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Abstract. This paper offers a formal framework for the rare collision risk estimation of au-

tonomous vehicles (AVs) with multi-agent situation awareness, affected by different sources of

noise in a complex dynamic environment. In our proposed setting, the situation awareness is

considered for one of the ego vehicles by aggregating a range of diverse information gathered from

other vehicles into a vector. We model AVs equipped with the situation awareness as general sto-

chastic hybrid systems (GSHS) and assess the probability of collision in a lane-change scenario

where two self-driving vehicles simultaneously intend to switch lanes into a shared one, while

utilizing the time-to-collision measure for decision-making as required. Due to the substantial

data requirements of simulation-based methods for the rare collision risk estimation, we leverage a

multi-level importance splitting technique, known as interacting particle system-based estimation

with fixed assignment splitting (IPS-FAS). This approach allows us to estimate the probability

of a rare event by employing a group of interacting particles. Specifically, each particle embodies

a system trajectory and engages with others through resampling and branching, focusing com-

putational resources on trajectories with the highest probability of encountering the rare event.

The effectiveness of our proposed approach is demonstrated through an extensive simulation of a

lane-change scenario.
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1. Introduction

Autonomous vehicles (AVs) have been becoming increasingly popular on a daily basis, primarily

due to their numerous advantages, including the reduction of air pollution, alleviation of traffic

congestion, and mitigation of human-error-related fatalities. However, these complex systems op-

erate within dynamic environments where they interact with a diverse range of factors, presenting

various uncertainties, such as unpredictable weather conditions, unexpected pedestrian movements,

and the wide-ranging driving behaviors of human operators. Given that accidents in this context

can pose significant risks to human safety, AVs are considered safety-critical systems [1] and en-

suring their safe operation in complex and uncertain environments is a paramount challenge that

demands significant attention.

Improving the safety of AVs and reducing their collision risks involve leveraging information from

all agents to enhance AVs awareness. By doing so, AVs can, in specific scenarios, make informed

decisions based on the concept of situation awareness (SA) [2], by involving the knowledge of

ongoing events [3]. This strategic approach is capable of significantly decreasing collision risks,

even to the extent of making them exceedingly rare, such as less than 10−7. Consequently, it

becomes imperative to investigate the impact of situation awareness in such challenging scenarios,

when the probability of AV rare collisions approaches zero (≈ 0). When dealing with rare events,

typically characterized by a probability less than 10−7, Monte Carlo methods [4] become unfeasible,

unless an impractically large sample size is utilized. In such situations, alternative methods are

sought to accurately estimate the probability of rare events within a reasonable sample frame.

There have been various approaches proposed for estimating collision risk of AVs. Existing re-

sults include importance sampling [5], which involves selecting a sampling distribution and weighting

samples by the likelihood ratio between sampling and target distributions. However, finding an ap-

propriate sampling distribution can be challenging, and as the problem dimensions increase, the

likelihood ratio becomes less reliable, leading to its avoidance in high-dimensional problems [6].

Another alternative method, known as importance splitting [7] (also referred to as multi-level split-

ting, splitting, or subset simulation), aims to overcome these challenges. In particular, importance

splitting approach treats rare events as nested occurrences with relatively higher probabilities, fo-

cusing on propagating realizations that are likely to lead to the rare event (mutation phase), while

discarding others (selection phase) (see e.g., [8, 9]).
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The interacting particle system (IPS) [10,11] is analogous to an importance sampling algorithm,

with the distinction that the interacting particles possess resampling weights. This relatively recent

algorithm is founded on evolutionary principles and enhances the estimation of rare-event probabili-

ties. Unlike the importance sampling method, where both selection and mutation stages are applied

to the entire Markov trajectory, IPS applies these stages at various times during the evolution of

the Markov process. This distinction makes IPS a potentially more attractive option compared to

the importance sampling method [12], particularly when simulating entire Markov trajectories is

time-consuming (see e.g., [13–16]).

There have also been findings regarding situation awareness as a method to enhance system

safety. Existing results include situation awareness for dynamic systems, initially introduced in [17],

which encompasses perceiving environmental elements across time and space; a formal framework

based on the concept of multi-agent SA (MA-SA) relations in a system of multiple agents [18]; AV

safety assurance, with a particular emphasis on dynamic risk assessment (DRA) [2]; and a model-

based framework based on SINADRA for dynamic risk assessment that balances residual risk and

driving performance [19]. In complex multi-agent scenarios, a compositional data-driven approach

for formally estimating collision risks of AVs with black-box dynamics is introduced in [20].

Original contributions. This paper introduces a formal approach for the rare collision risk

estimation of AVs operating on a three-lane road alongside human-driven vehicles, by utilizing

the interacting particle system-based estimation with fixed assignment splitting (IPS-FAS) algo-

rithm [15]. We model each AV as a general stochastic hybrid system (GSHS) to capture various

sources of noise and uncertainty. The primary scenario under examination is a lane-change situ-

ation, in which AVs are positioned in the first and third lanes, each followed by a human-driven

vehicle, with an unoccupied space in the second lane. At a specific time instant, both AVs make a

decision to change lanes. When the AV with situation awareness detects the other AV’s lane-change

intention, it computes the time-to-collision [21] and utilizes this measurement to determine whether

to proceed with its lane change or revert to its original lane. Our primary objective is to compute

the potentially rare collision probability for these two AVs under different conditions, incorporating

situation awareness and computing the time-to-collision measure. The scenario under investigation

is visually represented in Fig. 1, where the ego AVs are depicted as the red and green vehicles.
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ER

EL

Figure 1. Lane-change scenario: Two AVs are recognized as e ∈ E = {EL,ER},

with the first letter indicating their status as ego vehicles and the second letter

specifying their lane (right or left).

