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ABSTRACT
This paper describes our participation in the TREC 2023 Deep
Learning Track. We submitted runs that apply generative relevance
feedback from a large language model in both a zero-shot and
pseudo-relevance feedback setting over two sparse retrieval ap-
proaches, namely BM25 and SPLADE. We couple this first stage
with adaptive re-ranking over a BM25 corpus graph scored using a
monoELECTRA cross-encoder. We investigate the efficacy of these
generative approaches for different query types in first-stage re-
trieval. In re-ranking, we investigate operating points of adaptive
re-ranking with different first stages to find the point in graph
traversal where the first stage no longer has an effect on the perfor-
mance of the overall retrieval pipeline. We find some performance
gains from the application of generative query reformulation. How-
ever, our strongest run in terms of P@10 and nDCG@10 applied
both adaptive re-ranking and generative pseudo-relevance feed-
back, namely uogtr_b_grf_e_gb.

1 INTRODUCTION
The University of Glasgow Terrier team participated in the TREC
2023 Deep Learning track to further explore new generative ap-
proaches to retrieval and validate existing approaches by a deeper
exploration of their performance. We investigate generative ap-
proaches to relevance feedback utilising both generative query
reformulation (Gen-QR) and pseudo-relevance feedback (Gen-
PRF) [22] as well as conducting a further evaluation of adaptive
re-ranking [13] on the MS MARCO-v2 corpus [14]. Both of these
approaches overcome the lexical mismatch problem of many clas-
sic retrieval approaches, albeit in different ways. A re-ranker is
normally constrained by the texts that could be retrieved by a first-
stage model. Generative relevance feedback alleviates this problem
by adding expansion terms to the query text attempting to improve
the recall of first-stage retrieval models. Adaptive re-ranking in-
stead expands the initial ranking with candidate documents found
by traversal of a corpus graph to find the nearest neighbours of
highly ranked texts.

We explored the following research questions: (1) Can we val-
idate the performance improvements from generative relevance
feedback on a different test set and downstream ranking model?
(2) What type of queries are most improved or harmed by genera-
tive relevance feedback? and (3) Can the use of a sufficiently large
corpus graph allow a lightweight first-stage ranker to converge to
identical performance of a first-stage learned retrieval function?

To answer these questions, we used our PyTerrier Information
Retrieval (IR) toolkit [15], which allows for the composition of both
lexical and neural retrieval components into flexible pipelines. We

apply two forms of generative relevance feedback over two sparse
first-stage ranking models. Moreover, we apply adaptive re-ranking
with monoELECTRA [16] in this setting to assess the need for com-
plex first-stage pipelines (learned models or weighted expansion
terms) given a sufficiently large corpus graph. Specifically, we use
a large search budget of 5000 over a 32 nearest-neighbour BM25
corpus graph.

The structure of the remainder of this paper is as follows: Section
2 details the notation of retrieval pipelines composed in PyTerrier.
Section 3 describes the methods used in our experiments and the
particular models used in these methods. We then outline our ex-
periment setup. Section 4 summarises our submitted baseline and
group runs. In Section 5 we present our results and analysis before
providing some concluding remarks in Section 6.

2 PYTERRIER RETRIEVAL PIPELINES
Our experiments and submitted runs for the TREC 2023 Deep Learn-
ing Track have been built upon PyTerrier, Python bindings for the
Terrier search engine [15]. The key abstraction of PyTerrier is the
Transformer object, of which all retrieval components are a sub-
class. Using Pandas dataframes, a transformer object transforms
one dataframe to another. To create multi-stage retrieval pipelines,
PyTerrier overloads the bitwise shift operators (« and ») to allow the
chaining of multiple transformers into a single component where
the output of each transformer is directly passed into the next
sequentially.

We express all ranking features described in the rest of this paper
as pipelines of transformers using this sequential operator. For
more information about the PyTerrier platform and the operators’
flexibility, we refer the reader to the documentation, which can be
found at https://pyterrier.readthedocs.io/en/latest/.

3 METHODS
In this section, we outline the background knowledge of Generative
Relevance Feedback (Section 3.1) and Adaptive Re-Ranking (Section
3.2), followed by our experimental setup in Section 3.3.

