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Abstract

We introduce and study a generalization s(µ|λ) of the Schur functions called the almost symmetric
Schur functions. These functions simultaneously generalize the finite variable key polynomials and the
infinite variable Schur functions. They form a homogeneous basis for the space of almost symmetric
functions and are defined using a family of recurrences involving the isobaric divided difference operators
and limits of Weyl symmetrization operators. The s(µ|λ) are the q = t = 0 specialization of the stable

limit non-symmetric Macdonald functions Ẽ(µ|λ) defined by the author in previous work. We find a
combinatorial formula for these functions simultaneously generalizing well known formulas for the Schur
functions and the key polynomials. Further, we prove positivity results for the coefficients of the almost
symmetric Schur functions expanded into the monomial basis and into the monomial-Schur basis of
the space of almost symmetric functions. The latter positivity result follows after realizing the almost
symmetric Schur functions s(µ|λ) as limits of characters of representations of parabolic subgroups in type
GL .
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1 Introduction

The Schur functions sλ are a central object in algebraic combinatorics directly linking the representation
theory of symmetric groups and GLn, the geometry of Grassmanians, and the combinatorics of Young
tableaux. The functions sλ form an exceptional basis for the ring of symmetric functions Λ with many
remarkable combinatorial properties. In modern algebraic combinatorics, a good deal of work has been
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devoted to studying generalizations of the Schur functions. In particular, the symmetric Macdonald
functions Pλ[X; q, t] [Mac15] are an important two-parameter generalization of the Schur functions sλ =
Pλ[X; 0, 0] relating to the representation theory of double affine Hecke algebras and the geometry of
Hilbert schemes. The symmetric Macdonald functions are the symmetric analogues of the non-symmetric
Macdonald polynomials Eµ of Cherednik [Che03]. These finite variable polynomials Eµ are important
in the study of double affine Hecke algebras and satisfy many interesting algebraic and combinatorial
properties [HHL08]. Particularly, the Eµ are simultaneous eigenvectors for a special family of operators
known as the Cherednik operators Yi. It was shown by Ion [Ion03] that the specialization q, t → 0 of
the non-symmetric Macdonald polynomials recovers the key polynomials Kµ. The key polynomials are
a non-symmetric analogue of the Schur functions relating to the geometry of Schubert varieties through
the famous Demazure character formula [Dem74] [And85].

Recently the proof of the Shuffle Theorem of Carlsson-Mellit [CM18] introduced the idea of extend-
ing the ring of symmetric to include almost symmetric functions; that is infinite variable polynomials
f(x1, x2, . . .) for which there some n ≥ 1 such that f is symmetric in the variables xn, xn+1, . . . . Geomet-
rically, the almost symmetric functions roughly correspond to the equivariant K-theory of the parabolic
flag Hilbert schemes of points in C2 [CGM20]. It was shown by Ion-Wu [IW22] that the ring of almost
symmetric functions P

+
as is a module for the positive stable-limit double affine Hecke algebra. This

action includes a special family of commuting operators Yi known as the limit Cherednik operators.
It was shown in the author’s prior work [BW23] that there exists a family of almost symmetric func-

tions Ẽ(µ|λ)[x1, x2, . . . ; q, t] called the stable-limit non-symmetric Macdonald functions indexed by pairs
of compositions µ and partitions λ which are simultaneous eigenvectors for the limit Cherednik operators
Yi. On the non-symmetric extreme Ẽ(µ|∅) are limits of non-symmetric Macdonald polynomials Eµ∗0n

and on the fully-symmetric extreme Ẽ(∅|λ) recover the symmetric Macdonald polynomials Pλ. These
almost symmetric functions are related to a similar construction of Lapointe of m-symmetric Macdonald
polynomials [Lap22] and to the work of Goodberry [Goo22] and Orr-Goodberry [GO23].

It is natural to wonder whether the q, t → 0 specializations of the Ẽ(µ|λ) fill a role in the theory
of almost symmetric functions similar to the special place that the Schur functions fill in the theory of
symmetric functions. In this paper, we introduce a family of almost symmetric functions s(µ|λ) called
the almost symmetric Schur functions (Definition 4.1). These functions are the q, t → 0 specialization

of the Ẽ(µ|λ) (Theorem 4.2) and may be defined using a family of simple recurrence relations involv-
ing the isobaric divided difference operators ξi and the Weyl symmetrization operators Wk. We find
an explicit combinatorial model for the s(µ|λ) derived from the Haglund-Haiman-Loehr formula for the
non-symmetric Macdonald polynomials (Theorem 4.6). Using this formula we find a non-negative com-
binatorial formula for the monomial expansion of the almost symmetric Schur functions (Theorem 4.8).
We also realize the s(µ|λ) as stable-limits of certain key polynomials (Proposition 4.3). This immediately
shows that the s(µ|λ) are a Q-basis for the space of almost symmetric functions with rational coefficients
(Corollary 4.4). Using the Demazure character formula, we find a representation-theoretic interpretation
for the s(µ|λ) as limits of characters of certain representations V(n)(µ|λ) of parabolic subgroups in type
GL (Lemma 5.7). From this we prove that the monomial-Schur expansions of the s(µ|λ) have non-negative
integer coefficients counting the multiplicities of certain irreducible representations for Levi subgroups in
type GL in the modules V(n)(µ|λ) (Theorem 5.9).

1.1 Acknowledgements

The author would like to thank their advisor Monica Vazirani for all of her continued invaluable guidance
throughout the author’s graduate school career at UC Davis. The author would also like to thank Nicolle
González and Daniel Orr for helpful discussions about Demazure characters and Macdonald polynomials.

2 Definitions and Notations

2.1 Basic Combinatorics

Definition 2.1. In this paper, a composition will refer to a finite tuple µ = (µ1, . . . , µn) of non-negative
integers. We allow for the empty composition ∅ with no parts. We will let Comp denote the set of all
compositions. The length of a composition µ = (µ1, . . . , µn) is ℓ(µ) = n and the size of the composition
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is |µ| = µ1 + . . .+ µn. As a convention we will set ℓ(∅) = 0 and |∅| = 0. We say that a composition µ is
reduced if µ = ∅ or µℓ(µ) 6= 0. We will let Compred denote the set of all reduced compositions. Given two
compositions µ = (µ1, . . . , µn) and β = (β1, . . . , βm), define µ∗β = (µ1, . . . , µn, β1, . . . , βm). A partition

is a composition λ = (λ1, . . . , λn) with λ1 ≥ . . . ≥ λn ≥ 1. Note that vacuously we allow for the empty
partition ∅. We denote the set of all partitions by Y. We denote by Σ the set of all pairs (µ|λ) with
µ ∈ Compred and λ ∈ Y .

We denote by sort(µ) the partition obtained by ordering the nonzero elements of µ in weakly decreasing
order. We define rev(µ) to be the composition obtained by reversing the order of the elements of µ.

We will in a few instances use the notation 1(p) to denote the value 1 if the statement p is true and
0 otherwise.

Definition 2.2. The symmetric group Sn is defined as the set of bijective maps σ : [n] → [n] with
multiplication given by function composition where [n] := {1, . . . , n}. For 1 ≤ i ≤ n− 1 we will write si
for the transposition swapping i, i + 1 and fixing everything else. For σ ∈ Sn the length of σ, ℓ(σ), is
defined to be the minimal number of si required to express σ, i.e. σ = si1 · · · sir . For any µ = (µ1, . . . , µr)
with µi ≥ 1 and µ1 + . . .+ µr = n we define the Young subgroup Sµ to be the group generated by the
si with i ∈ {µ1 + . . .+ µj−1 + 1, . . . , µ1 + . . .+ µj−1 + µj} for some 0 ≤ j ≤ r.

We have the following alternative presentation of the symmetric group Sn.

Proposition 2.3 (Coxeter Presentation). The symmetric groupSn is generated by elements s1, . . . , sn−1

subject to the relations:

• s2i = 1

• sisi+1si = si+1sisi+1

• sisj = sjsi for |i− j| > 1.

In line with the conventions in [HHL08] we define the Bruhat order on the type GLn weight lattice
Zn as follows.

Definition 2.4. Let e1, ..., en be the standard basis of Zn and let α ∈ Zn. We define the Bruhat

ordering on Zn, written simply by <, by first defining cover relations for the ordering and then taking
their transitive closure. If i < j such that αi < αj then we say α > (ij)(α) and additionally if αj−αi > 1
then (ij)(α) > α+ ei − ej where (ij) denotes the transposition swapping i and j.

2.2 Polynomials

Throughout this paper the variables q and t are assumed to be commuting free variables.