2. General Stochastic Hybrid Systems

2.1. Preliminaries and Notation. We denote the set of real and positive real numbers by R and

R
+, respectively, while N := {1, 2, . . .} represents the set of positive integers. The logical AND

and OR operations are denoted by ∧ and ∨, respectively. Symbols 111n×m and 000n×m are matrices of

n ×m dimension, consisting of unit and zero elements, respectively. We denote the empty set by

∅. We use col(·) to create a vector from its input arguments. Moreover, we denote the exponential

distribution with rate parameter λ by exp(λ). For a sequence of scalars (γ1, γ2, . . . , γn), we use the

notation
∏n

k=1 γk to represent the product γ1 ·γ2 · · · · ·γn. The system’s state in this work is hybrid,

represented by both a continuous variable, denoted as x, and a discrete variable, denoted as θ. The

continuous variable evolves in some open sets in Euclidean space Xθ, while the discrete variable is

an element of a countable set Θ. The hybrid state space is denoted by Ξ ,
⋃

θ∈Θ{θ} ×Xθ, and

Ξ = Ξ ∪ ∂Ξ represents the closure of Ξ, where ∂Ξ ,
⋃

θ∈Θ{θ} × ∂Xθ is the boundary of Ξ.

We consider a probability space (Ω,FΩ,PΩ), where Ω is the sample space, FΩ is a σ-algebra

on Ω comprising subsets of Ω as events, and PΩ is a probability measure that assigns probabilities

to events. We assume that triple (Ω,FΩ,PΩ) is endowed with a filtration F = (Fs)s≥0 satisfying

the usual conditions of completeness and right continuity. Let (Ws)s≥0 be an m-dimensional F-

Brownian motion, and (Ps)s≥0 be an m′-dimensional F-Poisson process (mutually independent).

If X is a Hausdorff topological space, B(X) denotes its Borel σ-algebra, and (X,B(X)) is a Borel

space.
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2.2. General Stochastic Hybrid Systems. As autonomous vehicles operate in a complex en-

vironment interacting with various entities, they might face numerous unpredicted events. Hence-

forth, different sources of uncertainty should be taken into account when modeling AVs. To do

so, we employ the notion of general stochastic hybrid systems, which encompasses a wide range of

stochastic phenomena, as follows [16].

Definition 2.1 (GSHS). Each agent of AVs is modeled as a general stochastic hybrid system

(GSHS), denoted by A =
(

(Θ, d,X ), f, g, Init, λ,R
)

, where

• Θ is a countable set of discrete variables;

• d : Θ → N is a mapping that provides the dimensions of the continuous state spaces for

each element in Θ;

• X : Θ → R
d(·) associates each θ ∈ Θ with an open subset Xθ within R

d(θ);

• f : Ξ → R
d(·) is a vector field;

• g : Ξ → R
d(·)×m is an X(·)-valued matrix, m ∈ N;

• Init : B(Ξ) → [0, 1] is an initial probability measure on (Ξ,B(Ξ));

• λ : Ξ → R
+ is a transition rate function;

• R : Ξ× B(Ξ) → [0, 1] is a transition measure.

Then, a stochastic process {θt,xt} is called a GSHS execution if there exists a sequence of stopping

times s0 = 0 < s1 < s2 < · · · such that for each j ∈ N,

• (θ0,x0) is a Ξ-valued random variable extracted according to the probability measure Init;

• For t ∈ [sj−1, sj), θt, xt is a solution of the stochastic differential equation (SDE):











dθt = 0

dxt = f(θt,xt)dt+ g(θt,xt)dWt

in which Wt is an m-dimensional standard Brownian motion.

• sj is the minimum of the following two stopping times:

(i) first hitting time t > sj−1 of the boundary of Xθsj−1 by the phase process {xt};

(ii) first moment t > sj−1 of a transition event to happen at rate λ(θt,xt).

• At the stopping time sj the hybrid state (θsj ,xsj ) meets the conditional probability measure

pθsj ,xsj
|θsj−,xsj−

(A|θ,x) = R((θ,x), A) for all A ∈ B(Ξ), where sj− indicates the time

instant immediately before the stopping time sj is reached.
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According to [15], a GSHS can be transformed to an SHS, as a more tractable model, involving

four key modifications:

(i) An auxiliary state component qt, representing “remaining local time”, is initialized at a

specific stopping time τ with an initial condition of qτ ∼ exp(1);

(ii) The exit boundary of Xθ is expanded by introducing an additional boundary condition,

where qt− = 0, i.e., the value of qt just before t;

(iii) Spontaneous probabilistic jumps in {θt,xt} are replaced by forced probabilistic jumps oc-

curring at the moment when qt− = 0;

(iv) When the extended exit boundary is reached at the stopping time τ ′, the “remaining local

time” is resampled as qτ ′ ∼ exp(1).

