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Abstract. Surgical scene simulation plays a crucial role in surgical ed-
ucation and simulator-based robot learning. Traditional approaches for
creating these environments with surgical scene involve a labor-intensive
process where designers hand-craft tissues models with textures and ge-
ometries for soft body simulations. This manual approach is not only
time-consuming but also limited in the scalability and realism. In con-
trast, data-driven simulation offers a compelling alternative. It has the
potential to automatically reconstruct 3D surgical scenes from real-world
surgical video data, followed by the application of soft body physics. This
area, however, is relatively uncharted. In our research, we introduce 3D
Gaussian as a learnable representation for surgical scene, which is learned
from stereo endoscopic video. To prevent over-fitting and ensure the ge-
ometrical correctness of these scenes, we incorporate depth supervision
and anisotropy regularization into the Gaussian learning process. Fur-
thermore, we apply the Material Point Method, which is integrated with
physical properties, to the 3D Gaussians to achieve realistic scene defor-
mations. Our method was evaluated on our collected in-house and public
surgical videos datasets. Results show that it can reconstruct and simu-
late surgical scenes from endoscopic videos efficiently—taking only a few
minutes to reconstruct the surgical scene-and produce both visually and
physically plausible deformations at a speed approaching real-time. The
results demonstrate great potential of our proposed method to enhance
the efficiency and variety of simulations available for surgical education
and robot learning.
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1 Introduction

Endoscopic scene simulation is fundamental for surgical training, education and
learning-based surgical robot automation [0, 7, 14]. Despite much efforts [1,3,4]
to simulate deformable objects in anatomical scenes, current solutions rely on
manually designed textures that are time-consuming and not scalable. These
textures often fail to capture the realistic appearance of various tissues and en-
doscopic illuminations in real data. Recent advancements in generative Al and
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3D reconstruction techniques [5, 13, 22] have raised interest in developing an
efficient data-driven surgical scene simulation pipeline, i.e., can we automati-
cally generate photo-realistic and interactive scenes by only using surgical video.
One feasible way could be to first reconstruct 3D representation of a surgical
scene from stereo video, then integrate physics into this scene representation for
physically-based simulation. However, achieving this goal is challenging.

Surgical scene 3D reconstruction has been studied in recent works such as En-
doNeRF [25], EndoSurf [31], LerPlane [29] and ForPlane [28]. These NeRF-based
methods can be used to derive simulatable representation, but implementing this
typically requires sophisticated post-processing [24,20] for tetrahedral mesh con-
vert and shape representation transition [15, 18]. Therefore, using NeRF-based
reconstruction results for simulation is suboptimal in practice. Very recently,
Gaussian Splatting (GS) [9] has emerged as a promising alternative to NeRF [17],
offering superior 3D reconstruction results and faster inference speed overall. Sev-
eral concurrent works [8,12,32] have applied 3D-GS for surgical reconstruction.
Unlike NeRF, 3D-GS uses explicit Gaussian representation, making it more suit-
able for shape editing [2], deformation tracking [16] and simulation [27]. Notably,
a successful simulation from 3D-GS relies on clean Gaussians generated from the
data, which requires the GS-based reconstruction framework to be particularly
designed. For instance, EndoGS [32] is not suitable for simulation purpose, be-
cause it tends to generate floating or slim Gaussians in order to fit images, which
would lead to noticeable artifacts in simulations (see Fig. 3 in Sec. 3).

Meanwhile, simulating soft-body has been studied via various methods [19,
,23]. Among them, Material Point Method (MPM) [23] is well-suited for en-
doscopic scene simulation due to its realism and efficiency. MPM is a physically
based simulation method that combines particles and grids to accurately model
the deformable objects. A prior work PhysGaussian [27] has promisingly shown
the feasibility to simulate 3D Gaussians as deformable objects integrating MPM.
The well-defined nature of material point makes MPM suitable to simulate 3D
Gaussian while the learned appearance features of 3D Gaussian enhance the vi-
sual realism of MPM. Due to the compatibility between MPM and 3D Gaussian,
the physics could be naturally embedded into 3D Gaussians by updating them
using MPM. Inspired by PhysGaussian, we hope to represent the endoscopic
scene with 3D Gaussian and perform simulation on this representation. How-
ever, due to the limited movement range of camera in narrow endoscopic space,
the 3D Gaussians trained from surgical videos are prone to overfitting which
may introduce artifacts in simulation. Overcoming this problem is important for
performing surgical scene simulation in a fully automated pipeline.

