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AN EXACT ENUMERATION OF VERTEX CONNECTIVITY OF THE

ENHANCED POWER GRAPHS OF FINITE NILPOTENT GROUPS

SUDIP BERA AND HIRANYA KISHORE DEY

Abstract. The enhanced power graph of a group G is a graph with vertex set G,

where two distinct vertices x and y are adjacent if and only if there exists an element
w in G such that both x and y are powers of w. In this paper, we determine the vertex
connectivity of the enhanced power graph of any finite nilpotent group.

1. Introduction

The examination of graphs arising from groups provides several benefits. Firstly, it
permits us to classify the resulting graphs. Secondly, it empowers us to identify algebraic
structures that possess isomorphic graphs. Lastly, it aids in comprehending the interde-
pendence between algebraic structures and their corresponding graphs. Moreover, these
graphs have numerous valuable applications, as demonstrated by sources such as [2, 18].
Furthermore, they are closely connected to automata theory [19]. Various types of graphs
exist, including but not limited to commuting graphs of groups [3, 8, 16], power graphs of
semigroups [9, 21], groups [20], intersection power graphs of groups [4], enhanced power
graphs of groups [1, 5, 22], and comaximal subgroup graphs [14]. These graphs have been
established to investigate the properties of algebraic structures using graph theory.

The commuting graph, a highly significant and extensively researched graph, is linked
to a group G. This graph has been thoroughly investigated in [3, 8, 16]. To formally
define the commuting graph, we turn to the following:

Definition 1.1 ([3, 8, 16]). Consider a group G. The commuting graph of G, denoted as
C(G), is a simple graph where the vertex set comprises non-central elements of G. Two
distinct vertices u and v are connected in this graph if and only if u and v commute, that
is, uv = vu.

Around 2000, Kelarev and Quinn [20] introduced the concept of a power graph in the
realm of semigroup theory.

Definition 1.2 ([2, 9, 20]). Given a group G, the power graph P(G) of G is a simple
graph with vertex set G, where two vertices u and v are connected by an edge if and only
if one of them is the power of the other.
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In this paper, our topic of interest is a novel graph, called the enhanced power graph,
which was introduced by Aalipour et al. [1] to evaluate the proximity between the power
graph and the commuting graph of a group G.

Definition 1.3 ([1]). Let G be a group. The enhanced power graph of G, denoted as
GE(G), is the graph with the vertex set G, where two vertices u and v are connected if
and only if there exists an element w ∈ G such that both u ∈ 〈w〉 and v ∈ 〈w〉.

Given a group G, the proper enhanced power graph of G, denoted by G∗∗
E (G), is the

graph obtained by deleting all the dominating vertices from the enhanced power graph
GE(G). Moreover, by G∗

E(G) we denote the graph obtained by deleting only the identity
element of G and this is called deleted enhanced power graph of G. Note that if there is
no such dominating vertex other than identity, then G∗

E(G) = G∗∗
E (G).

Many works have been done in the last decade that investigate various properties of
the enhanced power graphs of finite groups. Aalipour et al. [1] characterized the finite
groups such that any arbitrary pair of these three graphs (power, commuting, enhanced)
is equal. Ma and She in [23] derived the metric dimension whereas Hamzeh et al. in [17]
derived the automorphism groups of enhanced power graphs of finite groups. Determining
the vertex connectivity of the power graph and the enhanced power graph of a group has
been a challenging and well-investigated problem for the last few years. Many researchers
have attempted and found several results for the vertex connectivity of the power graphs
and enhanced power graphs. Chattopadhyay, Patra, and Sahoo in [10, 11] found the exact
vertex connectivity for the power graph of the cyclic group Zn for most of the values of n.
In [12] they have given exact values for the vertex connectivity of power graphs associated
with the nilpotent groups which have all Sylow p-subgroups cyclic, except possibly one.
Bera et. al. in [7] gave a bound for the vertex connectivity of the enhanced power graph
of any abelian group and in a subsequent work [6] Bera and Dey improved the bound.
In this paper, our focus is to determine the exact value of the vertex connectivity of the
enhanced power graphs of finite nilpotent groups.