Definition 2.5. Define Pn := Q(q, t)[x±1
1 , . . . , x±1

n ] for the space of Laurent polynomials in n variables
over Q(q, t) and define P

+
n := Q(q, t)[x1, . . . , xn] for the subspace of polynomials. We define algebra

homomorphisms Ξ(n) : P+
n+1 → P

+
n by

Ξ(n)(xa1
1 · · ·xan

n x
an+1
n+1 ) = 1(an+1 = 0)xa1

1 · · ·xan
n .

The symmetric group Sn acts naturally on Pn by algebra automorphisms via

σ(f(x1, . . . , xn)) = f(xσ(1), . . . , xσ(n)).

We will need to consider the action of the finite Hecke algebras in type GL on polynomials.

Definition 2.6. Define the finite Hecke algebra Hn to be the Q(q, t)-algebra generated by T1, . . . , Tn−1

subject to the relations

• (Ti − 1)(Ti + t) = 0 for 1 ≤ i ≤ n− 1

• TiTi+1T1 = Ti+1TiTi+1 for 1 ≤ i ≤ n− 2

• TiTj = TjTi for |i− j| > 1.

The polynomial representation of Hn on P
+
n is determined by the following action of the Ti :

Ti(f) := si(f) + (1− t)xi
f − si(f)

xi − xi+1
.
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For 0 ≤ k ≤ n let ǫ
(n)
k ∈ Hn denote the (normalized) trivial idempotent given by

ǫ
(n)
k :=

1

[n− k]t!

∑

σ∈S
(1k,n−k)

t(
n−k

2 )−ℓ(σ)Tσ.

Here [m]t! :=
∏m

i=1(
1−ti

1−t
).

We now review an important family of polynomials.

Definition 2.7. The non-symmetric Macdonald polynomials (for GLn) are a family of Laurent
polynomials Eµ ∈ Pn for µ ∈ Zn uniquely determined by the following:

• Triangularity: Each Eµ has a monomial expansion of the form Eµ = xµ +
∑

λ<µ aλx
λ

• Weight Vector: Each Eµ is a weight vector for the Cherednik operators Y
(n)
1 , . . . , Y

(n)
n .

We refer the reader to [Che03] for a review of DAHA and the Cherednik operators Yi. Importantly,
the set {Eµ|µ ∈ Zn} is a basis for Pn with distinct Y (n) weights. For µ ∈ Zn, Eµ is homogeneous with
degree µ1 + . . .+ µn. Further, the set of Eµ corresponding to µ ∈ Zn

≥0 gives a basis for P+
n .

2.3 Combinatorial Formula for Non-symmetric Macdonald Polynomi-

als

In [HHL08], Haglund, Haiman, and Loehr give an explicit monomial expansion formula for the non-
symmetric Macdonald polynomials in terms of the combinatorics of non-attacking labellings of certain
box diagrams corresponding to compositions which we will now review.

Definition 2.8. [HHL08] For a composition µ = (µ1, . . . , µn) define the column diagram of µ as

dg′(µ) := {(i, j) ∈ N
2 : 1 ≤ i ≤ n, 1 ≤ j ≤ µi}.

This is represented by a collection of boxes in positions given by dg′(µ). The augmented diagram of µ is
given by

d̂g(µ) := dg′(µ) ∪ {(i, 0) : 1 ≤ i ≤ n}.

Visually, to get d̂g(µ) we are adding a bottom row of boxes on length n below the diagram dg′(µ). Given
u = (i, j) ∈ dg′(µ) define the following:

• leg(u) := {(i, j′) ∈ dg′(µ) : j′ > j}

• armleft(u) := {(i′, j) ∈ dg′(µ) : i′ < i, µi′ ≤ µi}

• armright(u) := {(i′, j − 1) ∈ d̂g(µ) : i′ > i, µi′ < µi}

• arm(u) := armleft(u) ∪ armright(u)

• lg(u) := | leg(u)| = µi − j

• a(u) := | arm(u)|.

A filling of µ is a function σ : dg′(µ) → {1, ..., n} and given a filling there is an associated augmented filling

σ̂ : d̂g(µ) → {1, ..., n} extending σ with the additional bottom row boxes filled according to σ̂((j, 0)) = j
for j = 1, . . . , n. Distinct lattice squares u, v ∈ N2 are said to attack each other if one of the following is
true:

• u and v are in the same row

• u and v are in consecutive rows and the box in the lower row is to the right of the box in the upper
row.

A filling σ : dg′(µ) → {1, . . . , n} is non-attacking if σ̂(u) 6= σ̂(v) for every pair of attacking boxes

u, v ∈ d̂g(µ). For a box u = (i, j) let d(u) = (i, j − 1) denote the box just below u. Given a filling
σ : dg′(µ) → {1, . . . , n}, a descent of σ is a box u ∈ dg′(µ) such that σ̂(u) > σ̂(d(u)). Set Des(σ̂) to be
the set of descents of σ̂ and define

maj(σ̂) :=
∑

u∈Des(σ̂)

(lg(u) + 1).

4



The reading order on the diagram d̂g(µ) is the total ordering on the boxes of d̂g(µ) row by row, from top
to bottom, and from right to left within each row. If σ : dg′(µ) → {1, . . . , n} is a filling, an inversion of

σ̂ is a pair of attacking boxes u, v ∈ d̂g(µ) such that u < v in reading order and σ̂(u) > σ̂(v). Set Inv(σ̂)
to be the set of inversions of σ̂. Define the statistics

• inv(σ̂) := | Inv(σ̂)| − |{i < j : µi ≤ µj}| −
∑

u∈Des(σ̂) a(u)

• coinv(σ̂) :=
(∑

u∈dg′(µ) a(u)
)
− inv(σ̂).

Lastly, for a filling σ : dg′(µ) → {1, . . . , n} set

xσ := x
|σ−1(1)|
1 · · ·x|σ−1(n)|

n .

The Haglund-Haiman-Loehr combinatorial formula for non-symmetric Macdonald polynomials can
now be stated.

Theorem 2.9. [HHL08] For a composition µ with ℓ(µ) = n the following holds:

Eµ =
∑

σ:µ→[n]
non-attacking

xσqmaj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ)
σ̂(u) 6=σ̂(d(u))

(
1− t

1− qlg(u)+1ta(u)+1

)
.

We may better understand the statistic coinv through the next definition.

Definition 2.10. [HHL08] Let σ : µ → [n] be a non-attacking labelling. A co-inversion triple is a

triple of boxes (u, v, w) in the diagram d̂g(µ) of one of the following two types

Type 1:
u

w v
Type 2:

v u

w

that satisfy the following criteria:

• in Type 1 the column containing u and w is strictly taller than the column containing v

• in Type 2 the column containing u and w is weakly taller than the column containing v

• in either Type 1 or Type 2 σ̂(u) < σ̂(v) < σ̂(w) or σ̂(v) < σ̂(w) < σ̂(u) or σ̂(w) < σ̂(u) < σ̂(v).

Informally, in Type 1 we require the entries to strictly increase clockwise and in Type 2 we require
the entries to strictly increase counterclockwise.

Co-inversion triples are important because they have the same count as the complicated coinv statistic
from Definition 2.8.

Lemma 2.11. [HHL08] For a non-attacking labelling σ : µ → [n], coinv(σ̂) equals the number of
co-inversion triples of σ̂.

Example 1. We finish this subsection with a visual example of a non-attacking filling and its associated
statistics. Below is the augmented filling σ̂ of a non-attacking filling σ : (3, 2, 0, 1, 0, 0) → [6] pictured as

labels inside the boxes of d̂g(3, 2, 0, 1, 0, 0).

6

4 1

1 2 3

1 2 3 4 5 6

Let u be the column 1 box of d̂g(3, 2, 0, 1, 0, 0) filled with a 4 in the above diagram. Notice that u is a
descent box of σ̂ as 4 is larger than the label 1 of the box d(u) just below u. Further, we see that a(u) = 2
and lg(u) = 1. Considering the diagram as a whole now we see that xσ = x2

1x2x3x4x6, maj(σ̂) = 3,
| Inv(σ̂)| = 21, inv(σ̂) = 14, and coinv(σ̂) = 1. The contribution of this non-attacking labelling to the
HHL formula for E(3,2,0,1,0,0) ∈ P

+
6 is

x2
1x2x3x4x6q

3t1
(

1− t

1− q1t3

)(
1− t

1− q1t2

)(
1− t

1− q2t3

)(
1− t

1− q1t2

)
.
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2.4 Symmetric Functions

Definition 2.12. Define the ring of symmetric functions Λ to be the subalgebra of the inverse limit
of the symmetric polynomial rings Q(q, t)[x1, . . . , xn]

Sn with respect to the quotient maps Ξ(n) consisting
of those elements with bounded x-degree. For i ≥ 1 define the i-th power sum symmetric function

by
pi = xi

1 + xi
2 + . . . .

