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There is a growing interest in reconstructing the density matrix of photoionized electrons, in par-
ticular in complex systems where decoherence can be introduced either by a partial measurement of
the system or through coupling with a stochastic environment. To this, end, several methods to re-
construct the density matrix, quantum state tomography protocols, have been developed and tested
on photoelectrons ejected from noble gases following absorption of XUV photons from attosecond
pulses. It remains a challenge to obtain model-free, single scan protocols that can reconstruct the
density matrix with high fidelities. Current methods require extensive measurements or involve
complex fitting of the signal. Faithful single-scan reconstructions would be of great help to increase
the number of systems that can be studied. We propose a new and more efficient protocol - rainbow-
KRAKEN - that is able to reconstruct the continuous variable density matrix of a photoelectron
in a single time delay scan. It is based on measuring the coherences of a photoelectron created by
absorption of an XUV pulse using a broadband IR probe that is scanned in time and a narrowband
IR reference that is temporally fixed to the XUV pulse. We illustrate its performance for a Fano
resonance in He as well as mixed states in Ar arising from spin-orbit splitting. We show that the
protocol results in excellent fidelities and near-perfect estimation of the purity.

I. INTRODUCTION

The discovery of high-order harmonic generation
(HHG) [1, 2] and the synthesis of attosecond light
pulses has enabled the study of electron dynamics
in real time. The dynamics of ionization have been
measured [3, 4], through interferrometric measurements
of a photoelectron following absorption of extreme
ultraviolet (XUV) and infrared (IR) pulses. Through an
interference process, the phase as well as the amplitude
of the photoelectron can be measured. For a pure state
this means that a reconstruction of the photoelectron
wavefunction is possible. The photoelectron wavepacket
structure depends on the manifold of states available.
Above the ionization threshold it consists of discrete
autoionizing states and continuous free electron levels
with different angular momenta. For experiments
comprising an XUV photon absorption from the s to the
p shell followed by an IR photon absorption or emission,
to the s or d shells, the s, p and d angular momenta
manifolds play a role. This rich structure leads to many
types of non-trivial ionization phenomena, for example
Fano resonances [5–7].

Several factors either from the experiment or intrinsic
to the system may introduce decoherence. As a result,
the wavefunction no longer describes the system accu-
rately and we must use the density matrix formalism
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instead. Fluctuations in the laser intensity, time jitter
between pump and probe pulses and noise in the detec-
tor were found to reduce the coherence in experiments
conducted in neon [8]. Incomplete measurement of
the photoelectron degrees of freedom in the presence
of entanglement can also generate decoherence. For
example, detection of the kinetic energy and not the
angular momentum of electrons ionized from He implies
that the signal is an incoherent addition of contributions
with different angular momenta, and this was found to
reduce coherence [4]. Similarly, the measurement of the
photoelectron without simultaneously measuring the
spin of the ion was found to lead to decoherence in the
presence of ion-electron entanglement, as occurs in Ar in
the presence of spin-orbit splitting [9, 10]. In the above
cases, methods to reconstruct the density matrix ρ are
necessary to measure this decoherence and assumption
of pure states can mislead the conclusions.

Different successful reconstructions of the density ma-
trix have been put forward. Bourassin-Bouchet et al.
used the mixed-FROG scheme to reconstruct the den-
sity matrix of photoelectrons ejected from neon. The
measurement consists of using several harmonics in or-
der to generate very broad photoelectron wavepackets.
Then, the absorption of a time delayed high-intensity IR
laser leads to interferences via multi-photon transitions.
The signal is then compared with simulations that take
into account different sources of decoherence. A purity of
0.11 was retrieved in the particular case of neon and as-
signed to a decoherence introduced by the spectrometer
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response, and fluctuations in the XUV and IR intensities
[8].

Laurell et al. developed a protocol using a delayed
bichromatic IR probe, called the KRAKEN protocol.
The idea is that two monochromatic IR frequencies
select two energy levels of the electron wavepacket and
interfere them in a final state, thus probing their coher-
ence. The time delay is used to filter in Fourier space the
signal coming from electrons interacting with only one of
the monochromatic components. The experiment is run
multiple times with different frequency combinations of
the bichromatic pulse to probe different pairs of states
[9]. The principle of using a very selective probing pulse
simplifies the interpretation and the transformation from
the signal to density matrix population or coherence.
Recently, this protocol has been demonstrated experi-
mentally in He and Ar [10]. Seven scans with different
bichromatic shears were sufficient to obtain a reconstruc-
tion with excellent agreement with theory. However, it
is more time-consuming than methods for reconstructing
the wavefunction and requires interpolation methods
to fill in the signal between shears This places further
stability constraints on the laser and limits the number
of systems that can be studied.

Ideally, a quantum state tomography protocol is ro-
bust to experimental noise, can be performed efficiently
in a short time and requires minimal processing to obtain
the density matrix. In this work, we propose a new
version of the KRAKEN protocol, that we call rainbow-
KRAKEN (RK) because of its use of the full spectrum of
a broadband IR pulse, to reconstruct the density matrix
in a single time delay scan. As in the original protocol,
we make use of the Fourier conjugate of the time delay
between XUV and IR pulses to encode coherences, but
replace the bichromatic probe by a combination of a
broadband probe and a narrowband reference, both in
the IR. We begin by motivating the physical basis of the
protocol and describe how correlations are encoded in
Fourier space for different pulse sequences. We derive
analytical formulas for the measured signal and use
them to describe the data processing needed to go
from the measurement to the density matrix. After
analyzing the sources of error and the differences with
the original KRAKEN experiment, we illustrate our
method in two model cases, the 2s2p resonance in He
and an unstructured continuum in Ar with two different
ionic states, 3p5 2P3/2 and 3p5 2P1/2, where ion-electron
entanglement introduces decoherence when only the
electron is measured, resulting in a mixed density matrix.

II. THEORETICAL DESCRIPTION OF THE
PULSE SEQUENCE

A. Encoding an indirect energy dimension in a
time delay

A density matrix contains the populations and coher-
ences between different quantum states, which are la-
belled by their quantum numbers. For a photoelectron,
the quantum numbers are the kinetic energy, the angu-
lar momentum and the electron spin, to which we also
add the spin state of the parent ion. Tracing over the
angular and spin degrees of freedom results in a reduced
density matrix solely described by the kinetic energy of
the photoelectron. Thus, to determine coherences be-
tween pairs of states indexed by the kinetic energy, we
need a two-dimensional measurement. A standard photo-
electron experiment measures the kinetic energy of elec-
trons and is a one-dimensional measurement. It is not
possible from this measurement to infer the coherences
between any pair of states at different energies. For this,
we need a second dimension that also measures the pho-
toelectron energy, which can be done with interferometric
techniques.

A prototypical two-photon experiment is shown in Fig-
ure 1.a. It starts with a Gaussian XUV pulse, with cen-
tral frequency ωxuv and width σxuv, at time τ = 0 that
prepares a wavepacket in the XUV manifold whose en-
ergy we label by εi. It is followed by an IR pulse delayed
by a duration τ , which can be structured (i.e. it will
consist of one or more Gaussian envelopes, or even more
complicated structured pulses). We introduce a center
frequency ωir and width σir. It promotes the photoelec-
tron to a higher manifold - that we call the XUV+IR
manifold labelled by Ef - where it is detected. Inter-
ferometric techniques with time-delayed pulses naturally
have two dimensions: the first one is directly provided
by a detection method with energy resolution (taken as
the x-axis), and the other is the time delay τ which can
be converted into an energy ℏωτ through a Fourier trans-
form (taken as the y-axis either as an angular frequency
or an energy). During the time delay each state evolves
freely acquiring a phase. Two levels will acquire differ-
ent phases related to their energy difference, so that the
signal coming from the resulting interference in a higher
lying state will be modulated by this energy difference
(Fig. 1.a). We thus obtain a 2D map that correlates
different states (Figure 1.a). Such a pulse sequence and
analysis is the basis for multidimensional NMR, IR and
visible light spectroscopy [11–13]. It is significantly more
complicated in attosecond photoionization experiments
where parts of the signal only exist during he overlap of
the XUV and IR pulses [14]. The pulse sequence should
allow the measurement of all coherences between all oc-
cupied levels of the continuum that form the wavepacket.
There are a number of ways in which the encoding of the
second dimension can be achieved depending on the en-
ergy and temporal properties of the pulses.
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Figure 1 presents four possible pulse sequences. To
understand the effect of these sequences, we focus on
two states of a photoelectron in the XUV continuum
with energies ε1 and ε2. We consider only a pure
state, but the treatment provided here can be straight-
forwardly generalized to mixed states. We form a
wavefunction from a linear combination of these two
levels |Ψ(τ)⟩ = c(ε1)e

−iε1τ/ℏ|ε1⟩ + c(ε2)e
−iε2τ/ℏ|ε2⟩,

with |c(ε1)|2 + |c(ε2)|2 = 1. A complete wavefunction is
composed of a continuum of levels but since coherence
is a pairwise property, it is sufficient to consider two
levels. We begin by analyzing the KRAKEN protocol
and follow its analysis with possible sequences for single
scan protocols.