1.1. Basic definitions and notations. For the convenience of the reader and also for
later use, we recall some basic definitions and notations about graphs. Let Γ be a graph
with vertex set V . Two elements u and v are said to be adjacent if there is an edge between
them. A path of length k between two vertices v0 and vk is an alternating sequence of
vertices and edges v0, e0, v1, e1, v2, · · · , vk−1, ek−1, vk, where the v′is are distinct (except
possibly the first and last vertices) and e′is are the edges (vi, vi+1). A graph Γ is said to be
connected if for any pair of vertices u and v, there exists a path between u and v. Γ is said
to be complete if any two distinct vertices are adjacent. A vertex of a graph Γ is called
a dominating vertex if it is adjacent to every other vertex. The vertex connectivity of a
graph Γ, denoted by κ(Γ), is the minimum number of vertices that need to be removed
from the vertex set Γ so that the induced subgraph of Γ on the remaining vertices is
disconnected. The complete graph with n vertices has vertex connectivity n− 1.

Throughout this paper we consider G as a finite group. |G| denotes the cardinality of
the set G. For a prime p, a group G is said to be a p-group if |G| = pr, r ∈ N. If |G| = prℓ
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for some prime pℓ, then we say that G is a pℓ-group. For any element g ∈ G, o(g) denotes
the order of the element g. Let m and n be any two positive integers, then the greatest
common divisor of m and n is denoted by gcd(m,n). The Euler’s phi function φ(n) is the
number of integers k in the range 1 ≤ k ≤ n for which the gcd(n, k) is equal to 1.

2. Main Results

In this section, we will showcase our primary findings. To begin, we will first review
the structure of a finite nilpotent group.

2.1. Nilpotent group. A finite group G is nilpotent if and only if G ∼= P1 × · · · × Pr,
where for each i ∈ [r], Pi is a Sylow subgroup of order ptii of G. Let G1 be a finite nilpotent
group having no Sylow subgroups which are either cyclic or generalized quaternion. Now,
for a finite nontrivial nilpotent group G, we have the following cases:

(1) No Sylow subgroups of G are either cyclic or generalized quaternion.
(2) G has cyclic Sylow subgroups. In this case, G = G1 × Zn, where G1 is described

as above and gcd(|G1|, n) = 1.
(3) G has a Sylow subgroup isomorphic to generalized quaternion. Here G = G1×Q2k ,

and gcd(|G1|, 2) = 1.
(4) G has both a cyclic Sylow subgroup and a Sylow subgroup isomorphic to gen-

eralized quaternion. In this case, G = G1 × Zn × Q2k , where gcd(|G1|, n) =
gcd(|G1|, 2) = gcd(n, 2) = 1.

In [22], Kumar et. al. have obtained the following result for the vertex connectivity of
the enhanced power graphs of certain nilpotent groups.

Theorem 2.1. [22, Theorem 5.6] Let G = P1 × · · · × Pr be a non-cyclic nilpotent group

with r ≥ 2. Suppose that each Sylow subgroup of G is cyclic except Pk for some k ∈ [r].

(1) If Pk is not generalized quaternion, then κ(GE(G)) =
∏r

i=1,i 6=k |Pi|.

(2) If Pk is generalized quaternion, then κ(GE(G) = 2
∏r

i=1,i 6=k |Pi|

As we can see, their result is for those nilpotent groups, which have all Sylow p-
subgroups cyclic, except possibly one. That is, they have given the exact vertex connec-
tivity for only those nilpotent groups which have the form P ×Zn where P is a non-trivial
p-group and gcd(n, p) = 1. In this paper, we give the vertex connectivity of the enhanced
power graph of any nilpotent group, in terms of the number of minimum roots, which we
define next.

For any group G and an element a ∈ G, let Roots(a) denote the set of elements g ∈ G
such that a ∈ 〈g〉. For a p-group P , define

(1) mr(P ) = min
a∈P and o(a)=p

|Roots(a)|.

