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Abstract

Generalized Linear Mixed Models (GLMMs) are widely used for analysing clustered data.

One well-established method of overcoming the integral in the marginal likelihood function

for GLMMs is penalized quasi-likelihood (PQL) estimation, although to date there are few

asymptotic distribution results relating to PQL estimation for GLMMs in the literature. In

this paper, we establish large sample results for PQL estimators of the parameters and random

effects in independent-cluster GLMMs, when both the number of clusters and the cluster sizes

go to infinity. This is done under two distinct regimes: conditional on the random effects

(essentially treating them as fixed effects) and unconditionally (treating the random effects

as random). Under the conditional regime, we show the PQL estimators are asymptotically

normal around the true fixed and random effects. Unconditionally, we prove that while the

estimator of the fixed effects is asymptotically normally distributed, the correct asymptotic

distribution of the so-called prediction gap of the random effects may in fact be a normal
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scale-mixture distribution under certain relative rates of growth. A simulation study is used to

verify the finite sample performance of our theoretical results.

Keywords Asymptotic independence, Clustered data, Large sample distribution, Longitudi-

nal data, Prediction

1 Introduction

Generalized linear mixed models (GLMMs) are widely used in statistics to model relationships in

clustered and correlated data (McCulloch & Searle, 2004). As the marginal likelihood function of

GLMMs, except for normally distributed responses with the identity link, contains an intractable

integral, many methods have been developed to estimate and perform inference for the parameters

in a computationally efficient manner. These include the Laplace approximation, Gauss-Hermite

quadrature, and variational approximations, among others (Brooks et al., 2017; McCulloch &

Searle, 2004; Ormerod & Wand, 2012). A connected and well-established approach is penalized

Quasi-Likelihood (PQL) estimation (Breslow & Clayton, 1993). As one of the first methods to

circumvent the intractable integral, PQL estimation has seen a resurgence in modern statistics

as a very computationally efficient method for high-dimensional multivariate GLMMs (e.g., Hui,

2020; Kidziński et al., 2022). However, despite its long history, large sample distributional results

for PQL estimation in mixed models are scarce.

The most often studied asymptotic results for maximum likelihood estimators of GLMMs are

based on increasing the number of clusters while keeping the size of each cluster fixed or bounded

(McCulloch & Searle, 2004; Nie, 2007). Asymptotic results when both the cluster size and number

of clusters grow are less developed, although some results for the maximum likelihood estimator

as well as the empirical best linear unbiased predictor (EBLUP) for the linear mixed model (LMM)

have been developed; see Lyu and Welsh (2021a, 2021b) and references therein. Recently, Jiang

et al. (2022) proved an asymptotic normality result for a maximum quasi-likelihood estimator of

the fixed parameters, which is different from the PQL estimator, for independent-cluster GLMMs.
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This work is distinct from the above results: compared to Lyu and Welsh (2021a, 2021b) we

consider a more general random effects structure that permits random slopes in GLMMs. Mean-

while, Jiang et al. (2022) considered GLMMs but not the case when cluster sizes grow faster than

the number of clusters; nor did they present results for predictors of random effects, both of which

are considered in this article. Furthermore, we establish results for the prediction gap in GLMMs,

which are new to the literature and allow unconditional inference to be performed for the random

effects (noting unconditional inference for random effects in LMMs has been considered previ-

ously in a very different way through the unconditional mean squared error of prediction, Kackar

& Harville, 1984; Prasad & Rao, 1990). Note for the PQL estimator specifically, Vonesh et al.

(2002), Hui et al. (2017) and Hui (2020) demonstrated estimation consistency under increasing

cluster size and number of clusters, but did not develop any large sample distributional results.

It is important to remark that when cluster sizes do not increase, PQL is known to be asymp-

totically biased (e.g., Breslow & Lin, 1995). As such, increasing both the number of clusters and

cluster size is a necessary condition for the PQL estimator to be consistent. Indeed, increasing

number of clusters and cluster size is necessary for the consistency of other estimators such as

the Laplace estimator (Hui, 2020; Ogden, 2017; Ogden, 2021). With this in mind, we develop

our large sample distributional results under this setting, with the precise rates of growth to be

formalised later. We note this asymptotic framework is relevant for many applications with large

cluster sizes e.g., educational studies with large numbers of students (units) grouped within schools

(clusters), and medical studies with large groups (clusters) of patients (units) treated at different

hospitals.

We derive our asymptotic results for the PQL estimator under two distinct sampling regimes. In

the first, we condition on the random effects, i.e. treat them as fixed effects, although we will still

refer to them as random effects for consistency. In the second, unconditional regime, we allow the

random effects to be random. Conditional inference is appropriate when hypothetical resampling

occurs within the same observed clusters, while unconditional inference may be more appropriate

when (new) clusters are sampled from some population. Importantly, we demonstrate the asymp-
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totic distributional results for the two regimes differ markedly. Conditional on the random effects

we show the PQL estimator is asymptotically normally distributed around the true parameter val-

ues, with a convergence rate of N1/2 (square root of the total number of observations) for the fixed

effects and n
1/2
i (square root of the cluster size of the ith cluster) for the random effects (which are

now also fixed parameters). We find that when a variable is included as both a fixed and random

effect covariate, the PQL estimator is asymptotically normally distributed around a sum-to-zero

reparametrized version of the estimand. Unconditionally, we demonstrate the asymptotic normal-

ity of the PQL estimator for the fixed effects around the true values, but with a slower convergence

rate of m1/2 (square root of the number of clusters). Furthermore, we demonstrate that the “pre-

diction gap” i.e., the difference between the PQL estimator of and the true random effect, is not

in general asymptotically normally distributed; instead, it follows a normal scale-mixture when m

grows faster than ni.

Our results have important implications for inference in GLMMs. There is a choice of whether

conditional or unconditional inference is desired, with different asymptotic distributions needing

to be applied in each case. Also, the potential asymptotic non-normality of the prediction gap has

consequences in practice, since normality is often assumed when constructing prediction intervals

for the random effects in GLMMs (Bates et al., 2015; Brooks et al., 2017). The theoretical results

in this paper offer an important step towards more formal, rigorous asymptotic inference using

PQL estimation (and perhaps other similar estimators) for GLMMs.

The structure of the article is as follows. In Section 2, we introduce GLMMs and PQL esti-

mation. In Sections 3 and 4, we present and develop our asymptotic framework and results for

the conditional and unconditional regimes. In Section 5, we present results from a simulation

study which empirically verify our large sample developments. Finally, in Section 6 we discuss

the implications of our results.
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2 Generalized Linear Mixed Models

We study the independent-cluster generalized linear mixed model defined as follows. Let yij denote

the jth measurement of cluster i, xij denote a vector of pf fixed effect covariates, and zij denote

a vector of pr random effect covariates, for j = 1, . . . , ni, and i = 1, . . . ,m. Let N =
∑m

i=1 ni,

n = m−1N , nL = min1≤i≤m ni, and nU = max1≤i≤m ni. The m clusters are independent of each

other. Conditional on a pr-vector of random effects ḃi, where the dot above any quantity is used

to denote its true value (or that it is evaluated at the true parameter values), the responses yij from

cluster i are assumed to be independent observations from the exponential family with mean µ̇ij

and dispersion parameter ϕ̇. That is, f(yij|β̇, ḃi, ϕ̇) = exp [ϕ̇−1{yijϑ̇ij − a(ϑ̇ij)} + c(yij, ϕ̇)], for

known functions a(·), c(·), and g(·) satisfying g(µ̇ij) = g{a′(ϑ̇ij)} = η̇ij = x⊤
ijβ̇+ z⊤

ij ḃi, where β̇

denotes a pf -vector of true fixed effect coefficients, and η̇ij the corresponding true linear predictor.

For ease of development, we assume that the canonical link is used, so that ϑ̇ = η̇. Commonly

used distributions within the exponential family include the normal, Poisson, binomial and gamma

distributions. The true realised random effects ḃi are independently and identically distributed

(i.i.d.), drawn from a multivariate normal distribution with zero mean vector and unstructured

pr × pr random effects covariance matrix Ġ. That is, ḃi
i.i.d.∼ N(0, Ġ).

Write Xi = [xi1, . . . ,xini
]⊤, and Zi = [zi1, . . . ,zini

]⊤, so we can concatenate the means

across the measurements for each cluster to obtain g(µ̇i) = Xiβ̇+Ziḃi for µ̇i = (µ̇i1, . . . , µ̇ini
)⊤,

where g(µ̇i) denotes applying the link function g(·) to µ̇i component-wise. We can further concate-

nate across clusters and write g(µ̇) = Xβ̇+Zḃ, with µ̇ = (µ̇⊤
1 , . . . , µ̇

⊤
m)

⊤, X = [X⊤
1 , . . . ,X

⊤
m]

⊤,

Z = bdiag(Z1, . . .Zm), and ḃ = (ḃ⊤1 , . . . , ḃ
⊤
m)

⊤. Here, bdiag() is the block-diagonal matrix oper-

ator, X is of dimension N × pf , and Z is an N ×mpr sparse block-diagonal matrix, with at most

pr non-zero components per row, and at most nU non-zero components per column.

Let yi = (y11, . . . , y1ni
)⊤ and y = (y⊤

1 , . . . ,y
⊤
m)

⊤. Then the marginal log-likelihood function
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for the independent-cluster GLMM is given by

ln f(y|β, ϕ,G) =
m∑
i=1

ln

∫ ( ni∏
j=1

f(yij|β, bi, ϕ)

)
f(bi|G) dbi. (1)

The above integral is not available analytically except in the special case of a normal response with

an identity link function. Let θ = (β⊤, b⊤)⊤ denote the full vector of fixed and random effects.

Then for a given G and ϕ, the PQL objective function for an independent-cluster GLMM is defined

as

Q(θ) =
m∑
i=1

ni∑
j=1

ln f(yij|β, bi, ϕ)−
1

2

m∑
i=1

b⊤i G
−1bi, (2)

and the PQL estimator is defined as θ̂ = argmax
θ

Q(θ). As there are no integrals in (2), the

computational cost of PQL estimation is low relative to standard maximum likelihood estimation

(Breslow & Clayton, 1993). Note for normal linear mixed models, the integral in the likelihood

already possesses an analytical solution when an identity link is used, and PQL estimation is equiv-

alent to the mixed model equations of Henderson (1973) assuming the error variance is known.

The PQL procedure provides explicit estimators of both the fixed and random effects. The

latter is practically useful since the random effects play an important implicit role in fitting and

using the GLMM. For instance, the realised values of the random effects (or functions thereof) are

often important in prediction problems such as small-area estimation (Jiang, 2003; Pfeffermann,

2013), while the empirical distribution of the random effects estimators is often examined in model

diagnostics (Hui et al., 2021). On the other hand, (2) alone does not incorporate estimation of the

random effects covariance matrix. From a theoretical standpoint, existing papers on large sam-

ple theory for PQL and related objective functions have assumed Ġ is known for the purposes of

asymptotic development (e.g., Nie, 2007; Vonesh et al., 2002). Practically speaking, several ap-

proaches have been suggested to estimate Ġ when applying PQL, for example by using a working

LMM (Breslow & Clayton, 1993), the Laplace objective function (Hui et al., 2017), or simply the

sample covariance matrix of the estimated random effects (Jiang et al., 2001). Indeed, Jiang et al.
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(2001) and Hui et al. (2017) demonstrated that the sample covariance of the estimated random

effects is a consistent estimator of Ġ under suitable regularity conditions.

In this article, we set G = Ĝ in (2), where Ĝ is a symmetric positive definite matrix that is

either non-stochastic or its inverse Ĝ−1 is stochastically bounded. Importantly, our large sample

developments do not require Ĝ to necessarily be a consistent estimator of the true random effects

covariance matrix Ġ. For example, while we can use the estimators of Ġ mentioned above, our

theory also permits setting Ĝ to some fixed matrix e.g., the identity matrix, say. Intuitively, this

is because we develop our large sample results for PQL estimation in such a way so as to do not

depend on the value of Ĝ itself (in a spirit similar to that of Fan & Li, 2012; Jiang et al., 2001);

only the true random effects covariance matrix Ġ appears in our theorems.

We also adopt the above approach for the dispersion parameter in the GLMM. That is, we set

ϕ = ϕ̂ in (2), where ϕ̂ is a known constant or a stochastically bounded term. In the Poisson and

binomial distributions, ϕ̂ is set to its known true value ϕ̇ = 1. In cases where the true dispersion

parameter is unknown, we can use either a constant or one of the suggested estimators of the

dispersion parameter in the literature (e.g., a scaled sum of squared conditional Pearson residuals).

For the remainder of this article, and as discussed in Section 1, we focus on the fixed and random

effects in GLMMs. We do not discuss inferential properties of ϕ̇ and Ġ.

3 Conditional on Random Effects

In many applications of independent-cluster GLMMs e.g., for longitudinal data, covariates in-

cluded as random effects are also included as fixed effects (Cheng et al., 2010). With this in mind,

we develop our results under the setting where all covariates are partnered i.e. included as both

fixed and random effects such that xij = zij for all (i, j) and pf = pr =: p. Next, let A be a

q × (m + 1)p matrix with the finite selection property. That is, for any row of A, there exists an

m0 ∈ N such that the {(m0 + 1)p + 1}th to {(m + 1)p}th components of the row are zero for

all m > m0. All components of A must have a component-wise limit, with at least one of these
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limits being non-zero. We partition A into [Af ,Ar], where Af is of dimension q× p and Ar is of

dimension q ×mp. Also, for an arbitrary matrix C, let C[i:j,k:l] denote the sub-matrix comprising

the ith to jth row and kth to lth column of C and C[i,] and C[,j] denote the ith row and jth column

respectively. Similarly, for a vector c we let c[i:j] denote the sub-vector formed by taking the ith to

jth components; the quantity c[i] simply denotes the ith component of c.

Let µi(θ) = {a′(ηi1), . . . , a′(ηini
)}⊤, µ(θ) = {a′(η11), . . . , a′(ηmnm)}⊤,

Ẇi = ϕ̂−1diag{a′′(η̇i1), . . . , a′′(η̇ini
)} and Ẇ = ϕ̂−1diag{a′′(η̇11), . . . , a′′(η̇mnm)}. Furthermore,

write µ̇ij = a′′(η̇ij), µ̇i = µi(θ̇) and µ̇ = µ(θ̇), and let ⊗ denote the Kronecker product op-

erator, Im denote the m × m identity matrix, and 1m denote a matrix or vector of ones, with

dimension indicated by the relevant subscripts. Furthermore, let Dr = diag(n1/2
1 1p, . . . , n

1/2
m 1p),

D = bdiag(N1/2Ip,Dr), D∗ = bdiag(m1/2Ip,Dr), D+ = m1/2I(m+1)p, and define the two

limiting quantities

Ω = lim
m,nL→∞

ϕ̇

ϕ̂
A bdiag

{
1

m

m∑
i=1

n

ni

(
X⊤

i ẆiXi

ni

)−1

,

(
X⊤

1 Ẇ1X1

n1

)−1

, . . . ,

(
X⊤

mẆmXm

nm

)−1}
A⊤,

Ωr = lim
m,nL→∞

ϕ̇

ϕ̂
ArDr

(
Z⊤ẆZ

)−1

D⊤
r A

⊤
r .

Note Ω and Ωr are not actually functions of ϕ̂, since ϕ̂ϕ̇−1Ẇi = ϕ̇−1diag{a′′(η̇i1), . . . , a′′(η̇ini
)}

and similarly for Ẇ .

We consider the setting where both the minimum cluster size nL and the number of clusters

m grow to infinity, such that ni = O(nL) uniformly for i = 1, . . . ,m. This implies for any

i = 1, . . . ,m, we have ni = O(n), n = O(ni), N = O(mni), and mni = O(N). This restriction

on the growth rates of the cluster sizes is commonly employed in asymptotic analysis of PQL

estimation (e.g., Vonesh et al., 2002). Additionally, we require the following regularity conditions.

(C1) The function a(η) is at least three times continuously differentiable in its domain, with 0 <

c0 ≤ a′′(η) ≤ c−1
0 < ∞ and |a′′′(η)| ≤ c−1

0 < ∞ for some sufficiently small constant c0.

(C2) For every i = 1, . . . ,m and j = 1, . . . , ni, there exists a sufficiently large constant C1
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such that ∥xij∥∞ < C1 where ∥ · ∥∞ is the maximum norm. Furthermore, denote Ḣi =

(n−1
i ϕ̂ϕ̇−1X⊤

i ẆiXi)
−1. Then for all i = 1, . . . ,m, the matrices limni→∞ Ḣi = K̇i and

limm,nL→∞m−1
∑m

i=1 nn
−1
i Ḣi = K̇ are positive definite with minimum and maximum

eigenvalues bounded from above and below by c−1
1 and c1 respectively, for a sufficiently

small constant c1.

(C3) The vector of true parameters θ̇ = (β̇⊤, ḃ⊤)⊤, where ḃ = (ḃ⊤1 , . . . , ḃ
⊤
m)

⊤, is an interior point

in some compact set Θ ⊂ R(m+1)p.