It is a classical result that Λ is isomorphic to Q(q, t)[p1, p2, . . . ]. For any expression G = a1g
µ1+a2g

µ2+. . .
with rational scalars ai ∈ Q and distinct monomials gµi in a set of algebraically independent commuting
free variables {g1, g2, . . . } the plethystic evaluation of pi at the expression G is defined to be

pi[G] := a1g
iµ1 + a2g

iµ2 + . . . .

Note that gi are allowed to be q or t. Here we are using the convention that iµ = (iµ1, . . . , iµr) for
µ = (µ1, · · · , µr). The definition of plethystic evaluation on power sum symmetric functions extends to
all symmetric functions F ∈ Λ by requiring F → F [G] be a Q(q, t)-algebra homomorphism. Note that
for F ∈ Λ, F = F [x1 + x2 + . . .] and so we will often write F = F [X] where X := x1 + x2 + . . . . For a
partition λ define the monomial symmetric function mλ by

mλ :=
∑

µ

xµ

where we range over all distinct monomials xµ such that σ(µ) = λ for some permutation σ. For n ≥ 0
define the complete homogeneous symmetric function hn by

hn :=
∑

|λ|=n

mλ.

For λ ∈ Y the Schur functions are given as

sλ =
∑

T∈SSYT(λ)

xT

where SSYT(λ) denotes the set of semi-standard Young tableaux of shape λ. We can extend plethysm
to Q(q, t)[[p1, p2, . . . ]]. The plethystic exponential is defined to be the element of Q(q, t)[[p1, p2, . . . ]]
given by

Exp[X] :=
∑

n≥0

hn[X].

We will need to consider the following operators.

Definition 2.13. For n ≥ 0 define the Jing vertex operator Bn ∈ EndQ(q,t)(Λ) by

Bn[F ] := 〈zn〉F [X − z−1] Exp[(1− t)zX].

Here 〈zn〉 denotes the operator which extracts the coefficient of zn of any Laurent series in z.

2.5 Almost Symmetric Functions

The following ring was studied by Ion-Wu in their paper [IW22].

Definition 2.14. [IW22] For k ≥ 0 define the ring P(k)+ := Q(q, t)[x1, . . . , xk] ⊗ Λ[Xk] where Xk :=
xk+1 + xk+2 + . . . . The ring of almost symmetric functions is given by P

+
as :=

⋃
k≥0 P(k)

+.

The ring P
+
as is a free graded Λ-module with homogeneous basis given simply by the set of monomials

xµ with µ reduced. Therefore, P+
as has the homogeneous Q(q, t) basis given by all xµmλ[X] ranging over

(µ|λ) ∈ Σ. Further, the dimension of the homogeneous degree d part of P(k)+ is equal to the number of
pairs (µ|λ) ∈ Σ with |µ|+ |λ| = d and ℓ(µ) ≤ k.

We will need to consider a family of symmetrization operators on P
+
as .

Lemma 2.15. [BW23] For any k ≥ 0 the sequence of partial symmetrization operators (ǫ
(n)
k )n≥k con-

verges (in the sense of Ion-Wu [IW22]) to a well defined map ǫk : P+
as → P(k)+. These maps satisfy the

following properties:
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• ǫ2k = ǫk

• ǫkTi = Tiǫk = ǫk for i ≥ k + 1

• Tiǫk = ǫkTi for 1 ≤ i ≤ k − 1

• ǫkǫℓ = ǫmin(k,ℓ)

• For any a1, . . . , ak+1 ≥ 0 and F ∈ Λ

ǫk(x
a1
1 · · ·xak

k x
ak+1

k+1 F [Xk+1]) = xa1
1 · · ·xak

k Bak+1(F )[Xk].

In previous work [BW23] the author defined the following almost symmetric version of the non-
symmetric Macdonald polynomials.

Theorem 2.16. [BW23] For (µ|λ) ∈ Σ the limit

Ẽ(µ|λ)[x1, x2, . . . ; q, t] := lim
n

ǫ
(n)

ℓ(µ)

(
Eµ∗λ∗0n−(ℓ(µ)+ℓ(λ))(x1, . . . , xn; q, t)

)

exists (in the sense of Ion-Wu [IW22]). The set of {Ẽ(µ|λ)}(µ|λ)∈Σ is a homogeneous basis for P
+
as .

Remark 1. {Ẽ(µ|λ)|(µ|λ) ∈ Σ} is a weight basis of P+
as for the limit Cherednik operators Y [BW23].

Each Ẽ(µ|λ) is homogeneous of degree |µ|+ |λ|.

The stable-limit non-symmetric Macdonald functions satisfy the following recursion.

Proposition 2.17. [BW23]

• If µ ∈ Compred

Ẽ(µ|∅) = lim
n

Eµ∗0n

where the limit converges in the sense of Ion-Wu [IW22].

• If µi > µi+1 and si(µ) ∈ Compred then

Ẽ(si(µ)|λ) =

(
Ti +

(1− t)α̃(µ|λ)(i+ 1)

α̃(µ|λ)(i)− α̃(µ|λ)(i+ 1)

)
Ẽ(µ|λ)

where α̃(µ|λ) denotes the Y weight of Ẽ(µ|λ).

• Whenever µr ≥ λ1 and µr−1 6= 0,

ǫr−1

(
Ẽ(µ1,...,µr |λ1,...,λk)

)
= Ẽ(µ1,...,µr−1|µr,λ1,...,λk).

We have the following stable-limit variant of the HHL formula 2.9.

Theorem 2.18. [BW23]
For µ ∈ Compred

Ẽ(µ|∅) =
∑

λ partition
|λ|≤|µ|

mλ[xn+1 + . . .]
∑

σ:µ∗0ℓ(λ)→[n+ℓ(λ)]
non-attacking
∀i=1,...,ℓ(λ)

λi=|σ−1(n+i)|

x
|σ−1(1)|
1 · · ·x|σ−1(n)|

n Γ̃(σ̂)

where

Γ̃(σ̂) := qmaj(σ̂)tcoinv(σ̂)
∏

u∈dg′(µ∗0ℓ(λ))
σ̂(u) 6=σ̂(d(u))
u not in row 1

(
1− t

1− qlg(u)+1ta(u)+1

) ∏

u∈dg′(µ∗0ℓ(λ))
σ̂(u) 6=σ̂(d(u))
u in row 1

(1− t) .

3 Symmetrization and Specialization

In the next section we build some tools which will allow us to compute and study the specializations of
the stable-limit non-symmetric Macdonald functions at q = t = 0.
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3.1 Weyl Symmetrization and Isobaric Divided Difference Operators

We now recall the definition of the Weyl symmetrization map and its partial symmetrization analogues.
Informally, these maps are the t = 0 specialization of the ǫ

(n)
k operators defined previously.

Definition 3.1. Let 0 ≤ k ≤ n. We define the partial Weyl symmetrizer , W
(n)
k , to be the map

W
(n)
k : P+

n → (P+
n )

S
(1k,n−k)

given by

W
(n)
k (f(x1, . . . , xn)) :=

∑

σ∈S
(1k,n−k)

σ



f(x1, . . . , xn)
∏

k+1≤i<j≤n

(
1

1− xj/xi

)

 .

Remark 2. Notice that these maps are defined over Q (over Z in fact). We may rewrite the given

definition of W
(n)
k as

W
(n)
k (f(x1, . . . , xn)) =

∑
σ∈S

(1k,n−k)
(−1)ℓ(σ)σ

(
xδ

(n)
k f(x)

)

∏
k+1≤i<j≤n (xi − xj)

where δ
(n)
k := 0k ∗ (n− k − 1, . . . , 1, 0).

We will need a few properties of the Weyl symmetrization operators.

Lemma 3.2. As elements of EndQ(q,t)(P
+
n ) the operators W

(n)
k satisfy the following:

• (W
(n)
k )2 = W

(n)
k

• σW
(n)
k = W

(n)
k σ for σ ∈ S(k,n−k)

• σW
(n)
k = W

(n)
k for σ ∈ S(1k,n−k)

• W
(n)
k W

(n)
j = W

(n)
k for k < j.

Proof. This will follow from Lemma 3.15 proven later in this section.

