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POWER BOUNDEDNESS AND RELATED PROPERTIES FOR WEIGHTED

COMPOSITION OPERATORS ON S (Rd)

VICENTE ASENSIO1, ENRIQUE JORDÁ2, AND THOMAS KALMES3

Abstract. We characterize those pairs (ψ, ϕ) of smooth mappings ψ : Rd → C, ϕ : Rd → Rd for
which the corresponding weighted composition operator Cψ,ϕf = ψ · (f ◦ ϕ) acts continuously

on S (Rd). Additionally, we give several easy-to-check necessary and sufficient conditions of
this property for interesting special cases. Moreover, we characterize power boundedness and
topologizablity of Cψ,ϕ on S (Rd) in terms of ψ, ϕ. Among other things, as an application of
our results we show that for a univariate polynomial ϕ with deg(ϕ) ≥ 2, power boundedness of
Cψ,ϕ on S (R) for every ψ ∈ OM (R) only depends on ϕ and that in this case power boundedness
of Cψ,ϕ is equivalent to (Cn

ψ,ϕ
)n∈N converging to 0 in Lb(S (R)) as well as to the uniform

mean ergodicity of Cψ,ϕ. Additionally, we give an example of a power bounded and uniformly
mean ergodic weighted composition operator Cψ,ϕ on S (R) for which neither the multiplication
operator f 7→ ψf nor the composition operator f 7→ f ◦ϕ acts on S (R). Our results complement
and considerably extend various results of Fernández, Galbis, and the second named author.

Keywords: weighted composition operator, power bounded operator, mean ergodic operator,
topologizable operator, space of rapidly decreasing smooth functions.
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1. Introduction

Weighted composition operators play an important role in functional analysis and operator
theory. Given a set Ω, a self mapping ϕ on Ω and a function ψ on Ω, beyond the fundamental
question of when a weighted composition operator Cψ,ϕ acts on a given function space F(Ω)
– that is, when the operation Cψ,ϕf = ψ · (f ◦ ϕ) results in a function belonging to F(Ω) for
every f ∈ F(Ω) – it is a natural task to characterize operator theoretic properties of Cψ,ϕ on
F(Ω) by properties of ψ and ϕ. Obviously, the class of weighted composition operators contains
multiplication operators, i.e. ϕ(x) = x, as well as composition operators, i.e. ψ(x) = 1.

In the present article, we consider weighted composition operators on the space S (Rd) of
rapidly decreasing smooth functions. While the space OM (Rd) of multipliers for S (Rd) has been
characterized by L. Schwartz [22,33], the functions ϕ on R for which the corresponding composition
operator acts on S (R) have been characterized only recently in [18]. Apart from characterizing
the pairs (ψ, ϕ) for which Cψ,ϕ acts on S (Rd), we also characterize power boundedness and
(m-)topologizability for weighted composition operators on S (Rd) in terms of ψ and ϕ.

In recent years, mean ergodicity, power boundedness, and topologizablity of (weighted) com-
position operators and multiplication operators on various spaces of (generalized) functions have
attracted the attention of a large number of authors. We give only a sample of articles (and refer
to references therein); see e.g. [1, 4–6, 9–12,21, 23–29,32].

Recall that a continuous linear operator T on a locally convex Hausdorff space E is power
bounded precisely when the set of its iterates {T n; n ∈ N} is equicontinuous. This notion is

1Instituto Universitario de Matemática Pura y Aplicada IUMPA, Universitat Politècnica de
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closely connected with T being mean ergodic, i.e. with the property that for every x ∈ E the
sequence of Cesàro means

(
1
n

∑n
m=1 T

m(x)
)
n∈N

converges. Whenever the Cesàro means converge

uniformly on bounded sets, T is uniformly mean ergodic. By a classical result of Lorch [30],
on reflexive Banach spaces, every power bounded operator is mean ergodic, which characterizes
reflexivity of Banach spaces, as has been shown in the celebrated work [16] by Fonf, Lin, and
Wojtaszczyk. Bonet, de Pagter, and Ricker [8, Proposition 3.3] proved that Lorch’s result remains
true for (semi-)reflexive Hausdorff locally convex spaces. Additionally, by [28, Theorem 2.5], on
Montel spaces, mean ergodic operators are automatically uniformly mean ergodic. Thus, power
bounded operators of S (Rd) are already uniformly mean ergodic.

While the interest for power boundedness for operators on locally convex Hausdorff spaces
stems from its close relationship to (uniform) mean ergodicity, topologizable operators were in-

troduced by Żelazko in [35] (see also [7]). Recall that a continuous linear operator T on a locally
convex Hausdorff space E is topologizable if for every continuous seminorm p on E there is a
continuous seminorm q on E and a sequence (an)n∈N of positive numbers such that (anT

n)n∈N

is equicontinuous from E equipped with p into E equipped with q. This property characterizes
those T for which there is a unital subalgebra A of L(E) (with composition as multiplication)
which contains T and which admits a locally convex topology making A into a topological algebra
such that the map A×E → E, (S, x) 7→ Sx is continuous. While the notion of m-topologizability
(where the sequence (an)n∈N in the definition of topologizablity can be chosen as a sequence of

powers (Mn)n∈N,M > 0) was also introduced by Żelazko [34], a renewed interest in this property
stems from a recent result of Golińska and Wegner [19] stating that m-topologizable operators on
sequentially complete locally convex spaces generate uniformly continuous semigroups of opera-
tors. It should be noted that in contrast to Banach spaces, on arbitrary locally convex spaces in
general not every continuous linear operator generates a strongly continuous semigroup, see [17].

Our results for power boundedness for weighted composition operators Cψ,ϕ are sharp when
ψ, ϕ are univariate polynomials. They allow to provide natural examples of infinite dimensional
subspaces of L(S (R)) consisting entirely of power bounded operators, or – except the zero op-
erator – entirely of non-power bounded operators, respectively. Concrete examples of such in-
finite dimensional vector spaces are {Cψ,ϕ : ϕ(x) = x2 + 1, ψ polynomial} (Theorem 5.10) and
{Cψ,ϕ : ϕ(x) = (1/2)x, ψ polynomial} (Proposition 5.4), respectively. We point out that examples
of the second kind cannot occur for operators defined on Banach spaces.

The article is organized as follows. In section 2 we characterize those pairs (ψ, ϕ) for which
the corresponding weighted composition operator Cψ,ϕ acts on S (Rd). Under mild additional
assumptions on ψ and ϕ, in section 3, we give a characterization for the latter property which is
easier to check in many situations including composition operators. In section 4 we characterize
power boundedness and (m-)topologizability of Cψ,ϕ on S (Rd). As a concrete example we show
power boundedness of Cexp,exp on S (R), i.e. ψ = ϕ = exp. It should be noted that neither the
composition by exp nor the multiplication by exp acts on S (R). As an application of our findings
in section 4, in section 5 we study power boundedness of weighted composition operators on S (R)
for the case that ϕ is a (univariate) polynomial. Among others, we prove that power boundedness
of translation operators, i.e. ϕ(x) = x+ b, b 6= 0, can be achieved by multiplication with constants
of modulus strictly smaller than 1. We also show that for deg(ϕ) ≥ 2, power boundedness of the
composition operator Cϕ is equivalent to the power boundedness and/or uniform mean ergodicity
of the weighted composition operators Cψ,ϕ for arbitrary ψ ∈ OM (R). In the short final section
6, we apply arguments from section 5 to show that a univariate polynomial ϕ is necessarily a
translation whenever there is ψ ∈ OM (R) such that Cψ,ϕ is weakly supercyclic, i.e. there is
f ∈ S (R) with {λCnψ,ϕf ; λ ∈ C, n ∈ N} is weakly dense in S (R). This complements recent results

on hypercyclicity of weighted translation operators on S (R) by Goliński and Przestacki [20].
Throughout, we use standard notation from functional analysis [31] and dynamics of linear

operators on locally convex spaces [3, 8].
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2. Weighted composition operators on S (Rd)

The main purpose of this section is to characterize those pairs (ψ, ϕ), ψ ∈ C∞(Rd) and ϕ :
Rd → Rd smooth mapping, for which the corresponding weighted composition operator Cψ,ϕ acts
on S (Rd), where we say that Cψ,ϕ(f) = ψ · (f ◦ ϕ) acts on S (Rd) if Cψ,ϕf ∈ S (Rd) for every
f ∈ S (Rd). Obviously, in this case Cψ,ϕ is a linear mapping on S (Rd). As usual, we say that ϕ is
a symbol for S (Rd) if Cϕ := C1,ϕ acts on S (Rd). We shall see in Example 2.9 below that neither
Cϕ acting on S (R) nor ψ being a multiplier for S (R) is necessary for Cψ,ϕ to act on S (R).

We first fix some notation which is valid throughout this paper. As usual, for a smooth function

f : Rd → C and a multi index α = (α1, . . . , αd) ∈ Nd0 we write f (α)(x) = ∂αf(x) = ∂|α|

∂x
α1
1 ···∂xαd

d

f(x),

where as usual |α| =∑d
j=1 αj . While we also denote the Euclidean norm of x ∈ Rd by |x|, it will

always be clear from the context whether we refer to the length of a multi index or the Euclidean
norm of a vector. Next, we recall some notation from [13] used in the multivariate version of Faà
di Bruno formula. On the set Nd0 of multi indices, for α = (α1, . . . , αd), β = (β1, . . . , βd), we write
α ≺ β provided one of the following holds:

(i) |α| < |β|,
(ii) |α| = |β| and α1 < β1, or
(iii) |α| = |β|, α1 = β1, . . . , αk = βk and αk+1 < βk+1 for some 1 ≤ k < d.

Moreover, for β ∈ Nd0\{0} and λ ∈ Nd0 we define the set

p(β, λ) =



(k1, . . . , k|β|; ℓ1, . . . , ℓ|β|) ∈ N2|β|d

0 : for some 1 ≤ s ≤ |β|,
|β|∑

j=1

kj = ℓj = 0 for 1 ≤ j ≤ |β| − s; |kj | > 0 for |β| − s+ 1 ≤ j ≤ |β|, and

0 ≺ ℓ|β|−s+1 ≺ · · · ≺ ℓ|β| are such that

|β|∑

j=1

kj = λ,

|β|∑

j=1

|kj |ℓj = β




 .