(C4) The working matrix Ĝ is positive definite, and its inverse is Op(1). Also, the working quan-

tity ϕ̂ is strictly positive and Op(1).

(C5) For all i = 1, . . . ,m and ni ∈ N, it holds that E([n
1/2
i (X⊤

i ẆiXi + Ĝ−1)−1{ϕ̂−1X⊤
i (yi −

µ̇i)− Ĝ−1ḃi}]4) < ∞, where the power and expectation are applied component-wise.

Conditions (C1) - (C3) are needed to guarantee the existence and regular behavior of the asymp-

totic variance for the PQL estimating function, and to establish a Lindeberg condition needed to

obtain a central limit theorem. Condition (C4) is required to ensure that the shrinkage of the ran-

dom effects is asymptotically negligible, and formalises our discussion of Ĝ and ϕ̂ at the end of

Section 2. Condition (C5) is needed to bound the order of ∥θ̂ − θ̇∥∞, and is satisfied by many

distributions e.g. Poisson and binomial, when the random effects are normally distributed (see also

van de Geer & Müller, 2012).

For the remainder of this section, we consider the regime where we condition on the random

effects, so that θ̇ is a (m+1)p-vector of constants. The assumptions and conditions outlined above

however will be applied to both the conditional and unconditional regime.

3.1 Main Result for the Conditional Regime

Let 1∗
m = (−1,1⊤

m)
⊤. Then we have the following:
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Theorem 1. Assume Conditions (C1) - (C5) are satisfied and mn−1
L → 0. Then as m,nL → ∞,

and conditional on the true vector of random effects ḃ, it holds that

(a) ∥θ̂ − (θ̇ − 1∗
m ⊗m−1

∑m
i=1 ḃi)∥∞ = op(1).

(b) AD{θ̂ − (θ̇ − 1∗
m ⊗m−1

∑m
i=1 ḃi)}

D→ N(0,Ω).

The first part of the theorem establishes consistency for the PQL estimator around a sum-to-

zero reparametrized version of the true parameters (see below for more discussion on the latter

aspect). The block diagonal structure of Ω in the second part of the theorem shows that condi-

tional on true random effects vector, the corresponding estimators are asymptotically independent

between clusters, and also asymptotically independent of the fixed effects estimators.

We illustrate a few special cases of Theorem 1 using specific selection matrices. First, suppose

A = [Ip,0p×mp]. If
∑m

i=1 ḃi = 0p, then we obtain AD(θ̂ − θ̇) = N1/2(β̂ − β̇)
D→ N(0, K̇)

conditional on the random effects, where K̇ is the limiting matrix defined in Condition (C2).

Also, suppose A = [0p, Ip,0p×(m−1)p]. Then from Theorem 1, we have AD(θ̂ − θ̇) = n
1/2
1 (b̂1 −

ḃ1)
D→ N(0, K̇1), conditional on the random effects. The analogous result holds for choosing any

particular cluster. Finally, since the random effects exhibit a slower convergence rate than the fixed

effects, and noting the asymptotic independence, then for an arbitrary p-dimensional constant a we

obtain n
1/2
i a⊤(β̂ + b̂i − β̇ − ḃi)

D→ N
(
0,a⊤K̇ia

)
; i = 1, . . . ,m, conditional on the random

effects. As an example, if the linear predictor involves a fixed and random intercept and a fixed

and random slope for a single covariate, then we set a = (1, xij)
⊤ and obtain n

1/2
i (η̂ij − η̇ij) =

n
1/2
i (β̂0 + b̂i0 + β̂1xij + b̂i1xij − β̇0 − ḃi0 − β̇1xij − ḃi1xij)

d→ N(0,a⊤K̇ia).

For statistical inference, we can appeal to Slutsky’s Theorem and replace K̇i with Ĥi, and K̇

with m−1
∑m

i=1 nn
−1
i Ĥi. Here Ĥi is defined as (n−1

i X⊤
i ŴiXi)

−1 where Ŵi = ϕ̃−1diag{a′′(η̂i1), . . . , a′′(η̂ini
)}

for some consistent estimator of the dispersion parameter ϕ̃ e.g., based on the inverse scaled sum

of squared conditional Pearson residuals. Theorem 1 then provides a straightforward way to con-

struct confidence intervals, say, for all the parameters and combinations thereof. In fact, the forms

of these intervals are similar to standard results in (penalized) GLMs(McCulloch & Searle, 2004):
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this is not surprising given we are working conditional on the true vector of random effects. say.

Finally, note the PQL estimator is consistent for a sum-to-zero reparametrized version of the

true parameters. This occurs because the PQL estimators of the random effects must satisfy a

sum-to-zero constraint regardless of the underlying true parameter values, and under a conditional

regime, this induces an asymptotic bias 1∗
m ⊗ (m−1

∑m
i=1 ḃi) in Theorem 1, which can be inter-

preted as shifting the mean of the random effects into the corresponding fixed effects. We offer

more discussion around this asymptotic bias in the supplementary material.

4 Unconditional Regime

We now turn to establishing results under an unconditional regime i.e., treating ḃi’s as random

instead of conditioning on them. This has two main implications. First, in the unconditional

setting the quantity m−1
∑m

i=1 ḃi is no longer deterministic and should not be treated as a bias

term. Instead, it is of order Op(m
−1/2), and so competes with other leading terms in the relevant

Taylor expansion to be the dominating term. This results in a reduction of the rate of convergence

for the fixed effects estimator, from N1/2 in the conditional regime to m1/2 in the unconditional

regime. Second, in contrast to the conditional regime, the observations within the same cluster are

no longer independent. This has ramifications when applying the central limit theorem to establish

asymptotic multivariate normality. In Section 4.1, we provide a simple but insightful example

based on a Poisson random intercept model, which demonstrates that the prediction gap is not

always asymptotically normally distributed.

The two approximations below, derived from the Taylor expansion of the PQL objective func-

tion, will be central to understanding the large sample developments we make on a more intuitive

level. For a given ϕ̂, we have

β̂ − β̇ = m−1

m∑
i=1

ḃi + op(1) (3a)

b̂− ḃ = −1m ⊗m−1

m∑
i=1

ḃi + (Z⊤ẆZ)−1{ϕ̂
−1
Z⊤(y − µ̇)}+ op(1). (3b)
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We will refer to both equations in the discussion of the theorems to be presented later on.

4.1 Prediction Gap - Counterexample

We offer a motivating and insightful example to illustrate that the prediction gap is not, in general,

asymptotically normally distributed. This example also offers a simple case where Xi ̸= Zi, and

offers an interesting comparison to the theory established under the assumption of Xi = Zi.

Consider a Poisson random intercept model with canonical log link. That is, the true model is

given by f(yij|ḃi) = exp(yij η̇ij− µ̇ij)/(yij!) with ln(µ̇ij) = η̇ij = ḃi, and ḃi
i.i.d.∼ N(0, σ̇2

b ). Assume

a working σ̂2
b , and apply PQL estimation to estimate the random effects bi for i = 1, . . . , n. For

simplicity, we also assume a balanced design, such that ni = n for all i = 1, . . . ,m. Then it is

possible to show (see the supplementary material for the formal derivation) that when mn−2 → 0,

the prediction gap of the first cluster b̂1 − ḃ1 satisfies

n1/2(b̂1 − ḃ1) = n−1/2

n∑
j=1

{y1j exp(−ḃ1)− 1}+ op(1). (4)

Therefore, we obtain b̂1 = ḃ1 + op(1), and similarly for each cluster i = 1, . . . ,m. When condi-

tioned on ḃ1, n−1/2
∑n

j=1{y1j exp(−ḃ1)−1} is a normalised sum of independent random variables.

Unconditionally however, the sum consists of an exchangeable collection of uncorrelated but de-

pendent random variables with mean zero and finite non-zero variance. Using the central limit

theorem for exchangeable random variables (Blum et al., 1958), it can be subsequently be shown

that the quantity n−1/2
∑n

j=1{y1j exp(−ḃ1) − 1}, and hence n1/2(b̂1 − ḃ1), is not asymptotically

normally distributed.

With the above example in mind, we now state the main results for the unconditional regime.

4.2 Fixed Effects

We have the following result for the PQL estimator of the fixed effects under an unconditional

regime.
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Theorem 2. Assume Conditions (C1) - (C5) are satisfied, and mn−2
L → 0. Then as m,nL → ∞

and unconditional on the random effects ḃ, it holds that m1/2(β̂ − β̇)
D→ N(0, Ġ).

This result should not be too surprising given the form of (3a). Furthermore, the rate of con-

vergence and asymptotic distribution coincides with the result obtained by Jiang et al. (2022) for

the partnered fixed effects for the quasi-maximum likelihood estimator. More importantly, Theo-

rem 2 allows practitioners to straightforwardly perform statistical inference for the fixed effects,

so long as mn−2
L → 0. Although Ġ is not known, we can appeal to Slutsky’s theorem and replace

it with a consistent estimator (e.g., the sample covariance matrix of the estimated random effects).

Theorem 2 contrasts with Theorem 1 derived under the conditional regime, where mn−1
L → 0 is

required but the convergence rate is N1/2. This reduction in the rate of convergence arises because

the leading term in the Taylor expansion is different: in the unconditional regime, it is simply the

normalised sum of random effects over all the clusters, and thus its variability is dominated by the

term m−1/2
∑m

i=1 ḃi. However, this term is deterministic in the conditional regime, and serves to

enforce a sum-to-zero constraint instead as discussed in Section 3. Generally speaking, the Taylor

expansion can be interpreted as comprising terms which either capture the stochasticity in the ran-

dom effects vector ḃ, or the stochasticity in responses yij given the random effects. These terms

compete with each other, and which one dominates depends on the relative rates of m and ni. This

intricacy in the nature of the results will be made apparent in our results for the prediction gap in

Section 4.4.

4.3 Estimators of the Random Effects

Next, we state a convergence result for the PQL estimators of the random effects under the uncon-

ditional regime.

Theorem 3. Assume Conditions (C1) - (C5) are satisfied and mn−2
L → 0. Then as m,nL → ∞

and unconditional on the random effects ḃ, it holds that Ar(b̂− ḃ)
P→ 0q .

Practically, Theorem 3 confirms the asymptotic distribution of a finite subset of the PQL esti-
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mators is the distribution of the random effects themselves. This can play a useful role for helping

to validate the examination of the empirical distribution of PQL estimators b̂ as a model diagnos-

tic tool. For instance, if the random effects are normally distributed and Ar only selects the first

cluster, then we would expect b̂1 to have an approximate N(0, Ġ) distribution. On the other hand,

Theorem 3 does not help us when it comes to performing likelihood-based inference for the true

random effects ḃ, as this does not appear in the approximation b̂1 ∼ N(0, Ġ) itself.

As an aside, note the above means we can apply the continuous mapping theorem and show

that q−1
∑q

i=1 b̂ib̂
⊤
i − q−1

∑q
i=1 ḃiḃ

⊤
i

P→ 0 for any q ∈ N. Since q−1
∑q

i=1 ḃiḃ
⊤
i

P→ Ġ as q → ∞,

this further reiterates the use of a sample covariance matrix of the estimated random effects as an

estimator of Ġ (consistent with Hui et al., 2017; Jiang et al., 2001).

4.4 Prediction Gap

In this section, we present a result for the large sample distribution of a finite subset of the predic-

tion gap, b̂ − ḃ, in the unconditional regime. As mentioned above, the asymptotic distribution as

well as the convergence rate of the prediction gap depends on the relative rates of growth of m and

ni. This contrasts with the conditional regime, where there is no dependence on the relative rate

and the PQL estimator of the random effects is always normally distributed with the convergence

rate n
1/2
i .

We first introduce some terminology. Suppose we have two arbitrary continuous cumulative

distribution functions (cdfs) F1 and F2 with supports in Rp. Then we define the convolution of F1

and F2, denoted F1 ∗ F2, as (F1 ∗ F2)(z) =
∫
Rp F1(z − τ )dF2(τ ). Next, for a random variable

P , we say P ∼ mixN{µ(b),Σ(b), Fb} if P |b ∼ N{µ(b),Σ(b)} and Fb is the cdf of b, where

the conditional mean vector µ(b) and covariance matrix Σ(b) may depend on b. In other words,

P has cdf FP (p) =
∫
ΨP |b(p)dFb(b), where ΨP |b is the cdf of N{µ(b),Σ(b)}. A special case

of this normal scale-mixture distribution is when µ(b) and Σ(b) do not depend on b, so that

FP (p) =
∫
ΨP |b(p)dFb(b) = ΨP |b(p)

∫
dFb(b) = ΨP |b(p); in other words, the normal scale-

mixture distribution reduces to a normal distribution. Note estimators with asymptotic normal
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mixture distributions have arisen in previous literature, for instance, on results relating to local

asymptotic normality and non-ergodic models (Basawa & Scott, 2012; Cam & Yang, 1988).

Using the above definition, we obtain the following results.

Theorem 4. Assume Conditions (C1)-(C5) are satisfied and mn−2
L → 0. Then as m,nL → ∞ and

unconditional on the random effects ḃ, for each i = 1, . . . ,m we have the following:

(a) If mn−1
i → ∞, then n

1/2
i (b̂i − ḃi)

D→ mixN(0, K̇i, Fḃi
).

(b) If mn−1
i → γi ∈ (0,∞), then n

1/2
i (b̂i − ḃi)

D→ mixN(0, K̇i, Fḃi
) ∗N(0, γ−1

i Ġ).

(c) If mn−1
i → 0, then m1/2(b̂i − ḃi)

D→ N(0, Ġ).

Corollary 1. Assume Conditions (C1)-(C5) are satisfied, and mn−2
L → 0. If mn−1

L → ∞, then as

m,nL → ∞ and unconditional on the random effects ḃ, ArDr(b̂− ḃ)
D→ mixN(0,Ωr, Fḃ).

Theorems 3 and 4 bears some similarity to the results of Lyu and Welsh (2021a), who show

for LMMs that the distribution of the EBLUP can asymptotically be written as the convolution

between the distribution of the random effects and the distribution of a smaller order stochastic

term. However, the above is the first to establish such results for GLMMs. Theorem 4 states that

the correct asymptotic distribution to use when performing inference using the PQL estimate of

the random effects depends on the relative growth rates of m and ni. As hinted at previously, this

is a consequence of there being two competing terms in the corresponding Taylor expansion (3b):

one term arising from the random effects, and the other term arising from the distribution of the

responses given the random effects.

When mn−1
i → ∞ i.e., the number of clusters grows faster than the cluster size, the appropriate

asymptotic distribution is given by the scale-mixture distribution mixN{0, (ϕ̂ϕ̇−1X⊤
i ẆiXi)

−1, Fḃi
},

noting again that ϕ̂ϕ̇−1Ẇi = ϕ̇−1diag{a′′(η̇i1), . . . , a′′(η̇ini
)}. Corollary 1 offers a slightly more

general result than that given in Theorem 4 for the mn−1
L → ∞ case. Note in the linear case,

the GLM iterative weights Ẇ do not depend on the random effects ḃ, and so the corresponding

normal scale-mixture distribution reduces to a normal distribution, consistent with the asymptotic
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normality result derived for the EBLUP in Lyu and Welsh (2021a). Practically, numerical tech-

niques or simulation are required to compute the quantiles of the normal scale-mixture distribution

for constructing prediction intervals. We use this approach in our simulations in Section 5.

When mn−1
i → 0 i.e., the cluster sizes grows faster than the number of clusters, Theorem 4

shows that the appropriate approximation to consider is the normal distribution N(0, n−1Ġ). Note

this is identical to the fixed effects result of Theorem 2, and yields relatively straightforward pre-

diction intervals for ḃi as long as we have a consistent estimator for Ġ. Intuitively, the asymptotic

distribution here is identical to that derived in Theorem 2 because the dominating terms in the

Taylor expansions in both cases are effectively the same. Finally, when mn−1
i → γ ∈ (0,∞), The-

orem 4b states that the asymptotic distribution of the PQL estimates is given by the convolution of

the two cases above, noting that these two leading terms in the Taylor expansion are asymptotically

independent. Again, numerical techniques/simulations are needed to compute prediction intervals.

In summary, Theorem 4 offers an asymptotically valid way of computing prediction intervals

for the realised random effects in the unconditional regime, when the random effects have a cor-

responding partnered fixed effect in the model. It implies that estimating the variance of the pre-

diction gap, and then naively assuming normality in order to construct prediction intervals for the

random effects, will fail to yield asymptotically correct inference under the unconditional regime

for PQL estimation.

4.5 Linear Predictor

Neither Theorems 2 nor 4 above derive the joint distribution of the fixed effects estimator and

prediction gap, of which the linear predictor is a function. Below, to address this, we establish a

separate result specifically for the sum of a random effect and its partnered fixed effect, given an

arbitrary p-dimensional constant vector a.