For example, the group P = Z3×Z9 has mr(P ) = 2 and the dihedral group in 8 elements,
which we denote by D8, has mr(D8) = 1.
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Now for the group G1 = P1 × · · · × Pr, where each Pi is neither cyclic nor generalized
quaternion, we define

(2) τ = min
T⊆[r]







∏

i∈T

∣

∣Pi

∣

∣





∏

i∈[r]\T

(mr(Pi) + 1)−
∏

i∈[r]\T

mr(Pi)











.

When r = 1, it is clear that τ = 1. With the above definition, we can now state our main
result for the vertex connectivity of the enhanced power graph of a finite nilpotent group
which does not have any Sylow subgroups that are generalized quaternion.

Theorem 2.2. Let G be a non-cyclic finite nilpotent group that does not have any Sylow

subgroups which are generalized quaternions. Then

κ(GE(G)) =

{

τ, if G = G1, where G1 is described as above,

nτ, if G = G1 × Zn, and gcd(|G1|, n) = 1,

where τ is taken from (2).

Now we consider the finite nilpotent group G such that G has a generalized quaternion
Sylow subgroup. In this case, we can consider G = G1×Q2k = P1×· · ·×Pr ×Q2k , where
gcd(|Pi|, 2) = 1. For the next definition, we write Q2k as Pr+1. Define

(3) µ = min
T⊆[r+1]







∏

i∈T

∣

∣Pi

∣

∣





∏

i∈[r+1]\T

(mr(Pi) + x)−
∏

i∈[r+1]\T

mr(Pi)











,

where x = 1 if i 6= r + 1 and x = 2,mr(Pi) = 2 if i = r + 1.

Theorem 2.3. Let G be a finite nilpotent group having a Sylow subgroup which is gener-

alized quaternion. Then

κ(GE(G)) =

{

µ, if G = G1 ×Q2k where G1 is described as above and gcd(|G1|, 2) = 1

nµ, if G = G1 × Zn ×Q2k and gcd(|G1|, n) = gcd(|G1|, 2) = gcd(n, 2) = 1,

where µ is taken from (3).

From Theorem 2.3, it is clear that when G = Zn × Q2k , κ(GE(G)) = 2n. Moreover,
when G = P1 × Zn, we set G1 = P1 in Theorem 2.2 to obtain κ(GE(G)) = n. Thus,
Theorem 2.1 is an immediate corollary of Theorem 2.2 and Theorem 2.3.

Bera and Dey in [6] proved the following upper bound for the enhanced power graph
of any finite abelian group.

Theorem 2.4. [6, Theorem 4.8] Let

G = Z
p
t11
1

× · · · × Z
p
t
1k1
1

× · · · × Z
p
tr1
r

× · · · × Z
p
t
rkr
r

× Zn

where ki ≥ 2, gcd(n, pi) = 1, and 1 ≤ ti1 ≤ ti2 ≤ · · · ≤ tiki, for all i ∈ [r]. We then have,

κ(GE(G)) ≤ n
(

pt111 pt212 · · ·ptr1r − φ(pt111 pt212 · · · ptr1r )
)

.
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In the following result, we explicitly determine the vertex connectivity of the enhanced
power graph for any finite abelian group. In particular, we prove the following:

Theorem 2.5. Let

G = Z
p
t11
1

× · · · × Z
p
t
1k1
1

× · · · × Z
p
tr1
r

× · · · × Z
p
trkr
r

× Zn

where ki ≥ 2, gcd(n, pi) = 1, and 1 ≤ ti1 ≤ ti2 ≤ · · · ≤ tiki, for all i ∈ [r]. Then,

κ(GE(G) = n min
T⊆[r]







∏

i∈T

∣

∣

∣

∣

p
∑ki

ℓ=1
tiℓ

i

∣

∣

∣

∣





∏

i∈[r]\T

(

pti1kii − 1

pkii − 1
+ 1

)

−
∏

i∈[r]\T

(

pti1kii − 1

pkii − 1

)











.