KRAKEN: bichromatic IR pulse. The KRAKEN pro-
tocol uses a bichromatic IR pulse with frequencies ωir,ref,
ωir,probe. The final continuum state |Ef ⟩ can be reached
by two interfering quantum paths with as intermediate
states |ε1⟩ and |ε2⟩, obeying the energy conservation con-
dition Ef = ε1 + ℏωir,ref = ε2 + ℏωir,probe (Figure 1.b).
Although the XUV photoelectron creates a wavepacket
spanning a large range of energies, only two at a time are
promoted to the final state |Ef ⟩: the frequency selectiv-
ity is provided by the spectral shape of the IR pulse. As-
suming that the initial photoelectron is created at time,
τ = 0, and that the two spectral components of the IR
pulse arrive at a time τ after the XUV pump, the final
measured signal will be

SK(Ef , τ) ∝ |Ψ(τ)|2

∝ |c(ε1)|2 + |c(ε2)|2

+ c(ε1)c
∗(ε2)e

−i(ε1−ε2)τ/ℏ

+ c∗(ε1)c(ε2)e
i(ε1−ε2)τ/ℏ

(1)

where the proportionality constant is true as long as
the continuum-continuum transitions between ε1 and Ef ,
and between ε2 and Ef , have the same phase and am-
plitude. The spectrum will have constant and oscillating
terms as function of the delay τ . This can be visualized
more clearly with its Fourier transform Fτ{|Ψ(τ)|2}(ωτ ),

where for a function f(τ), Fτ{f(τ)}(ωτ ) ≡ f̃(ωτ ) =∫
dτf(τ)e−iωττ where ωτ is the conjugate frequency to

the delay time τ . The signal occupies three regions: the
constant terms appear at ωτ = 0 (with intensities |c(ε1)|2

+ |c(ε2)|2) while the beating terms will appear at the
difference frequencies ωτ = ±δω = ±(ε2 − ε1)/ℏ (with
intensities c(ε1)c

∗(ε2) = ρxuv(ε1, ε2) and c∗(ε1)c(ε2) =
ρxuv(ε2, ε1)). These latter two components are associ-
ated to the coherences of the density matrix.

In the representation of double-sided Feynman dia-
grams, they correspond to when the probe and reference
act on the left and right of the density matrix, and
vice-versa. In a general experiment, each detected
final kinetic energy Ef will have associated compo-
nents ωτ so that the Fourier transformed signal is a
complex valued surface with the x-axis labelling the

photoelectron kinetic energy Ef and the y-axis the
conjugate frequency ωτ . How a protocol makes use of
these associated frequencies determines its efficiency
and possibility to reconstruct the density matrix. The
bichromatic IR pulse is made by spectrally filtering
the same IR broadband pulse that is used to generate
the XUV pulse. The broadband IR pulse has the
possibility of inducing interferences between levels
spanning a large energy range, so that the Fourier space
in this experiment is sparsely used, compared to what
would be possible with the full broadband pulse. The
off-diagonal of the density matrix is reconstructed un-
ambiguously, and a set of scans with different shears δω
is needed in order to fully reconstruct the density matrix.

XUV pulse, broadband IR pulse. To reconstruct
the density matrix in a single delay scan, we need to
simultaneously encode the correlations between all levels
of the photoelectron wavepacket. This can be achieved
by including all bichromatic pairs at once in the form of
a broadband IR probe (Figure 1.c). When we carry out
the Fourier transform of the signal with a single delayed
broadband IR pulse, we see that a large Fourier space
area is accessible, however, for a given final level with
kinetic energy Ef , and a frequency component ωτ , there
is now a continuum of pairs of levels that contribute,
introducing an ambiguity that precludes reconstruction
of the density matrix. The broad bandwidth of the IR
pulse is capable of inducing interferences between many
pairs of levels εi but does not provide discrimination.
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FIG. 1: a) Structure of a general pulse sequence using one XUV and one possibly structured IR pulse. The first
XUV pulse creates a photoelectron in the XUV manifold. Each energy state |ε⟩ is then allowed to freely evolve

during time τ thus acquiring a phase e−iετ/ℏ. Since each level acquires a different phase we can use it to label them.
At time τ , an IR pulse promotes the photoelectron into a higher manifold, the XUV+IR manifold where it is

detected. The final photoelectron kinetic energy is taken as one dimension while the Fourier transform of the signal
with respect to the delay time τ constitutes the second dimension. The time and spectral properties of the IR pulse,
whose options we explore in panels b-e, will influence the selectivity and multiplexing ability of the experiment. For
clarity, we have not depicted the final photoelectrons that have interacted with a single component of the IR pulse
as these can be filtered as described in the main text. b) The KRAKEN experiment uses a delayed bichromatic IR
probe that unambiguously selects levels at a fixed energy difference and interferes them in a final state. A single
time trace can only probe coherences of levels separated by a fixed energy difference. c) A delayed IR broadband
pulse can probe coherences of levels separated by a continuum of energy differences in a single time scan but mixes
them in the final signal indiscriminately. d) A broadband IR probe and narrowband IR reference both with a delay τ
can select contributions to levels equidistant in energy to a third one. e) Rainbow KRAKEN: A broadband IR probe
scanned in time τ and a narrowband IR reference pulse fixed in time can unambiguously distinguish energy levels.
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Rainbow-KRAKEN: interfering broadband and nar-
rowband IR pulses. We overcome the lack of discrimi-
nation coupled to the use of a broadband pulse by the
re-introduction of a narrowband reference IR pulse at
frequency ωir,ref, and filter the signal to select only the
interference that comes from photoelectrons that inter-
acted with the narrowband reference and the broadband
probe (Figure 1.d). As in the previously described pulse
sequence, the broad probe is capable of simultaneously
exciting many levels of the XUV wavepacket, and the
narrowband pulse allows level discrimination, overcom-
ing the shortcoming of the previous sequence. For a fi-
nal detected photoelectron kinetic energy Ef and a given
Fourier frequency ωτ , the contributing pairs are set by
the reference at ε1 = Ef − ℏωir,ref, within the broad
bandwidth of the IR probe. Since the different levels will
acquire a different phase during the delay τ , a given fre-
quency ωτ can only have contributions from levels such
that ε2 − ε1 = ℏωτ , or ε1 − ε2′ = ℏωτ . This is be-
cause each pair of levels will appear in Fourier frequency
at positive and negative frequencies of equal magnitude.
This discrimination is advantageous compared to the case
without an IR reference, although it is still not enough to
reconstruct the density matrix because the correlations
between the equidistant state ε1 and ε2, and those be-
tween ε2′ and ε1 are mixed in the same final signal. We
can also see this from the expansion of the simple two-
level system wavefunction Ψ (Eq. (1)): a pair of energy
levels will have contributions at positive and negative fre-
quencies δωτ so that levels equidistant from the reference
ε1 = (Ef − ℏωir,ref) are indistinguishable.

We separate these two contributions by fixing the IR
reference pulse in time with respect to the XUV pulse and
only scan the delay of the IR probe pulse. This shifts all
frequencies in the Fourier space at ±ωir,probe and lifts the
remaining ambiguity depending on whether the reference
and probe will interact to the left or right of the double-
sided Feynman diagram [11] (Figure 1.e). We can under-
stand the shift in Fourier space that results from locking
the delay between the XUV and the reference IR pulse
as follows: the signal acquires a delay-dependent phase
corresponding to the energy of the level after the XUV
photon and before the IR photon. When, in the axes
corresponding to Fig. 1.b-d, we measure an interference
between levels |ε1⟩ and |ε2⟩, both have phases that evolve
with different sign, so that the total modulation of the
signal is done at a frequency corresponding to the energy
difference between these levels, which happens to be on
the order of ±(ωir,ref−ωir,probe)±σir,probe. When the de-
lay of the reference IR pulse is locked to the XUV, one of
the states does not accumulate a phase. The phase mod-
ulation of the density matrix is the frequency difference
(Ef − ε2)/ℏ and is on the order of ±ωir,probe ± σir,probe

following energy conservation arguments. This leads to
a 2D map such as in Fig. 13.e with two components
centered at ±ωir,probe.

Let us consider a signal due to a component of the

broadband IR probe, with frequency ω
(c)
ir,probe, and the

reference IR pulse, with frequency ωir,ref. The com-

ponents where, ω
(c)
ir,probe − ωir,ref > 0, will appear at

positive frequencies in the Fourier conjugate ωτ , while

ω
(c)
ir,probe − ωir,ref < 0 will appear at negative frequencies,

where we have used ω
(c)
ir,probe to indicate one frequency

component of the broadband probe and not its center
frequency.
We can better visualize this with the double-sided

Feynman diagrams representation for the sequence (Fig-
ure 2, [11]). These diagrams keep track of the state of the
density matrix after each light-matter interaction. They
start with a ground state density matrix |g⟩ ⟨g| and in-
teractions are added as incoming (absorption) or outgo-
ing (emission) arrows, with forward time evolution read
from bottom to top of the diagram. They can be very
useful to understand the encoding in Fourier space. For
a delayed probe and delayed reference IR pulses (Fig.
2.a,b,c), during the time delay τ the density matrix is in
state ρ = |εi⟩ ⟨εj | with i, j = 1, 2, 2′. There is a phase fac-

tor associated with this density matrix of e−i(εi−εj)τ/ℏ,
which is on the order of σir,probe. After Fourier trans-
forming, we obtain a signal at ωτ = −(εi − εj)/ℏ. There
are four contributions appearing in only two distinct fre-
quencies. When we fix the reference pulse and allow for
a delayed IR probe (Fig. 2.d,e,f), the density matrix
evolves during the time delay in the state ρ = |εi⟩ ⟨Ef |
or ρ = |Ef ⟩ ⟨εi| for i = 2, 2′, with an acquired with phase

e±i(εi−Ef )τ/ℏ, on the order of ωir,probe. The signals ap-
pear at ωτ = ±(εi−Ef ). The four diagrams are encoded
in distinct frequencies in Fourier space.
The rainbow-KRAKEN (RK) makes use of the entire

Fourier space accessible with a given IR probe bandwidth
and unambiguously encodes the correlations needed to
reconstruct the density matrix in a single measurement.

B. Analytical expressions for the
rainbow-KRAKEN interferogram.

We present in this section the expressions that allow
to go from a measured signal to a density matrix.
We start with a heuristic derivation that captures
the essential physics of the protocol, followed by an
exact calculation based on the two-photon transition
probability amplitude of absorbing an XUV and an
IR photon. In both derivations we will strictly focus
on the contributions that arise from the interference
between probability amplitudes following absorption
of an IR reference pulse and an IR probe pulse. It is
understood that the detector will also measure a signal
of photoelectrons that have only interacted with the
reference or the probe alone. However, this component
can be subtracted. It also appears in a different region
of the Fourier space so that it can be simply filtered out.