Theorem 5. Assume Conditions (C1)-(C5) are satisfied, mn−2
L → 0, and mn

−1/2
U → ∞. Then

as m,nL → ∞ and unconditional on the random effects ḃ, it holds for each i = 1, . . . ,m that

n
1/2
i a⊤(β̂ + b̂i − β̇ − ḃi)

D→ mixN(0,a⊤K̇ia, Fḃi
).
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As an example, consider again a linear predictor involving a fixed and random intercept and a

fixed and random slope for a single covariate. Then we set a = (1, xij)
⊤ and obtain n

1/2
i (η̂ij −

η̇ij) = n
1/2
i (β̂0 + b̂i0 + β̂1xij + b̂i1xij − β̇0 − ḃi0 − β̇1xij − ḃi1xij)

d→ mixN(0,a⊤K̇ia, Fḃi
). For

performing inference on the linear predictor in a GLMM or functions thereof, Theorem 5 states

that we again need to employ the normal scale-mixture distribution. This result differs from the

asymptotic normality of the linear predictor derived under the conditional regime in Section 3.

Note we can also develop a similar result for the difference between the prediction gaps of two

clusters, and we refer to the supplementary material for details of this result.

To conclude the section, we remark that Theorems 2-5 do not offer results on the joint distribu-

tion of the prediction gap and fixed effects. However, we know from the associated proof that the

prediction gaps for each cluster are asymptotically independent from each other as well as from

the fixed effects estimator when mn−1
U → ∞ and mn−2

L → 0, and so a joint distribution result can

be derived from this.

5 Simulation Study

We performed a numerical study to assess the usefulness of our asymptotic results in finite sam-

ples. We simulated data from an independent-cluster GLMM with five fixed and random effect

covariates, considering Poisson and Bernoulli responses, as follows. First, we set the first com-

ponent of xij = zij equal to one to represent a fixed/random intercept. The second and third

components are simulated from a bivariate normal distribution with mean zero and standard devi-

ation one, with correlation equal to 0.5. The fourth component is generated independently from

a standard normal distribution, and the last component is simulated from a Bernoulli distribution

with a probability of success equal to 0.5. Next, we set the 5-vector of true fixed effect coefficients

to either β̇ = (2, 0.1,−0.1, 0.1, 0.1)⊤ for Poisson responses, or β̇ = (−0.1, 0.1,−0.1, 0.1, 0.1)⊤

for Bernoulli responses and the 5 × 5 random effects covariance matrix in both cases to Ġ = I5.

Based on these true parameter values, we simulated the random effect coefficients ḃi
i.i.d.∼ N (0, Ġ).
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Finally, conditional on ḃi the responses yij were generated from either a Poisson distribution

with log link, or a Bernoulli distribution with logit link. We varied the number of clusters as

m = {25, 50, 100, 200, 400} and the cluster sizes ni = n = {25, 50, 100, 200, 400}, noting we as-

sumed equal cluster sizes in the simulation design for simplicity For each combination of (m,n),

we simulated 1000 datasets. For the conditional regime, we simulated ḃ only once and condi-

tioned on this for all simulated datasets; for unconditional regime, we simulated a new ḃ for each

simulated dataset.

For each simulated dataset, we fitted the corresponding GLMM using PQL estimation, where

we use the sample covariance matrix of the estimated random effects as our update for Ĝ. That is,

we iteratively maximize equation (2) with respect to β and b for a given Ĝ (noting ϕ̂ = 1 is known

for both these distributions), and update Ĝ as m−1
∑m

i=1 b̂ib̂
⊤
i , until convergence.

We assessed performance separately under the conditional and unconditional regimes. In the

former, we examined the empirical coverage probability of 95% coverage intervals constructed

for β and for b1 (the choice of the first cluster is arbitrary). The intervals were constructed based

on Theorem 1, with the asymptotic covariance matrix Ω computed using the true parameter val-

ues. We refer to such intervals as coverage intervals as opposed to confidence intervals. We also

performed Shapiro-Wilk tests on the components of the (1000) realised PQL estimates of β and

b1, in order to assess the asymptotic normality of their respective sampling distributions. For the

unconditional regime, we examined the empirical coverage probability of 95% coverage intervals

constructed from Theorems 2 and 4 respectively. Again, this was done for the fixed effect coef-

ficients β and the random effects for the the first cluster b1. To construct all intervals, we used

the true parameter values to compute the relevant asymptotic variance (this was done solely to re-

duce the computational burden of the numerical study), and, when required, obtained quantiles of

relevant normal scale-mixture distributions by directly simulating 10,000 samples from them. We

also performed Shapiro-Wilk tests on the components of the (1000) realised values of β̂ − β̇ and

b̂1 − ḃ1. Finally, we examined histograms for the third components of β̂ − β̇ and b̂1 − ḃ1, which

are representative of the histograms of the other components, as an additional method of assessing
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asymptotic normality of the corresponding sampling distributions.

5.1 Simulation Results

For reasons of brevity, below we focus on results for the unconditional regime. Results for the

conditional regime are presented in the supplementary material and largely support the use of

Theorem 1 for inference.

For the unconditional regime, Figures 1 and 2 display the empirical coverage probabilities

and results from applying the Shapiro-Wilk test, respectively. For the fixed effect coefficients,

the coverage probabilities for the intervals obtained based on Theorem 2 were relatively accurate

across most combinations of (m,n), with the exception of when (m,n) = (25, 25). For the

random effect coefficients, the coverage probabilities for intervals calculated based on Theorem 4

approached the nominal coverage rapidly as (m,n) increased for the Poisson response case, while

for the Bernoulli case convergence was slightly slower due to the reduced amount of information

per response.

The Shapiro-Wilk tests run were consistent with the conclusions reached in Theorems 2–4.

Specifically, PQL estimates of the fixed effect coefficients generally did not exhibit signs of non-

normality, but the difference between the estimators and true random effects displayed evidence

of non-normality except when n grew faster than m. This is also supported by the histograms

in Figure 3 which show some evidence of higher kurtosis in the cases corresponding to small p-

values in the Shapiro Wilk test. The histograms also suggest that both m and n need to grow for

the estimators to be consistent for the true fixed and random effects, and in particular n needs to

grow for the estimators to be unbiased. This is true especially for the Bernoulli responses, for

which convergence was much slower and very large cluster sizes were needed for the estimators to

be relatively unbiased.

In the supplementary material, we present additional results which showed that the sample

covariance matrix of the estimated random effects became a better estimator of the true random

effects covariance matrix Ġ as both m and n grew. Also, recall from our discussion in Section
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Figure 1: Empirical coverage probability of 95% coverage intervals for the fixed and random
effects, obtained under the unconditional regime.
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Figure 2: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates ob-
tained using maximum PQL estimation, under the unconditional regime.

2 that our asymptotic developments only require a working Ĝ, which need not be a consistent

estimator of the true random effects covariance matrix. As a demonstration of this, we performed

several additional simulations where in the PQL estimation procedure, we simply fix Ĝ to a con-

stant matrix and considered choices e.g., some constant multiplied by the identity matrix. Results

in the supplementary material demonstrate that coverage probabilities for our proposed intervals

still tended to the nominal level as (m,n) increased, while corresponding Shapiro-Wilk tests and

histograms were also consistent with our theory in large sample sizes and the empirical results

presented above.

6 Discussion

In this article, we established new asymptotic distributional results for fixed effects, random effects,

and the prediction gap, for an independent-cluster GLMM fitted using penalized quasi-likelihood

estimation. Our results have important implications when it comes to inference and prediction

for mixed-effects models. For the conditional regime, we establish asymptotic normality for any
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Figure 3: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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finite subset of the parameters. For random effects predictions and inference in the unconditional

regime, we validate examining the empirical distribution of the estimated random effects as a

diagnostic tool for assessing deviations away from the assumed random effects distribution (as

is already commonly done in practice for GLMMs e.g., Hui et al., 2021). On the other hand,

while the random effects estimators obtained using PQL are asymptotically normally distributed

when the true random effects are normally distributed, we demonstrate that the difference between

these two i.e., the prediction gap, need not be normally distributed. Our large sample results

thus suggest the use of a normal approximation when performing unconditional inference for the

random effects, as is commonly done in practice (Bates et al., 2015; Brooks et al., 2017), can be

potentially misleading.

An important avenue of future research is to establish rates of convergence, especially in the

unconditional regime, when xij contains both zij plus additional components which are only in-

cluded as purely fixed effects in the model. In the supplementary material, we develop some

further results for such unpartnered fixed effects in the special cases of LMMs and GLMs. In both

these cases, we see the convergence rate improves from Op(m
1/2) to Op(N

1/2), compared to the

partnered fixed effects. On the other hand, for random effects without a partnered fixed effect, it

is likely that the correct asymptotic distribution for the prediction gap will be the normal scale-

mixture irrespective of the relative rates of m and ni, as we saw in the motivating counterexample.

Also, relaxing the canonical link assumption is an interesting and important extension to our work;

we conjecture that non-canonical links could be accounted for by generalising the form of the

GLM iterative weights, as is done in GLMs.
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Supplementary Material

In the developments, we prove all results below assuming the working dispersion parameter ϕ̂

is equal to the true dispersion parameter ϕ̇. Then for the general result using any Op(1) working ϕ̂,

we note that solving

∇Q(θ̂) =

 ϕ̂
−1
X⊤{y − µ(θ̂)}

ϕ̂
−1
Z⊤{y − µ(θ̂)} − (Im ⊗ Ĝ−1)b̂

 = 0(m+1)p

for θ̂ is equivalent to solving

∇Q(θ̂) =

 ϕ̇−1X⊤{y − µ(θ̂)}

ϕ̇−1Z⊤{y − µ(θ̂)} − (Im ⊗ Ĝ−1
s )b̂

 = 0(m+1)p,

where Ĝs = ϕ̇ϕ̂−1Ĝ, whose inverse is still Op(1) and positive definite. This is equivalent to setting

ϕ̂ to ϕ̇ and scaling Ĝ by ϕ̇ϕ̂−1. The general result then follows since the results proved under ϕ̂ = ϕ̇

hold for any Ĝ that has an Op(1), positive definite inverse.

S0.1 Bias and Identifiability in the Conditional Regime

By differentiating (2), we see that the PQL estimators satisfy
∑m

i=1 ϕ̂
−1
X⊤

i {yi − µi(θ̂)} = 0 and

ϕ̂
−1
Z⊤

i {yi − µi(θ̂)} − G−1b̂i = 0, i = 1, . . . ,m. Summing both sides of the second equation

across all i, since Xi = Zi, it follows that
∑m

i=1 b̂i = 0p. That is, the PQL estimators of the

random effects must satisfy a sum-to-zero constraint regardless of the underlying true parame-

ter values. Under a conditional regime, this induces an asymptotic bias as captured by the term

1∗
m ⊗ (m−1

∑m
i=1 ḃi) in Theorem 1, which can be interpreted as shifting the mean of the random

effects into the corresponding fixed effects. We can deal with the bias by reparametrising the

model a priori to satisfy a sum-to-zero constraint. That is, we can define a reparametrized vector
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of true values θ̇∗ which satisfy 1∗
m⊗(m−1

∑m
i=1 ḃ

∗
i ) = 0(m+1)p, and the PQL estimator will then be

asymptotically normally distributed centered around θ̇∗. Furthermore, Theorem 1 remains practi-

cally useful as, for any given sample size, we can always reparameterise the GLMM to satisfy this

identifiability constraint.

The asymptotic bias discussed above is analogous to that seen in a over-parametrized one-way

analysis of variance (ANOVA) model. That is, in the ANOVA model one can always reparametrise

to satisfy a sum-to-zero constraint, and the corresponding estimator is consistent for this vector

of the reparametrized true values. Note however that when we work unconditionally (Section 4),

reparametrising in this way will lead to a different model to the original, since the clusters are no

longer independent.

S1 Proofs for Consistency

To establish our large sample distributional results, we first require the following consistency result.

Lemma 1. Suppose Conditions (C1)-(C5) hold and mn−2
L → 0. Then, as m,nL → ∞ and

unconditional on the random effects ḃ, ∥θ̂ − θ̇∥∞ = op(1).

These results are required to control the remainder term in the Taylor expansions we use to

derive the distributional results in Section S2. To prove the result, we wish to show that for any

given ϵ > 0, there exists a large enough constant C > 0 such that, for large m,nL, we have

P

{
sup

∥u∥∞=C

Q(θ̇ + δ−1
m,nL

u) < Q(θ̇)

}
≥ 1− ϵ,

for some positive, unbounded, monotonically increasing sequence δm,nL
. The above result implies

that with probability tending to one, there exists a local maximum θ̂ in the ball {θ̇ + δ−1
m,nL

u :

∥u∥∞ ≤ C} so that ∥δm,nL
(θ̂ − θ̇)∥∞ = Op(1), and thus ∥θ̂ − θ̇∥∞ = op(1).

Consider the difference Q(θ̇ + u)−Q(θ̇). By a Taylor expansion, we obtain

Q(θ̇ + u)−Q(θ̇) = u⊤{∇Q(θ̇)} − 0.5u⊤{−∇2Q(θ̄)}u. (S1.1)
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where θ̄ lies on the line segment joining θ̇ and θ̇ + u. If we can prove that (S1.1) is negative as

m,nL → ∞ for any choice of C, then there must exist some δm,nL
such that Q(θ̇+δ−1

m,nL
u)−Q(θ̇)

is negative for large enough C, and the required result follows. We have

∇Q(θ̇) =

 ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)− (Im ⊗ Ĝ−1)ḃ

 =

ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)

+

 0p

−(Im ⊗ Ĝ−1)ḃ


≜ λ1 + λ2,

and

−∇2Q(θ̄) =



X⊤W̄X X⊤
1 W̄1X1 · · · X⊤

mW̄mXm

X⊤
1 W̄1X1 X⊤

1 W̄1X1 + Ĝ−1 0

...
... . . . ...

X⊤
mW̄mXm 0 X⊤

mW̄mXm + Ĝ−1



=



X⊤W̄X X⊤
1 W̄1X1 · · · X⊤

mW̄mXm

X⊤
1 W̄1X1 X⊤

1 W̄1X1 0

...
... . . . ...

X⊤
mW̄mXm 0 X⊤

mW̄mXm


+ blockdiag(0p, Im ⊗ Ĝ−1)

≜ Γ1(θ̄) + Γ2,

where W̄i = ϕ̇−1diag{a′′(η̄i1), . . . , a′′(η̄ini
)} and W̄ = ϕ̇−1diag{a′′(η̄11), . . . , a′′(η̄mnm)}. Also,

let Γ1(θ̇) + Γ2 denote the analogous decomposition of −∇2Q(θ̇). For both the conditional and

unconditional regimes, we will prove that the second term is positive and dominates the first.

However, the treatment of the terms differs between the two cases, and as such the proofs will

need to be dealt with separately. In the following three sections, we will first treat the Poisson pure

random intercept example, followed by the more general conditional and unconditional regimes.

Before proceeding, we demonstrate an inequality that is used in the proofs below. Write u =
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(u⊤
1 ,u

⊤
2 )

⊤, u2 = (u⊤
21, . . . ,u

⊤
2m)

⊤. First, for any θ we have

u⊤Γ1(θ)u = u⊤
1 X

⊤WXu1 + 2u⊤
1 X

⊤WZu2 + u⊤
2 Z

⊤WZu⊤
2 ≥ 0.

Next, we have

u⊤Γ1(θ̄)u− c20u
⊤Γ1(θ)u

= u⊤
1 X

⊤(W̄ − c20W )Xu1 + 2u⊤
1 X

⊤(W̄ − c20W )Zu2 + u⊤
2 Z

⊤(W̄ − c20W )Zu⊤
2 .

If we denote W ∗ = W̄−c20W , then by Condition (C1) W ∗ is a diagonal matrix with non-negative

entries as the entries of c20W are upper bounded by the smallest component in W̄ . Therefore

u⊤Γ1(θ̄)u− c20u
⊤Γ1(θ)u = u⊤

1 X
⊤W ∗Xu1 + 2u⊤

1 X
⊤W ∗Zu2 + u⊤

2 Z
⊤W ∗Zu⊤

2 ≥ 0,

so that u⊤Γ1(θ̄)u ≥ c20u
⊤Γ1(θ)u. Finally, note that we can choose θ = θ̇ or θ = E(θ̇) without

altering the above argument.

S1.1 Poisson pure random intercept example

We begin with the Poisson pure random intercept example, which gives insight and covers a case

where Xi ̸= Zi. The following result is unconditional on the random effects ḃ.

Lemma 2. Assume Conditions (C1)-(C5) hold, and let mn−2 → 0. Then for the Poisson pure

random intercept model, as m,n → ∞ and unconditional on the random effects ḃ, it holds that

∥θ̂ − θ̇∥∞ = op(1).

