

��

π2d+1(skel 2d(M))

(Φ2d)∗

��

Z〈f ′
1, . . . , f

′
s〉

∼=
// H2d+2(N)

gN
// π2d+1(skel 2d(N)).

The left square commutes by definition of A and the right square commutes by (12). The composites

along the top and bottom rows are the definitions of g and g′ respectively. By Proposition 4.2, Φ2d is

a homotopy equivalence. Thus the outer rectangle satisfies the hypotheses of Lemma 5.4, implying

that there is a homotopy equivalence Φ2d+2 : skel 2d+2(M) → skel 2d+2(N).

For k > d + 1, assume inductively that there is a homotopy equivalence Φ2k : skel 2k(M) →

skel 2k(N). Consider the diagram

Z〈f1, . . . , fsk〉
∼=

//

A

��

H2k+2(M)
gM

// π2k+1(skel 2k(M))

(Φ2k)∗

��

Z〈f ′
1, . . . , f

′
sk
〉

∼=
// H2k+2(N)

gN
// π2k+1(skel 2k(N))

(19)

where A will be defined momentarily. Localize away from P . Then the maps gM and gN are

isomorphisms by Corollary 5.2. The top and bottom rows are the definitions of g and g′ as in (15)

and (16) respectively, so they are both isomorphisms. Define A by the composite

A : Z〈f1, . . . , fsk〉
g

−→ π2k+1(skel 2k(M))
(Φ2k)∗
−−−−→ π2k+1(skel 2k(N))

(g′)−1

−−−−→ Z〈f ′
1, . . . , f

′
sk
〉.

Then A is a linear isomorphism and it makes (19) commute. Thus (19) satisfies the hypotheses

of the local version of Lemma 5.4 discussed in Remark 5.5, implying that there is a homotopy

equivalence Φ2k+2 : skel 2k+2(M) → skel 2k+2(N). This completes the induction. �
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