Heuristic derivation of the Rainbow-Kraken
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FIG. 2: a) Feynman diagrams for the rainbow-KRAKEN experiment with delayed IR reference pulse and delayed IR
probe pulse, b) position of each diagram in the 2D (Ef , ωτ ) map and c) pulse ordering. d, e and f show the same

diagrams as a,b,c, respectively, for the experiment with a fixed IR reference pulse. The Feynman diagrams as written
are valid for the conditions of an impulsive XUV and IR probe pulse and a frequency selective IR reference pulse.

signal. Let us consider that a photoelectron is created
impulsively by absorption of an XUV photon at time
τ = 0. Its state can be described by a one-photon density
matrix ρxuv. We apply the rainbow-KRAKEN IR pulses
to obtain a two-photon density matrix ρxuv+ir. The ob-
served signal for a final kinetic energy Ef is:

S̃RK(Ef , ℏωτ ) = Fτ (⟨Ef |ρxuv+ir(τ)|Ef ⟩) (ωτ ) (2)

In the limit of a monochromatic reference IR pulse and
an impulsive IR probe, we can relate the signal to the ini-
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tial density matrix by (see Appendix A for calculations)

S̃RK(Ef , ℏωτ ) = S̃
(+)
RK(Ef , ℏωτ )

+ S̃
(−)
RK(Ef , ℏωτ )

S̃
(+)
RK(Ef , ℏωτ ) ≈ AprobeAref|µc|2

× ρxuv(Ef − ℏωτ , Ef − ℏωir,ref)

S̃
(−)
RK(Ef , ℏωτ ) ≈ AprobeAref|µc|2

× ρ∗xuv(Ef + ℏωτ , Ef − ℏωir,ref)

(3)

where Aprobe and Aref are the electric field amplitudes
of the IR probe and reference pulse respectively, µc

is the energy independent transition dipole moment
from going to the continuous manifold of levels {|ε⟩}
to the final detected manifold {E}. The signal is

composed of two terms, S̃
(−)
RK and S̃

(+)
RK , which are the

negative ωτ and positive ωτ regions explained in the
previous section (Figure 1.e). The density matrix ρxuv
is composed of states with kinetic energies obeying the
approximate relation ε ≈ Ef − ℏωir,probe. Consequently,
from equation (3) we see that the signals will appear at
ωτ ≈ ±ωir,probe. The density matrices are parameterized
by the argument ε±2 = Ef ∓ ℏωτ and ε1 = Ef − ℏωir,ref.
We can continuously measure Ef and ωτ , so that
we then have access to the desired reconstruction
ρxuv(ε2, ε1). The signals at positive and negative ωτ

frequencies have the same information and the same sig-
nal to noise ratio so that we can consider only on of these.

In addition to the assumption of infinitely spectrally
narrow and broad bandwidth for the reference and probe
components respectively, we have also assumed that
the final signal (Eq. (3)) can be decomposed into two
separated, sequential one-photon absorption processes.
This is not the case, and we must look instead at the
two-photon transition amplitude to obtain the exact
signal. As we will see, this will result in small deviations
from the one-photon density matrix ρxuv, but the
treatment will allow us to correct for finite-pulse effects
exactly.

Explicit exact expressions from the two-photon
absorption cross-section. The Rainbow-KRAKEN
(Ef , ℏωτ ) 2D maps can be constructed from the interfer-
ence between the two-photon transition amplitude of an
XUV pulse and a fixed narrowband IR pulse Aωir,ref

(τ =
0) with that of an XUV pulse and a time-delayed broad-
band IR pulse, Aωir,probe

(τ),

S̃RK(Ef , ωτ ) = Fτ

{∣∣Aωir,probe
(Ef , τ) +Aωir,ref

(Ef , 0)
∣∣2

−
∣∣Aωir,probe

(Ef , τ)
∣∣2 − ∣∣Aωir,ref

(Ef , 0)
∣∣2} (ωτ )

= Ãωir,probe
(Ef , ωτ )A∗

ωir,ref
(Ef , 0)

+ Ã∗
ωir,probe

(Ef ,−ωτ )Aωir,ref
(Ef , 0)

(4)

ħωir

ħωxuv

a) General energy level 
structure

b) Minimum 
ingredient structure

s p d

discrete
levels

ionized continuous 
levels

Va 
ħωir

ħωxuvμag μεg 

μEa μEε 

|g> 

|ε> 

|E> 

|a> 

XUV+IR
manifold

XUV
manifold

Ground 
state

FIG. 3: a) General energy structure at one XUV photon
and one XUV+ one IR photon above the ground state
consists of a combination of discrete resonances and

several continua with different angular momentum. b)
A representative minimum ingredient model consisting
of one discrete and one continuous manifold above the
ground state one XUV photon above the ground state,
and one continuous flat manifold one XUV photon +

one IR photon above the ground state.

where we have defined the Fourier transform
Fτ{f(τ)}(ωτ ) previously, ωir,probe and ωir,ref are
the probe and reference IR pulse frequencies respec-
tively, and where σir,probe ≫ σir,ref. We have used the

identity Fτ{f∗(τ)}(ωτ ) = f̃∗(−ωτ ). We can identify

S̃
(+)
RK (Ef , ωτ ) = Ãωir,probe

(Ef , ωτ )A∗
ωir,ref

(Ef , 0) and

S̃
(−)
RK (Ef , ωτ ) = Ã∗

ωir,probe
(Ef ,−ωτ )Aωir,ref

(Ef , 0).

If we assume that all pulses have Gaussian en-
velopes, it is possible to obtain analytical forms for both
Ãωir,probe

(ωτ ) and Aωir,ref
(0) so as to analyze the signal

and steps needed to reconstruct the density matrix pre-
cisely [14]. Exact analytical expressions require an ex-
plicit structure of the energy levels accessible after ab-
sorption of an XUV photon and the energy levels ac-
cessible after further absorption of an IR photon. Fig.
3.a shows a general energy structure for both continu-
ous manifolds consisting of combinations of discrete and
continuous manifolds. Radiative transitions couple the
ground state to the XUV manifold, and the XUV mani-
fold to the XUV+IR manifold. Selection rules mean that
the ionized states with angular momentum p can be ex-
cited from the ground state, and the IR photon couples
these states to the ionized states with angular momentum
s and d, where they are detected. The discrete levels are
coupled to the ionized electron states via non-radiative
transitions. We can simplify our derivation by focus-
ing on a minimum ingredient model (the general case is
solved in Appendix C). Far from the ionization thresh-
old, it is usually possible to tune the experiment so that
the XUV+IR manifold is approximately flat, i.e. so that
the discrete levels are far way from the detected states
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{|Ef ⟩}. We can also simplify the number of continua in
our model. In the XUVmanifold we only need to consider
states with angular momentum p because they are the
only ones accessible radiatively from the ground state.
We include coupled discrete levels, however we only need
to consider one since qualitatively, adding more discrete
levels does not change the complexity of the expressions.
If we consider a flat XUV+IR manifold, then the final
photoelectron radial and angular degrees of freedom are
not entangled, and so it is enough to have a single effec-
tive continuous manifold. We then arrive at the energy
structure of Figure 3.b). The combination in the XUV
manifold of a coupled discrete level and continuum is
referred to as a Fano model [5]. It exhibits Fano inter-
ference that appears a point of destructive interference
in the spectrum. This distinctive feature will be very
useful to illustrate the different steps in going from inter-
ferogram to the density matrix. In this Fano structure
we consider that the discrete level lies at an energy ℏωag

and is connected to the continuum states |ε⟩ by a config-
uration interaction Va. We label the radiative transition
dipole moment from state j and i, µij . The Fano reso-
nance factor is then given by,

ffano(ϵ, q) =
ϵ+ q

ϵ+ i
(5)

where ϵ = (ε − ℏωag)/Γa is the detuning, Γa = πV 2
a

the width of the resonance and where we have allowed
a complex Fano asymmetry factor q = qr + iqi, with
qr ≡ qag =

µag

πVaµεg
. The theoretical wavepacket created

by an XUV pulse in such a structure is [9]

ρT (ϵ2, ϵ1) = ANG(ε2 − ℏωxuv, σxuv)

×G(ε1 − ℏωxuv, σxuv)

× ffano(ϵ2, qag)f
∗
fano(ϵ1, qag)

(6)

whereAN =
(∫

dε′G2(ε′ − ℏωxuv, σxuv) |ffano(ϵ′, qag)|2
)−1

is a normalization constant, G(x, σ) = e−
x2

2σ2 is a Gaus-
sian envelope with a normalized maximum amplitude.
This is the density matrix whose reconstruction we will
illustrate. The exact expression of the Fourier trans-
form of the Rainbow-KRAKEN interferogram signal is
written compactly as (see Appendix B for details of the
derivation)

S̃RK(Ef , ωτ ) = S̃
(+)
RK(Ef , ωτ ) + S̃

(−)
RK(Ef , ωτ ),

S̃
(+)
RK(Ef , ωτ ) = I0G(δref, σxuv)M

(+)
probe(Ef , ωτ )

× f∗
fano(ϵEf

, qref)ffano(−ϵ(+)
τ , qprobe),

S̃
(−)
RK(Ef , ωτ ) = I0G(δref, σxuv)M

(−)
probe(Ef , ωτ )

× ffano(ϵEf
, qref)f

∗
fano(−ϵ(−)

τ , qprobe)

(7)

where I0 is a constant, δi = ωxuv + ωIR,i − Ef/ℏ, for
i = ref, probe, and qref, qprobe are modified asymmetry
parameters (Appendix B). We use the detunings ϵEf

=

Ef−ℏωir,ref−ℏωag

Γa
and ϵ

(±)
τ =

±ℏωτ−(Ef−ℏωag)
Γa

. The explicit

form of M (±) is,

M
(±)
probe(Ef , ωτ ) =

exp

(
−σ2

t

2
(±ωτ − ωir,probe +

σ2
ir,probe

σ2
δprobe)

2

)

× exp

(
−
δ2probe
2σ2

)
× 1

±ωτ

(8)

where σ =
√

σ2
xuv + σ2

ir,probe and σt =
√
σ−2
xuv + σ−2

ir,probe,

determines the region in Fourier space where the signal

appears. S̃
(+)
RK(Ef , ωτ ) appears at positive frequencies

and S̃
(−)
RK(Ef , ωτ ) for negative frequencies.