Proof. Let u = u2 = (u21, . . . , u2m)
⊤, θ = b = (b1, . . . , bm)

⊤, Ĝ = σ̂2
b (a scalar),

−∇2Q(θ̄) = diag(neb̄1 + σ̂−2
b , . . . , neb̄m + σ̂−2

b ) ≡ Γ1(θ̄) + Γ2, and

∇Q(θ̇) =


∑n

j=1(y1j − eḃ1)− σ̂−2
b ḃ1

...∑n
j=1(ymj − eḃm)− σ̂−2

b ḃm

 ≡ λ1 + λ2.
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Let M = E{diag(neḃ1 , . . . , neḃm)}. Then M = Var{ϕ̇−1Z⊤(y − µ̇)}. By Condition (C1),

c20u
⊤Mu ≤ u⊤Γ1(θ̄)u. Next, let λ = ˙̂σ2

b σ̂
−2
b . Then Var(λ2) = ˙̂σ2

b σ̂
−4
b Im and

λ−1u⊤
2 (

˙̂σ2
b σ̂

−4
b Im)u2 = u⊤

2 (σ̂
−2
b Im)u2 = u⊤Γ2u.

Finally, by the laws of iterated expectation and variance we have

E{∇Q(θ̇)∇Q(θ̇)⊤} = Var{∇Q(θ̇)}

= E[Var{∇Q(θ̇)|ḃ}] + Var[E{∇Q(θ̇)|ḃ}]

= E{Var(λ1|ḃ)}+ Var(λ2)

= Var(λ1) + Var(λ2).

Therefore, we have that

u⊤{−∇2Q(θ̄)}u ≥ min(λ−1, c20){u⊤Mu+ u⊤
2 (

˙̂σ2
b σ̂

−4
b Im)u2}

= min(λ−1, c20)E{∇Q(θ̇)∇Q(θ̇)⊤},

where the latter and hence former term grows at the same rate as {u⊤∇Q(θ̇)}2. Since at least

one component of u equals ±C, for any given u, u⊤{−∇2Q(θ̄)}u is at least of order Op(m) in

probability and hence always dominates.

Since the choice of which |u2i| = C is arbitrary however, we also need to make sure that

the mth order statistic max
i∈{1,...,m}

[{
∑n

j=1(yij − eḃi) − σ̂−2
b ḃi}/(neḃi + σ̂−2

b )], which grows with the

dimension, is of order op(1). We know that the leading term in (3b) is (Z⊤ẆZ)−1{ϕ̇−1Z⊤(y −

µ̇)} when mn−1 → ∞; for this Poisson random intercept example, up to some smaller order

terms, this simplifies to the ratio {
∑n

j=1(yij−eḃi)− σ̂−2
b ḃi}/(neḃi + σ̂−2

b ). Intuitively then, proving

a result for ∥θ̂− θ̇∥∞ should involve studying max
i∈{1,...,m}

[{
∑n

j=1(yij − eḃi)− σ̂−2
b ḃi}/(neḃi + σ̂−2

b )].

Put another way, consider the set of u such that one component of u equals ±C and zero

elsewhere. When C is the ith component of u, this corresponds to deviating away from θ̇ in the

31



ith direction. In this case, we need C{
∑n

j=1(yij −eḃi)− σ̂−2
b ḃi} to be dominated by C2neḃi for any

C and all m,n large enough, i.e., {
∑n

j=1(yij − eḃi)− σ̂−2
b ḃi}/neḃi = op(1). This is indeed true as

this ratio is Op(n
−1/2), since

∑n
j=1(yij −eḃi)− σ̂−2

b ḃi = Op(n
1/2) due to conditional independence

and Chebyshev’s inequality, and eḃi = Op(1). However, although the ratio is of order Op(n
−1/2),

for any given m,n there is still a positive probability that the ratio (a random variable) is greater

than one in magnitude. On the other hand, for the consistency argument to hold we need to make

sure the ratio is smaller than one in magnitude for all m directions with probability tending to one,

as m,n → ∞. In particular, it is sufficient for the maximum of m of these ratios to be op(1): this

maximum grows with m, corresponding to the number of directions we need to bound. Intuitively,

this should hold if m does not grow too fast relative to n.

Now, Downey (1990) proves that the maximum over m realisations of independently and iden-

tically distributed random variables with a finite qth moment is op(m1/q). By Condition (C5), the

ratio n1/2{
∑n

j=1(yij−eḃi)−σ̂−2
b ḃi}/(neḃi+σ̂−2

b ) has finite fourth moments for all i and n. Thus, the

maximum of these (normalised) ratios over m clusters is of order op(m1/4). As a result, the maxi-

mum ratio of interest is op(m1/4n−1/2). Therefore, when mn−2 → 0, there exists δm,n such that we

can always choose a large enough C for δ−1
m,nu

⊤∇Q(θ̇) to be dominated by δ−2
m,nu

⊤{−∇2Q(θ̄)}u,

and hence ∥δm,n(θ̂ − θ̇)∥∞ = Op(1) as required.

To conclude this section, we remark that although mn−2 → 0 is needed for the consistency

and thus distributional result, this is a sufficient condition. Intuitively, in the Poisson pure random

effects model there are no fixed parameters to estimate, and the estimate of the random effects for

each cluster only depends on observations in that cluster. Thus, the relative rates of m and n should

not matter for a distributional result concerning a finite subset of the random effects.

S1.2 Conditional on the Random Effects

In this section, we prove the consistency result under the conditional regime. In the conditional

regime, we assume without loss of generality that
∑m

i=1 ḃi = 0p, recalling that we can always
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reparametrise the random effect coefficients so this holds.

Let M = Γ1(θ̇). Then M = Var(λ1|ḃ) = E(λ1λ
⊤
1 |ḃ) since E(λ1|ḃ) = 0(m+1)p. By

Condition (C1), we have c20u
⊤Mu ≤ u⊤Γ1(θ̄)u.

We now consider two cases: the special case when u1 = −u2i for all i, and when this is

not the case. For the former, we have u⊤λ1 = u⊤Mu = 0. Then we must examine u⊤λ2

and u⊤Γ2u. In this case, we have u⊤λ2 =
∑m

i=1 u
⊤
2iĜ

−1ḃi = −u⊤
1 Ĝ

−1
∑m

i=1 ḃi = 0, and

u⊤Γ2u = mu⊤
1 Ĝ

−1u1 > 0 since Ĝ is a positive definite matrix. Thus the difference (S1.1) is

negative for large enough m,nL and any choice of constant C.

Next, consider the case when u1 = −u2i for all i does not hold. Under this setting, as Γ2 is

a positive semi-definite matrix, we still have u⊤{−∇2Q(θ̄)}u ≥ u⊤Γ1(θ̄)u ≥ c20u
⊤Mu, where

the last and hence former terms grow at the same rate as (u⊤λ1)
2. Since at least one component of

u equals ±C, by Conditions (C1)-(C3) we have that u⊤{−∇2Q(θ̄)}u is at least of order Op(nL),

and always dominates since u⊤λ2 = Op(m) at most.

Since the choice of u is arbitrary, we must take into account the growth rate of the mth order

statistic. That is, for any 1 ≤ k ≤ p, we need max
i∈{1,...,m}

[(X⊤
i ẆiXi + Ĝ−1)−1{ϕ̇−1X⊤

i (yi − µ̇i)−

Ĝ−1ḃi}][k] = op(1), as per the argument for the Poisson pure random intercept model. Since the

responses yij are from the exponential family and thus the moment generating function always

exists, the maximum is of order op(m1/rn
−1/2
L ) for any r ∈ N (Downey, 1990), and hence op(1)

since mn−1
L → 0 by taking r = 2, for example. Note that the first p components of ∇Q(θ̇), which

are associated with the fixed effects, do not need to be bounded in this way because the dimension

is fixed.

S1.3 Unconditional on the Random Effects

In this section, we prove the consistency result under the unconditional regime. The main dif-

ferences to the derivation under the conditional regime arise from the treatment of λ2, and the

distribution of y. In the unconditional regime it holds that
∑m

i=1 ḃi = Op(m
1/2), while in the

conditional regime we impose a sum to zero constraint. Furthermore, in the unconditional regime
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we bound u⊤λ2 using its variance, while in the conditional regime this is not possible because λ2

is not a random variable. Finally, in the unconditional regime we cannot use the properties of the

exponential family to bound the mth order statistic, instead requiring Condition (C5).

Let M = E{Γ1(θ̇)}. Then M = Var(λ1) = E(λ1λ
⊤
1 ) since E(λ1) = 0(m+1)p. By Condition

(C1), c20u
⊤Mu ≤ u⊤Γ1(θ̄)u.

We consider two cases: the special case when u1 = −u2i for all i, and when this is not

the case. In the former, we have u⊤λ1 = u⊤Mu = 0. Thus we must examine u⊤λ2 and

u⊤Γ2u. In this case, we have u⊤λ2 =
∑m

i=1 u
⊤
2iĜ

−1ḃi = −u⊤
1 Ĝ

−1
∑m

i=1 ḃi = Op(m
1/2), and

u⊤Γ2u = mu⊤
1 Ĝ

−1u1 > 0 since Ĝ is a positive definite matrix. Hence the difference (S1.1) is

negative for large enough m,nL, and any choice of constant C.

Next, consider the case when u1 = −u2i for all i does not hold. Then we still have u⊤{−∇2Q(θ̄)}u ≥

c20u
⊤Mu. Letting λ = λmax(Ĝ

−1ĠĜ−1)/λmin(Ĝ
−1), we have

Var(λ2) = Im ⊗ Ĝ−1ĠĜ−1

and

λ−1u⊤
2 (Im ⊗ Ĝ−1ĠĜ−1)u2 ≤ u⊤

2 (Im ⊗ Ĝ−1)u2 = u⊤Γ2u.

Now, by the laws of iterated expectation and variance,

E{∇Q(θ̇)∇Q(θ̇)⊤} = Var{∇Q(θ̇)}

= E[Var{∇Q(θ̇)|ḃ}] + Var[E{∇Q(θ̇)|ḃ}]

= E{Var(λ1|ḃ)}+ Var(λ2)

= Var(λ1) + Var(λ2).

Thus we have that

u⊤{−∇2Q(θ̄)}u ≥ min(λ−1, c20){u⊤Mu+ u⊤
2 (Im ⊗ Ĝ−1ĠĜ−1)u2}
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= min(λ−1, c20)u
⊤E{∇Q(θ̇)∇Q(θ̇)⊤}u,

where the latter and hence former term grows at the same rate as {u⊤∇Q(θ̇)}2. Since at least one

component of u equals ±C, for any given u we have that u⊤{−∇2Q(θ̄)}u is at least of order

Op(nL) and always dominates.

Since the choice of u is arbitrary, we must take into account the growth rate of the nth order

statistic. That is, for any 1 ≤ k ≤ p, we require max
i∈{1,...,m}

[(X⊤
i ẆiXi + Ĝ−1)−1{ϕ̇−1X⊤

i (yi −

µ̇i) − Ĝ−1ḃi}][k] = op(1), as per the argument for the Poisson pure random intercept model. By

Condition (C5), this term is of order op(m1/4n
−1/2
L ), and hence the result follows. Note that the first

p components of ∇Q(θ̇), which are associated with the fixed effects, do not need to be bounded in

this way because the dimension is fixed.

S2 Proofs of Distributional Results

For both the conditional and unconditional regimes, our proof relies on examining the behaviour

of the leading term in the Taylor expansion of the estimating function. Under Conditions (C1) and

(C3), we take the Taylor expansion of ∇Q(θ̂) around θ̇ and obtain, as m,nL → ∞,

∇Q(θ̂) = 0(m+1)p = ∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +
1

2
R(θ̃), (S2.1)

where θ̃ is a (m+ 1)p× (m+ 1)p matrix with each row lying on the line segment between θ̇ and

θ̂ and R(θ̃) is the remainder term. Rearranging, we have

θ̂ − θ̇ = −{∇2Q(θ̇)}−1∇Q(θ̇)− 1

2
{∇2Q(θ̇)}−1R(θ̃). (S2.2)

We show in Section S3 that the remainder term is of smaller order than the leading term and thus

negligible in the limit, in both the conditional and unconditional regimes.

From (S2.2), to study the asymptotic behaviour of the PQL estimator we will first apply the

blockwise matrix inversion formula to obtain an expression for −{∇2Q(θ̇)}−1. Using this re-
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sult, we will then obtain an expression for −{∇2Q(θ̇)}−1∇Q(θ̇), and subsequently study the

asymptotic behaviour of each constituent term. Note that since ∇Q(θ̇) is a (m + 1)p-vector and

−{∇2Q(θ̇)}−1 is a (m+1)p× (m+1)p matrix, we cannot simply take their limits as per standard

fixed dimension asymptotics. Instead, we must evaluate −{∇2Q(θ̇)}−1∇Q(θ̇) as a whole.

We can write

∇Q(θ̇) =

 ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)− (Im ⊗ Ĝ−1)ḃ

 =



ϕ̇−1
∑m

i=1

∑ni

j=1 xij(yij − µ̇ij)

ϕ̇−1
∑n1

j=1 x1j(y1j − µ̇1j)− Ĝ−1ḃ1
...

ϕ̇−1
∑nm

j=1 xmj(ymj − µ̇mj)− Ĝ−1ḃm



≜



S1

S21 + S31

...

S2m + S3m


≜

 S1

S4 + S5

 ≜

S1

S6

 ,

B(θ̇) = −∇2Q(θ̇) =

X⊤ẆX X⊤ẆZ

Z⊤ẆX Z⊤ẆZ + Im ⊗ Ĝ−1

 ≜

 B1
p×p

B2
p×mp

B⊤
2

mp×p

B3 +B4
mp×mp

 .

Letting C = B1 −B2(B3 +B4)
−1B⊤

2 , by the matrix block inversion formula we have

B−1 =

 C−1 −C−1B2(B3 +B4)
−1

−(B3 +B4)
−1B⊤

2 C
−1 (B3 +B4)

−1 + (B3 +B4)
−1B⊤

2 C
−1B2(B3 +B4)

−1

 .

(S2.3)

Next, based on the forms of B2 and (B3 +B4), we obtain

B2(B3 +B4)
−1 = [Ip − Ĝ−1(X⊤

1 Ẇ1X1 + Ĝ−1)−1, . . . , Ip − Ĝ−1(X⊤
mẆmXm + Ĝ−1)−1].
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Then since Zi = Xi for all i, we can show that

B2(B3 +B4)
−1B⊤

2 =
m∑
i=1

X⊤
i ẆiXi(X

⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi

=
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1 − Ĝ−1)(X⊤

i ẆiXi + Ĝ−1)−1X⊤
i ẆiXi

=
m∑
i=1

X⊤
i ẆiXi − Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1X⊤
i ẆiXi

= B1 −
m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi.

It follows that

C =
m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi =
m∑
i=1

X⊤
i ẆiXi(X

⊤
i ẆiXi + Ĝ−1)−1Ĝ−1,

(S2.4)

where the second equality arises from the fact that as a covariance matrix, C must be symmetric.

We may also write C as

m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi =
m∑
i=1

{Ip − Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1}Ĝ−1

= Ĝ−1

m∑
i=1

{Ip − (X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1}. (S2.5)

Note that C is of order Op(m) component-wise in probability in both the conditional and uncon-

ditional regimes. Using the fact that C−1 must also be symmetric, we obtain

C−1 =

{
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1X⊤

i ẆiXi

}−1

Ĝ = Ĝ

{
m∑
i=1

X⊤
i ẆiXi(X

⊤
i ẆiXi + Ĝ−1)−1

}−1

(S2.6)

or equivalently

C−1 = C−1⊤ =

[
m∑
i=1

{Ip − (X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1}

]−1

Ĝ
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=

{
m−1Ip +m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1C−1

}
Ĝ, (S2.7)

where the last line is derived from (a special case of) the Woodbury identity, given by (Q −

R)−1 = Q−1 + Q−1R(Q − R)−1 for arbitrary matrices Q and R such that Q and (Q − R)

are invertible. The first term in (S2.7) is the dominating term, being of order O(m−1), while

the second term is Op(m
−1n−1

L ) in both the conditional and unconditional regimes. We will use

all the above forms of C and C−1 in subsequent developments. Similarly, we can apply the

Woodbury identity to (B3+B4)
−1 and (X⊤

i ẆiXi+Ĝ−1)−1 to obtain nL(B3+B4)
−1 = nLB

−1
3 −

nLB
−1
3 B4(B3 +B4)

−1 = Op(1) + Op(n
−1
L ) and ni(X

⊤
i ẆiXi + Ĝ−1)−1 = ni(X

⊤
i ẆiXi)

−1 −

ni(X
⊤
i ẆiXi)

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1 = Op(1) + Op(n

−1
i ), where the order results hold

component-wise. These hold irrespective of whether we are conditioning on the random effects.

To further simplify expressions, for the rest of this article we will only use order results when

representing quantities associated with these smaller order terms. Furthermore, as we want the

derivations for the remainder of this section to be applicable to both the conditional and uncondi-

tional regime, we will not distinguish between O(·) and Op(·) in the following developments, and

simply use Op() to represent both as appropriate. The terms we use “big-O notation” for will have

the same order under both the conditional and unconditional regime. To simplify expressions, we

will also drop the dependence on θ, unless stated otherwise.