Subsequently, the GSHS A =
(

(Θ, d,X ), f, g, Init, λ,R
)

is transformed to the SHS A∗ =
(

(Θ∗,

d∗,X ∗), f∗, g∗, Init∗, R∗) as follows:

• Θ∗ = Θ, d∗ = d+ 1, X ∗ = X × (0,∞);

• f∗(θt,xt, ·) =
[

f(θt,xt) − λ(θt,xt)
]⊤

;

• g∗(θt,xt, ·) =
[

g(θt,xt) 0
]⊤

;

• Init∗ =
[

Init q0
]⊤

with q0 ∼ exp(1);

• R∗((θt,xt, ·);A× dq
)

= R
(

(θt,xt);A
)

× e−q
dq.

This transformation is mainly helpful for system execution (cf. Algorithm 1), upon which one

can estimate the rare event probability (cf. Algorithm 4). Having delved into the general stochastic

hybrid system for modeling AVs, in pursuit of our goal to enhance the safety of AVs in the lane-

change scenario, we leverage a multi-agent situation awareness framework in the following section.

3. Multi-Agent Situation Awareness

Here, we leverage the concept of multi-agent situation awareness (MA-SA), building upon the

fundamental work in [18]. In a multi-agent system of N agents Ai, i ∈ {1, . . . , N}, each agent

has state zt,i at time instant t, comprising of SA and non-SA states. The multi-agent situation

awareness relation of agent Ai regarding agent Aj is represented by Zj
i , which is a set of N j

i

different pairs (s, r)n, n ∈ {1, . . . , N j
i } such that s references state element zt,i(s) and r references

state element zt,j(r). Subsequently, the SA of agent Ai about the state of agent Aj at time instant
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t is represented by σj
t,i as follows:

σj
t,i ,

{

zt,i(s), ∃r s.t. (s, r) ∈ Zj
i

}

. (1)

It can be concluded that non-empty Zj
i leads to non-empty σj

t,i, which means agent Ai possesses

SA about agent Aj . In addition to the MA-SA components σj
t,i, j 6= i, ζt,i denotes base state of

Ai, determining state elements of zt,i that are not in relation with any other state element through

{Zj
i , j = 1, . . . , N}, i.e.,

ζt,i ,
{

zt,i(s), s.t. (s, r) /∈ Zj
i for ∀(j, r)

}

. (2)

Following (1)-(2), the state zt,i of agentAi contains base state ζt,i and SA of other agents σj
t,i, j 6= i,

as

zt,i = ζt,i
⋃

j 6=i

σj
t,i. (3)

Now the problem we aim to address can be formally defined as follows.

Problem 3.1. Consider two AVs i, j ∈ E , driving in the first and third lanes of a three-lane

highway, each is followed by another vehicle while also following a leading one. There is

a free spot in the second lane, as illustrated in Fig. 1, and there exists a specific moment

in time when both vehicles decide to change lanes. Quantify the potentially rare collision

probability γ of these two subject vehicles by assuming that ER possesses SA and is modeled

as a GSHS A = ((Θ, d,X ), f, g, Init, λ,R).

To address Problem 3.1, we detail our underlying framework in the following sections.

4. IPS-based Rare-event Estimation

Here, we estimate the probability γ of the hybrid system states (θt,xt), reaching a closed subset

D ⊂ Ξ within a finite time interval [0, T ], defined as

γ = P(τ < T ), (4)

where τ is the first time that {θt,xt} enters the set D, i.e.,

τ = inf{t > 0, (θt,xt) ∈ D}. (5)
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The approach to factorizing the reach probability, denoted as γ, involves the introduction of a

sequence denoted as Dk, k ∈ {0, . . . ,m}, comprising nested closed subsets within the domain Ξ.

More precisely, we define D = Dm ⊂ Dm−1 ⊂ · · · ⊂ D1 ⊂ D0 = Ξ, with the specific condition that

D1 is chosen to ensure P{(θ0,x0) ∈ D1} = 0. Furthermore, in order to represent the first time

instant at which the pair (θt,xt) enters the region Dk, τk is defined as

τk = inf{t > 0; (θt,xt) ∈ Dk ∨ t ≥ T }. (6)

To attain the desired factorization, we employ {0, 1}-valued random variables χk, k ∈ {0, . . . ,m},

defined as

χk =











1, if τk < T,

0, otherwise.

(7)

The factorization presented in the following proposition holds significant practical value by which

the reach probability γ is expressed as a product of individual probabilities γk. This factorization

allows us to systematically explore and estimate the contribution of each level Dk to the overall

rare-event probability.

Proposition 4.1. The factorization is satisfied by the reach probability

γ =

m
∏

k=1

γk, (8)

where γk , E
{

χk=1
∣

∣χk−1=1
}

= P
(

τk<T
∣

∣ τk−1<T
)

.