3. Preliminaries

In this section, we will start by reviewing specific findings that have been previously
established and are pertinent to our paper. Bera et al. carried out an extensive exam-
ination on the fascinating properties of enhanced power graphs of finite groups. Their
studies in references [5] and [7] successfully demonstrated the outcomes as follows:

Lemma 3.1. [5, Theorem 2.4] The enhanced power graph GE(G) of the group G is

complete if and only if G is cyclic.

Lemma 3.2. [7, Lemma 2.5] Let G be a finite group and let x, y ∈ G be such that

gcd{o(x), o(y)} = 1 and xy = yx. Then x ∼ y in GE(G).

Lemma 3.3. [7, Lemma 2.6] Let G be a p-group. Let a, b be two elements of G of order

p, pi(i ≥ 1) respectively. If there is a path between a and b in G∗
E(G), then 〈a〉 ⊆ 〈b〉. In

particular, if both a and b have order p, then, 〈a〉 = 〈b〉.

The following lemma follows from Lemma 3.3

Lemma 3.4. Let G be a p-group which is neither cyclic nor generalized quaternion. Then,

the minimum size of a connected component in G∗
E(G) is mr(G).

We recall the definition of the generalized quaternion group. Let x = (1, 0) and y =

(0, 1). Then Q2n = 〈x, y〉, where

(1) x has order 2n−1 and y has order 4,
(2) every element of Q2n can be written in the form xa or xay for some a ∈ Z,
(3) x2n−2

= y2,
(4) for each g ∈ Q2n such that g ∈ 〈x〉, such that gxg−1 = x−1.

For more information about Q2n see [13, 15, 24].

Lemma 3.5 (Theorem 4.2, [7]). The enhanced power graph of generalized quaternion

group Q2n has vertex connectivity 2. Moreover, any separating set of GE(Q2n) must contain

the identity element and also the unique non-identity element of order 2. Moreover, it is

easy to show that the minimum size of a connected component in G∗∗
E (G) is 2.

Lemma 3.6. [7, Theorem 1.1] Let G be a finite p-group that is neither cyclic nor gener-

alized quaternion. Then κ(GE(G)) = 1.
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3.1. Strong product of connected graphs. We will now review the definition and
some fundamental results related to the strong product of r connected graphs. Suppose
Gi = (Vi, Ei) are simple graphs, where i = 1, 2, · · · , r. The strong product G1 ⊠ · · ·⊠Gr

of graphs G1, · · · , Gr is a graph such that the vertex set of G1 ⊠ · · ·⊠Gr is

V (G1 ⊠ · · ·⊠Gr) = V1 × · · · × Vr

and two distinct vertices (x1, · · · , xr) and (y1, · · · , yr) are adjacent in G1⊠ · · ·⊠Gr if and
only if xi = yi or xiyi ∈ Ei for i = 1, 2, · · · , r.

Spacapan in [25] determined the vertex connectivity for the strong product of k con-
nected graphs. We first discuss the vertex connectivity of strong product of 2 graphs in
details so that it becomes clear to the reader. Let G1 = (V1, E1) and G2 = (V2, E2) be
two connected graphs. Let S1 be a separating set in G1 and S2 be a separating set in G2.
Clearly S1 × V2 and V1 × S2 are separating sets in G1 ⊠ G2. These kinds of separating
sets are called I-sets. Moreover, if A1, A2, . . . , Ak are connected components of G1 − S1

and B1, B2, . . . , Bℓ are connected components of G2 − S2, then for any 1 ≤ i ≤ ℓ and
1 ≤ j ≤ k,

(S1 ×Bi) ∪ (S1 × S2) ∪ (Aj × S2)

is a separating set in G1 ⊠G2. Also, observe that

(S1 × Bi) ∪ (S1 × S2) ∪ (Aj × S2) = [(Aj ∪ S1)× (Bi × S2)] \ (Aj × Bi).