Finally, it is worth emphasising that

[−Ip, Ip, . . . , Ip]

ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)

 = −S1 +
m∑
i=1

S2i = S1 −
m∑
i=1

S2i = 0p, (S2.8)

due to the Xi = Zi assumption. This is a key identity that is critical to the proofs throughout this

article.

We now use the expressions above to multiply out −{∇2Q(θ̇)}−1∇Q(θ̇) and obtain expres-
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sions for β̂ − β̇ and b̂− ḃ. From equation (S2.2), the first p components of θ̂ − θ̇ are

β̂ − β̇ =

[
C−1 −C−1B2(B3 +B4)

−1

]
∇Q+

1

2
{B−1R(θ̃)}[1:p]

= C−1

[
Ip −[Ip − Ĝ−1(X⊤

1 Ẇ1X1 + Ĝ−1)−1, . . . , Ip − Ĝ−1(X⊤
mẆmXm + Ĝ−1)−1]

]
∇Q

+
1

2
{B−1R(θ̃)}[1:p]

= C−1

(
S1 −

m∑
i=1

S2i −
m∑
i=1

S3i

)
+C−1Ĝ−1

{
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1S2i

+
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1S3i

}
+

1

2
{B−1R(θ̃)}[1:p]

= C−1Ĝ−1

{
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1S2i − Ĝ

m∑
i=1

S3i

+
m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1S3i

}
+

1

2
{B−1R(θ̃)}[1:p],

where the final equality uses equation (S2.8). Thus, letting V1 =
∑m

i=1(X
⊤
i ẆiXi+ Ĝ−1)−1S2i−

Ĝ
∑m

i=1 S3i +
∑m

i=1(X
⊤
i ẆiXi + Ĝ−1)−1S3i and applying equation (S2.7), we obtain

β̂ − β̇ = m−1V1 +
1

2
{B−1R(θ̃)}[1:p] +Op(n

−1
L )×m−1V1.

Finally, using the Woodbury identity for (X⊤
i ẆiXi + Ĝ−1)−1, we have that

∑m
i=1(X

⊤
i ẆiXi +

Ĝ−1)−1S2i =
∑m

i=1(X
⊤
i ẆiXi)

−1S2i+
∑m

i=1Op(n
−2
L )S2i. Letting V2 =

∑m
i=1(X

⊤
i ẆiXi)

−1S2i−

Ĝ
∑m

i=1 S3i +
∑m

i=1(X
⊤
i ẆiXi + Ĝ−1)−1S3i, we obtain

β̂ − β̇ = m−1V2 +
1

2
{B−1R(θ̃)}[1:p] +Op(n

−1
L )×m−1V1 +m−1

m∑
i=1

Op(n
−2
L )S2i.

Next, the last mp components of θ̂ − θ̇ are

b̂− ḃ = [−(B3 +B4)
−1B⊤

2 C
−1 (B3 +B4)

−1 + (B3 +B4)
−1B⊤

2 C
−1B2(B3 +B4)

−1]∇Q

+
1

2
{B−1R(θ̃)}[p+1:(m+1)p]
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= [−(B3 +B4)
−1B⊤

2 C
−1 (B3 +B4)

−1B⊤
2 C

−1B2(B3 +B4)
−1]∇Q

+ [0mp×p (B3 +B4)
−1]∇Q+

1

2
{B−1R(θ̃)}[p+1:(m+1)p]

= −(B3 +B4)
−1B⊤

2 [C
−1 −C−1B2(B3 +B4)

−1]∇Q

+ [0mp×p (B3 +B4)
−1]∇Q+

1

2
{B−1R(θ̃)}[p+1:(m+1)p].

Notice that we already have an expression for [C−1 −C−1B2(B3 +B4)
−1]∇Q from the fixed

effects above. Namely, it is m−1V1 +Op(n
−1
L )×m−1V1. Thus we have

b̂− ḃ = −(B3 +B4)
−1B⊤

2 (m
−1V1 +Op(n

−1
L )×m−1V1)

+ (B3 +B4)
−1S6 +

1

2
{B−1R(θ̃)}[p+1:(m+1)p].

Applying the Woodbury identity for (B3 +B4)
−1, we obtain

b̂− ḃ = −1m ⊗ (m−1V1 +Op(n
−1
L )×m−1V1) +Op(n

−1
L )(m−1V1 +Op(n

−1
L )×m−1V1)

+B−1
3 S6 +Op(n

−2
L )S6 +

1

2
{B−1R(θ̃)}[p+1:(m+1)p]

= −1m ⊗m−1V1 +Op(n
−1
L )×m−1V1 +Op(n

−2
L )×m−1V1

+B−1
3 S4 +B−1

3 S5 +Op(n
−2
L )S6 +

1

2
{B−1R(θ̃)}[p+1:(m+1)p].

Replacing all the V· and S· terms in the above with their definitions, we finally obtain

β̂ − β̇ = m−1

m∑
i=1

(X⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi − µ̇i) +m−1

m∑
i=1

ḃi

−m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi +

1

2
{B−1R(θ̃)}[1:p]

+Op(n
−1
L )

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i) +m−1

m∑
i=1

ḃi

−m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}
+m−1

m∑
i=1

Op(n
−2
L )ϕ̇−1X⊤

i (yi − µ̇i), (S2.9)
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and

b̂− ḃ = −1m ⊗

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i)

+m−1

m∑
i=1

ḃi −m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}

+B−1
3 {ϕ̇−1Z⊤(y − µ̇)} −B−1

3 {(Im ⊗ Ĝ−1)ḃ}+ 1

2
{B−1R(θ̃)}[p+1:(m+1)p]

+Op(n
−1
L )

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i)

+m−1

m∑
i=1

ḃi −m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}

+Op(n
−2
L )

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i)

+m−1

m∑
i=1

ḃi −m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}

+Op(n
−2
L ){ϕ̇−1Z⊤(y − µ̇)− (Im ⊗ Ĝ−1)ḃ}. (S2.10)

The expressions for β̂− β̇ and b̂− ḃ above underlie our proofs. We use these same expressions in

both the conditional and unconditional regimes, but the asymptotic behaviours of the terms on the

right hand side, and the way we treat them, will differ greatly between the two cases.

As we will show later, the key leading terms for the fixed effects are

m−1
∑m

i=1(X
⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi−µ̇i) and m−1

∑m
i=1 ḃi. The key leading terms for the random

effects are −1m ⊗ m−1
∑m

i=1 ḃi and B−1
3 {ϕ̇−1Z⊤(y − µ̇)}. When conditioning on the random

effects ḃ, we have m−1
∑m

i=1 ḃi = O(1), while in the unconditional regime the same quantity is

of order Op(m
−1/2) in probability. In both the conditional and unconditional regimes, we have

that m−1
∑m

i=1(X
⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi − µ̇i) is of order Op(N

−1/2) component-wise, while the

quantity B−1
3 {ϕ̇−1Z⊤(y − µ̇)} is of order Op(n

−1/2
L ) component-wise.
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S2.1 Proof of Theorem 1

The dominating terms on the right hand sides of equations (S2.9) and (S2.10) are m−1
∑m

i=1 ḃi

and 1m ⊗m−1
∑m

i=1 ḃi for the fixed and random effects, respectively. Conditional on the random

effects ḃi, these dominating terms are deterministic and of order O(1). Thus we treat them as bias

terms and move them to the left hand side. Next, by Conditions (C1)-(C2), B−1
3 is a component-

wise O(n−1
L ) block-diagonal matrix, while we also have B⊤

2 = O(nU), X⊤
i ẆiX

⊤
i = O(ni),

and C−1 = O(m−1) component-wise. Since E{Z⊤(y − µ̇)|ḃ} = 0mp and Var{Z⊤(y − µ̇)|ḃ} =

Z⊤ẆZ, we obtain ϕ̇−1D−1
r Z⊤(y−µ̇) = Op(1) using Chebyshev’s inequality and the conditional

independence.

Multiplying both sides of (S2.9) and (S2.10) by N1/2 and Dr respectively, and applying the

order results for the remainder term in Section S3.1, we obtain

N1/2

(
β̂ − β̇ −m−1

m∑
i=1

ḃi

)
= m−1/2

m∑
i=1

n1/2n
−1/2
i (n−1

i X⊤
i ẆiXi)

−1n
−1/2
i ϕ̇−1X⊤

i (yi − µ̇i)

+Op(m
1/2n

−1/2
L ),

and

Dr

(
b̂− ḃ+ 1m ⊗m−1

m∑
i=1

ḃi

)
= DrB

−1
3 DrD

−1
r {ϕ̇−1Z⊤(y − µ̇)}+Op(n

−1/2
L ).

Recalling that Xi = Zi, to prove Theorem 1 we will show a Lindeberg condition for

A



m−1/2
∑m

i=1 n
1/2n

−1/2
i (n−1

i X⊤
i ẆiXi)

−1n
−1/2
i ϕ̇−1X⊤

i (yi − µ̇i)

(n−1
1 X⊤

1 Ẇ1X1)
−1{n−1/2

1 ϕ̇−1X⊤
1 (y1 − µ̇1)}

...

(n−1
m X⊤

mẆmXm)
−1{n−1/2

m ϕ̇−1X⊤
m(ym − µ̇m)}


=: S,

and thus apply the Lindeberg-Feller central limit theorem, from which the result follows from

Slutsky’s theorem.
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To prove the condition, first define U = [ZB−1
3 (1m ⊗ Ip),ZB−1

3 ], and Uk as the kth row of

U , noting it only has 2p non-zero components. Then we can write S =
∑N

k=1 ADUkϕ̇
−1{yk −

µk(θ̇)}
∆
=
∑N

k=1 ξk, where yk is the kth component in (y11, y12, . . . , y1n1 , y21, . . . , ymnm)
⊤, and

similarly for µk(θ̇).

Conditional on ḃ, the quantities {ξk}Nk=1 are independent q-vectors with expectation zero and

covariance Var(ξk|ḃ) = ADUkWkU
⊤
k DA⊤, where Wk is the kth diagonal component in Ẇ .

Therefore, we have that

N∑
k=1

Var(ξk|ḃ) =
N∑
k=1

ADUkWkU
⊤
k DA⊤

= A



1
m

∑m
i=1

n
ni

(
X⊤

i ẆiXi

ni

)−1
1√
m

√
n
n1

(
X⊤

1 Ẇ1X1

n1

)−1

· · · 1√
m

√
n
nm

(
X⊤

mẆmXm

nm

)−1

1√
m

√
n
n1

(
X⊤

1 Ẇ1X1

n1

)−1 (
X⊤

1 Ẇ1X1

n1

)−1

0 0

... 0
. . . 0

1√
m

√
n
nm

(
X⊤

mẆmXm

nm

)−1

0 0
(

X⊤
mẆmXm

nm

)−1


A⊤.

Hence using the finite selection property of A, and the fact that m−1/2n1/2n
−1/2
i

(
n−1
i X⊤

i ẆiXi

)−1

=

o(1) component-wise, we obtain

lim
m,nL→∞

N∑
k=1

Cov(ξk|ḃ)

= lim
m,nL→∞

A bdiag

{
1

m

m∑
i=1

n

ni

(
X⊤

i ẆiXi

ni

)−1

,

(
X⊤

1 Ẇ1X1

n1

)−1

, . . . ,

(
X⊤

mẆmXm

nm

)−1}
A⊤

= Ω.

Next, by the Cauchy-Schwarz inequality, we have

E{∥ξk∥2I(∥ξk∥ > ϵ)|ḃ} ≤ E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2.

Finally, we make a note about the form of Cov[DUk{yk − µk(θ̇)}]. Without loss of generality,
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suppose k = 1. Then

Cov[DU1{y1 − µ1(θ̇)}] =
n(mn2

1)
−1H1x11W1x

⊤
11H

⊤
1 n−1

1 m−1/2(nn−1
1 )1/2H1x11W1x

⊤
11H

⊤
1 0

n−1
1 m−1/2(nn−1

1 )1/2H1x11W1x
⊤
11H

⊤
1 n−1

1 H1x11W1x
⊤
11H

⊤
1 0

0 0 0

 . (S2.11)

Again without loss of generality, consider the case A = [I2p,0(p+p)×(m−1)p]. Then by equation

(S2.11) and Chebyshev’s inequality, when k ∈ {1, 2, . . . , n1} we have that P (∥ξk∥ > ϵ|ḃ) ≤

tr{Cov(ξk|ḃ)}/ϵ2 = O(n−1
1 ). Thus, given ḃ, we obtain ∥ξk∥ = Op(n

−1/2
1 ) and E(∥ξk∥4|ḃ) =

O(n−2
1 ) by Conditions (C1)-(C3) and the properties of the exponential family. However when k >

n1, by equation (S2.11) and Chebyshev’s inequality, we have that P (∥ξk∥ > ϵ|ḃ) ≤ tr{Cov(ξk|ḃ)}/ϵ2 =

O(N−1) since n(mn2
1)

−1 = O(N−1). Thus given ḃ, it holds that ∥ξk∥ = Op(N
−1/2) and E(∥ξk∥4|ḃ) =

O(N−2). Therefore

N∑
k=1

E{∥ξk∥2I(∥ξk∥ > ϵ)|ḃ} ≤
N∑
k=1

E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2

=

n1∑
k=1

E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2

+
N∑

k=n1+1

E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2

≤ n1 max
1≤k≤n1

{E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2}

+ (N − n1) sup
k>n1

{E(∥ξk∥4|ḃ)1/2P (∥ξk∥ > ϵ|ḃ)1/2}

= n1 ×O(n
−3/2
1 ) + (N − n1)×O(N−3/2)

= O(n
−1/2
1 ) +O(N−1/2)

= o(1).

The required result follows by Conditions (C1)-(C2) and the Lindeberg-Feller Central Limit

Theorem. Furthermore, the general result holds straightforwardly by replacing n1 with O(nL) in
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the above argument, noting that any row of A can only select a fixed number of clusters.

S2.2 Proof of Equation (4)

For the Poisson pure random intercept model, we have B = diag(neḃ1 + σ̂−2
b , . . . , neḃm + σ̂−2

b ) and

R(θ̃) = {neb̃1(b̂1 − ḃ1)
2, . . . , neb̃m(b̂m − ḃm)

2}⊤. Next, suppose that A picks out the first random

intercept, i.e., A = [1,0⊤
m−1]. Then we have

n1/2(b̂1 − ḃ1) = n1/2AB−1∇Q(θ̇) +
1

2
n1/2AB−1R(θ̃)

= n−1/2

{(
n∑

j=1

y1j − eḃ1

)
− ḃ1/σ̂

2
b

}/{
eḃ1 + 1/(σ̂2

bn)
}

− 1

2

{
n1/2eb̃1(b̂1 − ḃ1)

2
}/{

eḃ1 + 1/(σ̂2
bn)
}

=

[
n−1/2

{(
n∑

j=1

y1j − eḃ1

)
− ḃ1/σ̂

2
b

}/{
eḃ1 + 1/(σ̂2

bn)
}]/

[
1 +

{
1

2
eb̃1(b̂1 − ḃ1)

}/{
eḃ1 + 1/(σ̂2

bn)
}]

= n−1/2

n∑
j=1

(y1je
−ḃ1 − 1) + op(1),

where b̃1 lies between b̂1 and ḃ1, and for the last line we have used the fact that b̂1 − ḃ1 = op(1).

Now, {y1je−ḃ1 − 1}mj=1 is an exchangeable collection of uncorrelated random variables with

mean zero and finite non-zero variance. Furthermore, we have for k ̸= l

Cov{(y1ke−ḃ1 − 1)2, (y1le
−ḃ1 − 1)2} = E[Cov{(y1ke−ḃ1 − 1)2, (y1le

−ḃ1 − 1)2|ḃ1}]

+ Cov[E{(y1ke−ḃ1 − 1)2|ḃ1}, E{(y1le−ḃ1 − 1)2|ḃ1}]

= 0 + Cov(e−ḃ1 , e−ḃ1)

= eσ̇
2
b (eσ̇

2
b − 1) ̸= 0.

Thus by the Central Limit Theorem for exchangeable random variables (Blum et al., 1958), it holds
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that n−1/2
∑n

j=1(y1je
−ḃ1−1)

D

̸→ N(0, eσ̇
2
b ). Since we know Var{n−1/2

∑n
j=1(y1je

−ḃ1−1)} = eσ̇
2
b/2

and also that n−1/2
∑n

j=1(y1je
−ḃ1 − 1) = Op(1) by Chebyshev’s inequality, there is no other

normalization possible for an asymptotic normality result to hold.

Finally, we also have

n1/2(b̂1 − ḃ1) = n−1/2

n∑
j=1

(y1je
−ḃ1 − 1) +Op(n

−1/2)

=⇒ b̂1 = ḃ1 + n−1

n∑
j=1

(y1je
−ḃ1 − 1) +Op(n

−1)

= ḃ1 + op(1), by the Weak Law of Large Numbers.