By using the strong Markov property of {θt,xt}, one can develop a recursive estimation of γ using

the factorization in (8) with Ξ′ , R× Ξ, ξk , (τk, θτk ,xτk), Qk , (0, T )×Dk, for k ∈ {1, . . . ,m},

and the conditional probability measure πk(B) , P(ξk ∈ B|ξk ∈ Qk), for an arbitrary Borel set B

of Ξ′. A solution to the recursion of transformations is given by πk as follows [11]:

πk−1(·)
I. mutation
−−−−−−−→ pk(·)

III. selection
−−−−−−−−→ πk(·)





y
II. conditioning

γk
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where pk(B) , P(ξk ∈ B|ξk−1 ∈ Qk−1). By employing the same approach, the following algorithmic

steps outline the numerical estimation of γ using the IPS method:

πk−1(·)
I. mutation
−−−−−−−→ pk(·)

III. selection
−−−−−−−−→ π̃k(·)

IV. splitting
−−−−−−−−→ πk(·)





y
II. conditioning

γk

Here, γk, pk, and πk indicate empirical density approximations of γk, pk, and πk, each of which is

formed employing a set of NP particles. Those particles that succeed in reaching Qk from Qk−1

form π̃k. Here, four steps must be taken to estimate the reach probability γ, including mutation,

conditioning, selection, and splitting. The mutation step consists of executing the SHS A∗, where

system equations are evaluated at time t until the next time instant t+ = min{t + ∆, s̄t, τ̄k}, in

which ∆ is a small time step, s̄t is the first time > t that the solution hits the boundary of X∗,

and τ̄k is the first time that the solution hits Q∗
k = Qk × R. This evaluation is repeated until it

hits the next level set Qk and the successful particles are collected. This execution is outlined in

Algorithm 1. The conditioning step is calculating the ratio of successful particles NSk
reaching

Qk to NP particles, resulting the reach probability γ̄k which is zero if NSk
= 0. In the selection

step, the successful particles are selected to be used in the splitting step, which is copying each

of the NSk
successful particles as extensively as feasible. The approach used in splitting step

is the fixed assignment splitting, which consists of two steps. In Step I, each particle is copied

⌊NP /NSk
⌋ times, while in Step II, the remaining NP −⌊NP /NSk

⌋NSk
particles are chosen randomly

(without replacement) from NSk
particles and added to the ones from Step I. Then, these steps are

repeated until γ̄k, ∀k ∈ {1, . . . ,m} are obtained, and ultimately, the estimated reach probability γ̄

is calculated. These steps are outlined in Algorithm 4, known as IPS-based estimation with fixed

assignment splitting (IPS-FAS).

For the sake of better illustration of the underlying concept and technicality, we present a running

case study which utilizes the model of a vehicle for AVs E .
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Algorithm 1: The execution function of SHS

Input : Particle vector ξk−1 = (τk−1, θ
∗
τk−1

,x∗
τk−1

, q∗τk−1
), SHS elements

(Θ∗, d∗, X∗, f∗, g∗, Init∗, R∗), and Q∗
k = Qk × R

Output: Estimated particle ξ̄k = (τ̄k, θ̄
∗
τ̄k
, x̄∗

τ̄k
, q̄∗τ̄k)

Function ξ̄k = Execute(ξk−1):

1 Set t := τk−1 and ς̄ := (θ∗τk−1
,x∗

τk−1
, q̄), with q̄ ∼ exp(1)

2 Evaluate equation (9) for the AVs and dqt/dt = −λ(θt,xt) from ς̄ at t until

t+ = min{t+∆, s̄t, τ̄k}; this yields ς̄+

3 if t+ ≥ τ̄k then

ξ̄k = (τ̄k, θ̄
∗
τ̄k , x̄

∗
τ̄k , q̄

∗
τ̄k), where

if s̄t = τ̄k then

(θ̄∗τ̄k , x̄
∗
τ̄k
, q̄∗τ̄k) ∼ R∗(ς̄+, ·)

else

(θ̄∗τ̄k , x̄
∗
τ̄k
, q̄∗τ̄k) := ς̄+

end

end

4 if t+ ≥ s̄t then

ς̄ ∼ R∗(ς̄+, ·), set t := t+ and repeat from Step 2

end

end

Running Case Study. We consider the following 5D model, adapted from [22], for each ego

vehicle i ∈ E :

dxt,i = (vxi
cos(ϑt,i)− vyt,i

sin(ϑt,i))dt+ ε1dPt + ε2dWt,

dyt,i = (vxi
sin(ϑt,i) + vyt,i

cos(ϑt,i))dt+ ε1dPt + ε2dWt,

dϑt,i = ωt,idt,

dvyt,i
= (

Fyf

m
cos(ut,i) +

Fyr

m
− vxi

ωt,i)dt,

dωt,i = (
Lf

Iz
Fyf cos(ut,i)−

Lr

Iz
Fyr)dt, (9)
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where xt,i and yt,i are the positions of the vehicle’s center of gravity in x and y directions, re-

spectively, ϑt,i is the vehicle’s orientation, vyt,i
is the velocity in the y direction whereas vxi

is the

constant velocity in the x direction, ωt,i is the yaw rate, Pt is a Poisson process with rate λ1 and

reset term ε1, and Wt is a Brownian motion with diffusion term ε2. The only control input is the

front wheel steering angle ut,i. Note that since this work is concerned with the verification problem,

not controller synthesis, this control input is assumed to be already designed and deployed to the

vehicle. The primary objective here is to conduct analysis and compute the rare collision risk prob-

ability. Incorporating the stiffness coefficients for front and rear tires Cαf and Cαr, respectively,

the forces acting on the front and rear tires Fyf and Fyr, assuming a linear tire model, can be

expressed as

Fyf = −Cαfαf , Fyr = −Cαrαr,

where the two slip angles αf and αr are as

αf =
vyt,i

+ Lfωt,i

vxi

− ut,i, αr =
vyt,i

− Lrωt,i

vxi

,

with Lf and Lr being the distance from the vehicle’s center of gravity to the front and rear wheels.