These kind of separating sets are called L-sets.
We now formally define the I-sets and L-sets for the strong product of r connected

graphs. Suppose Gi = (Vi, Ei) are graphs, where i = 1, 2, · · · , r. Let F ⊆ [r] be a
nonempty subset and for each i ∈ F , let Si be a separating set in Gi. Then, Gi \ Si is
disconnected. Let Ai be one of the connected components of Gi − Si. Further, if i ∈ F ,
define Ui = Si ∪Ai, Wi = Ai and if i /∈ F , define Ui = Wi = Vi. Let

(4) SF =
n
∏

i=1

Ui −
n
∏

i=1

Wi =

(

∏

i∈F

Si ∪Ai −
∏

i∈F

Ai

)

∏

i∈[r]\F

Vi.

It is not difficult to see that any set SF , constructed this way, is a separating set for the
graph G1 ⊠ · · ·⊠Gr. We call SF an I-set if |F | = 1 and an L-set if |F | > 1. When r = 2,
it is clear that this definition matches with the definition made above.

Spacapan [25, Theorem 4.1, Corollary 4.2] proved the following.

Theorem 3.7 (Spacapan). Let r ≥ 2 and Gi = (Vi, Ei) be connected graphs for i =
1, 2, · · · , r. Then, any separating set in G1 ⊠ · · ·⊠ Gr is an I-set. Therefore, the vertex

connectivity of G1 ⊠G2 ⊠ · · ·⊠Gr is equal to the minimum size of an I-set or L-set.

The following proposition follows from Lemma 3.2 and the definition of the enhanced
power graph.

Proposition 3.8. Let G = P1 × · · · × Pr where each Pi is a p-group with respect to the

prime pi. Then GE(G) = GE(P1)⊠ · · ·⊠ GE(Pr).
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We next prove the following inequality concerning two sequences of positive integers.

Lemma 3.9. Let a1, · · · , ar, b1, · · · , br be positive integers such that ai ≥ bi for 1 ≤ i ≤ r.
Then,

r
∏

i=1

(ai + 1)−

r
∏

i=1

ai ≥

r
∏

i=1

(bi + 1)−

r
∏

i=1

bi.

Proof. We observe that

r
∏

i=1

(ai + 1)−

r
∏

i=1

(bi + 1) =

r−1
∏

i=1

(ai + 1)ar −

r−1
∏

i=1

(bi + 1)br +

r−1
∏

i=1

(ai + 1)−

r−1
∏

i=1

(bi + 1)

As ar ≥ br, we have

r
∏

i=1

(ai + 1)−

r
∏

i=1

(bi + 1) ≥

r−1
∏

i=1

(ai + 1)ar −

r−1
∏

i=1

(bi + 1)br

Using the same idea repeatedly, we can get

r
∏

i=1

(ai + 1)−
r
∏

i=1

(bi + 1) ≥
r
∏

i=1

ai −
r
∏

i=1

bi.

This completes the proof. �

4. Proofs of main theorems

In this section, we prove our main results. Towards that, we start with the following
proposition.

Proposition 4.1. Let G1 = P1 × · · · × Pr be a finite nilpotent group having no Sylow

subgroups which are either cyclic or generalized quaternion. Then

κ(GE(G1)) = τ = min
T⊆[r]







∏

i∈T

∣

∣Pi

∣

∣

(

∏

i∈[r]\T

(mr(Pi) + 1)−
∏

i∈[r]\T

mr(Pi)
)







.

Proof. Initially, we show that we can construct a separating set of the above size. For any
T ⊆ [r], it is enough to construct a separating set of size

(5)
∏

i∈T

∣

∣Pi

∣

∣

(

∏

i∈[r]\T

(mr(Pi) + 1)−
∏

i∈[r]\T

mr(Pi)
)

.

By Lemma 3.6, for 1 ≤ i ≤ r, GE(Pi) has vertex connectivity 1 and {ei} is a separating
set where ei denotes the identity element of the subgroup Pi. Let Si = {ei} for i /∈ T .
By Lemma 3.4, the minimum size of a connected component of G∗

E(Pi) is clearly mr(Pi).
Here we take Ai to be one of the minimum size connected components of G∗

E(Pi). Then
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|Ai| = mr(Pi) for i /∈ T . Now, we can construct a separating set ST c from T by using (4),
where ST c is the following:

(6)





∏

i∈[r]\T

Ai ∪ {e} −
∏

i∈[r]\T

Ai





∏

i∈T

Pi.