Lemma 3.3. For 0 ≤ k ≤ n
W

(n)
k Ξ(n) = Ξ(n)W

(n+1)
k .

Proof. This proof is standard and we leave its proof to the reader.

The above lemma allows for the following definition.

Definition 3.4. Let k ≥ 0 define the operator Wk on P
+
as as

Wk := lim
n

W
(n)
k .

As we will prove later, the operators Wk are the t = 0 specializations of the partial Hecke symmetrizers
ǫk.

Definition 3.5. Define the isobaric divided difference operators, ξ1, ξ2, ξ3, . . ., on P
+
as by

ξi(f) =
xif − xi+1si(f)

xi − xi+1
.

Lemma 3.6. We have the following relations for i, j ≥ 1 :

• ξ2i = ξi

• ξiξi+1ξi = ξi+1ξiξi+1

• ξiξj = ξjξi for |i− j| > 1.

Proof. This result is standard but in particular will follow from Lemma 3.15 proven later in this section.
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The above are the relations for the 0-Hecke algebra . The following standard lemma relates the
Weyl symmetrizers W

(n)
k to the isobaric divided difference operators ξi.

Lemma 3.7. We have the recursion relation:

W
(n)
k = ξn−1 · · · ξk+1W

(n)
k+1.

One of the main utilities for defining the maps W
(n)
k is that they generate the Schur polynomials in

the following way.

Proposition 3.8 (Weyl Character Formula for GLn). For λ ∈ Y and ℓ(λ) ≤ n

W
(n)
0 (xλ) = sλ(x1, . . . , xn).

Here we review some relevant information about the key polynomials.

Definition 3.9. [Dem74] Let n ≥ 1. Define the key polynomials to be the unique collection of
polynomials {Kα(x1, . . . , xn)}α∈Zn

≥0
⊂ P

+
n determined by the following properties:

• If α1 ≥ . . . ≥ αn then
Kα(x1, . . . , xn) = xα.

• Whenever αi > αi+1

Ksi(α)(x1, . . . , xn) = ξi(Kα(x1, . . . , xn)).

We refer the reader to Kirillov [Kir16] and Mason [Mas09] for an overview of key polynomials.
By a simple inductive argument we see that for α ∈ Zn

≥0

K(α1,...,αn,0)(x1, . . . , xn, xn+1) = K(α1,...,αn)(x1, . . . , xn).

As such we will refer to Kµ(x) for µ ∈ Compred unambiguously as an element of Z≥0[x1, x2, x3, . . .] ⊂ P
+
as .

Remark 3. It is known that the key polynomials {Kα|α ∈ Zn
≥0} form a basis for P+

n .
For λ ∈ Y and n ≥ ℓ(λ)

K0n−ℓ(λ)∗rev(λ)(x1, . . . , xn) = sλ(x1, . . . , xn).

Further, if α = (α1, . . . , αn) ∈ Zn
≥0 and there exists some 1 ≤ i < j ≤ n with αi < . . . < αj

then Kα(x1, . . . , xn) is symmetric in the variables xi, . . . , xj . In particular, for any i ≤ k ≤ j − 1,
ξk(Kα(x1, . . . , xn)) = Kα(x1, . . . , xn).

3.2 Specialization at q = t = 0

Definition 3.10. Define O ⊂ P
+
as to be the set of f(x) ∈ P

+
as such that

f(x) = f(x1, x2, . . . ; q, t) =
∑

i

c(i)xµ(i)

mλ(i) [X]

for some scalars c(i) = c(i)(q, t) ∈ Q[q][[t]] ∩Q(q, t), (µ(i)|λ(i)) ∈ Σ.
Let P+

as,Q denote the set of f(x) ∈ P
+
as such that

f(x) =
∑

i

c(i)xµ(i)

mλ(i) [X]

for some scalars c(i) ∈ Q, (µ(i)|λ(i)) ∈ Σ. Define the Q-algebra homomorphism Υ : O → P
+
as,Q by

Υ(f(x1, x2, . . . ; q, t)) := f(x1, x2, . . . ; 0, 0).

Equivalently,
Υ(f) := lim

q→0
lim
t→0

f.

Remark 4. For arbitrary elements of Q(q, t) the limits limq→0 and limt→0 do not commute. For
example, limq→0 limt→0

q

t
does not exist whereas limt→0 limq→0

q

t
= 0. However, these limits commute

on Q[q][[t]] ∩Q(q, t) so there is no ambiguity in Definition 3.10.
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We will need the following lemma.

Lemma 3.11. Let fn ∈ P
+
n ∩O with limn fn = f ∈ P

+
as . Then f ∈ O and

Υ(f) = lim
n

Υ(fn).

Proof. By the definition of Ion-Wu’s convergence (see [IW22]) we know that we have for all n ≥ 1

fn =
N∑

i=1

c(i)n xµ(i)

mλ(i) [x1 + . . .+ xn]

where c
(i)
n ∈ Q(q, t), (µ(i)|λ(i)) ∈ Σ with limn c

(i)
n = c(i) ∈ Q(q, t) convergent t-adically. Since fn ∈ P

+
n ∩O

we know that c
(i)
n = c

(i)
n (q, t) ∈ Q[q][[t]] ∩ Q(q, t). Since Q[q][[t]] is topologically complete t-adically we

must have c(i) ∈ Q[q][[t]] ∩ Q(q, t). Then it is clear that

f =
N∑

i=1

c(i)xµ(i)

mλ(i) [X] ∈ O.

A simple topological argument shows that

lim
q→0

lim
t→0

c(i)(q, t) = lim
n

lim
q→0

lim
t→0

c(i)n (q, t).

Then we find

lim
n

Υ(fn)

= lim
n

Υ

(
N∑

i=1

c(i)n xµ(i)

mλ(i) [x1 + . . .+ xn]

)

= lim
n

lim
q→0

lim
t→0

N∑

i=1

c(i)n xµ(i)

mλ(i) [x1 + . . .+ xn]

= lim
n

N∑

i=1

(
lim
q→0

lim
t→0

c(i)n

)
xµ(i)

mλ(i) [x1 + . . .+ xn]

=
N∑

i=1

(
lim
q→0

lim
t→0

c(i)
)
xµ(i)

mλ(i) [X]

= Υ(f).

Here we recall a result of Ion [Ion03] relating the non-symmetric Macdonald polynomials to the key
polynomials.

Theorem 3.12. [Ion03] For α ∈ Zn
≥0

Υ(Eα) = Kα.

From Ion’s result we find a known combinatorial formula for the key polynomials using the HHL
combinatorial formula (see 2.9) for the non-symmetric Macdonald polynomials. For α ∈ Zn

≥0 denote by
L(α) the set of non-attacking labellings σ : α → [n] such that maj(σ̂) = coinv(σ̂) = 0.

Proposition 3.13. For α ∈ Zn
≥0,

Kα =
∑

σ∈L(α)

xσ.

Proof. From the combinatorial formula for Eα (Theorem 2.9) we see that

Eα =
∑

σ:α→[n]
non-attacking

xσqmaj(σ̂)tcoinv(σ̂)
∏

u∈dg′(α)
σ̂(u) 6=σ̂(d(u))

(
1− t

1− qlg(u)+1ta(u)+1

)
.
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Note that the values leg(u) and arm(u) are both non-negative so that Eα ∈ O. Therefore, when we
specialize q → ∞ and t → 0 we find that

lim
q→0

lim
t→0

qmaj(σ̂)tcoinv(σ̂)
∏

u∈dg′(α)
σ̂(u) 6=σ̂(d(u))

(
1− t

1− qlg(u)+1ta(u)+1

)
= 1 (maj(σ̂) = coinv(σ̂) = 0) .

Hence, from Theorem 3.12

Kα = Υ(Eα) =
∑

σ:α→[n]
non-attacking

maj(σ̂)=0
coinv(σ̂)=0

xσ =
∑

σ∈L(α)

xσ.

Remark 5. Note that maj(σ̂) = 0 is equivalent to Des(σ̂) = ∅ which in turn is equivalent to σ̂(u) ≤
σ̂(d(u)) i.e. σ̂ is weakly decreasing upwards along columns. The requirement that coinv(σ̂) = 0 is
equivalent to the statement that σ̂ has no co-inversion triples. Thus a non-attacking filling σ is in L(α)
if σ̂ is weakly decreasing upwards along columns and has no co-inversion triples.

As an easy application of Ion’s result we may compute the specializations of all Ẽ(µ|∅).

Proposition 3.14. For all µ ∈ Compred, Ẽ(µ|∅) ∈ O and

Υ(Ẽ(µ|∅)) = Kµ.