S2.3 Proof of Theorem 2

We begin by developing two key equations, (S2.12) and (S2.13), that will be used throughout

the unconditional regime. These are derived from equations (S2.9) and (S2.10) and are used in

the proofs of Theorems 2-5 as well as Corollary 1. Under Conditions (C1)-(C2), the following

order results are used: B−1
3 is a component-wise Op(n

−1
L ) block-diagonal matrix, B2 = Op(nU)

component-wise, X⊤
i ẆiX

⊤
i = Op(ni) component-wise, and C−1 = Op(m

−1) component-wise.

Also, by the conditional independence, we have

E{Z⊤(y − µ̇)} = E[E{Z⊤(y − µ̇)|ḃ}] = 0mp,

Var{Z⊤(y − µ̇)} = E[Var{Z⊤(y − µ̇)|ḃ}] + Var[E{Z⊤(y − µ̇)|ḃ}] = E(Z⊤ẆZ),

so that ϕ̇−1D−1
r Z⊤(y − µ̇) = Op(1) using Chebyshev’s inequality. Therefore we have the key

equations

β̂ − β̇ = m−1

m∑
i=1

ḃi +Op(N
−1/2) +Op(n

−1
L ) +

1

2
{B−1R(θ̃)}[1:p] (S2.12)
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and

b̂− ḃ = −1m ⊗m−1

m∑
i=1

ḃi +B−1
3 {ϕ̇−1Z⊤(y − µ̇)}

+Op(N
−1/2) +Op(n

−1
L ) +

1

2
{B−1R(θ̃)}[p+1:(m+1)p]. (S2.13)

By equation (S2.12), we have

m1/2(β̂ − β̇) = m−1/2

m∑
i=1

ḃi +Op(n
−1/2
L ) +Op(m

1/2n−1
L ) +

1

2
m1/2{B−1R(θ̃)}[1:p].

Next, we consider two separate scenarios. First, suppose that mn−1
U → ∞. Then by the order

results for the remainder term in Section S3.2, the first p components of D∗B−1R(θ̃) are of order

Op(m
1/2n−1

L ), and so the first p components of D∗(θ̂ − θ̇) can be shown to be

m1/2(β̂ − β̇) = m−1/2

m∑
i=1

ḃi + op(1).

The required result then follows from the independence of the random effects and the normal

assumption on the ḃi; note the mn−2
L → 0 assumption is required for the remainder term to be

smaller order than the linear term.

On the other hand, when mn−1
L → 0, the only difference from the mn−1

L → ∞ case is that the

first p components of D+B−1R(θ̃) are now of order Op(m
−1/2) due to the different convergence

rate of the prediction gap. The result however follows along similar lines as above.

S2.4 Proof of Theorem 3

Again we consider two different scenarios. First, suppose mn−1
L → ∞. Then from equation

(S2.13) and the order results for the remainder term in Section S3.2, we have that

Dr(b̂− ḃ) = Op(n
1/2
U m−1/2) +Op(1) +Op(n

−1/2
L ).
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Based on the above, we obtain Drb̂ = Drḃ + Op(1), and thus b̂ = ḃ + Op(n
−1/2
L ). The required

result follows by multiplying both sides by Ar.

On the other hand, suppose now mn−1
L → 0. Then a normalization by m1/2 is needed instead,

and the third derivative term is consequently of order Op(m
−1/2) in probability. We thus obtain

m1/2(b̂− ḃ) = Op(1) +Op(m
1/2n

−1/2
L ) +Op(m

−1/2),

and the result follows.

As an side remark, note from the above proof when mn−1
L → 0, it holds that ∥b̂ − ḃ∥2 =

Op(1), where ∥ · ∥2 denotes the l2-norm. But if mn−1
U → ∞ then we instead obtain ∥b̂ − ḃ∥2 =

Op(m
1/2n

−1/2
U ). This implies that, under the unconditional regime, a consistency result based on

the l2-norm cannot hold for the entire vector of random effects when there is a partnered fixed

effect. If there is no partnered fixed effect though, consistency of the entire vector is sometimes

possible. For example, in the Poisson counterexample, we demonstrate in the Appendix that ∥b̂−

ḃ∥2 = Op(m
1/2n−1/2) = op(1) when mn−1 → 0.

S2.5 Proof of Theorem 4 and Corollary 1

We will prove each of the three parts of the theorem separately. The proof of part (a) also proves

Corollary 1.

Part (a): When mn−1
U → ∞, we have from equation (S2.13) and the order results for the

remainder term in Section S3.2 that

Dr(b̂− ḃ) = DrB
−1
3 DrD

−1
r ϕ̇−1Z⊤(y − µ̇) + op(1).

This is identical to the proof of Theorem 3. Next, without loss of generality, suppose Ar selects

the first cluster only. Then we have

n
1/2
1 (b̂1 − ḃ1) = (n−1

1 X⊤
1 Ẇ1X1)

−1n
−1/2
1 {ϕ̇−1X⊤

1 (y1 − µ̇1)}+ op(1)
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∆
= Pn1 + op(1).

We wish to study the distribution of Pn1 as m,nL → ∞. By definition,

lim
m,nL→∞

FPn1
(x) = lim

m,nL→∞

∫
FPn1 |ḃ1

(x)f(ḃ1)dḃ1.

Since FPn1 |ḃ1
(x) is a cdf, then FPn1 |ḃ1

(x)f(ḃ1) is bounded by f(ḃ1). Hence applying
∫
f(ḃ1)dḃ1 =

1 and the dominated convergence theorem, we obtain

lim
m,nL→∞

FPn1
(x) =

∫
lim

m,nL→∞
FPn1 |ḃ1

(x)f(ḃ1)dḃ1 =

∫
ΨPn1 |ḃ1

(x)f(ḃ1)dḃ1,

where ΨPn1 |ḃ1
(·) is the cdf associated with N(0,K1), a result which follows from conditional

independence and the Lindeberg-Feller Central Limit Theorem used in Theorem 1. The general

result follows by noting that the same argument can be applied to any finite subset of the random

effects. Note also that the result holds regardless of the true distribution of ḃi.

Part (b): When mn−1
i → γi ∈ (0,∞), we have from (S2.13) and the order results for the

remainder term in Section S3.2 that

n
1/2
i (b̂i − ḃi) = (n−1

i X⊤
i ẆiXi)

−1n
−1/2
i {ϕ̇−1X⊤

i (yi − µ̇i)} − (γim)−1/2

m∑
i=1

ḃi +Op(n
−1/2
L ),

from the same development as in the proof of Part (a). Letting

E1 = (n−1
i X⊤

i ẆiXi)
−1n

−1/2
i ϕ̇−1X⊤

i (yi − µ̇i) and E2 = m−1/2
∑m

i=1 ḃi, then since E1 and E2

are independent given ḃi, we obtain for any i,

lim
m,nL→∞

FE1,E2(x,y) = lim
m,nL→∞

∫
FE1,E2|ḃi(x,y)f(ḃi)dḃi

= lim
m,nL→∞

∫
FE1|ḃi(x)FE2|ḃi(y)f(ḃi)dḃi

=

∫
lim

m,nL→∞
FE1|ḃi(x)FE2|ḃi(y)f(ḃi)dḃi

=

∫
lim

nL→∞
FE1|ḃi(x) lim

m→∞
FE2|ḃi(y)f(ḃi)dḃi
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= ΨE2(y)

∫
lim

nL→∞
FE1|ḃi(x)f(ḃi)dḃi,

where ΨE2(·) is the cdf of N(0, Ġ). The third line follows from the Dominated Convergence

Theorem since FE1|ḃi(x) and FE2|ḃi(y) are cdfs and
∫
f(ḃi)dḃi = 1. Thus E1 and E2 are asymp-

totically independent. The result follows from this asymptotic independence.

Part (c): When mn−1
L → 0, we have from (S2.13) and the order results for the remainder term

in Section S3.2 that

m1/2(b̂− ḃ) = −1m ⊗ Ipm
−1/2

m∑
i=1

ḃi + op(1).

The result then follows immediately from the normality assumption on ḃi.

S2.6 Proof of Theorem 5

Given mn−2
L → 0 and mn

−1/2
U → ∞, by summing equations (S2.12) and (S2.13) we see that the

m−1
∑m

i=1 ḃi terms cancel. Therefore, we are left with

n
1/2
i (β̂ + b̂i − β̇ − ḃi) = ni(X

⊤
i ẆiXi)

−1n
−1/2
i {ϕ̇−1X⊤

i (yi − µ̇i)}

+Op(m
−1/2) +Op(n

−1/2
L ) +Op(m

−1n
1/2
U )

= ni(X
⊤
i ẆiXi)

−1n
−1/2
i ϕ̇−1X⊤

i (yi − µ̇i) + op(1).

The required result follows from the Dominated Convergence Theorem.

S2.7 Result for Difference Between the Prediction Gaps of Two Clusters

Assume Conditions (C1)-(C5) are satisfied, mn−2
L → 0, mn

−1/2
U → ∞, and nin

−1
i′ → γ ∈ (0,∞).

Then as m,nL → ∞ and unconditional on the random effects ḃ, for each i ̸= i′ ∈ {1, . . . ,m} we

have

n
1/2
i {(b̂i − ḃi)− (b̂i′ − ḃi′)}

D→ mixN(0, K̇i, Fḃi
) ∗ mixN(0, γK̇i′ , Fḃi′

).
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Proof: Theorem 4 implies that, given mn−2
L → 0, mn

−1/2
U → ∞, and nin

−1
i′ → γ ∈ (0,∞), we

have

n
1/2
i (b̂i − ḃi − b̂i′ + ḃi′) = (n−1

i X⊤
i ẆiXi)

−1n
−1/2
i X⊤

i (yi − µ̇i)

+ γ1/2(n−1
i′ X⊤

i′ Ẇi′Xi′)
−1n

−1/2
i′ X⊤

i′ (yi′ − µ̇i′)

+Op(m
−1/2) +Op(n

−1/2
L ) +Op(m

−1n
1/2
U ),

and the result follows by the independence of ḃi and ḃi′ .

S3 Remainder Term in the Taylor Expansion

In this section, we show that in the Taylor expansion (S2.2), the remainder term −1
2
{∇2Q(θ̇)}−1R(θ̃)

is of smaller order component-wise than −{∇2Q(θ̇)}−1∇Q(θ̇). To deal with this remainder term,

we have the following from equation (S2.2)

θ̂ − θ̇ = B−1∇Q(θ̇) +
1

2
B−1R(θ̃)

⇒ θ̂ − θ̇ − 1

2
B−1R(θ̃) = B−1∇Q(θ̇)

⇒ (I(m+1)p −Λ)(θ̂ − θ̇) = B−1∇Q(θ̇)

⇒ θ̂ − θ̇ = (I(m+1)p −Λ)−1B−1∇Q(θ̇)

= B−1∇Q(θ̇) +

(
∞∑
s=1

Λs

)
B−1∇Q(θ̇),

where the last line is derived from repeated application of the Woodbury identity, and Λ is the ap-

propriate (m+1)p× (m+1)p matrix defined in detail later on. The convergence of the geometric

sum and thus invertibility of (I(m+1)p − Λ) is shown in Lemma 4. We will show, using the con-

sistency result ∥θ̂ − θ̇∥∞ = op(1), that
∑∞

s=1Λ
sB−1∇Q(θ̇) is of smaller order component-wise

than B−1∇Q(θ̇). This is equivalent to 0.5B−1R(θ̃) being smaller order component-wise than

B−1∇Q(θ̇) in (S2.2).
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Let T1 denote the first p components of R(θ̃), T2 its remaining mp components, and T2i

denote the {(i − 1)p + 1}-th to (ip)-th components of T2. We first prove a result needed for later

developments.

Lemma 3. Assume Conditions (C1) and (C3) are satisfied. Then irrespective of whether ḃ is

conditioned on, it holds that R(θ̃)[1:p] =
∑m

i=1 R(θ̃)[ip+1:(i+1)p].

Proof. Recall the Taylor expansion ∇Q(θ̂) = 0 = ∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃). Then

0p×1 = ∇Q(θ̂)[1:p]

= {∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃)}[1:p]

=
m∑
i=1

∇Q(θ̂)[ip+1:(i+1)p]

=
m∑
i=1

{∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃)}[ip+1:(i+1)p].

Since Zi = Xi for all i = 1, . . . ,m under our simplifying assumption, and
∑m

i=1 b̂i = 0, then we

obtain

{∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃)}[1:p] =
m∑
i=1

{∇Q(θ̇) +∇2Q(θ̇)(θ̂ − θ̇) +R(θ̃)}[ip+1:(i+1)p].

Therefore, we have T1 = R(θ̃)[1:p] =
∑m

i=1R(θ̃)[ip+1:(i+1)p] =
∑m

i=1 T2i, which follows from the

fact that
∑m

i=1 ∇Q(θ̇)[ip+1:(i+1)p] = ∇Q(θ̇)[1:p]−
∑m

i=1 Ĝ
−1ḃi and

∑m
i=1{∇2Q(θ̇)(θ̂−θ̇)}[ip+1:(i+1)p] =

{∇2Q(θ̇)(θ̂ − θ̇)}[1:p] +
∑m

i=1 Ĝ
−1ḃi −

∑m
i=1 Ĝ

−1b̂i.

Next, let S(θ) = ∇Q(θ), W̃ ′ = ϕ̇−1diag{a′′′(η̃11), . . . , a′′′(η̃1n1), . . . , a
′′′(η̃mnm)}. Then the

remainder term can be written as

R(θ̃) =


(θ̂ − θ̇)⊤

∂2S[1](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

...

(θ̂ − θ̇)⊤
∂2S[(m+1)p](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

 .
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Now, for 1 ≤ j ≤ p, we have S[j](θ) = ϕ̇−1X⊤
[,j]{y−µ(θ)} = ϕ̇−1

∑m
i=1

∑ni

l=1 xil[j]{yil−a′(ηil)},

noting this is a scalar. Thus

∂

∂θ
S[j](θ) = −ϕ̇−1

m∑
i=1

ni∑
l=1

 xil

∂
∂b
ηil

 a′′(ηil)xil[j] = −

X⊤WX[,j]

Z⊤WX[,j]

 ,

which is an (m+ 1)p-vector. Hence the (m+ 1)p× (m+ 1)p matrix can be written as

∂2S[j](θ̃)

∂θ∂θ⊤ = −ϕ̇−1

m∑
i=1

ni∑
l=1

 xil

∂
∂b
ηil

 a′′′(η̃il)xil[j]

 xil

∂
∂b
ηil


⊤

= −

X⊤diag(X[,j])W̃
′X X⊤diag(X[,j])W̃

′Z

Z⊤diag(X[,j])W̃
′X Z⊤diag(X[,j])W̃

′Z

 , 1 ≤ j ≤ p.

Similarly, for 1 ≤ k ≤ mp, S[p+k](θ) = ϕ̇−1Z⊤
[,k]{y − µ(θ)} − {(Im ⊗ Ĝ)b}[k], such that

∂

∂θ
S[p+k](θ) = −

 X⊤WZ[,k]

Z⊤WZ[,k] +
∂
∂b
{(Im ⊗ Ĝ)b}[k]

 ,

where ∂/∂b{(Im ⊗ Ĝ)b}[k] is not a function of θ. Thus

∂2S[p+k](θ̃)

∂θ∂θ⊤ = −

X⊤diag(Z[,k])W̃
′X X⊤diag(Z[,k])W̃

′Z

Z⊤diag(Z[,k])W̃
′X Z⊤diag(Z[,k])W̃

′Z

 , 1 ≤ k ≤ mp.

Next, recall that B2(B3+B4)
−1 = [Ip−Ĝ−1(X⊤

1 Ẇ1X1+Ĝ−1)−1, . . . , Ip−Ĝ−1(X⊤
mẆmXm+

Ĝ−1)−1]. By Lemma 1 and the blockwise inversion formula for B−1, the first p components of

B−1R(θ̃) are given by

[
C−1 −C−1B2(B3 +B4)

−1

]
R(θ̃)

= C−1

[
Ip −[Ip − Ĝ−1(X⊤

1 Ẇ1X1 + Ĝ−1)−1, . . . , Ip − Ĝ−1(X⊤
mẆmXm + Ĝ−1)−1]

]
R(θ̃)
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= C−1

{
T1 −

m∑
i=1

T2i +
m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1T2i

}
. (S3.1)

Similarly, the last mp components of B−1R(θ̃) are

[
−(B3 +B4)

−1B⊤
2 C

−1 (B3 +B4)
−1 + (B3 +B4)

−1B⊤
2 C

−1B2(B3 +B4)
−1

]
R(θ̃)

= −(B3 +B4)
−1B⊤

2

[
C−1 −C−1B2(B3 +B4)

−1

]
R(θ̃) + (B3 +B4)

−1T2. (S3.2)

Hence the first p components of B−1R(θ̃) are given by

F1 = C−1

m∑
i=1

Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1T2i,

and the last mp components of B−1R(θ̃) are given by

F2 = −(B3 +B4)
−1B⊤

2 F1 + (B3 +B4)
−1T2.

Next, we have

T2 =


(θ̂ − θ̇)⊤

∂2S[p+1](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

...