It is straightforward to show |λ| ≤ |β| whenever p(β, λ) 6= ∅. Then, for a smooth function
f : Rd → C, a smooth mapping ϕ : Rd → Rd, and for every β ∈ Nd0\{0} we have

(f ◦ ϕ)(β) (x) =
∑

λ∈N
d
0

1≤|λ|≤|β|

f (λ)(ϕ(x))
∑

p(β,λ)

β!

|β|∏

j=1

(
ϕ(ℓj)(x)

)kj

kj ! (ℓj!)
|kj |

(see [13, Remark 2.2]), where ϕ(ℓj)(x) = (ϕ
(ℓj)
1 (x), . . . , ϕ

(ℓj)
d (x)) and where for y = (y1, . . . , yd) ∈

Cd and k = (k1, . . . , kd) ∈ Nd0, as usual y
k = yk11 · · · ykdd , so that

(
ϕ(ℓj)(x)

)kj
=

d∏

i=1

(
ϕ
(ℓj)
i (x)

)kj,i
=

d∏

i=1

(
∂|ℓj|

∂x
ℓj,1
1 · · · ∂xℓj,dd

ϕi(x)

)kj,i
,

with ℓj = (ℓj,1, . . . , ℓj,d), kj = (kj,1, . . . , kj,d) ∈ Nd0. It follows immediately from the definition of
the set p(β, λ) that p(β, 0) = ∅. Thus, employing the usual convention that the sum of summands
indexed by the empty set equals zero, for every β ∈ Nd0\{0} we have

(f ◦ ϕ)(β) (x) =
∑

λ∈N
d
0

0≤|λ|≤|β|

f (λ)(ϕ(x))
∑

p(β,λ)

β!

|β|∏

j=1

(
ϕ(ℓj)(x)

)kj

kj ! (ℓj !)
|kj | .

Abusing notation, for β = 0, we further set p(0, λ) = ∅ whenever λ ∈ Nd0\{0} and p(0, 0) = {(0, 0)}
(0 ∈ Nd0) so that, by the usual convention 0! = 1 and 00 = 1

∑

p(0,λ)

0!

|0|∏

j=1

(
ϕ(ℓj)(x)

)kj

kj ! (ℓj !)
|kj | =

{
0, λ 6= 0,

1, λ = 0,
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where we also applied the usual convention that the product of factors indexed by the empty set
equals one. Thus, for f and ϕ as above, for ψ ∈ C∞(Rd), and for every multi index α ∈ Nd0, by
applying Leibniz rule and Faà di Bruno formula, after reordering, we get

(ψ · (f ◦ ϕ))(α)(x) =
∑

β∈N
d
0

β≤α

∑

λ∈N
d
0

0≤|λ|≤|β|

f (λ)(ϕ(x))

(
α

β

)
ψ(α−β)(x)

∑

p(β,λ)

β!

|β|∏

j=1

(
ϕ(ℓj)(x)

)kj

kj ! (ℓj !)
|kj |

=
∑

β∈N
d
0

|β|≤|α|

∑

λ∈N
d
0

0≤|λ|≤|β|

f (λ)(ϕ(x))

(
α

β

)
ψ(α−β)(x)

∑

p(β,λ)

β!

|β|∏

j=1

(
ϕ(ℓj)(x)

)kj

kj ! (ℓj!)
|kj |

=
∑

λ∈N
d
0

0≤|λ|≤|α|

f (λ)(ϕ(x))
∑

β∈N
d
0

β≤α,|λ|≤|β|

(
α

β

)
ψ(α−β)(x)

∑

p(β,λ)

β!

|β|∏

j=1

(
ϕ(ℓj)(x)

)kj

kj ! (ℓj!)
|kj | ,

where we have used that
(
α
β

)
=
∏d
j=1

(
αj

βj

)
= 0 if there are αj , βj ∈ N0 with βj > αj since

(
z
m

)
= z(z−1)···(z−m+1)

m! for z ∈ C and m ∈ N0.

For ψ ∈ C∞(Rd), a smooth mapping ϕ : Rd → Rd and α, λ ∈ Nd0 with |λ| ≤ |α| we denote

(2.1) Fϕ,ψα,λ (x) :=
∑

β∈N
d
0

β≤α,|λ|≤|β|

(
α

β

)
ψ(α−β)(x)

∑

p(β,λ)

β!

|β|∏

j=1

(
ϕ(ℓj)(x)

)kj

kj ! (ℓj !)
|kj |

and thus

(2.2) (ψ · (f ◦ ϕ))(α)(x) =
∑

λ∈N
d
0

0≤|λ|≤|α|

f (λ)(ϕ(x))Fϕ,ψα,λ (x).

Now we are ready to prove a first technical lemma which will also be used in section 4.

Lemma 2.1. Let I be a non-empty set, (ψi)i∈I ∈ C∞(Rd)I and let ϕi : Rd → Rd be smooth
mappings, i ∈ I. Assume that there are α, λ ∈ Nd0 with |λ| ≤ |α| and p > 0 such that

(2.3) ∀ q > 0 : sup
i∈I

sup
x∈Rd

(1 + |x|)p
(1 + |ϕi(x)|)q

|Fϕi,ψi

α,λ (x)| = ∞.

Then there is f ∈ S (Rd) satisfying

sup
i∈I

sup
x∈Rd

(1 + |x|)p|(ψi · (f ◦ ϕi))(α)(x)| = ∞.

Proof. Let λ0 ∈ Nd0 be the minimum with respect to the linear ordering ≺ of Nd0 of the finite set
of λ ∈ Nd0 with |λ| ≤ |α| for which (2.3) holds. Let (xj)j∈N, (ij)j∈N be sequences in Rd and I,
respectively, such that |xj+1| > |xj |+ 1 and

(2.4)
(1 + |xj |)p

(1 + |ϕij (xj)|)j
|Fϕij

,ψij

α,λ0
(xj)| > j.

At this step, we continue the proof by considering two cases. First we assume (|ϕij (xj)|)j∈N to be
unbounded. By making an abuse of notation and identifying (xj)j∈N with a subsequence, we can
assume |xj+1| > |xj |+ 1 and |ϕij+1 (xj+1)| > |ϕij (xj)| + 1 for every j ∈ N, and let (l(j))j∈N be a
strictly increasing sequence of natural numbers such that

(2.5) lim
j→∞

(1 + |xj |)p
(1 + |ϕij (xj)|)l(j)

|Fϕij
,ψij

α,λ0
(xj)| = ∞.

Fix ̺ ∈ D(B(0, 1/2)), ̺(λ0)(0) = 1 and ̺(λ)(0) = 0 for λ ∈ Nd0\{λ0}. We define

f(x) :=
∑

j∈N

̺(x− ϕij (xj))

(1 + |ϕij (xj)|)l(j)
.
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Since the summands which define f are smooth functions with mutually disjoint compact supports
and because limj l(j) = ∞, it is standard to check f ∈ S (Rd). Moreover, by (2.2) and the

definition of Fϕ,ψα,λ

(1 + |xj |)p|(ψij · (f ◦ ϕij ))(α)(xj)| = (1 + |xj |)p

∣∣∣∣∣∣∣∣∣

∑

λ∈N
d
0

0≤|λ|≤|α|

f (λ)(ϕij (xj))F
ϕij

,ψij

α,λ (xj)

∣∣∣∣∣∣∣∣∣

= (1 + |xj |)p|f (λ0)(ϕij (xj))F
ϕij

,ψij

α,λ0
(xj)|

=
(1 + |xj |)p

(1 + |ϕij (xj)|)l(j)
|Fϕij

,ψij

α,λ0
(xj)|

so that by (2.5)

sup
i∈I

sup
x∈Rd

(1 + |x|)p|(ψi · (f ◦ ϕi))(α)(x)| ≥ sup
j∈N

(1 + |xj |)p|(ψij · (f ◦ ϕij ))(α)(xj)| = ∞

as desired.
Next, let us suppose that (|ϕij (xj)|)j∈N is bounded. We observe that the choice of λ0 implies

the existence of q > 0 and C ∈ (0,∞) such that, for each λ ∈ Nd0 with λ ≺ λ0,

sup
x∈Rd

(1 + |x|)p
(1 + |ϕij (x)|)q

|Fϕij
,ψij

α,λ (x)| ≤ C.

Next, we fix f ∈ D(Rd) such that f(x) = xλ0/λ0! in a neighborhood of the bounded subset
{ϕij (xj); j ∈ N} of Rd. Then, a moment’s reflection reveals that f (λ) ≡ 0 in a neighborhood of
{ϕij (xj); j ∈ N} whenever λ0 ≺ λ and obviously, for every q > 0 there is M ∈ (0,∞) with

sup
j∈N,

λ∈N
d
0 ,|λ|≤|α|

∣∣∣f (λ)(ϕij (xj))
∣∣∣ (1 + |ϕij (xj)|)q ≤M.

Now we have by (2.2) and (2.4), for j ∈ N,

(1 + |xj |)p|(ψij · (f ◦ ϕij ))(α)(xj)| = (1 + |xj |)p

∣∣∣∣∣∣∣∣∣

∑

λ∈N
d
0

0≤|λ|≤|α|

f (λ)(ϕij (xj))F
ϕij

,ψij

α,λ (xj)

∣∣∣∣∣∣∣∣∣

≥ (1 + |xj |)p
∣∣∣f (λ0)(ϕij (xj))F

ϕij
,ψij

α,λ0
(xj)

∣∣∣

−
∑

λ≺λ0

∣∣∣f (λ)(ϕij (xj))
∣∣∣ (1 + |ϕij (xj)|)q

(1 + |xj |)p
(1 + |ϕij (xj)|)q

∣∣∣F
ϕij

,ψij

α,λ (xj)
∣∣∣

≥ (1 + |ϕij (xj)|)j
(1 + |xj |)p

(1 + |ϕij (xj)|)j
∣∣∣F

ϕij
,ψij

α,λ0
(xj)

∣∣∣−
∑

λ≺λ0

MC ≥ j −
∑

λ≺λ0

MC

so that again

sup
i∈I

sup
x∈Rd

(1 + |x|)p|(ψi · (f ◦ ϕi))(α)(x)| ≥ sup
j∈N

(1 + |xj |)p|(ψij · (f ◦ ϕij ))(α)(xj)| = ∞

as desired. �

Theorem 2.2. Let ψ ∈ C∞(Rd) and let ϕ : Rd → Rd be smooth. Then, the following are
equivalent.

(i) ψ · (f ◦ ϕ) ∈ S (Rd) for every f ∈ S (Rd).
(ii) The weighted composition operator Cψ,ϕ : S (Rd) → S (Rd), f 7→ ψ · (f ◦ ϕ) is correctly

defined and continuous.
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(iii) For all α, λ ∈ Nd0 with |λ| ≤ |α| and for every p > 0 there exists q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |F

ϕ,ψ
α,λ (x)| <∞.

Proof. Obviously, (ii) implies (i), and (i) implies (iii) by Lemma 2.1 applied to I = {1} and
ψ1 = ψ, ϕ1 = ϕ. Additionally, using (2.2) it is straightforward to show that (iii) implies (ii). �

The evaluation of condition (iii) from the above theorem for concrete ψ, ϕ might be quite

involved due to the rather complicated expression for Fϕ,ψα,λ in (2.1). Therefore, we now give

necessary and sufficient conditions for Cψ,ϕ to act on S (Rd) which are easier to evaluate. Since

for α ∈ Nd0 and λ = 0 it holds Fϕ,ψα,λ (x) = ψ(α)(x), Theorem 2.2 (iii) immediately implies the
following necessary condition.

Corollary 2.3. If the weighted composition operator Cψ,ϕ : S (Rd) → S (Rd), f 7→ ψ · (f ◦ ϕ) is
well defined then for each α ∈ Nd0 and p > 0 there is q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |ψ

(α)(x)| <∞.