We can use the previous relabelling of energies ε±2 =
Ef ∓ℏωτ and ε1 = Ef −ℏωir,ref to rewrite the expression
as

S̃RK(ε2, ε1) = S̃
(+)
RK(ε2, ε1) + S̃

(−)
RK(ε2, ε1),

S̃
(+)
RK(ε2, ε1) = I0G(ωxuv − ε1/ℏ, σxuv)

×M
(+)
probe(ε1/ℏ+ ωir,ref, ε

+
2 − ε1 − ωir,ref)

× f∗
fano(ϵ1, qref)ffano(−ϵ

(+)
2 , qprobe),

S̃
(−)
RK(ε2, ε1) = I0G(ωxuv − ε1/ℏ, σxuv)

×M
(−)
probe(ε1/ℏ+ ωir,ref, ε

+
2 − ε1 − ωir,ref)

× ffano(ϵ1, qref)f
∗
fano(−ϵ

(−)
2 , qprobe)

(9)

We can see in the structure of Eq. (7) that we recover
the expected Fano profiles albeit with slightly different
asymmetry parameters as well as forms of the detuning.
These are dependent on Ef and ωτ and are determined
from our labelling scheme. The profiles are modulated
by functions that reflect the spectra of the lasers and
depend on the sequence of pulses applied. Structurally,
the expression is analogous to the theoretical density
matrix we want to reconstruct (Eq. (7)), or to the
heuristic derivation of the Rainbow-KRAKEN (Eq. (3)),
but the form of the functions is not exactly the same. We
need to understand better the prefactor, modulation and
profiles in order to propose a transformation between
them.

Modulation functions of the pulse sequence. The
signal is modulated by two functions. G(δref, σxuv)
represents the imprint of the XUV spectrum on the
initial photoelectron wavepacket, and is part of the
theoretical expression for the density matrix Eq. (6):
we cannot excite an infinitely broad wavepacket since

σxuv is finite. M
(±)
probe(Ef , ωτ ) is a more complicated

weighting function that depends both on the width
of the XUV pulse as well as that of the IR probe. It
reflects the possible coherences that can be measured
with a given IR probe. The largest distance in energy
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whose coherence we need to probe is set by the energy
width of the excited wavepacket, which is limited by
the XUV spectrum. However, the maximum distance
between levels that we can probe can be smaller if
the IR probe pulse bandwidth is not broad enough.
Also, the signal scales with the strengths of the electric
field of the IR probe pulse and IR reference pulse.
Photoelectrons that have interacted with frequency
components towards the tail of the Gaussian pulse will
have a weaker signal than those that have interacted
with the center of the distribution. Because of this, the
intensity of the signal does not automatically reflect
the density matrix we wish to reconstruct. In the limit
of an infinitely broad IR probe - which is an ideal
probe - this extra modulation is lost and we can verify
that we recover the modulation imposed by the XUV

spectrum alone, that is limσIR,probe→∞ M
(±)
probe(Ef , ωτ ) =

1
±ωτ

exp
(
− (±ωτ+ωxuv−Ef/ℏ)

2σ2
xuv

)
≡ ± 1

ωτ
G(δ

(±)
ωτ , σxuv)

with δ
(±)
ωτ = ±ωτ + ωxuv − Ef/ℏ. Since we want a

probe-independent measurement, any dependence on
the probe and reference pulses on the final signal has to
be removed. The modulation functions presented are
a result of the protocol and valid for arbitrarily com-
plex structures of the levels after absorption of an XUV
photon as long as the final detected continuum |E⟩ is flat.

Energy-dependent transition probability amplitudes.
The profile has also the contribution that we are after,
an energy dependence that is intrinsic to the particular
structure of the energy levels. In the case of a Fano struc-
ture, we can reexpress it using the Fano form as long as
we use the following complex asymmetry parameters

qref = qag(1 + Re(∆ref)) + iIm(∆ref)

qprobe = qag(1 + Re(∆probe)) + iIm(∆probe)
(10)

where ∆ref and ∆probe are small complex-valued
functions (see Eqs. (37) and (49)). The asymmetric
parameters are modified because qag describes the in-
teference processes arising from a one-photon transition
while the Rainbow-KRAKEN is a two-photon transition.
As we show in Figures 10 and 11, and below, the
correction can be exactly accounted for and is small in
comparison to the rest of the profile so that excellent fi-
delities for the reconstructed density matrix are obtained.



10

60 61
1

60

61

2

f) Density
Matrix

Symmetrized

0.0932
0.0743
0.0555
0.0367
0.0179

0.0009
0.0198
0.0386
0.0574
0.0762

60 61
1

60

61

2

e) Density
Matrix

0.0932
0.0743
0.0555
0.0367
0.0179

0.0009
0.0198
0.0386
0.0574
0.0762

61.5 62.0 62.5
Ef (eV)

1.0

1.5

2.0

(e
V

)

d) Rescaled
FT

192.7

153.8

114.8

75.9

37.0

1.9

40.9

79.8

118.7

157.6

0.5 0.0 0.5
detuning (eV)

0.00

0.25

0.50

0.75

1.00

in
te

n
si

ty
 (

n
o
rm

a
liz

e
d
) a) Pulses spectra

IR probe

IR reference

XUV

61.5 62.0 62.5
Ef (eV)

0

50

100

(f
s)

b) Interferogram

1.560

1.242

0.923

0.605

0.287

0.032

0.350

0.669

0.987

1.305

61.5 62.0 62.5
Ef (eV)

1.0

1.5

2.0

(e
V

)

c) Fourier
Transform

117.1

93.4

69.8

46.1

22.5

1.2

24.8

48.5

72.1

95.8
Step 3. Correct for
IR probe finite
bandwidth

Step 4. 
Shift axes

Step 5.
Hermitize

Step 1.
measure

Step 2
FT

60 61
1

60

61

2

f) Density
Matrix

Symmetrized

0.0932
0.0743
0.0555
0.0367
0.0179

0.0009
0.0198
0.0386
0.0574
0.0762

60 61
1

60

61

2

e) Density
Matrix

0.0932
0.0743
0.0555
0.0367
0.0179

0.0009
0.0198
0.0386
0.0574
0.0762

61.5 62.0 62.5
Ef (eV)

1.0

1.5

2.0

(e
V

)

d) Rescaled
FT

192.7

153.8

114.8

75.9

37.0

1.9

40.9

79.8

118.7

157.6

0.5 0.0 0.5
detuning (eV)

0.00

0.25

0.50

0.75

1.00
in

te
n
si

ty
 (

n
o
rm

a
liz

e
d
) a) Pulses spectra

IR probe

IR reference

XUV

61.5 62.0 62.5
Ef (eV)

0

50

100

(f
s)

b) Interferogram

1.560

1.242

0.923

0.605

0.287

0.032

0.350

0.669

0.987

1.305

61.5 62.0 62.5
Ef (eV)

1.0

1.5

2.0

(e
V

)

c) Fourier
Transform

117.1

93.4

69.8

46.1

22.5

1.2

24.8

48.5

72.1

95.8
Step 3. Correct for
IR probe finite
bandwidth

Step 4. 
Shift axes

Step 5.
Hermitize

Step 1.
measure

Step 2
FT

FIG. 4: Procedure for transforming the time trace into the density matrix. a) Pulse envelopes for the XUV, IR
reference and IR probe pulses. The x-axis is the detuning with respect to the center frequency. b) Time trace for

rainbow-KRAKEN (interference terms only). The vertical dotted line is the destructive interference at
Ef = ℏ(ωag + ωir,ref)− Γaqag. c) Real part of the Fourier transform of the interferogram for the 2s2p transition of
Helium. In addition to the vertical line marking the destructive interference, there is a horizontal tilted line that
occurs at ℏωτ = ℏωag − Ef − Γaqag. d) Same real part of the Fourier transform as in c) corrected for the finite
bandwidth of the probe IR pulse using Eq. (11). e) Real part of the density matrix obtained by re-scaling the x-
and y-axis so as to depict the XUV manifold. f) Final density matrix after using the Hermitization procedure

ρH = 1
2 (ρ+ ρ†).
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III. RECONSTRUCTION OF THE DENSITY
MATRIX.

We describe the transformations to be carried out to
transform the Fourier map described by Eq. (7) into
a density matrix. This transformation is composed of
shifting energy axes, removing the dependence on the
probe and reference pulses, and rescaling of the axes.
We illustrate the procedure in Figure 4 for the case
of the 2s2p Fano resonance in helium which features
an asymmetry factor of q = −2.77. The destructive
interference serves as a good spectral feature to more
clearly keep track of what each transformation to the
signal is doing.

Step 1. Measure an interferogram (Fig. 4.a,b). We
begin with a simulated interferogram with XUV and
IR pulses shown in Figure 4.a appropriately shifted to
compare their widths. Figure 4.b shows the interfer-
ogram, with only contributions from the interference
of reference and probe pulses (Eq. (4)). The x-axis
is the kinetic energy Ef of the detected photoelectron
while the y-axis is the time delay τ between the XUV
pulse and the broadband IR probe pulse. We can
first observe that the photoelectron is centered at an
energy Ef ≈ ℏ(ωxuv + ωir,ref) − Ip, where we have set
the ionization potential Ip = 0. Fano profiles have a
destructive interference minimum for ϵ + q = 0, and
the interferogram shows this clear zero intensity region
where expected, at Ef = ℏωag −Γa/qag +ℏωir,ref (Figure
4.b, dotted black line). Along the y-axis we can see the
broad feature of direct ionization, present during pulse
overlap, followed by the narrower decay of the resonance
at later times.