Proof. Let µ ∈ Compred . From the combinatorial formula Corollary 2.18 we may observe directly that
Ẽ(µ|∅) ∈ O. To see this note that each of the scalar coefficients of the expansion of Ẽ(µ|∅) has the form

qatb
∏

i

(
1− t

1− qci tdi

)

for some a, b, ci, di ≥ 0. By expanding the denominators

1

1− qcitdi
=
∑

m≥0

qmcitmdi

we see that

qatb
∏

i

(
1− t

1− qcitdi

)
∈ Q[q][[t]]

as required.
As Υ(Ẽµ) is now well defined, we may compute directly using Lemma 3.11 to find

Υ(Ẽµ)

= lim
n

Υ(Eµ∗0n)

= lim
n

Kµ∗0n

= lim
n

Kµ

= Kµ.

In the next lemma we will formalize the notion that the operators ξi,Wk are the q = t = 0 spe-
cializations of Ti, ǫk respectively. This result is standard but we will include its proof for the sake of
completeness.

Lemma 3.15. For all k ≥ 0 and i ≥ 1, Υ ◦ Ti|O = ξi ◦Υ|O and Υ ◦ ǫk|O = Wk ◦Υ|O .
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Proof. Let f = f(x; q, t) ∈ P
+
as ∩O. Let i ≥ 1 and k ≥ 0.

First, we have

Υ ◦ Ti(f)

= Υ

(
si(f) + (1− t)xi

f − si(f)

xi − xi+1

)

= siΥ(f) + (1− 0)xi
Υ(f)− siΥ(f)

xi − xi+1

=

(
si + xi

1− si
xi − xi+1

)
f(x; 0, 0)

=

(
(xi − xi+1)si + xi(1− si)

xi − xi+1

)
f(x; 0, 0)

=

(
xi − xi+1si
xi − xi+1

)
f(x; 0, 0)

= ξif(x; 0, 0)

= ξi ◦Υ(f).

If f ∈ P(k)+ then
Υ ◦ ǫk(f) = Υ(f)

and
Wk ◦Υ(f) = Υ(f).

Thus we may assume that f ∈ P(k + r)+ for some r ≥ 1 in which case using Lemma 3.11 we see

Υ ◦ ǫk(f)

= Υ
(
lim
n

ǫ
(n)
k (Ξ(n)(f))

)

= Υ



lim
n

1

[n− k]t!

∑

σ∈S
(1k,n−k)

t(
n−k

2 )−ℓ(σ)TσΞ
(n)(f)





= lim
n

Υ



 1

[n− k]t!

∑

σ∈S
(1k,n−k)

t(
n−k

2 )−ℓ(σ)TσΞ
(n)(f)





= lim
n

∑

σ∈S
(1k,n−k)

1

((
n− k

2

)
= ℓ(σ)

)
Υ
(
TσΞ

(n)(f)
)

= lim
n
(Tn−1 · · ·Tk+1) · · · (Tn−1 · · ·Tk+r)Υ(Ξ(n)(f))

= lim
n
(ξn−1 · · · ξk+1) · · · (ξn−1 · · · ξk+r)f(x1, . . . , xn, 0, . . . ; 0, 0)

= lim
n

W
(n)
k f(x1, . . . , xn, 0, . . . ; 0, 0)

= Wk ◦Υ(f)

4 Almost Symmetric Schur Functions

The stable-limit non-symmetric Macdonald functions Ẽ(µ|λ) are seen, from Proposition 2.17, to be gen-

erated by applying successive partial-symmetrization operators to the functions Ẽ(µ∗λ|∅). Given that the
operators Ti, ǫk specialize to the ξi,Wk respectively, we may define a set of almost symmetric functions
s(µ|λ) analogously.
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Definition 4.1. Define the almost symmetric Schur functions, s(µ|λ) = s(µ|λ)(x1, x2, . . .), for (µ|λ) ∈
Σ by the following recursive formula:

• s(µ|∅) = Kµ

• If µr ≥ λ1 then
s(µ1,...,µr−1|µr ,λ1,...,λℓ) = Wr−1(s(µ1,...,µr−1,µr|λ1,...,λℓ)).

We will now compute a few non-trivial examples of almost symmetric Schur functions s(µ|λ).

Example 2. Here we calculate s(2|3,1) directly using the operators ξi and Wk:

s(2|3,1)

= W1W2(s(2,3,1|∅))

= W1W2ξ1(s(3,2,1|∅))

= W1W2ξ1(x
3
1x

2
2x3)

= W1W2(x
3
1x

2
2x3 + x2

1x
3
2x3)

= W1(x
3
1x

2
2s1[X2] + x2

1x
3
2s1[X2])

= x3
1s(2,1)[X1] + x2

1s(3,1)[X1]

Example 3. Here we give a list of some examples of almost symmetric Schur functions that are neither
symmetric Schur functions nor key polynomials.

• s(0,1|2) = x2
1x2 + x2

1s1[X2] + x2
2x1 + x2

2s1[X2] + x1s2[X2] + x2s2[X2] + 2x1x2s1[X2]

• s(2|3,1) = x3
1s(2,1)[X1] + x2

1s(3,1)[X1]

• s(2,1|1) = x2
1x2s1[X2]

• s(1,2|1) = x2
1x2s1[X2] + x1x

2
2s1[X2]

• s(1|2,1) = x2
1s(1,1)[X1] + x1s(2,1)[X1].

Remark 6. We note that from the above recursion it follows that for any λ ∈ Y, s(∅|λ) = sλ. Thus
the almost symmetric Schur functions interpolate between the key polynomials and the Schur functions
in infinitely many variables x1, x2, . . . . Lapointe in [Lap22] defines the m-symmetric Schur func-

tions s(a;λ)(x; t). These functions have the property that s(a;∅)(x; t) = Ha(x; t) (the non-symmetric
Hall-Littlewood polynomial) and s(∅;λ)(x; t) = sλ(x) similarly to the functions s(µ|λ)(x) defined above.
Further, they give a basis for P(m)+. However, it is not clear to this author how Lapointe’s m-symmetric
Schur functions are related to the almost symmetric Schur functions in this paper. Any proof that relates
these two types of functions would likely be nontrivial and combinatorial in nature.

We are now ready to compute the specializations of the stable-limit non-symmetric Macdonald func-
tions Ẽ(µ|λ) at q = t = 0.

Theorem 4.2. For (µ|λ) ∈ Σ, Ẽ(µ|λ) ∈ O and

Υ(Ẽ(µ|λ)) = s(µ|λ)(x).

Proof. Let (µ|λ) ∈ Σ. In order to show that Ẽ(µ|λ) ∈ O it suffices by induction to verify that each
ǫk(f) ∈ O for every f ∈ O. However, this is easy to see using the explicit formula for the action of ǫk
using the Jing vertex operators Br (see Definition 2.13 and Lemma 2.15). We now proceed by direct
computation using Lemma 3.15 and Proposition 3.14.

Υ(Ẽ(µ|λ))

= Υ(ǫℓ(µ)(Ẽ(µ∗λ|∅)))

= Wℓ(µ)(Υ(Ẽ(µ∗λ|∅)))

= Wℓ(µ)(Kµ∗λ)

= Wℓ(µ)(s(µ∗λ|∅))

= s(µ|λ).
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4.1 Combinatorial Formula for Almost Symmetric Schur Functions

In this section we will compute an explicit combinatorial formula for the monomial expansion of the
almost symmetric Schur functions. Further, we will use this expansion to show that a generalization of
the classical Kostka coefficients for Schur functions are non-negative integers.

Proposition 4.3. For (µ|λ) ∈ Σ,
s(µ|λ) = lim

n
Kµ∗0n∗rev(λ).

Proof. We proceed by direct calculation:

s(µ|λ)

= Wℓ(µ) · · ·Wℓ(µ)+ℓ(λ)s(µ∗λ|∅)

= Wℓ(µ)s(µ∗λ|∅)

= Wℓ(µ)Kµ∗λ

= lim
n

W
(ℓ(µ)+ℓ(λ)+n)

ℓ(µ)
(Kµ∗λ∗0n )

= lim
n
(ξℓ(µ)+ℓ(λ)+n−1 · · · ξℓ(µ)+1) · · · (ξℓ(µ)+ℓ(λ)+n−1 · · · ξℓ(µ)+ℓ(λ))(Kµ∗λ∗0n)

= lim
n

Kµ∗0n∗rev(λ).

As an immediate consequence we get the following:

Corollary 4.4. The set {s(µ|λ)(x)|(µ|λ) ∈ Σ} is a homogeneous Q-basis for P+
as,Q .