Theorem 2.2 immediately implies the next sufficient condition for Cψ,ϕ to act on S (Rd). It
will be shown in Theorem 3.3 below that under some mild additional assumptions on ψ, ϕ this
sufficient condition is also necessary.

Corollary 2.4. Let ψ ∈ C∞(Rd) and let ϕ : Rd → Rd be smooth. Assume that for each α ∈ Nd0
and p > 0 there is q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |ψ

(α)(x)| <∞,

and for each α ∈ Nd0 there is q > 0 such that

sup
x∈Rd

1

(1 + |ϕ(x)|)q |ϕ
(α)(x)| <∞.

Then Cψ,ϕ acts on S (Rd).

Remark 2.5. For the special case of a multiplication operator, i.e. ϕ(x) = x for all x ∈ Rd, for
kj , ℓj ∈ Nd0 we have

(
ϕ(ℓj)(x)

)kj
=

d∏

i=1

(
∂ℓjxi

)kj
=





1, if ℓj = kj = 0,

0, if |ℓj | ≥ 2,

0, if |ℓj | = 1, kj /∈ span{ℓj},
1, if |ℓj | = 1, kj ∈ span{ℓj}.

Therefore, defining

p0(β, λ) := {(k1, . . . , k|β|; ℓ1, . . . , ℓ|β|) ∈ p(β, λ) : |ℓ|β|| ≤ 1 and kj ∈ span{ℓj} for all 1 ≤ j ≤ |β|}
it follows that

Fϕ,ψα,λ (x) =
∑

β∈N
d
0

β≤α,|λ|≤|β|

(
α

β

)
ψ(α−β)(x)

∑

p0(β,λ)

β!

|β|∏

j=1

1

kj !
.

In order to continue, let et = (δj,t)1≤j≤d (Kronecker’s δ), 1 ≤ t ≤ d, be the standard basis

vectors of Rd and for β ∈ Nd0\{0}, β =
∑d

t=1 βtet let I(β) := {1 ≤ t ≤ d : βt 6= 0} so that
∅ 6= I(β) = {t1, . . . , tβ} with 1 ≤ t1 < . . . < tβ ≤ d. Moreover, we denote the number of elements
of I(β) by |I(β)|. With this notation, for β ∈ Nd0\{0} we conclude

p0(β, λ) =



(k1, . . . , k|β|; ℓ1, . . . , ℓ|β|) ∈ p(β, λ) : |ℓ|β|| = 1, kj ∈ span{ℓj} for all 1 ≤ j ≤ |β|,

|β|∑

j=1

|kj |ℓj = β
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kj = ℓj = 0 for 1 ≤ j ≤ |β| − |I(β)|, ℓ|β|−|I(β)|+1 = et1 , . . . , ℓ|β| = etβ ,

|kj | > 0 for |β| − |I(β)| + 1 ≤ j ≤ |β|,
|β|∑

j=1

kj = λ,

|β|∑

j=1

|kj |ℓj = β






=






∅, if β 6= λ,

{(k1, . . . , k|β|; ℓ1, . . . , ℓ|β|) ∈ N2|β|d
0 : kj = ℓj = 0, 1 ≤ j ≤ |β| − |I(β)|,

ℓ|β|−|I(β)|+1 = etβ , ℓ|β|−|I(β)|+2 = etβ−1, . . . , ℓ|β| = et1 ,

k|β|−|I(β)|+1 = βtβetβ , k|β|−|I(β)|+2 = βtβ−1etβ−1, . . . , k|β| = βt1et1}, if β = λ

so that for λ 6= 0

Fϕ,ψα,λ (x) =

(
α

λ

)
ψ(α−λ)(x)

which also holds true for λ = 0 (recall that the above multinomial coefficient is zero whenever
λ � α).

Hence, Theorem 2.2 characterizes those ψ ∈ C∞(Rd) for which the corresponding multiplication
operator Mψ : S (Rd) → S (Rd), f 7→ ψf is correctly defined by the property that for every
α, λ ∈ Nd0 with λ ≤ α and every p > 0 there is q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |x|)q |ψ

(α−λ)(x)| <∞.

Obviously, this holds precisely when for each γ ∈ Nd0 there is r > 0 such that

sup
x∈Rd

(1 + |x|)−r |ψ(γ)(x)| <∞.

Thus, for the special case ϕ(x) = x, Theorem 2.2 gives the well known characterization of the
space of multipliers of S (Rd) as OM (Rd).

Additionally, by Corollary 2.3, if ϕ is a non-constant elliptic polynomial, Cψ,ϕ acts on S (Rd) if
and only if ψ ∈ OM (Rd). Therefore, if d = 1, this equivalence holds whenever ϕ is a non-constant
univariate polynomial.

Remark 2.6. Next, we consider the special case d = 1 in Theorem 2.2. We define for β, λ ∈
N0\{0} with λ ≤ β

q(β, λ) =



(i1, . . . , iβ) ∈ Nβ0 :

β∑

j=1

ij = λ,

β∑

j=1

jij = β



 ,

and for (i1, . . . , iβ) ∈ q(β, λ) we set

L(i1, . . . , iβ) := {1 ≤ j ≤ β : ij 6= 0} and s(i1, . . . , iβ) := |L(i1, . . . , iβ)|.
Then, ∅ 6= L(i1, . . . , iβ) ⊂ {1, . . . , β} and 1 ≤ s(i1, . . . , iβ) ≤ β. It is straightforward that the
correspondence q(β, λ) → p(β, λ) which maps (i1, . . . , iβ) into

(0, . . . , 0, iminL(i1,...,iβ), . . . , imaxL(i1,...,iβ); 0, . . . , 0,minL(i1, . . . , iβ), . . . ,maxL(i1, . . . , iβ))

is correctly defined and bijective, where we have (twice) β− s zeros. With this it follows for d = 1
that for ψ, ϕ ∈ C∞(R), ϕ real valued, α, λ ∈ N0 with λ ≤ α

Fϕ,ψα,λ (x) =

α∑

β=λ

(
α

β

)
ψ(α−β)(x)

∑

i1,...,iβ∈N0,
i1+···+iβ=λ,

i1+2i2+···+βiβ=β

β!

β∏

j=1

1

ij !

(
ϕ(j)(x)

j!

)ij
.

Noticing that ij = 0 for j > β − λ+ 1 the above simplifies to

Fϕ,ψα,λ (x) =

α∑

β=λ

(
α

β

)
ψ(α−β)(x)

∑

i1,...,iβ−λ+1∈N0,
i1+···+iβ−λ+1=λ,

i1+2i2+···+βiβ−λ+1=β

β!

β−λ+1∏

j=1

1

ij!

(
ϕ(j)(x)

j!

)ij
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=

α∑

β=λ

(
α

β

)
ψ(α−β)(x)Bβ,λ

(
ϕ′(x), . . . , ϕ(β−λ+1)(x)

)
,

where Bβ,λ denotes the corresponding Bell polynomial, i.e.
(2.6)

∀x1, . . . , xβ−λ+1 ∈ R : Bβ,λ(x1, . . . , xβ−λ+1) =
∑

i1,i2...,iβ−λ+1∈N0,
i1+i2+···+iβ−λ+1=λ,

i1+2i2+···+(β−λ+1)iβ−λ+1=β

β!

β−λ+1∏

r=1

1

ir!

(xr
r!

)ir

for β, λ ∈ N with λ ≤ β, and B0,0 = 1, Bβ,0 = 0, β ∈ N.

Corollary 2.7. Let ψ, ϕ ∈ C∞(R), ϕ be real valued. Then, the following are equivalent.

(i) ψ · (f ◦ ϕ) ∈ S (R) for every f ∈ S (R).
(ii) The weighted composition operator Cψ,ϕ : S (R) → S (R), f 7→ ψ · (f ◦ ϕ) is correctly

defined and continuous.
(iii) For every α, β, λ ∈ N0 with α ≥ β ≥ λ and for each p > 0 there is q > 0 such that

sup
x∈R

(1 + |x|)p
(1 + |ϕ(x)|)q

∣∣∣ψ(α−β)(x)Bβ,λ
(
ϕ′(x), . . . , ϕ(β−λ+1)(x)

)∣∣∣ <∞.

Proof. By Theorem 2.2 and Remark 2.6, (i) and (ii) are equivalent and hold precisely when for
every α, β, λ ∈ N0 with α ≥ β ≥ λ and each p > 0 there is q > 0 with

sup
x∈R

(1 + |x|)p
(1 + |ϕ(x)|)q

∣∣∣∣∣∣

α∑

β=λ

(
α

β

)
ψ(α−β)(x)Bβ,λ

(
ϕ′(x), . . . , ϕ(β−λ+1)(x)

)
∣∣∣∣∣∣
<∞.

Evaluating the latter condition first for λ = α, then for λ = α− 1 etc. finally shows that (i), (ii),
and (iii) are equivalent. �

Remark 2.8. For a real valued ϕ ∈ C∞(R) it follows from Corollary 2.7 with ψ ≡ 1 that the
corresponding composition operator Cϕf = f ◦ ϕ acts on S (R) if and only if

(2.7) ∀α, λ ∈ N0, α ≥ λ∀ p > 0 ∃ q > 0 : sup
x∈R

(1 + |x|)p
(1 + |ϕ(x)|)q

∣∣∣Bα,λ
(
ϕ′(x), . . . , ϕ(α−λ+1)(x)

)∣∣∣ <∞.

Since B0,0 ≡ 1 and Bα,1(x1, . . . , xα) = xα, condition (2.7) implies

• there is k > 0 such that |ϕ(x)| ≥ |x|1/k whenever |x| ≥ k, and
• for every α ∈ N0 there are C, q > 0 such that |ϕ(α)(x)| ≤ C(1 + |ϕ(x)|)q .

On the other hand, the previous two conditions easily imply condition (2.7) so that Corollary 2.7
gives an alternate characterization to that in [18, Theorem 2.3]. Furthermore, the characterization
in [18, Theorem 2.3] is also valid for several variables (see [18, Remark 2.4(1)]), which can be
deduced from Theorem 2.2, too, in a similar way.

Example 2.9. For the case ϕ = ψ, we have that Cϕ,ϕ : S (R) → S (R) is continuous if and only
if for every α ∈ N0 and p > 0 there exists q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |ϕ

(α)(x)| <∞.

Indeed, necessity follows from Corollary 2.3 while sufficiency is due to Corollary 2.4. For ϕ(x) =
ψ(x) = exp(x), we thus have that Cexp,exp is continuous. Observe that neither the composition
operator Cexp nor the multiplication operator Mexp acts on S (R). We will show in Example 4.9
below that Cexp,exp is even power bounded, and therefore uniformly mean ergodic, on S (R).

Proposition 2.10. Let ϕ : Rd → Rd be smooth such that for each p > 0

sup
x∈Rd

(1 + |ϕ(x)|)p
(1 + |x|) <∞.

Moreover, let ψ ∈ C∞(Rd) be such that Cψ,ϕ acts on S (Rd). Then ψ ∈ S (Rd).
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Proof. Let α ∈ Nd0 and p > 0. By applying Corollary 2.3 for p + 1 we get q > 0 and C > 0 such
that

sup
x∈Rd

(1 + |x|)p|ψ(α)(x)| ≤ C sup
x∈Rd

(1 + |ϕ(x)|)q
(1 + |x|) .