Step 2. Fourier transform. Fourier transforming
the interferogram yields the 2D (Ef , ℏωτ ) map, with
signals appearing in the conjugate frequency positions

ωτ = ±(ωir,probe−
σ2
ir,probe

σ2 δprobe) which we establish from
the maximum of the exponential term of the modulation
function M (±) (Figure 4.c).

Step 3. Correct the modulation of the IR probe spec-
trum. We have to remove the intensity modulation im-
posed by the IR probe spectrum, and restore the natural
envelope arising from the XUV spectrum. For this, we
multiply the signal by

C(Ef , ωτ ) =
[
M

(±)
probe(Ef , ωτ ) + ζ

]−1

× ωτ lim
σIR,probe→∞

M
(±)
probe(Ef , ωτ )

=
[
M

(±)
probe(Ef , ωτ ) + ζ

]−1

G(δ(±)
ωτ

, σxuv)

(11)

We have introduced the small number ζ to avoid numer-
ical divergences from dividing by very small numbers. In
practice we have chosen ζ = 0.001. We show in Figure

FIG. 5: Envelope function M
(±)
probe(Ef , ωτ ) for different

values of the probe bandwidth σir,probe marks the
accessible Fourier frequencies. For very large

bandwidths the span of accessible frequencies starts to
be limited by the energy spread of the wavepacket

excited by the XUV pulse. We have chosen
ℏωir,probe = 1.5 eV.

4.c such a rescaling where the Fourier transformed signal
looks broader than in Figure 4.b. There is naturally a
limit after which this procedure cannot work. We discuss
these limitations below. Figure 5 shows the modulation

function M
(±)
probe from Eq. (8) for different values of the

IR probe bandwidth. The span along ℏωτ for a given
detection energy Ef represents the distance in energy
between levels whose coherence can be probed. For very
narrow spectra, there are almost no coherences probed,
and as we approach the limit of an infinitely spectrally
broad pulse the distance is not limited by the IR pulse
any longer but by the levels that can be populated by
the XUV pulse.

Step 4. Shift and rescale the x and y-axis. It is evident
from Figure 4.d that one destructive interference feature
is vertical while the other has a tilt (see Eq. (6)).
The tilt can be easily read from the expression of the
effective detuning ϵτ . We define two new axis which will
correspond to the energies of levels in the XUV manifold,
ε1 = Ef − ℏωir,ref and ε2 = Ef − ωτ (Figure 4.d). After
this correction the destructive interference appears as a
strictly horizontal feature in the rescaled map, and the
energy associated to ℏωτ now directly corresponds to
the manifold {|ε⟩} accessible after absorption of an XUV
photon. The shift of the x-axis by ℏωir,ref labels the
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same manifold. It is instructive to trace the origin of the
tilt of the destructive interference in the original Fourier
transform. It relates to the encoding of the energy along
the indirect dimension. For this let us consider a final
energy Ef,1, and a position of destructive interference
that we define at εD = ℏωD. The destructive interfer-
ence state is encoded at a frequency ωτ,1 = Ef,1/ℏ−ωD.
For another photoelectron energy such that Ef,2 > Ef,1,
the encoding will now be at a different higher frequency
ωτ,2 = Ef,2/ℏ − ωD > ωτ,1, even though it refers to
the same level. So, a given state is encoded at larger
and larger Fourier conjugate frequencies as we go higher
and higher in detected photoelectron energy. It is a
consequence of how we encode the second dimension in
the frequency ωτ and explains the tilt.

Step 5. Hermitize the density matrix. The last step
is enough to obtain an object in the form of a density
matrix. However, the errors incurred in assuming that
a two-photon transition amplitude gives the one-photon
density matrix are not the same for both axes. Then, the
density matrix is not Hermitian and this poses problems
when calculating the fidelity or purity. As a final step
we enforce the Hermiticity of the final density matrix by
defining the density matrix ρH ≡ 1

2 (ρ+ρ†). Since the sig-

nals at positive and negative frequencies S̃
(±)
RK have the

same information, we keep only the positive frequency
term. The operation to obtain ρH removes any numerical
errors accumulated during the previous steps, and aver-
ages the functions ∆ref and ∆probe. The final expression
then becomes

ρH(ε2, ε1) = I0G(ε2/ℏ− ωxuv, σxuv)G(ε1/ℏ− ωxuv, σxuv)

× ffano(ϵ2, q̄)f
∗
fano(ϵ1, q̄)

(12)

where q̄ =
qref+qprobe

2 . This concludes the reconstruc-
tion procedure and is the one we should compare to
Eq. (6), from which we note that the only discrep-
ancy is the q parameter which is qag in the theoreti-
cal case, and q̄ in the reconstruction. In what follows
we quantify the quality of the reconstruction ρH com-
pared to the theoretical density matrix ρT by the fidelity
F (ρT , ρH) = Tr

(√√
ρT ρH

√
ρT
)
, or by its purity Tr(ρ2H)

compared to the expected theoretical purity Tr(ρ2T ). We
discuss some of the errors in the reconstruction in Ap-
pendix D.

IV. APPLICATIONS TO REAL SYSTEMS

We illustrate the sequence on two different cases: the
2s2p resonance of Helium, and photoionization of Argon
into a structureless continuum.

Reconstruction of a Fano resonance in He.
We simulate the reconstruction of a Helium Fano
resonance using the 39th XUV harmonic ℏωxuv = 60.75
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FIG. 6: Reconstructed (top, eq. (12)) and theoretical
(bottom, Eq. (6)) density matrix for He. The

rainbow-KRAKEN protocol can reconstruct the density
matrix with a fidelity of 0.98.

eV and width 0.25 eV. For the IR components we use
ℏωref = ωprobe = 1.5 eV, and ℏσir,ref = 0.001 eV and
ℏσir,probe = 0.3 eV. We scan τ from -400 to 400 fs, and
use a detection range from 58 to 68 eV. Figure 6 shows
the theoretical density matrix and the reconstruction
with a fidelity of F = 0.98. We can see that the
features are very well reproduced, expected differences
are relatively small. The reconstruction is very sensitive
to the IR probe bandwidth, which should cover all
the energy levels we want to characterize. We can
numerically explore the lower limits of an acceptable
IR probe bandwidth. Figure 7) shows the fidelity and
purity for different values of σir,probe for the case where

we correct the M
(±)
probe factor or for the case where we

do not. We confirm that the correction is necessary
to obtain reliable results, and that with the correction
the values converge around σir,probe ≈ σxuv for the case
where ωir,probe = ωir,ref. We also observe that while
the fidelity converges to a value slightly below F = 1,
attributed to expected differences previously discussed,
the purity does reach the theoretical value of 1. Thus
the rainbow-KRAKEN protocol can recover the density
matrix with high accuracy, and excels at measuring the
purity.

Reconstruction of a mixed state. We also investi-
gate the reconstruction of a mixed density matrix which
occurs for the states 3p5 2P3/2 and 3p5 2P1/2 of Argon
due to a spin-orbit splitting of the ionization threshold
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FIG. 7: (a) Fidelity and (b) purity as a function of the
IR probe pulse spectral width. The simulations are
done for the same parameters as Figure 4. Orange

points have been corrected for finite pulse effects due to

M
(±)
probe while the blue points have not.

with magnitude 0.177 meV. There is a measurement-
induced decoherence due to an incomplete measurement
of the degrees of freedom. Since the experiment only
measures the photoelectron, its entanglement of its spin
degrees of freedom with its parent ion causes a mixed
density matrix, whose purity can be affected by the
XUV bandwidth [9, 10]. We can use Eqs. 12, 29 in the
limit ωag → ∞, β = 0 to remove the contribution of the
discrete state.

Figure 8.a shows the reconstruction with an XUV
bandwidth small enough to resolve the spin-orbit split-
ting, which appear as two two-dimensional Gaussian sig-
nals. In Figure 8.b we show the reconstructed purity as
a function of XUV bandwidth in comparison with the
expected value from theory.

FIG. 8: a) Reconstructed density matrix for Argon in
the presence of spin-orbit splitting. We can clearly

observe Gaussian profiles for the density matrix of each
transition energy. b) Reconstructed purity as a function
of XUV bandwidth (dots) compared to the theoretical

purity (solid line).