In this paper, we endeavor to simulate reconstructed surgical scenes cap-
tured from single-viewpoint stereo endoscope in a completely data-driven manner
(called SimEndoGS). We embark on integrating the emerging 3D Gaussian Splat-
ting and MPM framework to tackle surgical scene simulation. We summarize our
contributions as follows: 1) An efficient and automated pipeline consisting of de-
signed 3D-GS reconstruction module and a subsequent efficient MPM simulation
module. 2) A geometric regularization is proposed to overcome overfitting issue
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Fig.1l. An overview of the proposed data-driven surgical simulation frame-
work. It consists of automatic scene reconstruction and physically-based scene simu-
lation using 3D Gaussians.

of Gaussian Splatting on endoscopic data. 3) The Neo-Hookean model and an
adapted MPM solver for 3D Gaussian are seamlessly integrated into our pipeline
to perform physics-embedded soft tissue simulation. Experimental results on our
robotic surgery videos demonstrate the success of our data-driven reconstruction
and simulation pipeline, which can support soft-tissue interactions with high fi-
delity and approaching real-time speed.

2 Method

2.1 Overview of the Data-driven Scene Simulation Framework

Let V = {(I},I7)}Z_, be a stereo surgical video with 7' frames, we aim to de-
velop a fully automatic framework to reconstruct the simulation environment
from the video and perform physically-based endoscopic tissue simulation with
high fidelity. First of all, we resort to the recent Gaussian Splatting technique
for efficient surgical scene reconstruction in Section 2.2. It represents the sur-
gical scene with a group of 3D Gaussians. Similar to [25, 28, 32|, we leverage a
segmentation model to localize tool regions for each video frame. The tool mask
is used for occlusion-free surgical scene reconstruction. Conventional GS-based
reconstruction is optimized by minimizing the image-level difference between the
reconstructed scene and the original video frame. When it is applied to highly
dynamic surgical scenes with limited camera movement range, it is inclined to
use floating or slim Gaussians to fit high-frequency image details. Unfortunately,
this overfitted representation suffers severe artifacts during simulation. To tackle
this problem, we present a novel geometrical regularization method in Section
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2.3, which leverages the stereo depth guidance and anisotropy regularization
to obtain geometrically plausible scenes suitable for simulation. Based on the
improved GS-based surgical scene representation, we develop MPM-based sim-
ulation in Section 2.4 for physically based soft tissue simulation. Fig. 1 depicts
an overview of our proposed simulation method.

2.2 3D Gaussians for Endoscopic Scene Representation

We represent the endoscopic scene as a group of 3D Gaussians. A 3D Gaussian
could be parameterized as (u, ¥, ¢, o), which are corresponding to the position,
covariance matrix, color and opacity respectively. These features enable a Gaus-
sian to effectively represent a small area of endoscopic tissue. The 3D Gaussian
is optimized using gradients backpropagated from the rendering loss. To render
the endoscopic scene composed of 3D Gaussians from a specific view, the co-
variance matrix of Gaussian can be projected at first: 3 = JIWEWTJIT  where
W and J are matrices related to view transformation and projection, 3 is the
projected covariance matrix which is used to determine whether a pixel is influ-
enced by current Gaussian. After projection, the value of each pixel is computed
as a weighted sum of the color features:

i—1

Cp) =Y _eiai [[(1 - ay), (1)

ieN j=1

where NN is the number of Gaussians influencing the shading of pixel p and «; =
) 1 Tyv—1 . .
giexp(—5 (P — i)' X', " (p — pi)). To reconstruct an endoscopic scene without
surgical tool occlusion, we apply masked L1 loss function at pixel p utilizing the
k-th ground truth image I}, the corresponding tool mask Mj, and the rendering
result C(p):
ﬁcolor(p) = (1 - Mk'(p)) * |O(p) - Ik(p)| (2)

This loss function allows us to effectively utilize surgical video information, as
areas occluded by instruments in one frame may be visible in other frames.