By hypothesis on ϕ, the supremum on the right is finite so the assertion follows. �

Theorem 2.11. Let ϕ : Rd → Rd be smooth. Then, Cψ,ϕ acts on S (Rd) for every ψ ∈ S (Rd) if
and only if ∂kϕi ∈ OM (Rd) for every 1 ≤ i, k ≤ d.

Proof. Let ∂kϕi ∈ OM (Rd) for every 1 ≤ i, k ≤ d. By the multivariate Faà di Bruno formula,
f ◦ ϕ ∈ OM (Rd) for every f ∈ S (Rd). Hence ψ · (f ◦ ϕ) ∈ S (Rd) whenever ψ ∈ S (Rd).

Now, let Cψ,ϕ act on S (Rd) for every ψ ∈ S (Rd). We assume that there are 1 ≤ i, k ≤ d such
that ∂kϕi /∈ OM (Rd). Hence, there is α ∈ Nd0 such that

∀ j ∈ N : sup
x∈Rd

|ϕ(α+ek)
i (x)|
(1 + |x|)j = ∞.

Thus, there is a sequence (xj)j∈N such that |xj+1| > |xj |+ 1 as well as

|ϕ(α+ek)
i (xj)|
(1 + |xj |)j

> j

for each j ∈ N.
Now, we distinguish two cases. In case (ϕ(xj))j∈N is unbounded, by abuse of notation, we

identify (xj)j∈N with a subsequence satisfying |ϕ(xj+1)| > |ϕ(xj)|+1, j ∈ N. Let ̺, g ∈ D(B(0, 1))

be such that ̺ = 1 in B(0, 1/2) and g(ei)(0) = 1 as well as g(β)(0) = 0 for β ∈ Nd0\{ei}. It is
standard to show that

(2.8) ψ(x) :=
∑

j∈N

̺(x− xj)

(1 + |xj |)j/2

belongs to S (Rd), as does

f(x) =
∑

j∈N

g(x− ϕ(xj))

(1 + |xj |)j/2
.

By the multivariate Faà di Bruno formula, for j ∈ N we conclude

| (ψ · (f ◦ ϕ))(α+ek) (xj)| =
∣∣∣ψ(xj) (f ◦ ϕ)(α+ek) (xj)

∣∣∣

=

∣∣∣∣ψ(xj)
∂f

∂xi
(ϕ(xj))ϕ

(α+ek)
i (xj)

∣∣∣∣

=
|ϕ(α+ek)
i (xj)|
(1 + |xj |)j

> j,(2.9)

so that ψ · (f ◦ ϕ) /∈ S (Rd) contradicting the hypothesis that Cψ,ϕ acts on S (Rd).
To finish the proof, we consider the case when (ϕ(xj))j∈N is bounded. We define ψ as in (2.8)

and we consider a function f ∈ D(Rd) such that f(x) = xi on a neighborhood of {ϕ(xj) : j ∈ N}.
Then (2.9) holds which again gives the desired contradiction. �

For smooth and bounded ϕ : Rd → Rd, by Corollary 2.3, ψ ∈ S (Rd) is a necessary condition
for Cψ,ϕ to act on S (Rd). Therefore, as an immediate corollary of Theorem 2.11 we have the
following.

Corollary 2.12. Let ϕ : Rd → Rd be smooth and bounded. Then, Cψ,ϕ acts on S (Rd) for every
ψ ∈ S (Rd) if and only if ϕ ∈ OM (Rd).
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3. Small decay multipliers

In this section, we shall prove that for a family of weighted composition operators, including
composition operators, the sufficient conditions from Corollary 2.4 are also necessary for Cψ,ϕ to
act on S (Rd). In order to do so, we first prove the following result which will also be of use in
section 4 below.

Lemma 3.1. Let I be a non-empty set and let ϕi : Rd → Rd be smooth mappings, i ∈ I. Moreover,
let ψi ∈ C∞(Rd), i ∈ I, be such that for some m > 0

(3.1) inf
i∈I

inf
|x|≥m

(1 + |x|)m(1 + |ϕi(x)|)m|ψi(x)| > 0.

Assume that there are α ∈ Nd0 and p > 0 such that

(3.2) sup
i∈I

sup
x∈Rd

(1 + |x|)p
(1 + |ϕi(x)|)q

|ψ(α)
i (x)| = ∞

for all q > 0, or that there is α ∈ Nd0 such that

(3.3) sup
i∈I

sup
x∈Rd

1

(1 + |ϕi(x)|)q
|ϕ(α)
i (x)| = ∞

for all q > 0. Then there is f ∈ S (Rd) satisfying

sup
i∈I

sup
x∈Rd

(1 + |x|)max{p,m+1} max{|(ψi · (f ◦ ϕi))(x)|, |(ψi · (f ◦ ϕi))(α)(x)|} = ∞.

Proof. If there are α ∈ Nd0 and p > 0 satisfying (3.2) for every q > 0, then the result follows by
Lemma 2.1 with λ = 0.

Thus, in order to complete the proof, we may assume that for every β ∈ Nd0 and p > 0 there is
q(β, p) > 0 such that

(3.4) sup
i∈I

sup
x∈Rd

(1 + |x|)p
(1 + |ϕi(x)|)q(β,p)

|ψ(β)
i (x)| <∞.

We now fix α ∈ Nd0 with minimal |α| such that (3.3) holds for every q > 0. Clearly, |α| ≥ 1, and
for every β ∈ Nd0 with β ≤ α, β 6= 0, there is q′(β) > 0 such that

(3.5) sup
i∈I

sup
x∈Rd

1

(1 + |ϕi(x)|)q′(β)
|ϕ(α−β)
i (x)| <∞.

With m as in (3.1), we choose sequences (ij)j∈N, (lj)j∈N, and (xj)j∈N in I, N and Rd, respectively,
such that lj+1 > lj > m + max{q(β,m) : β ≤ α} +max{q′(β) : 0 6= β ≤ α}, |xj+1| > 1 + |xj | >
1 +m, and |ϕ(α)

ij
(xj)| > j(1 + |ϕij (xj)|)lj , j ∈ N.

Next, we distinguish two cases. Suppose that (|ϕij (xj)|)j∈N is bounded. Take f ∈ D(Rd)
such that f ≡ 1 on a neighbourhood of {ϕij (xj) : j ∈ N}. By (3.1) and the boundedness of
(|ϕij (xj)|)j∈N we conclude infj∈N(1 + |xj |)m|ψij (xj)| > 0 which implies

sup
i∈I

sup
x∈Rd

(1 + |x|)m+1|(ψi · (f ◦ ϕi))(x)| ≥ sup
j∈N

(1 + |xj |)m+1|ψij (xj)||f(ϕij (xj))| = ∞

proving the assertion in this case.
Now, suppose that (|ϕij (xj)|)j∈N is unbounded. By identifying (ϕij (xj))j∈N with a subsequence,

we assume |ϕij+1 (xj+1)| > 1 + |ϕij (xj)|, j ∈ N. Since |ϕ(α)
ij

(xj)| > j(1 + |ϕij (xj)|)lj there is

1 ≤ k ≤ d such that the k-th component ϕij ,k of ϕij satisfies |ϕ(α)
ij ,k

(xj)| > j√
d
(1 + |ϕij (xj)|)lj ,

j ∈ N. Let g ∈ D(B(0, 1)) be such that g(x) = xk in a neighbourhood of the origin. It is then
standard to show that the function

f(x) =
∑

j∈N

g(x− ϕij (xj))

(1 + |ϕij (xj)|)lj−m
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belongs to S (Rd). Since for β ∈ Nd0 with β ≤ α, β 6= α, by the choice of g and the multivariate
Faà di Bruno formula, we have

(
f ◦ ϕij

)(α−β)
(xj) =

ϕ
(α−β)
ij ,k

(xj)

(1 + |ϕij (xj)|)lj−m
,

while obviously, (f ◦ ϕij )(xj) = 0. Hence, for 0 6= β ≤ α we obtain

sup
j∈N

(1 + |xj |)m|ψ(β)
ij

(xj)
(
f ◦ ϕij

)(α−β)
(xj)|

≤ sup
j∈N

(1 + |xj |)m|ψ(β)
ij

(xj)|
|ϕ(α−β)
ij

(xj)|
(1 + |ϕij (xj)|)lj−m

≤ sup
j∈N

(1 + |xj |)m
(1 + |ϕij (xj)|)q(β,m)

|ψ(β)
ij

(xj)|
|ϕ(α−β)
ij

(xj)|
(1 + |ϕij (xj)|)q′(β)

<∞,

where we have used lj −m > max{q(β,m) : β ≤ α}+max{q′(β) : 0 6= β ≤ α} together with (3.4)
and (3.5).

On the other hand,

(1 + |xj |)m|ψij (xj)(f ◦ ϕij )(α)(xj)| = (1 + |xj |)m(1 + |ϕij (xj)|)m|ψij (xj)|
|ϕ(α)
ij ,k

(xj)|
(1 + |ϕij (xj)|)lj

≥ (1 + |xj |)m(1 + |ϕij (xj)|)m|ψij (xj)|
j√
d
.

Combining the above with (3.1), the boundedness of
(
(1 + |xj |)m|ψ(β)

ij
(xj)

(
f ◦ ϕij

)(α−β)
(xj)|

)

j∈N

for 0 6= β ≤ α, and Leibniz rule finally gives

sup
i∈I

sup
x∈Rd

(1 + |x|)m|(ψi(f ◦ ϕi))(α)(x)| = ∞,

which completes the proof. �

Definition 3.2. For a smooth mapping ϕ : Rd → Rd a function ψ ∈ C∞(Rd) is said to be of
small decay with respect to ϕ if there is m > 0 such that

inf
|x|≥m

(1 + |x|)m(1 + |ϕ(x)|)m|ψ(x)| > 0.

As an immediate consequence of the previous lemma we obtain the following result.

Theorem 3.3. Let ϕ : Rd → Rd be smooth and let ψ ∈ C∞(Rd) be of small decay with respect to
ϕ. Then Cψ,ϕ acts on S (Rd) if and only if for each α ∈ Nd0 and p > 0 there is q > 0 such that

sup
x∈Rd

(1 + |x|)p
(1 + |ϕ(x)|)q |ψ

(α)(x)| <∞ and sup
x∈Rd

1

(1 + |ϕ(x)|)q |ϕ
(α)(x)| <∞.