V. CONCLUSION

As attosecond spectroscopy is applied to more and
more complex systems, methods that can quantify the
degree of decoherence and reconstruct the density ma-
trix will be needed. We have presented a pulse sequence
and accompanying processing steps that can reconstruct
a photoelectron density matrix in a single scan. We have
shown that for systems with different structures of the ex-
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cited state manifold the density matrix is reconstructed
with high fidelities. The experiment uses a single XUV
scan, a delayed broadband IR pulse and a temporally
fixed narrowband IR pulse. The protocol makes use of
shifts in Fourier space to get rid of unwanted signals as
well as to label unambiguously energy levels along a sec-
ond indirect dimension to the detected kinetic energy. As
more and more systems begin to be studied with more
discerning sequences a better picture of measurement- or
vibrational-induced decoherence will emerge.
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APPENDIX A. HEURISTIC DERIVATION OF
THE RAINBOW-KRAKEN PROTOCOL

In order to have an intuitive understanding of the
rainbow-KRAKEN protocol, we provide a heuristic
derivation of the signal. The structure follows very
closely to that presented in [9]. We start by consider-
ing a mixed stationary density matrix ρxuv describing
the system after absorption of an XUV photon at time
τ = 0. We describe the interaction of the system with
the reference and probe IR fields as:

ρxuv+ir(t) = U(t, τ)ρxuvU
†(t, τ), (13)

where U(t, τ) is the time-ordered unitary operator:

U(t, τ) = T
[
exp

(
−i

∫ t

−∞
dt′H(t′, τ)

)]
, (14)

where T is the time-ordering operator and H(t′, τ) is
the Hamiltonian describing the interaction with the IR
pulses. The IR reference component is fixed in time at
τ = 0 while the IR probe component is delayed and ar-
rives at time τ . For the heuristic derivation we have set
ℏ = 1.
We express the Hamiltonian H = H0 +Hlight-matter(t)

in the interaction picture, where the matter Hamiltonian
is diagonal in the energy basis, H0 =

∫
dε ε |ε⟩ ⟨ε| +∫

dEE |E⟩ ⟨E|. We assume a dipolar light-mater Hamil-
tonian Hlight-matter = −µEir,ref(t) − µEir,probe(t) where
Eir,ref(t), Eir,probe(t) are the electric fields of the IR
pulses. We have then

H ′
light-matter(t) = eiH0tHlight-matter(t)e

−iH0t

= −µ(t)Eir,ref(t)− µ(t)Eir,probe(t).
(15)
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where

µ(t) =

∫
dE

∫
dε
[
µEεe

iωEεt |E⟩ ⟨ε|+ µ∗
Eεe

−iωEεt |ε⟩ ⟨E|
]
,

(16)
where µEε are the transition dipole moment elements be-
tween states |E⟩ and |ε⟩. For the purposes of the deriva-
tion, we assume that the reference is a monochromatic
pulse and the probe has a flat spectrum,

Eir,ref(t) = Aref

(
eiωir,reft+iϕref + c.c.

)
Eir,probe(t) = Aprobeδ(t− τ)

(
eiωir,probe(t−τ)+iϕprobe + c.c.

)
.

(17)

Photoelectrons are measured at long times so that
we can take the expressions in the limit limt→∞ U(t, τ).
Then, the integration in the exponent in Eq. (14) us-
ing the expression in Eqs. (15)-(17) are readily done. We

write H ′
light-matter(t

′) = H
′(ref)
light-matter(t

′)+H
′(probe)
light-matter(t

′),
and integrate each component separately,∫ ∞

−∞
H

′(ref)
light-matter(t

′)dt′

=

∫ +∞

−∞
dt′
∫

dE

∫
dε
[
µEεe

iωEεt
′
|E⟩ ⟨ε|

+µ∗
Eεe

−iωEεt
′
|ε⟩ ⟨E|

]
×Aref

(
eiωir,reft

′+iϕref + c.c.
)

= 2π

∫
dE

∫
dε ArefµEεδ(ωEε − ωir,ref)e

iϕref |E⟩ ⟨ε|+ h.c.

,

(18)

where we have only kept counter-rotating terms. We can
clearly see here that the role of the reference pulse is to
select a given state among the {|ε⟩} manifold for a final
detection energy E obeying E = ε+ℏωir,ref. The integral
for the probe pulse interaction Hamiltonian gives∫ ∞

−∞
H

′(probe)
light-matter(t

′)dt′

=

∫ +∞

−∞
dt′
∫

dE

∫
dε

×
[
µEεe

iωEεt
′
|E⟩ ⟨ε|+ µ∗

Eεe
−iωEεt

′
|ε⟩ ⟨E|

]
×Aprobeδ(t

′ − τ)
(
eiωir,probe(t

′−τ)+iϕprobe + c.c.
)

=

∫
dE

∫
dε AprobeµEεe

iωEετeiϕprobe |E⟩ ⟨ε|+ h.c.

(19)

With these expressions we can calculate the transition
probability for absorbing the IR photons. We assume
that ϕref = ϕprobe = 0 We first carry out a perturbative
expansion of the evolution operator from Eq. (14) valid

for weak fields,

lim
t→∞

U ′(t, τ) ≈ 1

+

[∫
dE

∫
dε µEε (2πArefδ(ωEε − ωir,ref)

+Aprobee
iωEετ

)
+ h.c.

]
+O(µ2).

(20)

where the prime indicates the operator in the interaction
picture. The measured photoelectron signal for a final
state with kinetic energy Ef is calculated by Sf (Ef , τ) =
Tr(ρxuv+ir |Ef ⟩ ⟨Ef |) = ⟨Ef |ρxuv+ir|Ef ⟩. Since the ob-
servable is a population, the expressions in the interac-
tion and the Schrödinger pictures are the same. We de-
tect photoelectrons which result from absorption of an
IR photon such that Ef lies above the photoelectron en-
ergies without the absorption of an IR photon. Using Eq.
(20) and the fact that ⟨Ef |ρxuv|Ef ⟩ = 0, we have

Sf (Ef , τ) =

2π

∫
dε

∫
dε′µEfε

(
Aprobee

iωEfετ
)

× ρxuv(ε, ε
′)× µ∗

Efε′
(
Arefδ(ωEfε′ − ωir,ref)

)
+ 2π

∫
dε

∫
dε′µEfε

(
Arefδ(ωEfε − ωir,ref)

)
e−i(ϕprobe−ϕref)

× ρxuv(ε, ε
′)× µ∗

Efε′

(
Aprobee

−iωEfε′τ
)

(21)

Assuming a flat, energy independent transition dipole
moment µEε ≡ µc and doing the integration over ε′

Sf (Ef , τ) =

2π

∫
dεAprobeAref|µc|2eiωEfετei(ϕprobe−ϕref)

× ρxuv(ε, ℏ(ωEf
− ωir,ref))

+ 2π

∫
dεAprobeAref|µc|2e

−iωEfε′τe−i(ϕprobe−ϕref)

× ρxuv(ℏ(ωEf
− ωir,ref), ε)

(22)

We Fourier transform Eq. (22) and interchange the in-
tegration order for ε and τ . We also introduce the Heav-
iside function Heav(τ) and extend the lower integration



16

S1

S2
I2

C

FIG. 9: Contour for the evaluation of integral in Eq. 25

bound to −∞.

S̃f (Ef , ℏωτ ) = 2πAprobeAref|µc|2

×
[∫ +∞

−∞
dε

∫ +∞

−∞
dτHeav(τ)e−iωττ+iωEfετ

×ρxuv(ε, ℏ(ωEf
− ωir,ref))

+

∫ +∞

−∞
dε

∫ +∞

−∞
dτHeav(τ)e−iωττ−iωEfετ

×ρxuv(ℏ(ωEf
− ωir,ref), ε)

]
=
π

2

∫ +∞

−∞
dεAprobeAref|µc|2

×
[(

ℏδ(ℏωτ + ε− Ef )−
iℏ

π(ℏωτ + ε− Ef )

)
×ρxuv(ε, ℏ(ωEf

− ωir,ref))

+

(
ℏδ(ℏωτ − ε+ Ef )−

iℏ
π(ℏωτ − ε+ Ef )

)
×ρxuv(ℏ(ωEf

− ωir,ref), ε)
]

(23)

When carrying out the ε integral, the first term δ function
is trivial to do. We consider in detail the integral

I2 = PV

(∫ +∞

−∞
dε

−iℏ
π(ℏωτ + ε− Ef )

ρxuv(ε, Ef − ℏωir,ref)

)
(24)

where PV is the principal value of the integral. We as-
sume a well-behaved function for ρxuv, in this case with
poles with respect to the integrating variable on only the
upper or lower half-plane, without branch cuts and going
to zero as |ε| → ∞ faster than 1/ε. To evaluate I2 we

close the contour C with a large semicircle S1 and a small
semicircle around the pole of the real axis S2 (see Figure
9). We have:

I2 = C − S1 − S2 (25)

C and S1 vanishes and we can evaluate S2 by doing a
change of variables ε+ℏωτ −Ef = reiθ, and evaluate the
small semicircle contribution as

S2 =
1

2
lim
r→0

∫ 0

π

dθreiθ

πreiθ
ρxuv(Ef −ℏωτ , Ef −ℏωir,ref) (26)

So,

I2 =
1

2
ρxuv(Ef − ℏωτ , ℏ(ωEf

− ωir,ref)) (27)

Putting together the two half-integrals and using the
property ρ(ε′, ε) = ρ∗(ε, ε′) gives the final result

S̃f (ℏωτ , Ef ) = AprobeAref|µc|2π
× [ρxuv(Ef − ℏωτ , Ef − ℏωir,ref)

×+ ρ∗xuv(Ef + ℏωτ , Ef − ℏωir,ref)]

(28)

This heuristic derivation provides an approximation to
the encoding and as to the position of the signals. Re-
defining the new variables ε+2 = Ef − ℏωτ and ε1 =
Ef − ℏωir,ref concludes the transformation from signal to
density matrix.

APPENDIX B. ANALYTICAL EXPRESSIONS OF
THE TWO-PHOTON ABSORPTION

TRANSITION AMPLITUDES

In this appendix we derive the analytical expressions to
obtain Eq. (7). The definition and meaning of the vari-
ables used here is also summarized in Table I (Appendix
E).

A. General expressions for a Fano structure

For a system with an intermediate XUV manifold con-
stituted by a discrete level at energy ℏωag coupled to
a continuum labelled by {|ε⟩}, and a structurless final
XUV+IR continuum (Figure 3, left), the two-photon
absorption probability amplitude for interacting with a
Gaussian XUV pulse of center frequency ωxuv and width
σxuv, and a second IR pulse some delay time τ later with
frequency ωir and width σir to obtain a photoelectron at
energy E, is [14]

Aωir
(τ) = F (τ)eiωirτ

[
w(zE) + (β − ϵ−1

Ea
)(qag − i)w(zEa

)
]

(29)
Where:

F (τ) =− µEεµεgπ
AxuvAir

4σxuvσIR

× exp

[
−1

2

(
δ2

σ2
+

τ2

σ2
t

+ 2i
σIR

σxuv

δ

σ

τ

σt

)] (30)
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with σ =
√
σ2
xuv + σ2

ir, σt =
√
σ−2
xuv + σ−2

ir and δ = ωxuv+

ωir −E/ℏ, Axuv and Air are the electric field strength of
the XUV and IR pulses respectively, while the complex
parameter zE is defined as

zE =
σt√
2

[(
ωxuv −

σ2
xuv

σ2
δ − i

τ

σ2
t

)
− E/ℏ

]
(31)

and

zEa =
σt√
2

[
(ωxuv − ωag) +

σ2
xuv

σ2
(E/ℏ− ωxuv − ωir,ref)− i

τ

σ2
t

]
(32)

where qag = µεa

πVaµEε
is the standard Fano parameter,

β = πµEa/(VaµEε) and ϵEa
= (E − ℏωag)/Γa. We now

examine the form these equations take for the reference
and probe components of the IR excitation.