2.3 Geometrically Regularized Optimization for 3D Gaussian

In endoscopic scene, the limited movement range of camera makes it difficult
for Gaussian Splatting to learn the geometry information and then lead to over-
fitting. To overcome this problem, we initialize the positions of Gaussians by
reprojecting the depth maps {D;}X ; to get a reasonable geometric structure
before the training. During the optimization, we add the Huber loss between
estimated depth maps and rendered depth maps to the objective function of
original Gaussian Splatting framework. The depth value of 3D Gaussian at pixel
p shares the same computation pattern with Eq. 1. Our complete loss function

1S:
i—1
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where d; is the z value of the i-th Gaussian, Dy, is the k-th estimated depth map
and hyperparameter 7 is used to control the strength of depth regularization. The
depth regularization enforces Gaussians to distribute near the tissue surface and
penalize the generation of floater to reduce artifact. The artifacts in simulation
results can also be caused by the Gaussians with slender shape. Therefore, we
perform anisotropy regularization to prune Gaussians with very slim shapes
during the optimization. The scale ratio is used to determine whether a Gaussian
should be pruned: Ratio(p) = max(Sp)/min(Sy), where Sy, is the scaling tensor
of Gaussian p. We prune Gaussians whose scale ratio surpasses the predefined
threshold + during the training.

2.4 Physically-based 3D Gaussians Simulation

Before simulation, we perform the Gaussian padding for better simulation effect.
Directly simulating Gaussians without padding often leads to surface crash as
shown in Fig. 4. We compute the opacity field O using the following equation on a
uniform 100 x 100 x 100 Eulerian grid: O(z) = Y, oyexp(—4(x — z;) 7% ' (z —
x;)), where @ is the position of grid node and x; is the center of Gaussian i
surrounding the grid node. If the value of current node in opacity field is less
than that of nodes closer to camera, it indicates that the current grid node is
behind the tissue surface and we will pad a Gaussian at this place.

We integrate the Material Point Method into our framework to perform
physically based tissue simulation on reconstructed scenes represented in 3D
Gaussians. The position of 3D Gaussians can be directly updated as lagrangian
particles in MPM. To let 3D Gaussians capture the deformation of material, [27]
propose to update the covariance matrix of Gaussian as follows:

> = FXF7, (4)

where F is the deformation gradient obtained from MPM solver, X is the initial
covariance matrix and X’ is the updated covariance matrix. We utilize Neo-
Hookean [21] constitutive model in MPM to predict tissue deformation because
of its simplicity and computation efficiency. The first Piola-Kirchoff stress of
Neo-Hookean model, denoted as PKjy, is computed as follows:

PK; = u(F — FT) + Aog(J)F~ T, (5)

where p and A are lame parameters computed using Young’s modulus £ and
Poisson ratio v with following equations:

E Ev

S M =77 )

By adjusting the values of Young’s modulus F and Poisson ratio v, we can
control the physical behavior of the endoscopic tissue, such as its stiffness, in a
physically interpretable way.
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3 Experiments

We extensively evaluated our proposed data-driven surgical simulation on five
different endoscopic scenes, using corresponding stereo videos collected from the
publicly available datasets [25, 30] or our in-house data. These videos encom-
passed common surgical procedures involving the manipulation, pushing and
pulling of deformable tissues. We compared our method with an GS-based base-
line. Similar to [8,12,32], we quantitatively evaluated the surgical scene recon-
struction using PSNR. For the simulation performance, since it is difficult for a
quantitative evaluation, we reported the simulation efficiency and qualitatively
measured the simulation performance by comparing the texture and geometry
details under different simulation interactions. We also conducted an ablation
study to evaluate the proposed depth supervision module, anisotropy regular-
ization module and Gaussian padding module through qualitative comparison.

3.1 Implementation Details

In our implementation, we set the delta in Huber loss to 0.2, the weight of
depth loss 7 = 0.3 and the anisotropy regularization v = 10. All endoscopic
scenes used in our experiments are optimized with 7000 iterations. We utilize
STTR-light [11] pretrained on Scene Flow to estimate stereo depth maps of
binocular surgical video frames. The tool masks are automatically generated by
SegmentAnything [10]. For simulation, we perform 80 substeps in each step and
the timestep of each substep is 0.0005s. All experiments were conducted on a
computer equipped with an Intel(R) Xeon(R) W-2223 CPU and RTX3090 GPU.