Proof. Since the key polynomials are homogeneous and the operators Wk are clearly homogeneous, we
see that the s(µ|λ) are homogeneous as well. As there are sufficiently many s(µ|λ) in each homoge-
neous component of P(k)+, it suffices to show that the s(µ|λ) are linearly independent (over Q). Let

(µ(1)|λ(1)), . . . , (µ(m)|λ(m)) ∈ Σ be distinct. Set r(i) := ℓ(µ(i)) + ℓ(λ(i)). Suppose that for some a(i) ∈ Q,∑m

i=1 a
(i)s(µ(i)|λ(i)) = 0. Then

0 =
m∑

i=1

a(i)s(µ(i)|λ(i))

=
m∑

i=1

a(i) lim
n

K
µ(i)∗0n−r(i)∗rev(λ(i))

= lim
n

m∑

i=1

a(i)K
µ(i)∗0n−r(i) ∗rev(λ(i))

.

Now we see that for all sufficiently large n,

m∑

i=1

a(i)K
µ(i)∗0n−r(i) ∗rev(λ(i))

= 0

but, since the pairs (µ(i)|λ(i)) are distinct, we know that the key polynomials K
µ(i)∗0n−r(i)∗rev(λ(i))

are

linearly independent. Therefore, a(i) = 0 as desired.

Remark 7. It is an interesting question whether or not the s(µ|λ), which as we will show in Theorem 4.6
have integral coefficients in the monomial basis, are a basis over Z for the space P+

as,Z of almost symmetric
functions over Z. This is non-trivial and does not follow from Corollary 4.4. However, this seems likely
as there should be a simple monomial ordering with respect to which the s(µ|λ) are uni-triangular. This
ordering would need to specialize to both the Bruhat ordering on finite variable monomials and the
dominance ordering on partitions in both the fully non-symmetric and symmetric extremes.
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In order to describe a combinatorial model for the almost symmetric Schur functions we require the
next definition.

Definition 4.5. Let (µ|λ) ∈ Σ. Let ω denote the first infinite ordinal i.e. n < ω for all n ∈ {1, 2, . . .}.

For a labelling σ : dg′(µ ∗ rev(λ)) → {1, 2, . . .} denote by σ⋆ the labelling of d̂g(µ ∗ rev(λ)) given by

• σ⋆(u) = σ(u) if u ∈ dg′(µ ∗ rev(λ))

• σ⋆(j, 0) = j for 1 ≤ j ≤ ℓ(µ)

• σ⋆(j, 0) = ω + j − ℓ(µ)− 1 for ℓ(µ) + 1 ≤ j ≤ ℓ(µ) + ℓ(λ).

We naturally extend the definitions in Definition 2.8 of non-attacking, coinv, and Des to labellings of
the form σ⋆ which take values in {1, 2, . . .} ∪ {ω + 1, ω+ 2, . . .}. Define L(µ|λ) to be the set of labellings
σ : dg′(µ ∗ rev(λ)) → {1, 2, . . .} such that σ⋆ is non-attacking, coinv(σ⋆) = 0, and Des(σ⋆) = ∅.

Example 4. We will consider in this example two labellings of the type defined above for the pair
(2|3, 1). Our diagrams in this case are given as follows:

dg′(2, 1, 3) =

d̂g(2, 1, 3) =

Consider the labellings σ1, σ2 : dg′(2, 1, 3) → {1, 2, 3, 4} and there corresponding labellings σ⋆
1 , σ

⋆
2 :

d̂g(2, 1, 3) → {1, 2, 3, 4} given by

σ1 =

1

1 2

1 3 4

→ σ⋆
1 =

1

1 2

1 3 4

1 ω ω + 1

σ2 =

1

1 3

1 2 4

→ σ⋆
2 =

1

1 3

1 2 4

1 ω ω + 1

Both σ1, σ2 are non-attacking with maj(σ⋆
1) = maj(σ⋆

2) = 0. However, coinv(σ⋆
1) = 0 whereas

coinv(σ⋆
2) 6= 0. To see this note that in the labelling σ2, the boxes

1

3

2
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form a co-inversion triple of Type 2.

We may now give a combinatorial formula for the almost symmetric Schur functions. This formula
is derived directly from the HHL-type formula for the key polynomials.

Theorem 4.6. For (µ|λ) ∈ Σ

s(µ|λ) =
∑

σ∈L(µ|λ)

xσ.

Proof. We start by noticing that from Proposition 4.3 we have

s(µ|λ)

= lim
n

Kµ∗0n∗rev(λ)

= lim
n

∑

σ∈L(µ∗0n∗rev(λ))

xσ.

For all n ≥ 0 there is an injection L(µ ∗ 0n ∗ rev(λ)) → L(µ ∗ 0n+1 ∗ rev(λ)) obtained as follows. Let
σ ∈ L(µ ∗ 0n ∗ rev(λ)). Consider σ′ : dg′(µ ∗ 0n+1 ∗ rev(λ)) → [n+ 1 + ℓ(µ) + ℓ(λ)] given by

• σ′(u) = σ(u) if u ∈ dg′(µ)

• σ′(i, j) = σ(i, j − 1) if (i, j) lies in the rev(λ) component of dg′(µ ∗ 0n+1 ∗ rev(λ)).

In other words, we are simply aligning the rev(λ) parts of each of the diagrams dg′(µ∗0n+1 ∗ rev(λ)) and
dg′(µ∗0n∗rev(λ)) and copying the corresponding values of σ. It is easy to see that σ′ ∈ L(µ∗0n+1∗rev(λ))
and that the map σ → σ′ is injective. To see this note that the entries values of σ′ are weakly decrease
upwards along columns so that maj(σ̂′) = 0 and, since σ̂ has no co-inversion triples of Types 1 or 2, then
neither does σ̂′ meaning that coinv(σ̂′) = 0. Now we may consider the directed union

L :=
⋃

n≥0

L(µ ∗ 0n ∗ rev(λ))

where we identify the image of L(µ ∗ 0n ∗ rev(λ)) in L(µ ∗ 0n+1 ∗ rev(λ)) for all n ≥ 0. Hence, we have

s(µ|λ) =
∑

σ∈L

xσ.

Lastly, we show that there exists a simple bijection L → L(µ|λ) such that xσ = xf(σ) for all σ ∈ L.
For σ ∈ L say, σ ∈ L(µ ∗ 0n ∗ rev(λ)), we may define σ′′ : dg′(µ ∗ rev(λ)) → {1, 2, . . .} by

• σ′′(u) = σ(u) if u ∈ dg′(µ)

• σ′′(i, j) = σ(i+ n, j) for (i, j) in the rev(λ) component of dg′(µ ∗ rev(λ)).

Then σ′′ ∈ L(µ|λ) and the map σ → σ′′ is injective. We now show this map is also surjective. Let
γ ∈ L(µ|λ) and N := max{maxu∈dg′(µ∗rev(λ)) σ(u), ℓ(µ)+ℓ(λ)}. Define σ : µ∗0N−ℓ(µ)−ℓ(λ) ∗rev(λ) → [N ]
similarly to before by copying the values of σ for both the µ and rev(λ) components of dg′(µ ∗ rev(λ))
onto the corresponding components of dg′(µ∗0N−ℓ(µ)−ℓ(λ) ∗rev(λ)). Since N was chosen sufficiently large,

σ ∈ L(µ ∗ 0N−ℓ(µ)−ℓ(λ) ∗ rev(λ)). Now σ′′ = γ and xσ′′

= xγ . Therefore,

s(µ|λ) =
∑

σ∈L

xσ =
∑

σ∈L(µ|λ)

xσ.
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4.2 Almost Symmetric Kostka Coefficients

Since s(µ|λ) ∈ P(ℓ(µ))+ and the set {xαmν [Xℓ(µ)] |(α|ν) ∈ Σ, ℓ(α) ≤ ℓ(µ)} is a basis for P(k)+ we may
consider the following definition.

Definition 4.7. Define the almost symmetric Kostka coefficients K
(µ|λ)
(α|ν) to be the coefficients of

the almost symmetric Schur functions expanded into the monomial basis of P(ℓ(µ))+, i.e.

s(µ|λ) =
∑

(α|ν)
ℓ(α)≤ℓ(µ)

K
(µ|λ)
(α|ν)x

αmν [Xℓ(µ)].

If ℓ(α) > ℓ(µ) we simply set K
(µ|λ)
(α|ν) = 0.