(θ̂ − θ̇)⊤
∂2S[(m+1)p](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

 =


(θ̂ − θ̇)⊤

∂2S[p+1](θ̃)

∂θ∂θ⊤

...

(θ̂ − θ̇)⊤
∂2S[(m+1)p](θ̃)

∂θ∂θ⊤

 (θ̂ − θ̇) ≜ F3(θ̂ − θ̇)

and

T2i =


(θ̂ − θ̇)⊤

∂2S[(i−1)p+1](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

...

(θ̂ − θ̇)⊤
∂2S[ip](θ̃)

∂θ∂θ⊤ (θ̂ − θ̇)

 =


(θ̂ − θ̇)⊤

∂2S[(i−1)p+1](θ̃)

∂θ∂θ⊤

...

(θ̂ − θ̇)⊤
∂2S[ip](θ̃)

∂θ∂θ⊤

 (θ̂ − θ̇) ≜ F3i(θ̂ − θ̇).

Here, F3 is a mp × (m + 1)p matrix and F3i is p × (m + 1)p. Notice that F3 = [F⊤
31, . . . ,F

⊤
3n]

⊤.

54



Furthermore,

B−1R(θ̃) =

F1

F2

 =

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1T2i

−(B3 +B4)
−1B⊤

2 F1 + (B3 +B4)
−1T2


=

 ∑m
i=1 C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i(θ̂ − θ̇)

−(B3 +B4)
−1B⊤

2

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i(θ̂ − θ̇) + (B3 +B4)

−1F3(θ̂ − θ̇)


=

 ∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

−(B3 +B4)
−1B⊤

2

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i + (B3 +B4)

−1F3

 (θ̂ − θ̇)

= 2Λ(θ̂ − θ̇).

The kth row of F3i for 1 ≤ k ≤ p is given by

− (θ̂ − θ̇)⊤

X⊤diag(Z[,(i−1)p+k])W̃
′X X⊤diag(Z[,(i−1)p+k])W̃

′Z

Z⊤diag(Z[,(i−1)p+k])W̃
′X Z⊤diag(Z[,(i−1)p+k])W̃

′Z


= −δ−1

m,nL

[
δm,nL

(β̂ − β̇)⊤X⊤diag(Z[,(i−1)p+k])W̃
′X + δm,nL

(b̂− ḃ)⊤Z⊤diag(Z[,(i−1)p+k])W̃
′X,

δm,nL
(β̂ − β̇)⊤X⊤diag(Z[,(i−1)p+k])W̃

′Z + δm,nL
(b̂− ḃ)⊤Z⊤diag(Z[,(i−1)p+k])W̃

′Z
]
, (S3.3)

where δm,nL
is a positive unbounded monotonically increasing sequence such that δm,nL

∥θ̂ −

θ̇∥∞ = Op(1). The consistency results proved in Section S1 ensure that such a δm,nL
must ex-

ist; this is true for both the conditional and unconditional regimes.

Observe that only the {(
∑i−1

l=0 nl) + 1}th to (
∑i

l=0 nl)th components of Z[,(i−1)p+k] are non-

zero, where we define n0 := 0. This means that, for any 1 ≤ k ≤ p, only the {(i − 1)p + 1}th to

(ip)th columns of both

X⊤diag(Z[,(i−1)p+k])W̃
′Z and Z⊤diag(Z[,(i−1)p+k])W̃

′Z will be non-zero. In other words, other

than the first p columns, only the (ip+1)th to {(i+1)p}th columns of F3i are non-zero. Thus F3,

disregarding its first p columns, is an mp×mp block-diagonal matrix.

The non-zero components of δm,nL
F3 and δm,nL

F3i are all Op(nU) component-wise, again be-
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cause at most ni components of Z[,(i−1)p+k] are non-zero. For ease of notation and understanding,

we now represent all terms using their orders only. Since C−1 = Op(m
−1) and Ĝ−1(X⊤

i ẆiXi +

Ĝ−1)−1 = Op(n
−1
i ), from the above discussion we have that∑m

i=1C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i is a p× (m+ 1)p matrix of the form

δ−1
m,nL

[Op(1), Op(m
−1), . . . , Op(m

−1)]. Next, (B3+B4)
−1B⊤

2 = [Ip+Op(n
−1
1 ), . . . , Ip+Op(n

−1
m )]⊤

and (B3 +B4)
−1 is a block-diagonal Op(n

−1
L ) matrix component-wise. Therefore, we find that Λ

is of the form

0.5

 ∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

−(B3 +B4)
−1B⊤

2

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

+ 0.5

 0p×(m+1)p

(B3 +B4)
−1F3


≜ Λ1 +Λ2

=
1

δm,nL


Op(1) Op(m

−1) · · · Op(m
−1)

...
...

...
...

Op(1) Op(m
−1) · · · Op(m

−1)

+
1

δm,nL



0p×(m+1)p

Op(1) Op(1) 0 · · · 0

Op(1) 0 Op(1) · · · 0

...
...

... . . . ...

Op(1) 0 · · · 0 Op(1)



=
1

δm,nL



Op(1) Op(m
−1) Op(m

−1) · · · Op(m
−1)

Op(1) Op(1) Op(m
−1) · · · Op(m

−1)

Op(1) Op(m
−1) Op(1) · · · Op(m

−1)

...
...

... . . . ...

Op(1) Op(m
−1) · · · Op(m

−1) Op(1)


. (S3.4)

Writing Λ = δ−1
m,nL

Λδ, we see that the component-wise order of Λδ remains the same no matter

how many times it is multiplied by itself. Furthermore, each row of Λs
δ is Op(1) for only a finite

number of components, and Op(m
−1) for the others. We will use these facts to examine the be-

haviour of
∑∞

s=1Λ
sB−1∇Q(θ̇) =

∑∞
s=1 δ

−s
m,nL

Λs
δB

−1∇Q(θ̇), and we will do so separately for

the conditional and unconditional regimes. Before proceeding, we first confirm the convergence of∑∞
s=1 Λ

s.
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Lemma 4. Assume Conditions (C1)-(C5) are satisfied. Then with probability tending to one as

m,nL → ∞, the geometric sum
∑∞

s=1Λ
s converges.

Proof. To prove the result we will show that, with probability tending to one as m,nL → ∞,

∥Λ∥ < 1 for some sub-multiplicative matrix norm ∥ · ∥. In particular, we will consider the max-

imum absolute row sum of Λ, denoted by ∥ · ∥∞ i.e., the operator norm induced by the vector

infinity norm.

From (S3.4), we have ∥Λ∥∞ ≤ ∥Λ1∥∞ + ∥Λ2∥∞. We first examine ∥Λ1∥∞. We may break up

Λ1 into

0.5



∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

−
∑m

i=1 C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i

−
∑m

i=1C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i

...


+

0.5



0p

(X⊤
1 Ẇ1X1 + Ĝ−1)−1Ĝ−1

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

(X⊤
2 Ẇ2X2 + Ĝ−1)−1Ĝ−1

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i

...

(X⊤
mẆmXm + Ĝ−1)−1Ĝ−1

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi + Ĝ−1)−1F3i


≜ Λ3 +Λ4Λ5,

where Λ4 = bdiag(0p×p, (X
⊤
1 Ẇ1X1+Ĝ−1)−1Ĝ−1, . . . , (X⊤

mẆmXm+Ĝ−1)−1Ĝ−1), and Λ5 =

(0,1⊤
m)

⊤ ⊗
∑m

i=1 C
−1Ĝ−1(X⊤

i ẆiXi + Ĝ−1)−1F3i. We can also write

Λ3 = −0.5(1∗
m⊗Ip)

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi+Ĝ−1)−1F3i and use the (component-wise) order

results as used in (S3.4) to see that ∥Λ3∥∞ ≤ ∥ − 0.5(1∗
m ⊗ Ip)∥∞∥

∑m
i=1C

−1Ĝ−1(X⊤
i ẆiXi +

Ĝ−1)−1F3i∥∞ = op(1). Next, we have ∥Λ4Λ5∥∞ ≤ ∥Λ4∥∞∥Λ5∥∞. We know ∥Λ5∥∞ = op(1),

and under conditions (C1)-(C2), we have ∥Λ4∥∞ = Op(1). Thus we obtain ∥Λ1∥∞ = op(1).

Turning to Λ2, we examine each row of (B3+B4)
−1F3. First, ∥(B3+B4)

−1F3∥∞ ≤ ∥(B3+
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B4)
−1∥∞∥F3∥∞ and by conditions (C1)-(C2), we have ∥(B3 + B4)

−1∥∞ = Op(n
−1
L ). Now,

without loss of generality consider the first row of F3. This is given by

−

[
(β̂ − β̇)⊤X⊤diag(Z[,1])W̃

′X + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃
′X,

(β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′Z + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃

′Z

]

= −

[
(β̂ − β̇)⊤X⊤diag(Z[,1])W̃

′X + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃
′X,

(β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′X + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃

′X,0⊤
(m−1)p

]
,

since diag(Z[,1]) selects for the first cluster. Let 1̄p be a p-vector whose entries consist of the

(component-wise) signs of (β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′X + (b̂ − ḃ)⊤Z⊤diag(Z[,1])W̃

′X . Then

the absolute row sum of the first row of F3 is given by

2|{(β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′X + (b̂− ḃ)⊤Z⊤diag(Z[,1])W̃

′X}1̄p|

=2|{(β̂ − β̇)⊤X⊤diag(Z[,1])W̃
′X + (b̂1 − ḃ1)

⊤X⊤diag(Z[,1])W̃
′X}1̄p|

=2|{(β̂ − β̇ + b̂1 − ḃ1)
⊤X⊤diag(Z[,1])W̃

′X}1̄p|

≤2p∥{X⊤diag(Z[,1])W̃
′X(β̂ − β̇ + b̂1 − ḃ1)}∥∞

≤2p∥{X⊤diag(Z[,1])W̃
′X}∥∞∥β̂ − β̇ + b̂1 − ḃ1∥∞

≤2p∥{X⊤diag(Z[,1])W̃
′X}∥∞(∥β̂ − β̇∥∞ + ∥b̂1 − ḃ1∥∞)

≤2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞(∥β̂ − β̇∥∞ + ∥b̂1 − ḃ1∥∞)

=2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞∥β̂ − β̇∥∞

+ 2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞∥b̂1 − ḃ1∥∞

≜ α + α1 ≜ ω1,

where the second equality follows from diag(Z[,1]) selecting for only the first cluster, and Xi = Zi.

The first inequality is due to Hölder’s inequality. Again, using Conditions (C1)-(C2) we have
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max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞ = Op(nU).

Now, p is a constant and the absolute row sum of any row of F3 can be bounded analogously in

the above way, the only difference being that for the kth row, then the quantity (b̂1 − ḃ1) changes

to the prediction gap for the cluster that diag(Z[,k]) selects for. This means that the absolute row

sums for the first p rows of F3 are bounded by ω1, the next p rows by ω2, and so on. Hence, to

ensure ∥Λ2∥∞ = op(1) it suffices to ensure that ∥ω ⊗ 1p∥∞ = ∥ω∥∞ = op(nL), where ω =

(ω1, . . . , ωm)
⊤.

To show this, define α = (α1, . . . , αm)
⊤. Then ∥ω∥∞ ≤ ∥α1m∥∞ + ∥α∥∞. By Conditions

(C1)-(C2), we have ∥α1m∥∞ = α = Op(nU)× op(1) = op(nU) = op(nL). We also have

∥α∥∞ = 2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞ max

i∈{1,...,m}
∥b̂i − ḃi∥∞

= 2p max
k∈{1,...,mp}

∥{X⊤diag(Z[,k])W̃
′X}∥∞∥b̂− ḃ∥∞

= Op(nU)× op(1) = op(nU) = op(nL),

where the last line follows from conditions (C1)-(C2), and the fact that ∥θ̂ − θ̇∥∞ = op(1). The

result follows since ∥Λ∥∞ is therefore of order op(1), and for any ϵ > 0 we have ∥Λ∥∞ < ϵ with

probability tending to one as m,nL → ∞. The argument above holds for both the conditional and

unconditional regime, and the required result follows.

S3.1 Conditional Regime

In the conditional regime, we assume without loss of generality that
∑m

i=1 ḃi = 0p, recalling

that we can always reparametrise the random effects to satisfy this. From previous derivations,

we know that when mn−1
L → 0, the quantity B−1∇Q(θ̇) is of order Op(N

−1/2) for the first

p components and Op(n
−1/2
L ) for the last mp components. By the two properties of Λs

δ noted

above, we therefore know that Λs
δB

−1∇Q(θ̇) is at most Op(n
−1/2
L ) component-wise for any s.

Hence
∑∞

s=1 δ
−s
m,nL

Λs
δB

−1∇Q(θ̇) = δ−1
m,nL

Op(n
−1/2
L ) = op(n

−1/2
L ) for sufficiently large m,nL by

the properties of a geometric sum. This is sufficient to show that the last mp components of
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∑∞
s=1 Λ

sB−1∇Q(θ̇) are of smaller order component-wise than B−1∇Q(θ̇), so that the result for

the prediction gap holds. In particular, we thus know that b̂ − ḃ = Op(n
−1/2
L ). Furthermore,

we also know that the convergence rate of β̂ − β̇ is at least of order Op(n
−1/2
L ). As a result, we

can choose δm,nL
= n

1/2
L without affecting the component-wise order properties of Λδ. Applying

δm,nL
= n

1/2
L , we thus have that

∑∞
s=1 δ

−s
m,nL

Λs
δB

−1∇Q(θ̇) is at most of order Op(n
−1
L ) component-

wise. This is smaller than Op(N
−1/2) when mn−1

L → 0, and the required result follows.

S3.2 Unconditional Regime

For the unconditional regime, we consider two cases: when mn−1
L → 0, and when mn−1

U → ∞

but mn−2
L → 0.

First, consider the case when mn−1
L → 0. From previous derivations, we know that when

mn−1
L → 0, the quantity B−1∇Q(θ̇) is of order Op(m

−1/2) for the first p components and

Op(m
−1/2) for the last mp components. By the two properties of Λs

δ noted above, we therefore

know that Λs
δB

−1∇Q(θ̇) is at most Op(m
−1/2) component-wise for any s. Hence∑∞

s=1 δ
−s
m,nL

Λs
δB

−1∇Q(θ̇) = δ−1
m,nL

Op(m
−1/2) = op(m

−1/2) for sufficiently large m,nL, by the

properties of a geometric sum. The required result follows from this. Furthermore, this implies

we may set δm,nL
= m1/2 without affecting the component-wise order properties of Λδ. Ap-

plying δm,nL
= m1/2, we thus have that

∑∞
s=1 δ

−s
m,nL

Λs
δB

−1∇Q(θ̇) is at most of order Op(m
−1)

component-wise.

Next, consider the case when mn−1
U → ∞ and mn−2

L → 0. From previous derivations,

we know in this setting it holds that B−1∇Q(θ̇) is of order Op(m
−1/2) for the first p compo-

nents and Op(n
−1/2
L ) for the last mp components. By the two properties of Λs

δ noted above,

we therefore obtain that Λs
δB

−1∇Q(θ̇) is at most Op(n
−1/2
L ) component-wise for any s. Hence∑∞

s=1 δ
−s
m,nL

Λs
δB

−1∇Q(θ̇) = δ−1
m,nL

Op(n
−1/2
L ) = op(n

−1/2
L ) for sufficiently large m,nL, by the

properties of a geometric sum. This is sufficient to show that the last mp components of
∑∞

s=1Λ
sB−1∇Q(θ̇)

are of smaller order component-wise than B−1∇Q(θ̇), so that the result for the prediction gap

holds. In particular, we thus know that b̂ − ḃ = Op(n
−1/2
L ). Furthermore, we also know that
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the convergence rate of β̂ − β̇ is at least Op(n
−1/2
L ). As a result, we can set δm,nL

= n
1/2
L with-

out affecting the component-wise order properties of Λδ. Applying δm,nL
= n

1/2
L , we thus have

that
∑∞

s=1 δ
−s
m,nL

Λs
δB

−1∇Q(θ̇) is at most of order Op(n
−1
L ) component-wise. This is smaller than

Op(m
−1/2) when mn−1

U → ∞, mn−2
L → 0 and the result follows.

S4 Unpartnered Fixed Effects

S4.1 Generalised Linear Models

In the special case when Ġ = 0p×p, i.e., all fixed effects are unpartnered in the true data generating

process, the GLMM reduces to a GLM. We may then obtain a result based on a special case of our

results in the conditional case, when all the true random effects are equal to zero. The result is as

follows.

Corollary A1. Assume Conditions (C1) - (C5) are satisfied and mn−1
L → 0. Then as m,nL → ∞

and when the true vector of random effects ḃ = 0mp, it holds that AD(θ̂ − θ̇)
D→ N(0,Ω).