The components of the GSHS model can be determined according to Definition 2.1 as follows:

f(θt,i,xt,i) = col
(

vxi
cos(ϑt,i)− vyt,i

sin(ϑt,i), vxi
sin(ϑt,i) + vyt,i

cos(ϑt,i), ωt,i,

Fyf

m
cos(ut,i) +

Fyr

m
− vxi

ωt,i,
Lf

Iz
Fyf cos(ut,i)−

Lr

Iz
Fyr

)

, (10a)

g(θt,i,xt,i) = ε2 col
(

1112×1,0003×1

)

, (10b)

where xt,i = col(xt,i, yt,i, ϑt,i, vyt,i
, ωt,i). In order to model ER with continuous states xt,ER de-

scribed by (9) as a GSHS model, we should first determine the discrete states θt,ER. To this aim,

we define θt,ER ∈ ΘER as the modes of driving where

ΘER = {0, 1, 2,−1, Hit},

in which each component indicates when the AV ER

• 0: is moving straight, 1: is changing lanes;

• 2: is aware of the other vehicle changing lanes;

• −1: is changing its decision (changing lanes in the opposite direction, i.e., returning to its

previous lane);

• Hit: collides with the other vehicle.
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Then, we define υt ∈ Υ which indicates the intent of the vehicle, with set Υ being defined as

Υ = {Off, 1+, 1−},

in which each component indicates:

• Off : when the indicators of the AV is off and it is likely not to change lanes;

• 1+: when the right indicator of the AV is flashing and it is changing its lane to the corre-

sponding lane;

• 1−: when the left indicator of the AV is flashing and it is changing its lane to the corre-

sponding lane.

Discrete state of the AV ER is θt,ER = (θt,ER, υt) ∈ ΘER, with ΘER as follows:

ΘER =
{

(0, Off), (1, 1−), (2, 1−), (−1, 1+), (Hit, ⋆)
}

,

where, the element denoted by ⋆ is non-contributory, meaning that its value has no impact on

the outcome. Analogously, we define discrete states θt,EL of the other AV. However, since EL is

assumed not to have SA, the modes 2 and −1 are not applicable for it. Therefore, θt,EL ∈ ΘEL

with ΘEL = {0, 1, Hit}. Hence, θt,EL = (θt,EL, υt) ∈ ΘEL, with ΘEL defining as

ΘEL =
{

(0, Off), (1, 1+), (Hit, ⋆)
}

.

Now that the AVs are modelled, we can define MA-SA relations for AV ER. To this aim, we define

the continuous-valued SA state vector as

x̂EL
t,ER = col(x̂t,EL, ŷt,EL, ϑ̂t,EL, v̂yt,EL

), (11)

and augment it with xt,ER, resulting in continuous-valued state vector with SA zt,ER = col
(

xt,ER,

x̂EL
t,ER, ηt,ER

)

∈ R
10, in which ηt,ER indicates the amount of time passed since the AV ER becomes

aware of the other’s intention to change its lane. Thus, ZEL
ER is defined as

ZEL
ER =

{

(6, 1), (7, 2), (8, 3), (9, 4)
}

=
{

x̂t,EL, ŷt,EL, ϑ̂t,EL, v̂t,EL

}

.

Similarly, the augmented discrete-valued state vector with SA is

θ̌t,ER = col
(

θt,ER, θ̂
EL
t,ER

)

, (12)

where θt,ER ∈ ΘER and θ̂EL
t,ER ∈ ΘEL. Hence, the GSHS model of the AV ER has hybrid states

(θ̌t,ER, zt,ER). The augmented continuous states zt,ER evolve within the switching moments of



M. Zaker, H. A.P. Blom, S. Soudjani, and A. Lavaei 13

{θ̌t,ER} as

f̌(θ̌t,ER, zt,ER) = col
(

f(θt,ER,xt,ER), f̂(θ̂
EL
t,ER, x̂

EL
t,ER), 1

)

,

where f(θt,ER,xt,ER) is as in (10a), and f̂(θ̂EL
t,ER, x̂

EL
t,ER) is as follows:

f̂(θ̂EL
t,ER, x̂

EL
t,ER) = col

(

vxEL
cos(ϑ̂t,EL)− v̂yt,EL

sin(ϑ̂t,EL),

vxEL
sin(ϑ̂t,EL) + v̂yt,EL

cos(ϑ̂t,EL), ωt,EL,
Fyf

m
cos(ut,EL) +

Fyr

m
− vxEL

ωt,EL

)

. (13)

In addition, for hybrid states (θ̌t,ER, zt,ER), we define

ǧ(θ̌t,ER, zt,ER) = col
(

g(θt,ER,xt,ER), ĝ(θ̂
EL
t,ER, x̂

EL
t,ER), 0

)

,

in which g(θt,ER,xt,ER) is as in (10b), and ĝ(θ̂EL
t,ER, x̂

EL
t,ER) = 0004×1.

Remark 4.2. Another discrete-state SA that can be generally considered is the identity of vehicles.

This information can be obtained as initial data from the object and treated as a time-invariant

state, incorporated into the vehicle’s decision-making process.