Remark 8. It is straightforward to check that

K
(∅|λ)
(µ|ν) = δµ,∅Kλ,ν

meaning that the K
(µ|λ)
(α|ν) generalize the classical Kostka coefficients Kλ,ν . On the other extreme, we find

that
K

(µ|∅)
(α|λ) = 0

unless λ = ∅ in which case K
(µ|∅)
(α|∅) is the multiplicity of the weight α in the Demazure character corre-

sponding to µ. In either case, we see that the Kostka coefficients are non-negative.

Using the combinatorial formula we found for the s(µ|λ) (Theorem 4.6) we are able to give a simple
proof that the almost symmetric Kostka coefficients are non-negative integers.

Theorem 4.8 (Positivity for almost symmetric Kostka coefficients).

K
(µ|λ)
(α|ν) ∈ Z≥0

Proof. Let (µ|λ) ∈ Σ. Using the explicit combinatorial formula in Theorem 4.6 we see that

s(µ|λ) =
∑

σ∈L(µ|λ)

xσ.

However, we know s(µ|λ) is symmetric in the variables xℓ(µ)+1, xℓ(µ)+2, . . . so we may group terms by
symmetry to find ∑

σ∈L(µ|λ)

xσ =
∑

ν∈Y

mν [Xℓ(µ)]
∑

σ∈Lν(µ|λ)

x
|σ−1(1)|
1 · · ·x|σ−1(ℓ(µ))|

ℓ(µ)

where Lν(µ|λ) is the set of labellings σ : µ ∗ rev(λ) → [µ + ℓ(ν)] such that σ ∈ L(µ|λ) and for all
1 ≤ i ≤ ℓ(ν), |σ−1(ℓ(µ) + i)| = νi. Notice that |Lν (µ|λ)| < ∞ for all ν.

We may further subdivide the sets Lν(µ|λ) now to account for the value of x
|σ−1(1)|
1 · · ·x|σ−1(ℓ(µ))|

ℓ(µ)
.

For ℓ(α) ≤ ℓ(µ) let L(α|ν)(µ|λ) denote the set of all σ ∈ Lν(µ|λ) such that |σ−1(i)| = (α ∗ 0ℓ(µ)−ℓ(α))i.
Then

s(µ|λ) =
∑

(α|ν)

|L(α|ν)(µ|λ)|x
αmν [Xℓ(µ)].

Thus
K

(µ|λ)
(α|ν) = |L(α|ν)(µ|λ)| ∈ Z≥0.

Remark 9. Note that K
(µ|λ)
(α|ν) = |L(α|ν)(µ|λ)| gives a combinatorial formula for the almost symmet-

ric Kostka coefficients. This formula generalizes the well known formula Kλ,µ = | SSYT(λ, µ)| where
SSYT(λ, µ) is the set of semistandard Young tableaux with shape λ and content µ.

Example 5. We saw before that

s(2|3,1) = x3
1s(2,1)[X1] + x2

1s(3,1)[X1]

which we can expand as

s(2|3,1) = x3
1m(2,1)[X1]+2x3

1m(1,1,1)[X1]+x2
1m(3,1)[X1]+x2

1m(2,2)[X1]+2x2
1m(2,1,1)[X1]+3x2

1m(1,1,1,1)[X1].

This gives that, for example, K
(2|3,1)
(2|1,1,1,1) = 3 which corresponds to the 3 diagrams:
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2

1 3

1 4 5

1 ω ω + 1

2

1 4

1 3 5

1 ω ω + 1

3

1 4

1 2 5

1 ω ω + 1

Note that the above fillings in the rev(λ) = (1, 3) component are exactly, up to shifting indices, the
semistandard Young tableuax of shape (3, 1) with content (1, 1, 1, 1) (and hence standard). This reflects
that in the monomial-Schur expansion of s(2|3,1) there is one copy of x2

1s(3,1)[X1] and K(3,1),(1,1,1,1) = 3.

We also have that K
(2|3,1)
(3|1,1,1,1) = 2 which may be seen by computing the labellings in L(3|1,1,1)(2|3, 1)

directly:

2

1 3

1 1 4

1 ω ω + 1

1

1 2

1 3 4

1 ω ω + 1

From the computation of K
(2|3,1)
(2|1,1,1,1) one might be tempted to guess that there is always a way to

compute the almost symmetric Kostka numbers by classical Kostka numbers in some obvious manner.
However, the example of K

(2|3,1)
(3|1,1,1,1) shows that it is not always so simple. It particular, the filling

1

1 3

1 2 4

1 ω ω + 1

has a reverse standard filling of rev(λ) but is not in L(3|1,1,1)(2|3, 1) since coinv 6= 0.

5 Parabolic Demazure Character Formula

In this section we are going to show that the monomial-Schur expansion of s(µ|λ) has non-negative
coefficients using the Demazure character formula by relating s(µ|λ) to the representation theory of
parabolic subgroups of type GL . This is a strictly stronger result than Theorem 4.8 and we do not find
a simple combinatorial formula for the coefficients of this expansion. The main result of this section,
Theorem 5.9, may be viewed as a Demazure formula for parabolic subgroups of GL although it will follow
almost directly from the usual Demazure formula.

Definition 5.1. Define the scalars M
(µ|λ)
(α|ν) to be the coefficients of the expansion of the almost symmetric

Schur functions into the monomial-Schur basis of P(ℓ(µ))+, i.e.

s(µ|λ) =
∑

(α|ν)
ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|ν)x

αsν [Xℓ(µ)].

If ℓ(α) > ℓ(µ) we simply set M
(µ|λ)
(α|ν) = 0.

We wish to show that M
(µ|λ)
(α|ν) ∈ Z≥0 but in order to do so we must first review some representation

theory in type GL .
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Definition 5.2. Let n ≥ 1. Define Bn to be the Borel subgroup of upper-triangular matrices in GLn

and let Hn denote the group of diagonal matrices in GLn . For 0 ≤ k ≤ n denote by Pn(k) the group of
M ∈ GLn such that Mij = 0 if either 1 ≤ j < i ≤ k or j ≤ k ≤ i− 1. Lastly, let Ln(k) = Hk ×GLn−k ⊂
GLn under the block diagonal embedding GLk ×GLn−k → GLn . Let bn denote the Lie algebra of Bn

i.e. the set of upper triangular n × n matrices over C with the usual commutator. Let U(bn) denote
the universal enveloping algebra of bn. For a dominant integral weight λ ∈ Zn

≥0 let Vλ denote the
corresponding highest weight representation of GLn .

Definition 5.3. Given a finite dimensional polynomial representation V of Hn we will denote by
char(V ) ∈ Z[x1, . . . , xn] the formal character of V as

char(V ) =
∑

α∈Zn
≥0

dimHomHn(α, V )xα.

Definition 5.4. [Dem74] Given a dominant integral weight λ ∈ Zn
≥0 and σ ∈ Sn define the Demazure

module Vλ
σ(λ) to be the Bn-module

Vλ
σ := U(bn)v

where v ∈ Vλ
σ is any weight vector with weight σ(λ).

Remark 10. Notice that the Demazure module Vλ
σ is only well defined up to the vector σ(λ). Therefore,

we may instead index these modules as
Vλ
σ(λ) := Vλ

σ .

Theorem 5.5. (Demazure Character Formula)[And85] Given a dominant integral weight λ and σ ∈ Sn

char(Vλ
σ(λ)) = Kσ(λ).

Remark 11. The Demazure character formula was first conjectured by Demazure [Dem74] but the first
complete proof was given by Andersen [And85] by realizing the Demazure modules as spaces of sections of
vector bundles of Schubert varieties and showing that the singularities of Schubert varieties are rational.

Definition 5.6. Let (µ|λ) ∈ Σ. For all n ≥ ℓ(µ) + ℓ(λ) define

V(n)(µ|λ) := Vsort(µ∗λ)∗0n−ℓ(sort(µ∗λ))

µ∗0n−ℓ(µ)−ℓ(λ)∗rev(λ)
.

If α ∈ Compred and ℓ(α) ≤ k we will write χ(n)(α|λ) for the irreducible Ln(k) = Hk ×GLn−k- module
given by

χ(n)(α|λ) := (α ∗ 0k−ℓ(α))⊗ Vλ∗0n−k−ℓ(λ)

where we are using the shorthand α∗0k−ℓ(α) to represent the corresponding 1-dimensional representation
of Hk .

We may relate the almost symmetric Schur functions s(µ|λ) to Demazure characters via key polyno-
mials directly from the following simple lemma.

Lemma 5.7. Let (µ|λ) ∈ Σ. Then

s(µ|λ) = lim
n

charV(n)(µ|λ).