Proof. By Corollary 2.4 the conditions are sufficient for Cψ,ϕ to act on S (Rd) while Lemma 3.1
also implies necessity. �

4. Power boundedness and topologizability

In this section we study power boundedness and related properties for weighted composition
operators Cψ,ϕ on S (Rd). For p > 0 and α ∈ Nd0, obviously

∀ f ∈ S (Rd) : ‖f‖p,α = sup
x∈Rd

(1 + |x|)p|f (α)(x)|

defines a continuous norm ‖ · ‖p,α on S (Rd) and the set of norms {‖ · ‖p,α : p > 0, α ∈ Nd0} defines
the standard topology on S (Rd). Whenever we equip the vector space S (Rd) only with the norm
‖ · ‖p,α we write Sp,α(Rd). Obviously, every continuous linear mapping from S (Rd) into itself is
in particular a continuous linear mapping from S (Rd) into Sp,α(Rd).
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Next, for a smooth mapping ϕ : Rd → Rd and n ∈ N we set ϕn := ϕ ◦ · · · ◦ ϕ the n-th iteration
of ϕ. Additionally, we set ϕ0(x) = x and for ψ ∈ C∞(Rd) and n ∈ N we define

ψn,ϕ(x) :=

n∏

j=1

ψ(ϕj−1(x)), x ∈ Rd.

In particular, ϕ1 = ϕ and ψ1,ϕ = ψ.

Lemma 4.1. Let I be a non-empty set, (ψi)i∈I ∈ C∞(Rd)I and let ϕi : Rd → Rd be smooth
mappings, i ∈ I, such that the weighted composition operators Cψi,ϕi

act on S (Rd), i ∈ I.

(a) Let α ∈ Nd0 and p > 0 be fixed. Then, the set of continuous linear mappings {Cψi,ϕi
: i ∈ I}

is equicontinuous from S (Rd) into Sp,α(Rd) if and only if for every λ ∈ Nd0 with |λ| ≤ |α|
there is q > 0 such that

(4.1) sup
i∈I

sup
x∈Rd

(1 + |x|)p
(1 + |ϕi(x)|)q

∣∣∣Fϕi,ψi

α,λ (x)
∣∣∣ <∞.

(b) The set of continuous linear mappings {Cψi,ϕi
: i ∈ I} is equicontinuous on S (Rd) if and

only if for every α, λ ∈ Nd0 with |λ| ≤ |α| and each p > 0 there is q > 0 such that (4.1)
holds.

Proof. Clearly, (b) is a direct consequence of (a). In order to prove (a), since S (Rd) is a Fréchet
space, by the Uniform Boundedness Principle equicontinuity of {Cψi,ϕi

: i ∈ I} from S (Rd) into
Sp,α(Rd) is equivalent to the boundedness of {Cψi,ϕi

f : i ∈ I} in Sp,α(Rd) for every f ∈ S (Rd).
Thus, by Lemma 2.1 and (2.2), we obtain the claimed equivalence. �

Theorem 4.2. Let ϕ : Rd → Rd be a smooth mapping and let ψ ∈ C∞(Rd). Then, the following
are equivalent.

(i) Cψ,ϕ acts on S (Rd) and is power bounded.
(ii) For all α, λ ∈ Nd0 with |λ| ≤ |α| and each p > 0 there exists q > 0 such that

sup
n∈N

sup
x∈Rd

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣Fϕn,ψ
n,ϕ

α,λ (x)
∣∣∣ <∞.

Proof. Since Cnψ,ϕf = Cψn,ϕ,ϕn
f for every f ∈ S (Rd), n ∈ N, the assertion follows immediately

from Theorem 2.2 and Theorem 4.1 (b). �

Remark 4.3. Using the same arguments as in Remark 2.5, by Theorem 4.2, for ψ ∈ OM (Rd) the
corresponding multiplication operator Mψ is power bounded on S (Rd) if and only if for every
γ ∈ Nd0 there is r > 0 such that

sup
n∈N

sup
x∈Rd

(1 + |x|)−r
∣∣∣(ψn)(γ) (x)

∣∣∣ <∞,

i.e. the sequence (ψn)n∈N is bounded in OM (Rd) (cf. [2, Theorem 4.3]).

Using Remark 2.6 as in the proof of Corollary 2.7 one obtains the following result.

Corollary 4.4. Let ψ, ϕ ∈ C∞(R), ϕ be real valued. Then, the following are equivalent.

(i) Cψ,ϕ acts on S (R) and is power bounded.
(ii) For all α, β, λ ∈ N0 with α ≥ β ≥ λ and for each p > 0 there is q > 0 such that

sup
n∈N

sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣(ψn,ϕ)(α−β) (x)Bβ,λ
(
ϕ′
n(x), . . . , ϕ

(β−λ+1)
n (x)

)∣∣∣ <∞.

The next theorem follows immediately from Lemma 3.1 and Theorem 3.3.

Theorem 4.5. Let ϕ : Rd → Rd be a smooth mapping and let ψ ∈ C∞(Rd) be of small decay with
respect to ϕ. Then, the following are equivalent.

(i) Cψ,ϕ acts on S (Rd) and is power bounded.
(ii) The following two conditions are satisfied:
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(a) For all p > 0 and α ∈ Nd0 there exists q > 0 such that

sup
n∈N

sup
x∈Rd

(1 + |x|)p
(1 + |ϕn(x)|)q

|(ψn,ϕ)(α)(x)| <∞.

(b) For all α ∈ Nd0 there exists q > 0 such that

sup
n∈N

sup
x∈Rd

1

(1 + |ϕn(x)|)q
|ϕ(α)
n (x)| <∞.

Remark 4.6. We observe that, arguing as in Corollary 2.3 and Corollary 2.4, the hypothesis for
ψ to be of small decay with respect to ϕ in Theorem 4.5 is only needed for the necessity of (b) in
(ii). Condition (a) is necessary for the power boundedness of Cψ,ϕ while (a) and (b) together are
always sufficient conditions for the power boundedness of Cψ,ϕ whether ψ is of small decay with
respect to ϕ or not.

Remark 4.7. Obviously, ψ(x) ≡ 1 is of small decay with respect to every smooth ϕ : Rd → Rd

so that Theorem 4.5 is applicable to composition operators. Employing the same arguments as
in Remark 2.8, we derive easily that the composition operator Cϕ acts on S (Rd) and is power
bounded if and only if it satisfies the two conditions

(a) there are k, l > 0 such that for every n ∈ N it holds |ϕn(x)| ≥ |x|k whenever |x| ≥ l, and

(b) for every α ∈ N0 there are C, q > 0 such that |ϕ(α)
n (x)| ≤ C(1 + |ϕn(x)|)q for every

n ∈ N, x ∈ Rd.

For d = 1, this characterization has been obtained in [14, Proposition 3.9]. We observe, that
when d = 1, then any polynomial ϕ with deg(ϕ) ≥ 2 satisfies condition (a) above. Indeed, this

is easily obtained from lim|x|→∞
|ϕ(x)|
|x| = ∞. Combining this observation with [14, Theorem 3.11]

we obtain that condition (b) above is satisfied if and only if deg(ϕ) ≥ 2 and ϕ has no fixed points
(and hence the degree of ϕ is even).

Remark 4.8. Because S (Rd) is a Montel space, [8, Proposition 3.3] combined with [28, Theorem
2.5] yield that Cψ,ϕ as well as its transpose are uniformly mean ergodic whenever Cψ,ϕ is power
bounded on S (Rd).

Example 4.9. In Example 2.9 we have already seen that for ψ = ϕ = exp the weighted composi-
tion operator Cexp,exp acts on S (R) although neither exp is a symbol for S (R) nor exp ∈ OM (R).
We will now show that Cexp,exp is even power bounded on S (R), and thus uniformly mean ergodic,
by [8, Proposition 3.3] and [28, Theorem 2.5]. To do so, we first notice that

(4.2) (ϕn)
′
(x) = (ϕ′)

n,ϕ
(x) = ϕn,ϕ(x) = ϕ1(x)ϕ2(x) · · ·ϕn(x).

Thus, by Corollary 4.4, Cexp,exp is power bounded on S (R) if for every p > 0 and α ∈ N0 there
is q > 0 such that

(4.3) sup
n∈N

sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q

|(ϕn,ϕ)(α)(x)| <∞

holds.
In order to prove (4.3), we show as a first step the following auxiliary inequality.

(4.4) ∀α ∈ N0 ∃nα ∈ N ∀n ≥ nα, x ∈ R : (ϕn,ϕ)(α)(x) ≤ ϕ1(x)(ϕn(x))
2+α.

In order to prove that (4.4) indeed holds true, we note that due to ϕ2,ϕ = ϕ1ϕ2 the inequality (4.4)
holds for α = 0 and n = 2. Now, assume that the inequality (4.4) holds for α = 0 and some n ≥ 2.
Then, since (ϕn(x))

2 ≤ ϕn+1(x) for every x,

ϕn+1,ϕ(x) = ϕn,ϕ(x)ϕn+1(x) ≤ ϕ1(x)(ϕn(x))
2ϕn+1(x) ≤ ϕ1(x)(ϕn+1(x))

2

so that (4.4) also holds for α = 0 and n+ 1 proving the validity of (4.4) for α = 0 with n0 = 2.
In order to establish (4.4) for α = 1 we first provide some auxiliary estimates. As ϕ(x) = ex,

for every n ≥ 1,

ϕn(x) = eϕn−1(x) =

∞∑

j=0

(ϕn−1(x))
j

j!
,
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so that

(4.5) ∀ j ∈ N0, n ∈ N, n ≥ 2, x ∈ R : (ϕn−1(x))
j ≤ j!ϕn(x).

Besides that, since for n ≥ 1 it holds ϕn(R) = (ϕn−1(0),+∞) we also have

(4.6) ∀n ≥ 5, x ∈ R : n ≤ ϕn−2(0) ≤ ϕn−1(x).

For arbitrary C > 0 and j ∈ N, choosing N ≥ 5 so large that C(j + 2)! ≤ N , by (4.6) and (4.5),
it holds for all x ∈ R and n ≥ N ,

(4.7) nC(ϕn−1(x))
j = n(C(j + 2)!)

(ϕn−1(x))
j

(j + 2)!
≤ (ϕn−1(x))

2 (ϕn−1(x))
j

(j + 2)!
≤ ϕn(x).

To show (4.4) for α = 1, we introduce Ψn(x) := 1 + ϕ1,ϕ(x) + · · ·+ ϕn−1,ϕ(x). Applying (4.2)
we then obtain

(ϕn,ϕ)′(x) = (ϕ1 · · ·ϕn)′(x) = (ϕ1)
′(x) · ϕ2(x) · · ·ϕn(x) + · · ·+ ϕ1(x) · · ·ϕn−1(x) · (ϕn)′(x)

= (ϕ1(x) · · ·ϕn(x))(1 + ϕ1(x) + · · ·+ ϕ1(x) · · ·ϕn−1(x))

= ϕn,ϕ(x)Ψn(x).(4.8)

By inequality (4.5) for j = 0, ϕn(x) ≥ 1 for every n ≥ 2, x ∈ R, implying ϕn,ϕ(x) ≤ ϕn+1,ϕ(x) for
n ≥ 1, x ∈ R. Hence, Ψn(x) ≤ 1 + (n− 1)ϕn−1,ϕ(x), x ∈ R, n ∈ N. Applying (4.6), (4.4) for α = 0
and (4.7) for C = 2, j = 3 there is N ≥ 2 · 5! such that for all n ≥ N and all x ∈ R,

Ψn(x) ≤ 1 + (n− 1)ϕn−1,ϕ(x) ≤ 1 + ϕn−1(x)ϕ
n−1,ϕ(x) ≤ 1 + (ϕn−1(x))

3

≤ 2(ϕn−1(x))
3 ≤ ϕn(x).