Since both vehicles are moving, reaching static level sets Dk, k ∈ {0, . . . ,m}, detailed in Section

4, is not applicable anymore. To deal with this problem, we consider a set of ellipses around each

AV of the following form

Ok,i :=
{ (x−xt,i)

2

r2xk

+
(y−yt,i)

2

r2yk

=1
∣

∣ k∈{1,. . . ,m}
}

, (14)

where rxk
and ryk

are the primary axes, and (xt,i, yt,i), with i ∈ E , is the center of each ellipse.

Then, we determine whether Ok,i ∩ Ok,j 6= ∅, for i, j ∈ E , i 6= j. This demonstrates that the AVs

are getting closer to each other and that they might collide. To be more precise, the intersection

of the last ellipses, i.e., Om,i ∩Om,j 6= ∅, for i, j ∈ E , i 6= j, means that the accident has happened.

We choose Om,i to be a circumscribed ellipse, i.e., the tightest one around the AVs, with primary

axes rxm
= Rx =

√
2
2 lv and rym

= Ry =
√
2
2 wv, with lv and wv being the length and width of the

vehicle, respectively. It is noteworthy that the ellipses are nested subsets within the domain Ξ as

well, i.e., Oi=Om,i ⊂ Om−1,i⊂· · ·⊂O1,i⊂O0,i⊆Ξ. This setting of level sets is depicted in Fig. 2.

As long as the AV EL is not close enough to the AV ER so that it can receive the necessary

information for situation awareness, we assume the AV ER is not aware of the AV EL. To demon-

strate this behavior, we consider the ellipse OSA,i as defined in (14) as the area of awareness around

each AV with primary axes µrx and µry . Whenever the awareness ellipses of the two AVs intersect,
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Om,i · · · O3,i O2,i O1,ii ∈ E

Figure 2. Ellipsoidal level sets Ok,i as in (14) around each AV.

i.e., OSA,i∩OSA,j 6= ∅, the AV ER becomes aware of the other AV and can receive information for

(11) and (12). Upon recognizing the presence of EL, if θ̂EL
t,ER = (1, 1+), i.e., EL is changing lane,

it will take ER some time to transit to θt,ER = (2, 1−) and decide for its next move. This delay

can be modeled as an instantaneous transition rate λ2(θ̌t,ER, zt,ER) which satisfies

λ2(θ̌, z) = χ
(

θt,ER = (1, 1−)
)

pdelay(η)/

∫ ∞

η

pdelay(s)ds, (15)

where pdelay(s) =
s
µ2

d

e−s2/(2µ2

d), with the mean reaction delay µd being a Rayleigh density.

5. Time-to-collision Measure

Upon obtaining data from the SA vector (11) of a neighboring vehicle, the ego vehicle must

determine its course of action in the event of a potential collision. Time-related measures can be

used as a cue for decision making, one of which is time-to-collision (TTC) measure. A shorter TTC

indicates a higher risk of collision. The TTC for a vehicle α at a given moment t, concerning a

preceding vehicle α− 1, following the same path, can be computed using

TTCα =
xt,α−1 − xt,α − lα−1

vt,α − vt,α−1
, ∀vt,α > vt,α−1, (16)

where l is the length of the vehicle [23]. Different modifications have been made to (16) in various

studies. An innovative method is recently proposed in [24] for computing TTC in both car-following

and lane-change scenarios by incorporating the equation of motion and vehicle direction. To do

so, the category of the collision is firstly identified as either angular or rear-end, with the latter

occurring frequently in car-following scenarios. The type of collision is determined by the angle
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Table 1. Calculating the angle of motion for each vehicle.

Condition Angle ϕ

x2 > x1
arctan

∣

∣

y2−y1

x2−x1

∣

∣

y2 > y1

x2 < x1
π − arctan

∣

∣

y2−y1

x2−x1

∣

∣

y2 > y1

x2 < x1
π + arctan

∣

∣

y2−y1

x2−x1

∣

∣

y2 < y1

x2 > x1
2π − arctan

∣

∣

y2−y1

x2−x1

∣

∣

y2 < y1

between the movement trajectories of two vehicles, which is represented as a vector whose start

and end points are the vehicle’s coordinates at the previous and current time instants, respectively.

The movement angle of each vehicle can be calculated as provided in Table 1.

If the angle of a prospective collision, which is the absolute difference between the angles of

motion of two vehicles, falls between −10 and +10 degrees and both vehicles are traveling in the

same lane, the conflict is considered a rear-end collision. The necessary and sufficient condition for

rear-end collision is as follows:

xt,α − xt,α−1 + lα−1 = 0 ⇐⇒ Rear-end collision. (17)

Assuming the (k − 1)th derivative of velocity is constant, we can derive an approximate equation

of motion for each vehicle as follows:















xt,α = x0,α +
k
∑

n=1

( 1

n!
×

∂nxt,α

∂tn
× tn

)

,

xt,α−1 = x0,α−1 +
k
∑

n=1

( 1

n!
×

∂nxt,α−1

∂tn
× tn

)

.