Proof. In Proposition 4.3 we saw that

s(µ|λ) = lim
n

Kµ∗0n∗rev(λ) = lim
n

Kµ∗0n−ℓ(µ)−ℓ(λ)∗rev(λ).

Using the Demazure character formula we see that

Kµ∗0n−ℓ(µ)−ℓ(λ)∗rev(λ) = char
(
Vsort(µ∗λ)∗0n−ℓ(sort(µ∗λ))

µ∗0n−ℓ(µ)−ℓ(λ)∗rev(λ)

)

so the result follows.
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5.1 Positivity of Monomial-Schur Expansion Coefficients

We require the following simple lemma.

Lemma 5.8. Suppose λ is an integral dominant weight of GLn and α ∗ β = σ(λ) for some σ ∈ Sn with
β weakly decreasing. Then Vλ

α∗β is a Pn(ℓ(α)) submodule of Vλ.

Proof. Let k = ℓ(α). Since Pn(k) is the semidirect product of Bn and Ln(k) we only need to show that
Vλ
α∗β is preserved under the action of both Bn and Ln(k). Since Vλ

α∗β is by definition a Bn-module it

suffices to show that Vλ
α∗β is preserved under the action of Idk ×GLn−k .

We will proceed by induction. To start fix v0 ∈ Vλ
α∗β to be a nonzero vector with weight α∗β. Then for

all k + 1 ≤ i < j ≤ n, since β is weakly decreasing, Ejiv = 0 ∈ Vλ
α∗β . Suppose now that v0, v1, . . . , vm+1

is a sequence of weight vectors in Vλ
α∗β with vr+1 = Eirjrvr for all 0 ≤ r ≤ m for some 1 ≤ ir < jr ≤ n

and that
Ejivr ∈ Vλ

α∗β

for all k + 1 ≤ i < j ≤ n and 0 ≤ r ≤ m. Note that any weight vector in Vλ
α∗β may be obtained using

such a chain. Now fix some k + 1 ≤ i < j ≤ n. We see that

Ejivm+1

= EjiEimjmvm

= (EimjmEji + [Eji, Eimjm ]) vm

= Eimjm (Ejivm) + [Eji, Eimjm ]vm.

By assumption Ejivm ∈ Vλ
α∗β so that, since im < jm, Eimjm (Ejivm) ∈ Vλ

α∗β . Therefore, it suffices to

show that [Eji, Eimjm ]vm ∈ Vλ
α∗β.

There are a few cases we must consider. First, assume i = im. Then

[Eji, Eimjm ]vm = (Ejjm − δj,jmEii) vm = Ejjmvm − cvm

for some scalar c. If j ≤ jm then Ejjmvm ∈ Vλ
α∗β automatically. If instead j > jm, then k + 1 ≤ i =

im < jm so Ejjmvm ∈ Vλ
α∗β by the inductive hypothesis. Either way [Eji, Eimjm ]vm ∈ Vλ

α∗β.
Now assume j = jm. Then

[Eji, Eimjm ]vm = (δi,imEjj − Eimi) vm = cvm −Eimivm

for some scalar c. If im ≤ i then Eimivm ∈ Vλ
α∗β automatically. If im > i then, since k + 1 ≤ i,

Eimivm ∈ Vλ
α∗β by the inductive hypothesis. In either case, [Eji, Eimjm ]vm ∈ Vλ

α∗β . Lastly, if i 6= im and

j 6= jm then [Eji, Eimjm ] = 0 so [Eji, Eimjm ]vm = 0 ∈ Vλ
α∗β trivially.

Since the group Ln(k) is reductive we obtain the following representation theoretic interpretation for

the coefficients M
(µ|λ)
(α|γ) .

Theorem 5.9. Let (µ|λ), (α|γ) ∈ Σ. For all sufficiently large n

M
(µ|λ)
(α|γ) = dimHomLn(ℓ(µ))

(
χ(n)(α|ν),V(n)(µ|λ)

)
∈ Z≥0.

Proof. From Lemma 5.7 and the definition of the coefficients M
(µ|λ)
(α|γ) we see that for n sufficiently large

∑

(α|ν)
ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|ν)x

αsν [xℓ(µ)+1 + . . .+ xn] = charV(n)(µ|λ).

From Lemma 5.8 we may decompose V(n)(µ|λ) into irreducible Ln(ℓ(µ)) submodules as

V(n)(µ|λ) =
⊕

(α|ν)
ℓ(α)≤ℓ(µ)

χ(n)(α|ν)
⊕d

(n)

(α|ν)
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where d
(n)
(α|ν) = dimHomLn(ℓ(µ))

(
χ(n)(α|ν),V(n)(µ|λ)

)
. Notice that

charχ(n)(α|ν) = xαsν [xℓ(µ)+1 + . . .+ xn].

Putting this together we find that for all n sufficiently large
∑

(α|ν)
ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|ν)x

αsν [xℓ(µ)+1 + . . .+ xn]

= charV(n)(µ|λ)

= char
⊕

(α|ν)
ℓ(α)≤ℓ(µ)

χ(n)(α|ν)
⊕d

(n)
(α|ν)

=
∑

(α|ν)
ℓ(α)≤ℓ(µ)

charχ(n)(α|ν)
⊕d

(n)
(α|ν)

=
∑

(α|ν)
ℓ(α)≤ℓ(µ)

d
(n)
(α|ν) charχ

(n)(α|ν)

=
∑

(α|ν)
ℓ(α)≤ℓ(µ)

dimHomLn(ℓ(µ))

(
χ(n)(α|ν),V(n)(µ|λ)

)
xαsν [xℓ(µ)+1 + . . .+ xn].

Lastly, as the terms xαsν [xℓ(µ)+1 + . . . + xn] for ℓ(α) ≤ ℓ(µ) are linearly independent we may compare
coefficients to obtain the result.

As a consequence of the above theorem we obtain a second proof of Theorem 4.8.

Corollary 5.10. Let (µ|λ), (α|γ) ∈ Σ. For all sufficiently large n

|L(α|ν)(µ|λ)| =
∑

γ∈Y

|SSYT(γ, ν)| × dimHomLn(ℓ(µ))

(
χ(n)(α|γ),V(n)(µ|λ)

)
∈ Z≥0.

Proof. First, we expand the Schur functions sγ [Xℓ(µ)] into the monomial symmetric function basis:

s(µ|λ) =
∑

(α|γ)
ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|γ)x

αsγ [Xℓ(µ)]

=
∑

(α|γ)
ℓ(α)≤ℓ(µ)

M
(µ|λ)
(α|γ)x

α
∑

ν∈Y

Kγ,νmν [Xℓ(µ)]

=
∑

(α|ν)
ℓ(α)≤ℓ(µ)




∑

γ∈Y

Kγ,νM
(µ|λ)
(α|γ)



xαmν [Xℓ(µ)].

From here we find
K

(µ|λ)
(α|ν) =

∑

γ∈Y

Kγ,νM
(µ|λ)
(α|γ) .

Lastly, by combining the formula Kγ,ν = |SSYT(γ, ν)|, the expression for M
(µ|λ)
(α|γ) in Theorem 5.9, and

the equation K
(µ|λ)
(α|ν) = |L(α|ν)(µ|λ)| from the proof of Theorem 4.8 we conclude the desired result.

Remark 12. The inverse Kostka coefficients K
(−1)
γ,λ are given by

mγ =
∑

λ

K
(−1)
γ,λ sλ.
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Notice that
δγ,λ =

∑

µ

K(−1)
γ,µ Kµ,λ.

The inverse Kostka coefficients are known from the work of Eg̃eciolg̃u-Remmel [ER90] to have an explicit
combinatorial formula involving signed rim hook tabloids which we will not detail here. In the same
way we obtained Corollary 5.10 we may instead expand each mλ into the Schur basis to obtain for all
sufficiently large n

dimHomLn(ℓ(µ))

(
χ(n)(α|ν),V(n)(µ|λ)

)
=
∑

γ∈Y

K(−1)
γ,ν × |L(α|γ)(µ|λ)|.

Using the combinatorial formula for the K
(−1)
γ,λ we see that this gives a purely combinatorial formula.

However, this is not a non-negative combinatorial formula as the inverse Kostka coefficients are often
negative. It would be interesting to find a non-negative combinatorial formula for the M

(µ|λ)
(α|γ) .

Lastly we remark that by carefully taking direct limits of groups and their corresponding modules in
the right way it is possible to simplify the expression in Theorem 5.9:

M
(µ|λ)
(α|γ) = dimHomL∞(ℓ(µ))

(
χ(∞)(α|ν),V(∞)(µ|λ)

)
.
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