S4.2 Linear Mixed Models

Suppose for i = 1, . . . ,m and j = 1, . . . , ni we observe data from the model yij = x⊤
ijβ +

z⊤
ijbi + x

(O)⊤
ij β(O) + ϵij , where xij = zij for all (i, j), bi

i.i.d.∼ N(0, Ĝ) and ϵij
i.i.d.∼ N(0, ϕ).

Note that this is part of the exponential family. Partition β = (β(P )⊤,β(U)⊤)⊤, corresponding

to the pP partnered and pU unpartnered fixed effects (pP + pU = p). That is, if we partition

bi = (b
(P )⊤
i , b

(U)⊤
i )⊤, then b

(U)
i = 0pU for all i, and the corresponding elements in Ġ are zero. Let

θ× = (β⊤, b
(P )⊤
1 , . . . , b

(P )⊤
m , b

(U)⊤
1 , . . . , b

(U)⊤
m ,β(O)⊤)⊤, θ− = (β⊤, b⊤,β(O)⊤)⊤,

D× = diag(m1/21pP , N
1/21pU ,m

1/21mpP , n
1/2
1 1pU , . . . , n

1/2
m 1pU , N

1/21pO), and

D− = diag(m1/21pP , N
1/21pU , n

1/2
1 1p, . . . , n

1/2
m 1p, N

1/21pO). Also let X(O)
i = [x

(O)
i1 , . . . ,x

(O)
ini

]⊤

and X(O) = [X
(O)⊤
1 , . . . ,X

(O)⊤
m ]⊤. The pO orthogonal fixed effects x

(O)
ij satisfy X(O)⊤Z =

0pO×mp, for example orthogonal polynomials of xij . This implies X(O)⊤
i Xi = 0pO×p for all i. For
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a q × {(m+ 1)p+ pO} matrix A∗ with the finite selection property, we have the following.

Corollary A2. Assume Conditions (C1) - (C4) are satisfied. Then as m,nL → ∞ and uncondi-

tional on the random effects ḃ, it holds that

1. A∗D×(θ̂× − θ̇×)
D→ N(0,Ωa) if mn−1

L → 0, and

2. A∗D−(θ̂− − θ̇−)
D→ N(0,Ωb) if mn−1

U → ∞,

where

Ωa = lim
m,nL→∞

A∗



Ġ[1:pP ,1:pP ] 0pP×pU 1⊤
m ⊗ Ġ[1:pP ,1:pP ] 0pP×mpU 0pP×pO

0pU×pP Ω1 0pU×mpP 0pU×mpU 0pU×pO

1m ⊗ Ġ[1:pP ,1:pP ] 0mpP×pU 1m×m ⊗ Ġ[1:pP ,1:pP ] 0mpP×mpU 0mpP×pO

0mpU×pP 0mpU×pU 0mpU×mpP Ω2 0mpU×pO

0pO×pP 0pO×pU 0pO×mpP 0pO×mpU Ω3


A∗⊤

Ωb = lim
m,nL→∞

A∗



Ġ[1:pP ,1:pP ] 0pP×pU 0pP×mp 0pP×pO

0pU×pP Ω1 0pU×mp 0pU×pO

0mp×pP 0mp×pU Ω4 0mp×pO

0pO×pP 0pO×pU 0pO×mp Ω3


A∗⊤

Ω1 =

{
ϕ̇

m

m∑
i=1

n

ni

(
X⊤

i Xi

ni

)−1
}

[(p−pU+1):p,(p−pU+1):p]

Ω2 = bdiag

{ϕ̇(X⊤
1 X1

n1

)−1
}

[(p−pU+1):p,(p−pU+1):p]

, . . . ,

{
ϕ̇

(
X⊤

mXm

nm

)−1
}

[(p−pU+1):p,(p−pU+1):p]


Ω3 = ϕ̇

(
X(O)⊤X(O)

N

)−1

Ω4 = bdiag

[{
ϕ̇

(
X⊤

1 X1

n1

)−1
}
, . . . ,

{
ϕ̇

(
X⊤

mXm

nm

)−1
}]

.

Proof. We use the same approach as previous proofs and examine the Taylor expansion (S2.1). In

this case, we have the expressions

62



∇Q(θ̇) =


ϕ̇−1X⊤(y − µ̇)

ϕ̇−1Z⊤(y − µ̇)− (Im ⊗ Ĝ−1)ḃ

ϕ̇−1X(O)⊤(y − µ̇)

 ,

B(θ̇) = −∇2Q(θ̇) =


X⊤ẆX X⊤ẆZ X⊤ẆX(O)

Z⊤ẆX Z⊤ẆZ + Im ⊗ Ĝ−1 Z⊤ẆX(O)

X(O)⊤ẆX X(O)⊤ẆZ X(O)⊤ẆX(O)



= ϕ̇−1


X⊤X X⊤Z 0p×pO

Z⊤X Z⊤Z + Im ⊗ Ĝ−1 0mp×pO

0pO×p 0pO×mp X(O)⊤X(O)

 ,

where the last equality follows from the fact that Ẇ = ϕ̇−1IN and X(O)⊤Z = 0pO×mp. Since

B(θ̇) is block diagonal, we thus know that expressions (S2.9) and (S2.10) still hold. Recall

β̂ − β̇ = m−1

m∑
i=1

(X⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi − µ̇i) +m−1

m∑
i=1

ḃi

−m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi +

1

2
{B−1R(θ̃)}[1:p]

+Op(n
−1
L )

{
m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1ϕ̇−1X⊤

i (yi − µ̇i) +m−1

m∑
i=1

ḃi

−m−1

m∑
i=1

(X⊤
i ẆiXi + Ĝ−1)−1Ĝ−1ḃi

}
+m−1

m∑
i=1

Op(n
−2
L )ϕ̇−1X⊤

i (yi − µ̇i)

and

b̂− ḃ = −1m ⊗m−1

m∑
i=1

ḃi +B−1
3 {ϕ̇−1Z⊤(y − µ̇)}

+Op(N
−1/2) +Op(n

−1
L ) +

1

2
{B−1R(θ̃)}[p+1:(m+1)p].

In the LMM case, the remainder term in the Taylor expansion is zero. Thus the dominating term on

the right hand side for β̂(U)−β̇(U) are the last pU components of m−1
∑m

i=1(X
⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi−
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µ̇i), since the last pU components of m−1
∑m

i=1 ḃi are zero. Noting that yi−µ̇i = (ϵi1, . . . , ϵini
)⊤ =:

ϵi, the result for the unpartnered fixed effects follows after normalising by N1/2.

Next, again from the Taylor expansion we have from the block-diagonal structure of B(θ̇) that

β̂(O) − β̇(O) = (X(O)⊤X(O))−1X(O)⊤(y − µ̇) and the result follows after normalising by N1/2

since y − µ̇ = (ϵ11, . . . , ϵmnm)
⊤ =: ϵ.

Finally, the result for the unpartnered random effects follows from the fact that the last pU com-

ponents of m−1
∑m

i=1 ḃi are zero so that the dominating term on the right hand side is (X⊤
i Xi)

−1X⊤
i (yi−

µ̇i), and normalising by ni.

The proofs for the partnered fixed and random effects are analogous to the proofs of Theorems

2 and 4, based on examining the leading term in the Taylor expansion.

For the joint behaviour of the estimator, we examine the joint behaviour of the leading terms in

the Taylor Expansion. Note that ϵ is multivariate normal with covariance matrix ϕ̇IN , ḃ is multi-

variate normal with covariance matrix Im ⊗ Ġ, ϵ and ḃ are independent, and all the leading terms

in the Taylor expansion are linear functions of ϵ and ḃ. To determine the joint behaviour of the es-

timator it is thus sufficient to derive the limiting covariance between the normalised leading terms,

as we see (from the leading terms) that the estimator itself is also (asymptotically) multivariate

normal. For example,

Cov

{
N1/2m−1

m∑
i=1

(X⊤
i Xi)

−1X⊤
i (yi − µ̇i), N

1/2(X(O)⊤X(O))−1X(O)⊤(y − µ̇)

}

= nϕ̇
m∑
i=1

(X⊤
i Xi)

−1X⊤
i X

(O)
i (X(O)⊤X(O))−1

= 0p×pO

due to the mutual independence of the ϵij and orthogonality condition of X(O). The pairwise

limiting covariances between the leading terms can all be derived in a similar way and the result

follows. Notice here that quantities with different convergence rates are always asymptotically

uncorrelated and independent in this case.
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Note that the results hold by the Lindeberg-Feller Central Limit Theorem even if the true distri-

bution of ϵij is not normal, as long as it is mean zero with finite variance. Also note that condition

(C5) is no longer required, and that there is no restriction on the relative rates of m and nL, since

there is no remainder term to deal with. Our result is consistent with the results derived in Lyu and

Welsh (2021a, 2021b) who also derive a N1/2 convergence rate for unpartnered fixed effects that

are time-varying.

In practice, we do not know if a fixed effect is truly partnered with a random effect or not,

and therefore the correct asymptotic distribution and convergence rate is also unknown. In this

case, an appropriate finite sample approximation, given consistent estimators G̃ and ϕ̃ of Ġ and ϕ̇

respectively, is

β̂ − β̇ ∼ N

{
0,m−1G̃+N−1 ϕ̃

m

m∑
i=1

n

ni

(
X⊤

i Xi

ni

)−1
}
,

which is based on the distribution of m−1
∑m

i=1(X
⊤
i ẆiXi)

−1ϕ̇−1X⊤
i (yi − µ̇i) + m−1

∑m
i=1 ḃi,

noting that the two terms are independent.
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S5 Additional Simulation Results

S5.1 Main Results for the Conditional Regime

Figures 4, 5 and 6 display the empirical coverage probabilities and results from applying the

Shapiro-Wilk test, respectively, under the conditional regime and for the 25 combinations of

(m,n). Although our coverage intervals often undercovered or overcovered for small cluster sizes

e.g., n = 25, especially for the Bernoulli case, they all moved toward nominal coverage as n

becomes larger than m. This is consistent with Theorem 1. The fact the empirical coverage prob-

abilities were slow in tending towards the nominal 95% level was also not overly surprising, as

the third derivative term in the corresponding Taylor expansion is Op(m
1/2n

−1/2
L ). The Shapiro-

Wilk tests overall did not indicate any evidence of deviations away from normality when m < n,

although there were occasionally a few p-values less than 0.05. Overall, these results strongly

support the use of Theorem 1 for inference under the conditional regime.
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Figure 4: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 5: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Bernoulli responses.

68



Rand4 Rand5

Fixed5 Rand1 Rand2 Rand3

Fixed1 Fixed2 Fixed3 Fixed4

25 50 10
0

20
0

40
0

25 50 10
0

20
0

40
0

25 50 10
0

20
0

40
0

25 50 10
0

20
0

40
0

25

50

100

200

400

25

50

100

200

400

25

50

100

200

400

Cluster size

N
um

be
r 

of
 C

lu
st

er
s

0.25

0.50

0.75

P−value

Poisson Responses

Rand4 Rand5

Fixed5 Rand1 Rand2 Rand3

Fixed1 Fixed2 Fixed3 Fixed4

25 50 10
0

20
0

40
0

25 50 10
0

20
0

40
0

25 50 10
0

20
0

40
0

25 50 10
0

20
0

40
0

25

50

100

200

400

25

50

100

200

400

25

50

100

200

400

Cluster size

N
um

be
r 

of
 C

lu
st

er
s

0.25

0.50

0.75

P−value

Bernoulli Responses

Figure 6: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates ob-
tained using maximum PQL estimation, under the conditional regime.
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Figure 7: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the conditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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S5.2 Frobenius Norm

Table 1: Empirical mean Frobenius norm of the difference between estimated and true random
effects covariance matrix.

Poisson Bernoulli
m n = 25 n = 50 n = 100 n = 200 n = 400 n = 25 n = 50 n = 100 n = 200 n = 400

Ĝ = m−1
∑m

i=1 b̂i

25 1.06 1.06 1.06 1.05 1.06 1.76 1.47 1.24 1.12 1.09
50 0.77 0.75 0.75 0.76 0.75 1.79 1.40 1.03 0.83 0.77
100 0.54 0.54 0.54 0.54 0.54 1.80 1.38 0.89 0.63 0.56
200 0.39 0.38 0.38 0.38 0.38 1.80 1.35 0.82 0.51 0.41
400 0.27 0.27 0.27 0.27 0.27 1.81 1.35 0.78 0.43 0.32

Ĝ = 0.25I2

25 1.02 1.01 1.03 1.05 1.04 1.90 1.71 1.47 1.23 1.04
50 0.73 0.73 0.74 0.74 0.76 1.90 1.70 1.44 1.15 0.91
100 0.56 0.53 0.52 0.53 0.54 1.90 1.69 1.42 1.11 0.84
200 0.44 0.39 0.37 0.38 0.38 1.90 1.68 1.41 1.09 0.79
400 0.38 0.29 0.27 0.27 0.27 1.89 1.68 1.40 1.08 0.77

Ĝ = 0.5I2

25 1.02 1.03 1.04 1.05 1.05 1.61 1.39 1.16 1.01 0.96
50 0.74 0.75 0.75 0.75 0.74 1.61 1.34 1.07 0.86 0.75
100 0.53 0.52 0.54 0.54 0.54 1.60 1.32 1.03 0.77 0.61
200 0.39 0.38 0.38 0.38 0.38 1.59 1.31 1.01 0.73 0.52
400 0.30 0.27 0.27 0.27 0.27 1.59 1.30 0.99 0.70 0.47

Ĝ = I2

25 1.06 1.05 1.04 1.04 1.06 1.21 1.06 0.98 0.97 1.00
50 0.74 0.75 0.75 0.75 0.76 1.17 0.93 0.78 0.73 0.71
100 0.53 0.53 0.54 0.53 0.54 1.13 0.86 0.65 0.56 0.53
200 0.38 0.38 0.38 0.38 0.38 1.12 0.82 0.58 0.44 0.39
400 0.27 0.27 0.27 0.27 0.27 1.10 0.80 0.55 0.38 0.30

Ĝ = 2I2

25 1.06 1.06 1.06 1.05 1.06 0.84 0.98 1.03 1.04 1.05
50 0.75 0.74 0.75 0.76 0.75 0.71 0.71 0.74 0.74 0.75
100 0.54 0.54 0.54 0.53 0.53 0.56 0.51 0.53 0.53 0.54
200 0.38 0.38 0.38 0.38 0.38 0.47 0.38 0.37 0.38 0.38
400 0.27 0.27 0.27 0.27 0.27 0.42 0.29 0.27 0.27 0.27

Ĝ = 4I2

25 1.06 1.06 1.06 1.06 1.06 1.33 1.42 1.25 1.16 1.11
50 0.77 0.76 0.76 0.75 0.76 1.18 1.07 0.93 0.83 0.80
100 0.55 0.54 0.54 0.54 0.54 0.97 0.86 0.70 0.61 0.57
200 0.39 0.38 0.38 0.38 0.38 0.86 0.72 0.55 0.45 0.41
400 0.27 0.27 0.27 0.27 0.27 0.80 0.65 0.46 0.34 0.30
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S5.3 G = 0.25 I2

Using a large Ĝ of 4I2 had the least impact on the results, while a small Ĝ, e.g., 0.25I2 had more

of a noticeable impact at small sample sizes. This is not surprising since the latter corresponds to

more shrinkage, such that larger sample sizes are needed before asymptotic results apply.
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Figure 8: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Poisson responses.
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Figure 9: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Bernoulli responses.
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Figure 10: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the unconditional regime.
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Figure 11: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 12: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 13: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Bernoulli responses.
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Figure 14: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the conditional regime.
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Figure 15: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 16: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Poisson responses.
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Figure 17: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Bernoulli responses.
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Figure 18: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the unconditional regime.
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Figure 19: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 20: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 21: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Bernoulli responses.
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Figure 22: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the conditional regime.
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Figure 23: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 24: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Poisson responses.
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Figure 25: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Bernoulli responses.
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Figure 26: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the unconditional regime.
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Figure 27: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 28: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 29: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Bernoulli responses.
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Figure 30: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the conditional regime.
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Figure 31: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 32: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Poisson responses.
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Figure 33: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Bernoulli responses.
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Figure 34: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the unconditional regime.
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Figure 35: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 36: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 37: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Bernoulli responses.
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Figure 38: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the conditional regime.
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Figure 39: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 40: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Poisson responses.
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Figure 41: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the unconditional regime with Bernoulli responses.
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Figure 42: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the unconditional regime.
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Figure 43: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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Figure 44: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Poisson responses.
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Figure 45: Empirical coverage probability of 95% coverage intervals for the five fixed and random
effects estimates, obtained under the conditional regime with Bernoulli responses.
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Figure 46: p-values from Shapiro-Wilk tests applied to the fixed and random effects estimates
obtained using maximum PQL estimation, under the conditional regime.
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Figure 47: Histograms for the third components of β̂ − β̇ (left panels) and b̂1 − ḃ1 (right panels),
under the unconditional regime. Vertical facets represent the cluster sizes, while horizontal facets
represent the number of clusters. The dotted blue line indicates zero, and the red curve is a kernel
density smoother.
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