(18)

Combining (17) and (18) results in the kth degree polynomial

x0,α−x0,α−1 + lα−1+

k
∑

n=1

( 1

n!
×
[∂nxt,α

∂tn
−

∂nxt,α−1

∂tn

]

× tn
)

= 0,
(19)
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Algorithm 2: Determining the predicted collision point between two vehicles

Input : Current coordinates (x0,sub, y0,sub) and (x0,col, y0,col) of the subject and colliding

vehicles

Output: The common collision point (cx, cy), if it exists

1 Construct the equation of two lines as the motion path of each vehicle using their current

position coordinates (x0,sub, y0,sub) and (x0,col, y0,col):

yt,sub = xt,sub tanϕsub + (y0,sub − x0,sub tanϕsub)

yt,col = xt,col tanϕcol + (y0,col − x0,col tanϕcol)

2 Find the intersection of the lines:

yt,sub = yt,col −→











xsub = xcol = cx,

ysub = ycol = cy

3 Solve the following equations for t:















cx = x0,sub +
k
∑

n=1

( 1

n!
×

∂nxt,sub

∂tn
× tn

)

, k ∈ N

cx = x0,col +
k
∑

n=1

( 1

n!
×

∂nxt,col

∂tn
× tn

)

, k ∈ N















cy = y0,sub +
k
∑

n=1

( 1

n!
×

∂nyt,sub

∂tn
× tn

)

, k ∈ N

cy = y0,sub +
k
∑

n=1

( 1

n!
×

∂nyt,col

∂tn
× tn

)

, k ∈ N

4 if t ∈ R
+ for each of the four equation exists then

(cx, cy) is the predicted collision point and TTCsub can be calculated for this point

else
There is no predicted collision point and TTCsub = ∞

end

whose solution is T = {t1, t2, . . . , tk}. Then,

TTCk = min{ti ∈ T |ti ∈ R
+}, (20)

implying that TTCk is the minimum, non-zero and real solution of (19).

When dealing with angular collisions, the initial step involves ascertaining whether a subject

vehicle “sub” and a colliding vehicle “col” share a common collision point, at which TTC can be
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C th

υ̂
j
t,
i
=
1
+

∧
R
a
te
λ2

O
m
,i ∩

O
m
,j 6=

∅

y
t,i = 3

2 lw
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O
m

,i
∩
O

m
,j
6=

∅

y
t,
i
=

y
0
,i

yt,i =
3

2
lw

λ1 λ1

λ1

λ1

(a)
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,j ∩
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m
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∅ O
m
,j
∩
O
m
,i
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∅
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3

2
lw

λ1 λ1

(b)

Figure 3. GSHS model transition graphs for AVs i = ER (a), and j = EL (b),

where, wL represents lane width, and Tlci , Tlcj signify moments when vehicles i

and j decide to change lanes, respectively. The intent υ̂j
t,i is obtained from θ̂jt,i.

calculated. In order to compute the common collision point, the motion path of each vehicle is

determined by constructing line equations for each based on their calculated angles, as in Step 1

of Algorithm 2. The intersection of these lines results in the point (cx, cy), which might be the

common collision point according to (21).

Then, the motion type of each vehicle is determined by examining their previous positions in x

and y directions at each time instant:















xt,sub=x0,sub+
k
∑

n=1

( 1

n!
×
∂nxt,sub

∂tn
×tn

)

, k∈N,

yt,sub=y0,sub+
k
∑

n=1

( 1

n!
×
∂nyt,sub
∂tn

×tn
)

, k∈N,

(21a)















xt,col=x0,col+
k
∑

n=1

( 1

n!
×
∂nxt,col

∂tn
×tn

)

, k∈N,

yt,col=y0,col+
k
∑

n=1

( 1

n!
×
∂nyt,col
∂tn

×tn
)

, k∈N.

(21b)

We solve (21a) and (21b) at the point (cx, cy) for t and then examine the solutions. If t ∈ R
+,

then the point (cx, cy) is considered as the common collision point. The necessary steps to specify

the collision point are given in Algorithm 2. Then, if a common collision point exists, TTC for the

subject vehicle can be determined. To this aim, the distance dsub between the subject vehicle and
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Algorithm 3: TTC calculation for angular conflicts

Input : Predicted collision point for the subject vehicle, i.e., (xt,sub, yt,sub) = (cx, cy) and

its current location (x0,sub, y0,sub)

Output: TTCsub for the subject vehicle

1 Calculate the distance between the current location of the subject vehicle and the predicted

collision point:

dsub =
√

(cx − x0,sub)2 + (cy − y0,sub)2

2 Calculate time to the predicted collision point based on the type of motion:

dsub =

k
∑

n=1

( 1

n!
×

∂nxt,sub

∂tn
× tn

)

cosϕsub or sinϕsub

3 if ∃i ∈ {1, . . . , k}, ti /∈ R
+ then

TTCsub = ∞

else

TTCsub = min{ti ∈ T |ti ∈ R
+}

end

the collision point (cx, cy) resulting from Algorithm 2 is calculated. Then, we calculate the time

it takes the subject vehicle to drive this distance, either in the x or y direction. This results in a

set of solutions, T = {t1, t2, . . . , tk}, with k being the order of the motion equation, for which we

check whether all t in T are real and positive. If this condition is satisfied, the minimum t in T is

TTC; otherwise, no collision will occur. This procedure is outlined in Algorithm 3. In the process

of TTC computation, the subject vehicle utilizes the information provided by the SA vector (11).