3.2 Qualitative and Quantitative Results

We evaluated the proposed data-driven surgical scene simulation on various sur-
gical scenarios. Fig. 2 presents the qualitative evaluation results. Given the stereo
surgical video, in which the tissue would be frequently occluded by the tool due
to the surgical operation, our method can robustly reconstruct occlusion-free
tissues with realistic textures. It is the basis for achieving high-fidelity surgi-
cal simulation. To assess the quality of the simulation, we simulated interactive
actions with the reconstructed simulation environment by applying forces in var-
ious directions at different positions. As shown in Fig. 2, a closer examination
of the highlighted areas reveals that our simulation method not only generates
visually plausible shape deformations but also preserves the visual consistency
of the texture. Table 1 further reports the detailed processing time and simu-
lation efficiency for each endoscopic scene. Without heavy manual adjustments,
our method is highly scalable and is able to efficiently consume various surgical
videos for high-quality surgical simulation. We refer readers to the supplemen-
tary video for more simulation results.

To further demonstrate the advantage of our method, we compared it with
the EndoGS baseline [32]. As shown in Table 1, we observed that EndoGS usually
achieves a higher PSNR than ours, which indicates that its reconstructed surgical
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Fig. 2. Qualitative evaluation of simulation performance. The external forces
are indicated using red arrows. The corresponding simulation videos are included in
the supplementary material.

Table 1. Quantitative results (standard deviation in parentheses).

Scenes Training Ours EndoGS Processing Gaussian Simulation
PSNR PSNR Number FPS
Scenel 65.0(0.8)s 34.77(0.04) 40.44(0.30) 0.423(0.005)s 78,712 20
Scene2  61.3(0.5)s 37.82(0.02) 39.94(0.24) 0.495(0.006)s 74,484 21
Scene3  60.7(0.5)s 36.05(0.24) 36.28(0.04) 0.453(0.002)s 58,223 25

scene is closer to the original video frame. We argue that it is because EndoGS
is inclined to fit the high-frequency scene content (e.g., specular light indicated
by the white dashed box in Fig. 3) with floater. As shown in Fig. 3, the recon-
structed scene would result in obvious artifacts when it is applied to simulation.
In contrast, our method use geometric regularization to obtain scenes with more
reasonable space structure. It achieves comparable reconstruction quality to En-
doGS. More importantly, our method significantly outperforms EndoGS in terms
of the simulation quality. It not only maintains reasonable geometric structures
and tissue textures but also produces physically realistic tissue deformations, as
highlighted in the specific area of Fig. 3. These results fully demonstrate the
superiority of our proposed method for endoscopic scene simulation.

To valid each module of our method, we conducted a qualitative ablation
study. Fig. 4 presents the experimental results. When anisotropy regularization
is omitted, the slender kernels of the Gaussians become exposed under large-scale
deformation, resulting in a fur-like artifact. In contrast to our results, simula-
tions without depth supervision exhibit floating artifacts for lack of geometric
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Fig. 3. Comparison with EndoGS [32]. The comparison between ours method and
EndoGS on reconstruction and simulation.
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Fig. 4. Ablation study. We compare our base simulation result and simulation results
w /o depth supervision, gaussian padding or anisotropy regularization. The artifacts are
highlighted using white dashed boxes.

regularization in training, leading to a noisy result after deformation. Simulations
without Gaussian padding result in a thin surface that is prone to collapse under
external forces. The corresponding result depicted in Fig. 4 exhibits noticeable
cracks and exposes the underlying material.

4 Conclusion

This paper introduces a novel framework based on Gaussian Splatting for auto-
mated surgical scene reconstruction from stereo surgical videos and physically-
based endoscopic scene simulation with user-defined interactions. We coherently
utilize the 3D Gaussian representation for reconstruction and simulation for con-
venient simulation, efficient visualization and realistic visual results. We have
specifically designed an optimization strategy to enhance the suitability of our
learned 3D Gaussians for subsequent simulation tasks. Our method achieves a
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high degree of automation and superior efficiency, seamlessly transforming surgi-
cal videos into interactive simulation scenes. We anticipate that the integration
of generative Al and 3D reconstruction techniques will inspire the development
of interactive and highly realistic surgical scene generation, benefiting surgical
training and enhancing the learning capabilities of surgical robots.
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