B. Narrow bandwidth probe

We calculate the limiting case of a standard XUV
Gaussian pulse and a narrow bandwidth IR pulse. When
limσir,ref→0 σ = σxuv and limσir,ref→0 σt = 1

σir,ref
, the ar-

guments of the Faddeeva functions have the following
limiting form:

zE =− ωir,ref

σir,ref

√
2

zEa =
−ωag + (E/ℏ− ωir,ref)

σir,ref

√
2

(33)

These arguments become real and large, for which we
can use an asymptotic form of the Faddeeva function,
w(z) ≈ 1

−iz
√
π
. We have then:

w(zE) ≈− iσir,ref

ωir,ref

√
2

π

w(zEa) ≈
iσir,ref

(E/ℏ− ωir,ref − ωag)

√
2

π

(34)

and with the simplified form factor

F (0) =− πµEεµεg
AxuvAir,ref

4σxuvσir,ref
exp

[
−1

2

(
δ2ref
σ2
xuv

)]
(35)

where δref = ωxuv + ωir,ref − E/ℏ. The two-photon tran-
sition amplitude becomes

Aωir,ref
(0) = i

√
2π

AxuvAir,ref

4σxuvωir,ref
µEεµεg

× exp

[
−1

2

(
δ2ref
σ2
xuv

)]
×

[
1−

ωir,ref(β − ϵ−1
Ea

)(qag − i)

E/ℏ− ωir,ref − ωag

] (36)

where ϵE =
E−ℏωag−ℏωir,ref

Γa
, and ξ =

ℏωir,ref

Γa

(
−β + 1

ϵEa

)
,

Γa = πV 2
a . The function

∆ref = (qag − i)(ξ − 1) (37)

measures the deviations from the standard Fano profile.
Its imaginary part reduces the contrast of the destructive
interference point while its energy dependence slightly
distorts the profile. We can repackage this expression
closer to a Fano form

Aωir,ref
(0) = i

√
2π

AxuvAir,ref

4σxuvωir,ref
µEεµεg

× exp

[
−1

2

(
δ2ref
σ2
xuv

)]
× (ϵE + qag) + ∆ref

ϵE + i

= i
√
2π

AxuvAir,ref

4σxuvωir,ref
µEεµεg

×G(δref, σxuv)ffano(ϵE , qag +∆ref)

(38)

For the conditions β ≈ 0 and the energy resonance
condition

ωir,ref

E−ωag
≈ 1, we have that ξ ≈ 1, ∆ref ≈ 0 and

the transition probability amplitude is proportional to
the Fano profile weighted by the XUV bandwidth (see
Figure 10).

Aωir,ref
(0) ∝ (ϵE + qag)

ϵE + i
exp

[
−1

2

(
δ2ref
σ2
xuv

)]
(39)

C. Fourier transform of the two-photo absorption
for a broad bandwidth probe

The use of a broadband probe does not lead to a sim-
plifying limit as in the narrowband reference case, and
the Fourier transform of the entire expression needs to
be calculated. We rewrite

zE = −i
τ + iτE√

2σt

zEa
= −i

τ + iτa√
2σt

(40)

where σ =
√
σ2
xuv + σ2

ir,probe, σt =
√
σ−2
xuv + σ−2

ir,probe,

τE = σ2
t δE and τa = σ2

t δa, δE = ωxuv − E/ℏ − σ2
xuv

σ2 δ

and δa = ωxuv − ωag − σ2
xuv

σ2 δ. Their squares are

(zE)
2 = − τ2

2σ2
t

− i
ττE
σ2
t

+
τ2E
2σ2

t

(zEa
)2 = − τ2

2σ2
t

− i
ττa
σ2
t

+
τ2a
2σ2

t

(41)

We decompose the form factor as:

F(τ) = f0fϕ(τ)fE(Ef )fG(τ) (42)
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FIG. 10: Simulation for a narrowband probe, its
analytical limit and a weighted Fano profile. Left and

right panels show real and imaginary parts, respectively.
Deviations on the lower energy side become stronger

due to the divergence of the ξ parameter as the
detected energy Ef becomes comparable to ℏωxuv.

where f0 = −πµEεµεg
AxuvAir,probe

4σxuvσir,probe
, fϕ(τ) = e−iωF τ ,

fE(Ef ) = e−
δ2

2σ2 , fG(τ) = e
− τ2

2σ2
t and ωF =

σir,probe

σxuv

δ
σσt

.

Writing w(z) = e−z2

(1−erf(−iz)) we can simplify Equa-

tion (29) as

Aωir,probe
(τ) = f0fE(Ef )

×
∑

j=E,a

Aje
−iΩjτe−

σ2
t δ2j
2 (1− erf(−izj))

(43)

where AE = 1, Aa = (β − ϵ−1
Ea

)(qag − i), Ωj = ωF − δj −
ωir,probe and zj =

−iτ+τj√
2σt

, where j = E, a corresponds to

the direct transition (E) or that going through the dis-
crete state (a).
We can make the simplifying assumption that for the
range of parameters relevant for the experiment (1 −
erf(−izj)) ≈ −erf(−izj). The Fourier transform of the
error function is

Fτ {erf(τ)} = −i
e−ω2

τ/4

ωτ/2
(44)

and so using the Fourier identities for rescaling and shifts
Fτ (e

−iΩτf(τ/a+ b)) = |a| f̃(a(Ω + ωτ ))e
iab(Ω+ωτ ) where

Fτ (f(τ)) = f̃(ωτ ):

Fτ

{
e−iΩjτerf

(
− τ√

2σt

− i
σt√
2
δj

)}

= 2i
e−

(ωτ+Ωj+δj)
2σ2

t
2 e

σ2
t δ2j
2

ωτ +Ωj

(45)

The Fourier transform of eq. (43) is:

Ãωir,probe
(ωτ ) = −2if0

× e−
δ2

2σ2 e−
σ2
t
2 (ωτ−ωir,probe+

σ2
ir,probe

σ2 δ)2

×

[
1

ωτ
+

(β − ϵ−1
Ea

)(qag − i)

ωτ − (E − ω̃ag)

] (46)

The expression in Eq. (46) can be decomposed into a
set of prefactors (first line), a modulation function that
determines the region where the signal will appear, de-
pending on the properties of the pulse sequence (second
line), and an energy dependence reflecting the structure
of the energy levels (third line). Defining

M
(+)
probe(ωτ ) =

1

±ωτ
e−

δ2

2σ2 e−
σ2
t
2 (ωτ−ωir,probe+

σ2
ir,probe

σ2 δ)2

(47)
Remembering that ϵEa = (E−ωag)/Γa and ω̃ag = ωag −
iΓa with Γa = πV 2

a , we have:

Ãωir,probe
(ωτ ) = −2if0M

(+)
probe(ωτ )

×
[
(−ϵτ + qag) + ∆probe

(−ετ + i)

]
= −2if0M

(+)
probe(ωτ )

× ffano(−ϵτ , qag +∆probe)

(48)
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where the function that measures the deviation from the
Fano profile

∆probe = (qag − i)

(
ξ

ωτ

ωir,ref
− 1

)
(49)

and ξ =
ℏωir,ref

Γa

(
1

ϵEa
− β

)
, and we have defined a new de-

tuning parameter ϵτ ≡ ϵ
(+)
τ =

ℏωτ−(Ef−ℏωag)
Γa

. If we can
make the approximations ∆probe ≈ 0 then the profile has
the Fano form. The comparison for a numerical Fourier
transform, the analytical solution of Eq. (48) and the
simplification for ∆probe = 0 is shown in Figure 11. We
need to multiply the analytical expression by a factor of
π2/2 to agree with the numerical Fast Fourier Transform
routine in Python.

D. Building the density matrix

From the expressions for narrowband and broadband
pulses we can construct a density matrix. Using equation
(4) we have:

S̃RK(Ef , ωτ ) = −i
√
2π

AxuvAir,ref

4σxuvωir,ref
µEεµεg

×G(δref, σxuv)f
∗
fano(ϵE , qag +∆ref)

× (−2if0M
(+)
probe(ωτ )

× ffano(−ϵτ , qag +∆probe))

+ i
√
2π

AxuvAir,ref

4σxuvωir,ref
µEεµεg

×G(δref, σxuv)ffano(ϵE , qag +∆ref)

× 2if0M
(−)
probe(ωτ )

× f∗
fano(−ϵτ , qag +∆probe)

(50)

which we can write compactly as:

S̃RK(Ef , ωτ ) = S̃
(+)
RK(Ef , ωτ ) + S̃

(−)
RK(Ef , ωτ ),

S̃
(+)
RK(Ef , ωτ ) = I0G(δref, σxuv)M

(+)
probe(Ef , ωτ )

× ffano(εEf
, qref)f

∗
fano(−ετ , qprobe),

S̃
(−)
RK(Ef , ωτ ) = I0G(δref, σxuv)M

(−)
probe(Ef , ωτ )

× f∗
fano(εEf

, qref)ffano(ετ , qprobe)

(51)

where I0 = −2
√
2π

AxuvAir,ref

4σxuvωir,ref
µEεµεgf0.