Hence, by (4.8) and by (4.4) for α = 0, for all n ≥ N and all x ∈ R,

(ϕn,ϕ)′(x) = ϕn,ϕ(x)Ψn(x) ≤ ϕ1(x)(ϕn(x))
3

which proves (4.4) for α = 1.
Now, fix α ∈ N and assume that for all β < α there exists nβ ∈ N (without losing generality,

nβ < nγ if β ≤ γ and β 6= γ) such that (4.4) is satisfied, i.e.,

(4.9) (ϕn,ϕ)(β)(x) ≤ ϕ1(x)(ϕn(x))
2+β , x ∈ R, n ≥ nβ.

We show (4.4) for α and nα, where nα ∈ N satisfies nα ≥ max{nβ;β ≤ α, β 6= α}+ 1 and is such
that for every x ∈ R and n ≥ nα

(4.10) 2α−1n(ϕn−1(x))
α+2 ≤ ϕn(x),

which is possible by (4.7). From (4.8) and Leibniz rule, for every n ≥ nα

(4.11) (ϕn,ϕ)(α)(x) = (ϕn,ϕΨn)
(α−1)(x) =

∑

β≤α−1

(
α− 1

β

)
(ϕn,ϕ)(β)(x)(Ψn)

(α−1−β)(x).

Moreover, by Leibniz rule, for all γ ∈ N0, j ∈ N, and x ∈ R,

(ϕj+1,ϕ)(γ)(x) = (ϕj,ϕ)(γ)(x)ϕj+1(x) +
∑

γ̃<γ

(
γ

γ̃

)
(ϕj,ϕ)(γ̃)(x)(ϕj+1)

(γ−γ̃)(x)

≥ (ϕj,ϕ)(γ)(x)ϕj(0) ≥ (ϕj,ϕ)(γ)(x).

Applying the above inequality for j = 1, . . . , n− 2, by the choice of nα, using inequality (4.9), for
every n ≥ nα, and taking in account ϕn−1(x) > 1 for all x ∈ R, we get for each β ≤ α− 1

(Ψn)
(α−1−β)(x) = (1 + ϕ1,ϕ + · · ·+ ϕn−1,ϕ)(α−1−β)(x)

≤ dα−1−β

dxα−1−β 1 + (n− 1)(ϕn−1,ϕ)(α−1−β)(x)

≤ 1 + (n− 1)ϕ1(x)(ϕn−1(x))
α−β+1

≤ (1 + ϕ1(x))n(ϕn−1(x))
α−β+1

≤ ϕn−1(x)n(ϕn−1(x))
α−β+1
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≤ nϕn−1(x)
α+2

≤ 1

2α−1
ϕn(x).(4.12)

Thus, combining (4.9) with (4.11) and (4.12) for n ≥ nα, we conclude

(ϕn,ϕ)(α)(x) ≤ 1

2α−1

∑

β≤α−1

(
α− 1

β

)
ϕ1(x)(ϕn(x))

2+βϕn(x) ≤ ϕ1(x)(ϕn(x))
2+α, x ∈ R.

The proof of (4.4) is complete.
In order to derive (4.3) from (4.4), let p > 0 and α ∈ N0 be fixed. Set q = p+ 3+ α. Then, for

n ≥ nα it follows for x ≥ 0

(1 + x)p

(1 + ϕn(x))p+3+α
(ϕn,ϕ)(α)(x) ≤ (1 + x)pϕ1(x)

(1 + ϕn(x))p+1
≤ 1

while for x < 0 we have

(1 + |x|)p
(1 + ϕn(x))p+3+α

(ϕn,ϕ)(α)(x) ≤ (1 + |x|)pϕ1(x) ≤ sup
y≥0

(1 + y)p exp(−y) <∞.

In the remainder of this section, we deal with (m-)topologizability of weighted composition
operators on S (Rd).

Proposition 4.10. Let ϕ : Rd → Rd be a smooth mapping and let ψ ∈ C∞(Rd). Then, the
following are equivalent.

(i) Cψ,ϕ acts on S (Rd) and is topologizable (m-topologizable).
(ii) For all α, λ ∈ Nd0 with |λ| ≤ |α| and each p > 0 there exists q > 0 such that

∀n ∈ N : sup
x∈Rd

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣Fϕn,ψ
n,ϕ

α,λ (x)
∣∣∣ <∞ (< Mn for some M > 0).

Proof. We only prove the assertion for topologizability. The proof for m-topologizability is done
by the same argument with obvious modifications.

By definition, Cψ,ϕ is topologizable on S (Rd) if and only if for every p > 0 and α ∈ Nd0 there
is a sequence (an)n∈N in (0,∞) such that {anCnψ,ϕ : n ∈ N} is equicontinuous from S (Rd) into

Sp,α(Rd). Since anC
n
ψ,ϕ = Canψn,ϕ,ϕn

, n ∈ N, by Lemma 4.1 (a), Cψ,ϕ is topologizable precisely,

when for every α ∈ Nd0 and p > 0 there is (an)n∈N in (0,∞) such that for each λ ∈ Nd0 with
|λ| ≤ |α| there is q > 0 with

sup
n∈N

sup
x∈Rd

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣anFϕn,ψ
n,ϕ

α,λ (x)
∣∣∣ <∞,

where we have used that Fϕn,anψ
n,ϕ

α,λ (x) = anF
ϕn,ψ

n,ϕ

α,λ (x), x ∈ Rd. Since the number of λ ∈ Nd0
with |λ| ≤ |α| is finite, the latter property is easily seen to be equivalent to (ii) which proves the
Proposition. �

Remark 4.11. (i) Again, using Remark 2.6 as in the proof of Corollary 2.7, for d = 1 a
weighted composition operatorCψ,ϕ on S (R) is topologizable, respectivelym-topologizable,
if and only if for all α, β, λ ∈ N0 with α ≥ β ≥ λ and for each p > 0 there is q > 0 such
that

∀n ∈ N : sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣(ψn,ϕ)(α−β) (x)Bβ,λ
(
ϕ′
n(x), . . . , ϕ

(β−λ+1)
n (x)

)∣∣∣ <∞,

respectively if and only if for all α, β, λ ∈ N0 with α ≥ β ≥ λ and for each p > 0 there are
M, q > 0 such that

∀n ∈ N : sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q

∣∣∣(ψn,ϕ)(α−β) (x)Bβ,λ
(
ϕ′
n(x), . . . , ϕ

(β−λ+1)
n (x)

)∣∣∣ ≤Mn.

For the special case ψ = 1, similar as in Remark 2.8, the above characterizations of
(m-)topologizablity simplify to the two conditions
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– there is k > 0 such that for each n ∈ N there is rn > 0 such that |ϕn(x)| ≥ |x|1/k for
all |x| ≥ rn, and

– for every α ∈ N there is q > 0 (resp. there areM, q > 0) with supx∈R

|ϕ(α)
n (x)|

(1+|ϕn(x)|)q <∞
(resp. supx∈R

|ϕ(α)
n (x)|

(1+|ϕn(x)|)q ≤Mn) for every n ∈ N.

(ii) Similarly as in Remark 4.3, by Proposition 4.10, for ψ ∈ OM (Rd) the corresponding
multiplication operator Mψ is (m-)topologizable on S (Rd) if and only if for every γ ∈ Nd0
there is r > 0 (resp. there are M, r > 0) such that

∀n ∈ N : sup
x∈Rd

(1 + |x|)−r
∣∣∣(ψn)(γ) (x)

∣∣∣ <∞,

respectively

∀n ∈ N : sup
x∈Rd

(1 + |x|)−r
∣∣∣(ψn)(γ) (x)

∣∣∣ ≤Mn

Analogously to the proof of Theorem 4.5, we can characterize topologizability and m-topologizability
in a much more operable way.

Theorem 4.12. Let ϕ : Rd → Rd be a smooth mapping and let ψ ∈ C∞(Rd) be of small decay
with respect to ϕ. Then, the following are equivalent.

(i) Cψ,ϕ acts on S (Rd) and is topologizable (m-topologizable) .
(ii) The following two conditions are satisfied:

(a) For all p > 0 and α ∈ Nd0 there exists q > 0 such that, for all n ∈ N

sup
x∈Rd

(1 + |x|)p
(1 + |ϕn(x)|)q

|(ψn,ϕ)(α)(x)| <∞ (< Mn for some M > 0).

(b) For all α ∈ Nd0 there exists q > 0 such that, for all n ∈ N

sup
x∈Rd

1

(1 + |ϕn(x)|)q
|ϕ(α)
n (x)| <∞ (< Mn for some M > 0).

Remark 4.13. Condition (a) in Theorem 4.12 is necessary for Cψ,ϕ to be topologizable (m-
topologizable) without the assumption that ψ is of small decay with respect to ϕ. Additionally,
conditions (a) and (b) are always sufficient for topologizability (m-topologizability) of Cψ,ϕ.

Example 4.14. Fix ψ ≡ 1. From Remark 4.11(i), observe that if ϕ is a polynomial, then
Cϕ : S (R) → S (R) is topologizable if and only if Cϕ is well defined if and only if deg(ϕ) ≥ 1.
On the other hand, for ϕ(x) = x+ 1, x ∈ R, n ∈ N, p ≥ 1 it holds

sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)p

= sup
x∈R

(
1 + |x|

1 + |x+ n|

)p
= (1 + | − n|)p ≤ (2p)n.

Hence condition (a) in Theorem 4.12 is satisfied. Since condition (b) in Theorem 4.12 is trivially
satisfied, the corresponding composition operator, the so-called translation operator Cx+1, is m-
topologizable but not power bounded, because by the same computation above it does not satisfy
condition (a) of Theorem 4.5, as observed in [14, Remark 2].

Example 4.15. Let ϕ : R → R, ϕ(x) = ax+ b, a, b ∈ R, a /∈ {0, 1}. Then Cϕ is m-topologizable.
In fact, it follows from Theorem 4.12 and

lim
n

1

|a|n sup
x∈R

1 + |x|
1 +

∣∣∣anx+ b(1−an)
1−a

∣∣∣
=

|b|
|a− 1| , if |a| > 1

and

lim
n

|a|n sup
x∈R

1 + |x|
1 +

∣∣∣anx+ b(1−an)
1−a

∣∣∣
= max

{
1,

|b|
|1− a|

}
, if 0 < |a| < 1.

Finally, for a = −1, we have C2
ϕ = idS (R).
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Example 4.16. Let ϕ(x) =
√
1 + x2, and let ψ be a fixed non-null polynomial, which is of small

decay with respect to ϕ. Then Cϕ : S (R) → S (R) is power bounded by [14, Example 2]. We
show that for Cψ,ϕ : S (R) → S (R) topologizable and m-topologizability are equivalent and that
this holds precisely when ψ is constant. Moreover, Cψ,ϕ : S (R) → S (R) is power bounded if,
and only, if ψ ≡ c for some |c| ≤ 1.