Running Case Study (cont.) When the AV ER is in making decision mode (2, 1−), indicating

awareness of another AV changing lanes, it calculates the TTC measure to determine whether

to complete its maneuver or change its decision and return to its own lane (transition to mode

(−1, 1+)). We consider a threshold TTCth so that if TTCER ≤ TTCth, completing the maneuver

is hazardous and the AV ER will go back to its own lane. The transition graphs of the completed

GSHS models for AVs i = ER and j = EL are provided in Figs. 3a and 3b, respectively.
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Table 2. The value of mean probability γ̂ for various µr using Algorithm 4 and

MC (m = 1).

Algorithm
µr

1.5825 1.6275 1.6725 1.7 1.7375

IPS-FAS 1.9131× 10−4 8.6350× 10−5 7.6300× 10−6 2.8725× 10−6 5.4320× 10−7

MC 1.8000× 10−4 7.9000× 10−5 0 0 0

6. Results and Discussions

In order to utilize Algorithm 4, we first need to define the level sets as described in (14). We

assume each AV has six ellipses around it with the primary axes rxk
= rkRx and ryk

= rkRy for

all k ∈ {1, . . . , 6}, where r1 = 2 and the declining rate is 0.2, leading to r6 = 1. The parameters of

the AVs described by (9) are set as vxi
= 20m/s, ε1 = 10−6, ε2 = 10−2, λ1 = 0.5, m = 2000 kg,

Iz = 2000 kgm2, Cαf = Cαr = 6×104, Lf = Lr = 2m, lv = 4.508m, and wv = 1.61m. To perform

a lane-change maneuver, we utilize a simple PD controller of the form ut,i = Kp

(

yd,i−yt,i
)

−Kd
dyt,i

dt

with Kp = 1.5×10−3, Kd = 10−2, and yd,i is the desired position in the y direction. In the scenario

under study, we set wL = 3.5m, µd = 0.6 s, and TTCth = 10 s.

Our aim is to analyze the effect of the area of awareness OSA,ER, based on the different values of

µr in µrx = µrRx and µry = µrRy. To increase the reliability of the outcomes, we run the scenario

N times and get the results γ̄n, n ∈ {1, . . . ,N}. Then, we report the mean probability γ̂ =
∑

N
n=1

γ̄n

N

as the estimated probability of reaching O6,ER∩O6,EL 6= ∅. We report our obtained results in Table

2 with N = 100 trials and NP = 100 particles for Algorithm 4 and the corresponding Monte-Carlo

(MC) simulation for the sake of comparison.

The highlights of simulation results can be considered threefold, which are given below:

• The scenario’s parameters are considered in a way that an accident occurs in the absence

of SA;

• Given that an accident occurs in this scenario due to the lack of SA, it becomes evident

how SA plays a crucial role in reducing accident risk. Furthermore, Table 2 illustrates that

even minor adjustments in SA parameters can significantly affect collision probabilities;
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• Finally, Table 2 underscores the superiority of the IPS-FAS algorithm over MC simulation.

While MC yields a zero probability outcome, IPS-FAS provides a probability on the order

of 10−7, highlighting its precision. Given that AVs belong to safety-critical systems, the

precision of calculations within their decision-making is of vital importance.
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Algorithm 4: IPS-FAS algorithm for a GSHS

Input : Initial measure π0, end time T , decreasing sequence of closed subsets Dk = {(θt,xt) ∈ Ξ},

Dk−1 ⊃ Dk, k ∈ {1, . . . ,m}. Also D0 = Ξ, Qk = (0, T ) × Dk and number of particles

NP

Output: Estimated reach probability γ̄

1 Initiation: Generate NP particles ξi0 ∼ π0, i ∈ {1, . . . , NP }, i.e. π̄0(·) =
∑NP

i=1
1

NP
δ{ξi

0
}(·), with

Dirac δ. Set k = 1

2 Mutation (Algorithm 1): for i = 1, . . . , NP do

ξ̄ik = Execute(ξik−1)

end

Then, p̄k(·) =
∑NP

i=1
1

NP
δ{ξ̄i

k
}(·)

3 Conditioning: γ̄k =
NSk

NP
with NSk

=
∑NP

i=1 1(ξ̄
i
k ∈ Qk)

if NSk
= 0 then

γ̄k′ = 0, k′ ∈ {k, . . . ,m} and go to Step 6

end

4 Selection: π̃k(·) =
1

NSk

∑NSk
i=1 δ{ξ̃i

k
}(·), with {ξ̃jk}

NSk
j=1 the collection of ξ̄ik ∈ Qk, i ∈ {1, . . . , NP }

5 Splitting: { ˜̃ξjk}
NSk
j=1 is a random permutation of {ξ̃jk}

NSk
j=1

for i = 1, . . . , NSk
copy

Step I :































ξik =
˜̃
ξik

ξ
NSk

+i

k =
˜̃
ξik

...
...

ξ
(⌊NP /NSk

⌋−1)NSk
+i

k = ˜̃ξik

end

for i = 1, . . . , NP − ⌊NP /NSk
⌋NSk

copy

Step II : ξ
⌊NP /NSk

⌋NSk
+i

k =
˜̃
ξik

end

Each particle receives weight 1/NP

6 if γ̄k 6= 0 then

if k < m, then
k := k + 1 and go to Step 5

else

γ̄ =
∏m

k=1 γ̄k

end

else
γ̄ = 0

end
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