APPENDIX C. ARBITRARY ENERGY
STRUCTURE

Multiple discrete levels in the XUV manifold.
The arguments outlined earlier apply for an intermediate
manifold (after absorption of an XUV photon) that
consists of a discrete level (resonance) coupled to a
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FIG. 11: Numerical simulation and analytical result of
the Fourier transform Ãir,probe(ωτ ).

continuous manifold of levels, and a final manifold
(after subsequent absorption of an IR photon) that
consists of only a continuous manifold of levels. We
would like to treat the arbitrary case of an arbitrary
number of discrete levels in the intermediate mani-
fold. The two-photon cross-section is then Aω2(τ) =

F (τ)eiω2τ
[
w(zE) +

∑
j(βj − ε−1

Eaj
)(qajg − i)w(zEaj

)
]
.

We need to calculate the two terms that make up the
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final expression. These can be directly written down as:

Aωir,ref
(0) = i

√
2π

AxuvAir,ref

4σxuvωir,ref
µEεµεg

× exp

[
−1

2

(
δ2ref
σ2
xuv

)]
×
∑
i

[
1−

ωir,ref(β − ϵ−1
Eai

)(qaig − i)

E/ℏ− ωir,ref − ωaig

] (52)

and

Ãωir,probe
(ωτ ) = −i2f0e

− δ2

2σ2 e−
σ2
t
2 (ωτ−ω2+

σ2
2

σ2 δ)2

×

 1

ωτ
+
∑
j

(βj − ϵ−1
Eaj

)(qajg − i)

ωτ − (Ef − ω̃ajg)

 (53)

Having multiple levels coupled to the continuum
introduce deviations from the Fano profile and destroy a
perfect destructive interference, but the density matrix
can nonetheless be reconstructed either exactly by
assuming a model of the energy structure or model-free
with a small error.

Multiple discrete levels in the XUV manifold
and multiple discrete levels in the XUV+IR man-
ifold. In a more general setting we can have discrete lev-
els |a⟩ in the XUV manifold, as well as discrete levels |b⟩
in the XUV+IR manifold, as well as discrete levels |n⟩
accessible by photon absorption from the ground state
that are not coupled to ionized states. We use the ex-
pression for the two-photon transition amplitude from
Jimenez-Galan et al. [14],

Aωir,probe
(τ) = F (τ)eiωir,probeτ

ϵEb + i

ϵEb − i

×
[
ϵEa + qãg
ϵEa + i

w(zE) + (qãg − i)w(zẼa)

×
(
β
ϵEb + qb̃a
ϵEb + i

− 1

ϵEa + i
+

δba(qãb − i)− ξba
ϵEb + i

)
+

√
2

π

1

σt

µbε

µEε(ϵEb + i)

+
∑
n

ϵEb + qb̃n
ϵEb + i

µEnµng

µEεµεg
w(zEn)

]
(54)

where we have introduced new parameters

δba =
Γa/2

VbE

µbε

µEε
; ξba =

Vaε

VbE

µba

µEε
(55)

To construct the expression of a narrow bandwidth IR
pulse and XUV pulse, we use the same limiting forms of

the error function and obtain

Aωir,ref
(0) = i

√
2π

AxuvAir,ref

4σxuvωir,ref
µEεµεg

× exp

[
−1

2

(
δ2ref
σ2
xuv

)]
ϵEb + i

ϵEb − i

×
[
ϵEa + qãg
ϵEa + i

− (qãg − i)ℏωir,ref

E − ℏωir,ref − ℏωãg

×
(
β
ϵEb + qb̃a
ϵEb + i

− 1

ϵEa + i
+

δba(qãb − i)− ξba
ϵEb + i

)
+
ωir,ref

i

µbε

µEε(ϵEb + i)

−
∑
n

ϵEb + qb̃n
ϵEb + i

µEnµng

µEεµεg

ℏωir,ref

E − ℏωir,ref − ℏωng

]

(56)

and for the Fourier transform of the broadband probe

Ãωir,probe
(ωτ ) = −2if0M

(+)
probe(ωτ )

ϵEb + i

ϵEb − i

×
[
ϵEa + qãg
ϵEa + i

+
ℏωτ (qãg − i)

ℏωτ − (E − ω̃ag)

×
(
β
ϵEb + qb̃a
ϵEb + i

− 1

ϵEa + i
+

δba(qãb − i)− ξba
ϵEb + i

)
+

iωτµbε

µEε(ϵEb + i)

+
∑
n

ϵEb + qb̃n
ϵEb + i

µEnµng

µEεµεg

ℏωτ

ℏωτ − (E − ℏωng)

]
(57)

APPENDIX D. SOURCES OF ERROR

We now discuss the sources of error that can lead to
an imperfectly reconstructed density matrix.

Model free vs. fitted reconstruction of the density
matrix. Ideally, the rainbow-KRAKEN protocol recon-
structs the density matrix model-free, that is, faithfully
provide ρxuv after the transformations to the signal
of the previous section without assumptions on the
energy level or structure. As becomes apparent from
Eq. (7), we incur in an error described by the functions
∆probe and ∆ref. Model-free reconstructions constitute
the approximation that ∆probe = ∆ref = 0 (more
complex energy structures will also have equivalent
error functions as are calculate in Appendix C.). This
approximation, however, is not drastic and we obtain
fidelities close to 0.98, meaning that deviations introduce
a negligible error. This error is absent when determining
the purity.

Finite IR probe pulse bandwidth. For a narrower IR
bandwidth than can be corrected for by Step 3, we
can only reconstruct a portion of the density matrix
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close to the diagonal (Fig. 12.a). In itself, this would
introduce an erroneous degree of decoherence between
levels farther apart than the IR bandwidth. There
are two options to solve this: we can shift the probe
spectrum to sit on the edge of the IR reference frequency
and so extend the energy distance between states whose
coherence can be probed. All of the expressions derived
apply, except that then only an upper or lower trian-
gular part of the density matrix can be reconstructed.
However since it is Hermitian the remaining part can
be carefully inferred. Very large density matrices can
be reconstructed by parts by shifting the IR probe
spectrum with respect to the IR reference frequency.
The other option is to artificially reduce the XUV
bandwidth to focus our attention on only a part of
the wavepacket. This can be achieved by multiplying
the x-axis by (G(δref, σxuv) + ζ)−1(G(δref, σeff)), where
σeff < σxuv is an effective wavepacket width that can
be reconstructed by the IR probe pulse, and modifying
the correction to the M (±) function to similarly restrict
the XUV wavepacket. It is an identical normalization in
structure as in Step 3 except that instead of increasing
the bandwidth - which can only be done so far - we
reduce it. An analysis of the fidelity and purity as
a function of IR probe bandwidth in the case where
ωir,ref = ωir,probe shows that a convergence is reached
when σir,probe ≈ σxuv (Figure 7). Figure 12.b shows the
restricted bandwidth reconstruction where a purity of
0.99 is obtained.

Impartial substractions of pure probe and pure refer-
ence contributions. The signal calculated in Eq.(4) re-
lies on substracting the signal where the photoelectron
wavepacket interacts only with the reference and only
with the probe. Typically, substractions are imperfect,
leading to errors in the final signal. However, these
parasitic contributions appear clustered within σir,probe

of ωτ = 0, distinctly separated from the regions where
the desired signal appears. Figure 13 shows the Fourier
transform of the interferogram without substraction of
the parasitic contributions. We can see the positive and
negative frequency signal that encode the density matrix,
and at zero frequency very far from the desired signal
all of the contributions that we do not want. Lock-in
modulation of the IR components can automatically re-
move the photoelectrons arising solely from the reference
or probe components, however the sequence naturally
isolates the signals in separate places of Fourier space,
making it truly a single-scan density matrix reconstruc-

tion. As a technical note, since the reference IR probe
is not scanned, there will be a constant signal for all de-
lay times. Fourier transforming a constant signal with
a finite time-delay will generate artificial high-frequency
terms, so that if Fourier filtering is used to remove the
unwanted contributions a windowing function is needed
to make the signal go to zero towards the end of the
scanning range.

FIG. 12: a) Reconstruction of the density matrix for He
using ℏσir,probe = 0.05 eV. b) Reconstruction using a

mask corresponding to σeff = σir,probe.

APPENDIX E. NOMENCLATURE
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FIG. 13: Fourier encodings of all of the photoelectron
signals coming from interactions with the IR probe, the

IR reference, and their interference.

Variable Meaning Units

ωxuv Freq. of the XUV photon rad/s

σxuv Width of the XUV photon rad/s

ωir,ref Freq. of the IR reference photon rad/s

σir,ref Width of the IR reference photon rad/s

ωir,probe Freq. of the IR probe photon rad/s

σir,probe Width of the IR probe photon rad/s

|g⟩ ground state

{|ε⟩} continuous manifold of states accessible after absorption of an XUV photon

|ε1⟩, |ε2⟩, |ε2′⟩ levels within {|ε⟩}
{|E⟩} continuous manifold of states accessible after absorption of an XUV and an IR photon

|Ef ⟩ level within {|E⟩}
|a⟩ discrete level accesssible by absorption of an XUV photon

ω̃ag ωag − iΓa/ℏ rad/s

ℏωag transition energy from the ground state to |a⟩ eV

Va electronic coupling between |a⟩ and |ε⟩ eV

Γa π |Va|2 eV

τ Delay between the XUV and IR probe pulses fs

ωτ Conjugate freq. to the delay τ rad/s

δi ωxuv + ωIR,i − Ef/ℏ, for i = ref, probe rad/s

δE ωxuv − E/ℏ− σ2
xuv
σ2 δ rad/s

δa ωxuv − ωag − σ2
xuv
σ2 δ rad/s

δ
(±)
ωτ ±ωτ + ωxuv − Ef/ℏ rad/s

ξ
ℏωir,ref

Γ

(
1

ϵEa
− β

)
∆ref (q − i)(ξ − 1)

∆probe (q − i)(ξ ωτ
ωir,ref

− 1)

TABLE I: Table of variables and their meanings with corresponding units.
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