Moreover, the size of ST c is (5).
We next need to show that any separating set of GE(G1) must be bigger than the above

quantity. By Proposition 3.8 and Theorem 3.7, any separating set must be of the form
(

∏

i∈F

Si ∪Bi −
∏

i∈F

Bi

)

∏

i∈[r]\F

Pi

where F is a subset of [r], and for each i ∈ F , Si is a separating set of GE(Pi) and Bi is
some connected component of G∗

E(Pi). Now, any separating set Si of GE(Pi) has size at
least 1. Therefore, we have

(7)

(

∏

i∈F

|Si ∪ Bi| −
∏

i∈F

|Bi|

)

∏

i∈[r]\F

|Pi| ≥

(

∏

i∈F

(|Bi|+ 1)−
∏

i∈F

|Bi|

)

∏

i∈[r]\F

|Pi|.

As any connected component of G∗
E(Pi) has size at least mr(Pi), we have |Bi| ≥ |mr(Pi)|.

Therefore, using Lemma 3.9, we have
(8)
(

∏

i∈F

(|Bi|+ 1)−
∏

i∈F

|Bi|

)

∏

i∈[r]\F

|Pi| ≥

(

∏

i∈F

(|mr(Pi)|+ 1)−
∏

i∈F

|mr(Pi)|

)

∏

i∈[r]\F

|Pi|.

Combining (7) and (8), we have

(9)

(

∏

i∈F

|Si ∪ Bi| −
∏

i∈F

|Bi|

)

∏

i∈[r]\F

|Pi| ≥

(

∏

i∈F

(|mr(Pi)|+ 1)−
∏

i∈F

|mr(Pi)|

)

∏

i∈[r]\F

|Pi|.

Thus, we get
(

∏

i∈F

|Si ∪Bi| −
∏

i∈F

|Bi|

)

∏

i∈[r]\F

|Pi| ≥ min
F⊆[r]







∏

i∈[r]\F

∣

∣Pi

∣

∣

(

∏

i∈F

(mr(Pi) + 1)−
∏

i∈F

mr(Pi)
)







.

This completes the proof. �

Proof of Theorem 2.2. First, suppose that G1 = P1×· · ·×Pr. In this case, κ(GE(G1)) = τ
by Proposition 4.1. Now suppose that G = G1 × Zn, where gcd(|G1|, n) = 1. Then, by
Proposition 3.8

GE(G) = GE(P1)⊠ · · ·⊠ GE(Pr)⊠ GE(Zn).

Using Lemma 3.1, we have

GE(G) = Kn ⊠ GE(P1)⊠ · · ·⊠ GE(Pr).
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where Kn denotes the complete graph on n vertices. Therefore, we clearly have

κ(GE(G)) = nκ(GE(G1)).

The proof is now complete by using Proposition 4.1. �

Proof of Theorem 2.3. We at first consider the case when G = G1 × Q2k . By
Proposition 3.8, we have

GE(G) = GE(P1)⊠ · · ·⊠ GE(Pr)⊠ GE(Pr+1).

We can now proceed in an identical manner to the proof of Proposition 4.1. We only need
to use Lemma 3.5 to ensure that any separating set of GE(Q2k) has cardinality atleast 2
and the size of a minimum connected component of G∗∗

E (Q2k) is 2. Thus, we can prove
κ(GE(G)) = µ where µ is taken from (3). The remaining part of the proof follows from
the observation that if G = G1 ×Q2k × Zn, then κ(GE(G)) = nκ(GE(G1 ×Q2k)). �

4.1. Abelian groups. Here, we will explicitly calculate the vertex connectivity of the
enhanced power graph of any finite abelian group. From Proposition 4.1, we can see that
it is sufficient to investigate the minimum possible size of a connected component in G∗

E(P )
where P is a finite abelian p-group, with the form

P = Zpt1 × · · ·Zptk

where 1 ≤ t1 ≤ · · · ≤ tk. Therefore, in order to prove Theorem 2.5, we first prove the
following lemmas that tell us about the number of roots of an element in P and the
minimum possible size of a connected component in G∗

E(P ).
For a p-group P and two elements x, y ∈ P , we call y to be a m-th root of x if m is the

smallest positive integer such that ym = x.