Indeed, since Cϕ is power bounded, by Remark 4.7 and Theorem 4.12, (m-)topologizability of
Cψ,ϕ is equivalent to condition (a) from Theorem 4.12 (ii).

Hence, if ψ ≡ c ∈ C, condition (a) for m-topologizability from Theorem 4.12 (ii) holds.
On the other hand, if deg(ψ) ≥ 1, for every q ∈ N, we find n = q + 1 so that

sup
x∈R

|ψn,ϕ(x)|
(1 + |ϕn(x)|)q

= sup
x∈R

|ψ(x)ψ(ϕ(x)) · · · ψ(ϕn−1(x))|
(1 +

√
n+ x2)q

= ∞,

since the numerator has degree n · deg(ψ) = (q + 1) · deg(ψ) and the denominator, q. Therefore
Cψ,ϕ is not topologizable (and not power bounded).

Finally, fix ψ ≡ c. If |c| ≤ 1, then, Cψ,ϕ is power bounded. Otherwise, for all q > 0,

sup
n∈N

sup
x∈R

|ψn,ϕ(x)|
(1 + |ϕn(x)|)q

= sup
n∈N

sup
x∈R

|ψ(x)ψ(ϕ(x)) · · · ψ(ϕn−1(x))|
(1 +

√
n+ x2)q

≥ sup
n∈N

cn

(1 +
√
n)q

= ∞,

so Cψ,ϕ is not power bounded.

5. Power boundedness of weighted composition operators for polynomials

5.1. Power boundedness of Cψ,ϕ on S (R) for ϕ(x) = ax + b. In this subsection we study
univariate polynomials of degree one. For a ∈ R\{0}, b ∈ R, as is well known, and may be checked
by Remark 2.8, ϕ(x) = ax+b is a symbol for S (R). For the special case ϕ(x) = x the composition
operator Cψ,ϕ is the multiplication operator Mψ. Power boundedness of multiplication operators
in one variable has been characterized by Albanese and Mele (cf. Remark 4.3). Furthermore, from
the fact that, for any locally convex space E, a continuous linear operator T ∈ L(E) is power
bounded if and only if T 2 is, the next proposition follows immediately.

Proposition 5.1. Let ϕ(x) = −x+ b and ψ ∈ OM (R). The composition operator Cψ,ϕ is power
bounded if and only if ((ψ · (ψ ◦ ϕ))n)n∈N is a bounded sequence in OM (R).

By the same argument as in the corresponding part of Example 4.16, we derive the next
proposition.

Proposition 5.2. Let ϕ : R → R, x 7→ ax + b, a, b ∈ R, a 6= 0, and let ψ ∈ C∞(R) be a non
constant polynomial. Then Cψ,ϕ is not topologizable.

Proposition 5.3. Let ϕ : R → R, x 7→ x + b, b ∈ R \ {0} and let ψ ∈ C∞(R) be a polynomial.
Then Cψ,ϕ is power bounded if and only if there is c ∈ C, |c| < 1 such that ψ(x) = c. In this case,
the sequence (Cnψ,ϕ) is convergent to 0 in Lb(S (R)).

Proof. Without loss of generality, we assume ψ 6= 0. Since ψ is a polynomial it is of small decay
with respect to ϕ. Condition (b) of Theorem 4.5 (ii) is trivially satisfied.

Assume that Cψ,ϕ is power bounded. By Proposition 5.2 ψ has to be constant, ψ = c. In case
of |c| = 1 we know that Cϕ is not power bounded [14, Remark 2]. Additionally, by condition (a)
in Theorem 4.5 (ii), for some q > 0 we have

∞ > sup
n∈N

sup
x∈R

|c|n (1 + |x|)
(1 + |ϕn(x)|)q

≥ sup
n∈N

|c|n(1 + |bn|)

which implies |c| < 1. Therefore, the sequence (Cnψ,ϕ) of iterates is clearly pointwise convergent to

0 and because S (R) is a Montel space, we conclude that (Cnψ,ϕ) is convergent to 0 in Lb(S (R)).
On the other hand, if ψ is constant, ψ = c with |c| < 1, for p > 0 we have

sup
n∈N

sup
x∈R

|c|n (1 + |x|)p
(1 + |ϕn(x)|)p

= sup
n∈N

sup
x∈R

|c|n
(

1 + |x|
1 + |x+ nb|

)p
≤ sup

n∈N

|c|n(1 + |bn|) <∞

so that Cψ,ϕ is power bounded by Theorem 4.5. �
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Proposition 5.4. Let ϕ : R → R, x 7→ ax + b, a, b ∈ R, |a| /∈ {0, 1} and let ψ be a non-null
polynomial. Then Cψ,ϕ is not power bounded. In case |a| > 1, Cψ,ϕ is not power bounded for
every ψ ∈ C∞(R) which is of small decay with respect to ϕ.

Proof. We first consider the case |a| > 1. Let x0 = −b
a−1 be the unique fixed point of ϕ. We have

|ϕ′
n(x0)|

1 + |ϕn(x0)|
=

|a|n
1 + |x0|

.

Hence, condition (b) from Theorem 4.5 (ii) does not hold.
Assume now |a| < 1 and ψ to be a non-null polynomial. By Proposition 5.2 we can reduce to

the case ψ(x) = c, with c ∈ C\{0}. Since Cψ,ϕ is power bounded if and only if C2
ψ,ϕ is, we can

assume 0 < a < 1. Let p ≥ 1 such that ap < |c|. On account of ϕn(x) = anx + b 1−a
n

1−a , for each
q ≥ p, we have

sup
n∈N

sup
x∈R

(1 + |x|)p
(1 + |ϕn(x)|)q

|c|n ≥ sup
n∈N

(
1 + 1

an

)p

(1 + |ϕn
(

1
an

)
|)q |c|

n ≥ sup
n∈N

( |c|
ap

)n
1(

1 +
∣∣∣1 + b 1−a

n

1−a

∣∣∣
)q = ∞.

By Theorem 4.5, Cψ,ϕ is not power bounded. �

5.2. Power boundedness of Cψ,ϕ with ϕ being a polynomial with deg(ϕ) ≥ 2. The main
purpose of the current subsection is to prove Theorem 5.10 below which completements Proposi-
tion 5.4 with a statement for polynomial ϕ of degree larger than one. For this, we first observe
that Theorem 4.5 and Remark 4.7 immediately yield the following result.

Proposition 5.5. Let ϕ : Rd → Rd be a symbol for S (Rd) such that there exists k, l > 0 such
that |ϕn(x)| ≥ |x|k when |x| ≥ l, n ∈ N, and let ψ ∈ C∞(Rd) be of small decay with respect to ϕ.
If Cψ,ϕ acts on S (Rd) and is power bounded then Cϕ is also power bounded on S (Rd).

Lemma 5.6. Let ϕ : Rd → Rd be a symbol for S (Rd) such that Cϕ is power bounded. Additionally,
assume that |ϕn|2 = o(|ϕn+1|) uniformly as n→ ∞, i.e.

∀ε > 0 ∃N ∈ N ∀n ≥ N, x ∈ Rd : |ϕn(x)|2 ≤ ε|ϕn+1(x)|.
(i) There is k ≥ 0 such that for every ψ ∈ OM (Rd) and m ∈ N0 there are Mm, q

′
m > 0 such

that for every β ∈ Nd0 with |β| ≤ m it holds

(5.1) sup
n∈N

sup
|x|≥k

|(ψn,ϕ)(β)(x)| ≤Mm(1 + |ϕn(x)|)q
′
m .

(ii) Assume that

(5.2) ∃n0 ∈ N, c > 0 ∀n ≥ n0, x ∈ Rd : |ϕn(x)| ≥ c.

Then, for every ψ ∈ OM (Rd) and m ∈ N0 there are Mm, q
′
m > 0 such that for every

β ∈ Nd0 with |β| ≤ m it holds

(5.3) sup
n≥n0

sup
x∈Rd

|(ψn,ϕ)(β)(x)| ≤Mm(1 + |ϕn(x)|)q
′
m .

Proof. Since Cϕ is power bounded, by Remark 4.7

(5.4) ∃k ≥ 0 ∀|x| ≥ k, n ∈ N : |ϕn(x)| ≥ 1.

Before we continue, we need to establish the auxiliary estimate (5.5) below. For this, we recall
that for β ∈ Nd0 we have

(ψ ◦ ϕn)(β)(x) =
∑

λ∈N
d
0

0≤|λ|≤|β|

ψ(λ)(ϕn(x))
∑

p(β,λ)

β!

|β|∏

j=1

(ϕ
(ℓj)
n (x))kj

kj !(ℓj !)|kj |
.

As ψ ∈ OM (Rd), for all λ ∈ Nd0 there exist Cλ, qλ > 0 such that

|ψ(λ)(ϕn(x))| ≤ Cλ(1 + |ϕn(x)|)qλ , x ∈ Rd, n ∈ N.
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The power boundedness of Cϕ and Remark 4.7 (b) thus imply

∀β ∈ Nd0 ∃C′
β , q

′
β ∀n ∈ N, x ∈ Rd : |(ψ ◦ ϕn)(β)(x)| ≤ C′

β(1 + |ϕn(x)|)q
′
β .

Now, let us fix m ∈ N0. Combining the above with (5.4), we obtain the existence of Cm, qm ≥ 1
such that

(5.5) ∀β ∈ Nd0, |β| ≤ m,n ∈ N, |x| ≥ k : |(ψ ◦ ϕn)(β)(x)| ≤ Cm|ϕn(x)|qm .
Next, we fix n1 ∈ N large enough such that

∀n ≥ n1, x ∈ Rd : max{3, 22mC2
m}|ϕn(x)|2 ≤ |ϕn+1(x)|.

From the continuity of Cnψ,ϕ = Cψn,ϕ,ϕn
and Corollary 2.3 we obtain the existence of Mm, q

′
m > 0

with qm ≤ q′m such that

(5.6) ∀β ∈ Nd0, |β| ≤ m, 1 ≤ n ≤ n1, |x| ≥ k : |(ψn,ϕ)(β)(x)| ≤Mm(1 + |ϕn(x)|)q
′
m .