Lemma 4.2. Let P = Zpt1 ×· · ·×Zptk , where 1 ≤ t1 ≤ · · · ≤ tk and z ∈ P be an element

of order p. Then, z has at least (p− 1)p
t1k−1
pk−1

many roots.

Proof. We can write z = (z1, z2, . . . , zk), where

zi ∈ {0, pti−1, 2pti−1, . . . , (p− 1)pti−1} for 1 ≤ i ≤ k.

The number of elements y such that y is a-th root of z, where gcd(a, p) = 1, is p − 1.
Let y = (y1, y2, . . . , yk) be a p-th root of z. For this to happen, each yi has p choices.
Moreover, each such choice gives a p-th root of z. Thus, the number of p-th roots of z
is pk. Therefore, the number of ap-th roots of z, where gcd(a, p) = 1, is (p − 1)pk. Let
1 ≤ r ≤ t1 − 1 and we count the number of apr-th roots of z.

Let y = (y1, y2, . . . , yk) be a pr-th root of z. For this to happen, each yi has p
r choices

and each such choice gives a pr-th root of z. Thus, the number of pr-th roots of z is pkr.
Therefore, the number of apr-th roots of z, where gcd(a, p) = 1, is (p− 1)prk. Now z may
or may not have pr-th roots. Summing over, we can see that z has at least

(p− 1) + (p− 1)pk + (p− 1)p2k + · · ·+ (p− 1)p(t1−1)k = (p− 1)
pt1k − 1

pk − 1
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many roots. This completes the proof. �

Lemma 4.3. Let P = Zpt1 ×Zpt2 ×· · ·×Zptk , where 1 ≤ t1 ≤ · · · ≤ tk. Then the minimum

possible size of a connected component in G∗
E(P ) is exactly (p− 1)p

t1k−1
pk−1

.

Proof. We consider the element

x = (pt1−1, ptk−1, . . . , ptr−1).

Let Cx be the component of G∗
E(P ) containing x. We now count the cardinality of Cx.

Every element in Cx is adjacent to x. Moreover, as x is of order p, every element is a root
of x. The number of elements y such that y is a-th root of x, where gcd(a, p) = 1, is p−1.
Let y = (y1, y2, . . . , yk) be a p-th root of x. For this to happen, each yi has p choices.
Thus, the number of p-th roots of x is pk. Therefore, the number of ap-th roots of x,
where gcd(a, p) = 1, is (p− 1)pk. Let y = (y1, y2, . . . , yk) be a p2-th root of x. For this to
happen, each yi has p2 choices. Thus, the number of p2-th roots of x is p2k. Therefore,
the number of ap2-th roots of x, where gcd(a, p) = 1, is (p− 1)p2k. We can continue this
till t1 − 1. Let y = (y1, y2, . . . , yk) be a pt1−1-th root of x. For this to happen, each yi has
pt1−1 many choices. Thus, the number of pt1−1-th roots of x is p(t1−1)k. Therefore, the
number of apt1−1-th roots of x, where gcd(a, p) = 1, is (p− 1)p(t1−1)k. Finally, we observe
that the element x cannot have a pt1-th root.

Therefore, the total number of roots of x, and hence the size of the component Cx is

(p− 1) + (p− 1)pk + (p− 1)p2k + · · ·+ (p− 1)p(t1−1)k = (p− 1)
pt1k − 1

pk − 1
.

By Lemma 4.2, any component Cx of G∗
E(P ) has size at least (p−1)p

t1k−1
pk−1

. This completes

the proof. �

Proof of Theorem 2.5. The proof follows from Proposition 4.1 and Lemma 4.3. �
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