Therefore, for β ∈ Nd0 with |β| ≤ m and x ∈ Rd with |x| ≥ k we conclude

|(ψn1+1,ϕ)(β)(x)| = |(ψn1,ϕ · (ψ ◦ ϕn1))
(β)(x)|

≤
∑

γ≤β

(
β

γ

) ∣∣∣(ψn1,ϕ)
(γ)

(x)
∣∣∣ ·
∣∣∣(ψ ◦ ϕn1)

(β−γ)
(x)
∣∣∣

≤ Mm(1 + |ϕn1(x)|)q
′
m

∑

γ≤β

(
γ

β

)
Cm|ϕn1(x)|qm

= Mm((1 + |ϕn1(x)|)2)q
′
m/22mCm(|ϕn1(x)|2)qm/2

≤ Mm(1 + 3|ϕn1(x)|2)q
′
m/2(22mC2

m|ϕn1(x)|2)qm/2

≤ Mm(1 + |ϕn1+1(x)|)q
′
m/2|ϕn1+1(x)|qm/2

≤ Mm(1 + |ϕn1+1(x)|)q
′
m

where we have also used that 2|ϕn1(x)| ≤ 2|ϕn1(x)|2 for |x| ≥ k, and 1 ≤ qm ≤ q′m. Thus, (5.6)
not only holds for 0 ≤ n ≤ n1 but also for n = n1 + 1. Proceeding recursively, we conclude

∀β ∈ Nd0, |β| ≤ m,n ∈ N0, |x| ≥ k : |(ψn,ϕ)(β)(x)| ≤Mm(1 + |ϕn(x)|)q
′
m ,

i.e. (5.1) which proves (i).
Assume that (5.2) holds. Refering to this additional hypothesis instead of (5.4), the same

arguments which led to (5.5) yield

(5.7) ∀β ∈ Nd0, |β| ≤ m,n ≥ n0, x ∈ Rd : |(ψ ◦ ϕn)(β)(x)| ≤ Cm|ϕn(x)|qm .
With the aid of (5.7) in place of (5.5), the validity of (5.3) is derived with the same arguments as
(5.1). This proves (ii). �

Remark 5.7. Let ϕ : Rd → Rd be a symbol for S (Rd) such that Cϕ is power bounded. Assume
that |ϕ(x)| > 0 for each x ∈ Rd. Then condition (5.2) holds. Indeed, by Remark 4.7 there is k > 0
such that |ϕ(x)| ≥ k1/k whenever |x| ≥ k. Since |ϕ| has no zeros and {x : |x| ≤ k} is compact,
there is c > 0 such that |ϕ(x)| ≥ c, x ∈ Rd. In particular, |ϕ| ≥ c on each of the sets ϕn−1(R),
n ∈ N, which shows that (5.2) holds true.

Moreover, in case of d = 1, the additional hypothesis (5.2) is automatically satisfied for every
polynomial ϕ : R → R for which Cϕ is power bounded on S (R) without fixed points and deg(ϕ) ≥
2. Indeed, we have either ϕ(x) > x for each x ∈ R or ϕ(x) < x for each x ∈ R. In particular,
limn→∞ |ϕn(x)| = ∞ for every x ∈ R. By Remark 4.7, there is k > 0 such that |ϕn(x)| ≥ k1/k for
each x ∈ R\[−k, k] and every n ∈ N. We now consider the case ϕ(x) > x, x ∈ R. The arguments
for the case ϕ(x) < x, x ∈ R, are mutatis mutandis the same. In particular, (ϕn(x))n∈N is strictly
increasing for each x ∈ R. Additionally, for each x ∈ [−k, k] there is nx ∈ N such that ϕn(x) > k1/k

for all n ≥ nx. For every x ∈ [−k, k], let δx > 0 be such that ϕnx
(y) > k1/k for every y ∈ R

with |x− y| < δx. Since [−k, k] is compact and the sequences (ϕn(x))n∈N, x ∈ [−k, k], are strictly
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increasing, there is n0 ∈ N such that ϕn(x) ≥ k1/k for all x ∈ [−k, k] and n ≥ n0. We conclude
that (5.2) is true.

Combining Remark 4.7, Remark 4.6, Lemma 5.6, and Remark 5.7, we immediately derive the
following result.

Theorem 5.8. Let ϕ : Rd → Rd be a symbol for S (Rd) such that |ϕn|2 = o(|ϕn+1|) uniformly
as n → ∞. Moreover, assume that there is n0 such that |ϕn0(x)| > 0 for each x ∈ Rd. Then, the
following are equivalent.

(i) Cϕ is power bounded on S (Rd).
(ii) Cψ,ϕ is power bounded on S (Rd) for every ψ ∈ OM (Rd) and/or for every smooth ψ of

small decay with respect to ϕ.

In order to strengthen the above theorem in case d = 1 we first prove another auxiliary result.

Proposition 5.9. Let E be a Montel locally convex space and let T ∈ L(E).

(i) If λT is power bounded for some λ > 1, then (T n)n∈N is convergent to 0 in Lb(E).
(ii) If

(
1
nk T

n
)
n∈N

is bounded in Lb(E) for some k > 0, then λT is power bounded for every

λ ∈ (0, 1).

Proof. If λ > 1 and (λnT n(x))n∈N is bounded in E for every x ∈ E then (T n(x))n∈N is convergent
to 0 for every x ∈ E, and this is equivalent to (T n)n is convergent to 0 in Lb(E) since (T n)n∈N is
equicontinuous and E is Montel. This proves (i). To prove (ii), we proceed by contradiction. Let
0 < λ < 1 and let x ∈ E and let p be a continuous seminorm on E such that (λnp(T n(x)))n∈N is
unbounded. For every k > 0, λn < 1

nk eventually, hence
(

1
nk p(T

n(x))
)
n∈N

is also unbounded. �

We can finally prove the main theorem of this subsection which complements Section 5.1. Note
that polynomials ϕ : R → R with deg(ϕ) ≥ 2 are symbols for S (R) by Remark 2.8.

Theorem 5.10. Let ϕ : R → R be a polynomial with deg(ϕ) ≥ 2. The following are equivalent.

(a) ϕ does not have fixed points (hence, ϕ is of even degree).
(b) Cϕ is power bounded on S (R).
(c) Cϕ is (uniformly) mean ergodic on S (R).
(d)

(
Cnϕ
)
n∈N

converges to 0 in Lb(S (R)).

(e) Cϕ is Cesàro bounded on S (R), i.e. the sequence ( 1n
∑n

m=1 C
m
ϕ )n∈N is bounded in Lb(S (R)).

(f) Cψ,ϕ is power bounded on S (R) for every ψ ∈ OM (R) and/or for every smooth ψ of small
decay with respect to ϕ.

(g) (Cnψ,ϕ)n∈N is convergent to 0 in Lb(S (R)) for every ψ ∈ OM (R) and/or for every smooth
ψ of small decay with respect to ϕ.

(h) (Cnψ,ϕ)n∈N is (uniformly) mean ergodic on S (R) for every ψ ∈ OM (R) and/or for every
smooth ψ of small decay with respect to ϕ.

Proof. The equivalence among (a), (b), and (c) is [14, Theorem 3.11] (combined with [28, Theorem
2.5(b)]), and (d) is equivalent to (b) due to [14, Corollary 3.12]. Clearly (b) implies (e). If we
assume (e), then

(
1
nC

n
ϕ

)
is bounded in Lb(S (R)), and Proposition 5.9(ii) yields that Cψ0,ϕ is

power bounded for ψ0(x) =
1
2 . Proposition 5.5 implies that Cϕ is power bounded and (e) implies

(b). The equivalence (b) and (f) holds by Theorem 5.8. Trivially, (g) implies (b), and if (f) is
satisfied, then C2ψ,ϕ = 2Cψ,ϕ is power bounded, and (g) follows by Proposition 5.9(i). This shows
that (a) to (g) are equivalent. Finally, (f) implies (h) by [8, Proposition 3.3] and [28, Theorem
2.5(b)] while (h) implies (e) by [28, Theorem 2.5(b)]. �

Remark 5.11. Besides extending the results about composition operators on S (R) from [14]
to weighted composition operators, showing that the ergodic properties rely only on the symbol,
Theorem 5.10 also improves [14, Theorem 3.11 and Corollary 3.12] for composition operators, by
showing that Cesàro boundedness and mean ergodicty are equivalent for composition operators.
Analyzing the proof, we can even replace the property of Cesàro boundedness in condition (e) by
the boundedness of

(
1
nkCϕn

)
in Lb(S (R)) for some k > 0.
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6. Supercyclicity of weighted composition operators with ϕ being a univariate
polynomial.

In this short section we use the ideas of Lemma 5.6 in order to prove the next result which
complements the results from [20].

Proposition 6.1. Let ϕ : R → R be a polynomial such that Cψ,ϕ is weakly supercyclic for some
ψ ∈ OM (R). Then ϕ(x) = x+ b with b 6= 0.

Proof. If ψ(x0) = 0 for some x0 ∈ R then Cψ,ϕ(S (R)) ⊆ Ker(δx0), and Cψ,ϕ cannot be weakly

supercyclic. If ϕ(x0) = ϕ(x1) for some x0 6= x1 then Cψ,ϕ(S (R)) ⊆ Ker(ψ(x0)
ψ(x1)

δx1 − δx0), and

again we conclude that Cψ,ϕ is not weakly supercyclic. Hence Cψ,ϕ is not weakly supercyclic if ϕ
has even degree. If ϕ is constant, the range of Cψ,ϕ is the span of ψ, and again Cψ,ϕ is not weakly
supercyclic.

When ϕ(x) = ax+ b and a 6= 1, a 6= 0, then for x0 := − b
a , if we denote by X the linear span of

{δx0 , δ
(1)
x0 } ⊆ S (R)′, satisfies C′

ψ,ϕ(X) ⊆ X , and the matrix representing the restriction of C′
ψ,ϕ

to X in the basis {δx0 , δ
(1)
x0 } is (

ψ(x0) ψ′(x0)
0 aψ(x0)

)
.

Since a 6= 1 we conclude that C′
ψ,ϕ has two eigenvalues, and then Cψ,ϕ is not weakly supercyclic

by [3, Proposition I.26].
When ϕ(x) = x, Cψ,ϕ is a multiplication operator with {δx : x ∈ R} being eigenvectors of

C′
ψ,ϕ, and again we conclude by [3, Proposition I.26] that Cψ,ϕ cannot be weakly supercyclic. If

ϕ has two fixed points again the same argument applies.
To finish, we have to conclude that Cψ,ϕ is not weakly supercyclic when ϕ is a polynomial of

odd degree bigger or equal than 3 with only one fixed point a and ψ(x) 6= 0 for any x ∈ R. We
proceed by contradiction. Since non null multiples of weakly supercyclic operators are weakly
supercyclic, we can assume ψ(x0) = 1. Under these hypotheses, there is k > |a| such that
|x| ≥ k implies |ϕ(x)| > |x| and |ϕn(x)|2 < |ϕn+1(x)| for all n ∈ N. Let M, q > 0 such that
|ψ(x)| ≤ M |x|q for |x| > k. We argue as in Lemma 5.6 to get |ψn,ϕ(x)| ≤ M |ϕn(x)|q for all
|x| > k. From [3, Proposition I.26] we get that Cψ,ϕ restricted to Ker(δa) is weakly hypercyclic,
and, for any |x| > k and f ∈ Ker(δa), being a hypercyclic vector

|Cnψ,ϕf(x)| = |ψn,ϕ(x)| · |f(ϕn(x))| ≤M |ϕn(x)|q|f(ϕn(x))| ≤M sup
x∈R

|x|q|f(x)|,

and this supremum is finite since f ∈ S (R), which is a contradiction with the assumption that f
is a weakly hypercyclic vector. �

For the translation operator, i.e. Cϕ with ϕ(x) = x+1, we refer the reader to [20] for sufficient
conditions on ψ ∈ OM (R) for Cψ,ϕ to be weakly supercyclic on S (R) as well as for other linear
dynamical properties for these operators.
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