3.1 Generative Query Reformulation &
Pseudo-Relevance Feedback

Generative query reformulation (Gen-QR) and generative pseudo-
relevance feedback (Gen-PRF) are mechanisms for the expansion
of query terms in ranking pipelines [22]. Originally proposed with
both a weakly supervised fine-tuned variant as well as a zero-shot
prompted instruction-tuned variant, we only cover the latter as
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we do not utilise any fine-tuned checkpoints in our generative
expansion stage.

Recent developments in language model pre-training [17, 20,
21] have led to a new paradigm in language modelling known as
prompting [5] in which a task is described with some input in a zero-
shot setting to a language model. Due to extensive pre-training and
additional fine-tuning on instruction style inputs [6], these models
can perform a task that has not been observed in training data [5].
This zero-shot generalisation poses some benefits in retrieval as
the labelling of ground truth by experts for neural models is an
expensive process [1].

Following Wang et al. [22], we define query reformulation as
a process P which, given a user query 𝑞0, reformulates it as 𝑞𝑟
potentially conditioned on some additional context to improve the
retrieval effectiveness of the downstream retrieval pipeline.

𝑞𝑟 = P(𝑞0, . . . ) (1)
In equation 1, . . . is any additional context, such as an initial rank-

ing in the case of pseudo-relevance feedback. Generative relevance
feedback prompts a large language model (LLM) to suggest expan-
sion terms to improve the performance of a retrieval model 1. In the
case of Gen-QR, no additional context is supplied to the generative
model. However, when applying Gen-PRF, a ranking of 𝐾 docu-
ments from a corpus 𝐷 by some score function 𝑠 , {𝑠 (𝑑, 𝑞0);∀𝑑 ∈ 𝐷}
is provided as topical context for the expansion and/or re-weighting
of query terms.

The authors propose multiple pruning criteria to reduce the
context size provided to the Gen-PRF model. We use the approach
Top-P and outline its method as follows. To select𝑀 context pieces
from documents in an initial ranking 𝑅 (this process is simplified for
passage ranking as we do not further split passages), each document
𝑑 is split into passages. The context 𝐶 of length𝑀 is then chosen
as follows:

𝐶Top-P (𝑅, 𝑞0) =
𝑀

argmax
𝑝∈𝑅

𝑠 𝑠 (𝑝, 𝑞0) (2)

Example pipelines are as follows: Gen-QR with FLAN-T5 can be
applied before BM25 retrieval, re-ranked with monoELECTRA:

QR(FLAN-T5) >> BM25 >> monoELECTRA (3)
Where in Equation 3, QR(FLAN-T5) is the generative reformu-

lation of a query using FLAN-T5. Alternatively, Top-P context Gen-
PRF with FLAN-T5 can be applied to a first-stage retrieval by BM25,
re-ranked by monoELECTRA:

BM25 >> PRFTop-P (FLAN-T5) >> BM25 >> monoELECTRA
(4)

3.2 Graph-based Adaptive Re-Ranking (GAR)
We utilise graph-based adaptive re-ranking (GAR), which is an
efficient approach to improving re-ranking performance [13]. GAR
works within a cascading retrieval pipeline in which new candidate
documents are found by traversing a nearest-neighbour graph𝐺 =

(𝑉 , 𝐸) where each node in 𝑉 represents a document in the corpus.
1Prompt forGen-PRF: Improve the search effectiveness by suggesting expansion terms
for the query:{input_query}, based on the given context information: {context}

Each edge in 𝐸 is weighted by some heuristic, either a lexical or
semantic similarity score between two nodes. Online latency is
unaffected by the chosen number of nearest neighbours. However,
due to the graph structure’s quadratic time and space complexity,
we limit the number of nearest neighbours to a small number and
prune by sorting edge weights in descending order. An online
traversal of this corpus graph is performed by scoring the nearest
neighbours of the initial ranking using some score model 𝑆 . The
highest-ranking document neighbours from the current corpus
graph frontier are added to a re-ranking pool. The initial pool is
then revisited to update the graph frontier. This process alternates
between scoring pools until a predefined compute budget is met.

An example pipeline is as follows: A first-stage BM25 retrieval
is adaptively re-ranked using GAR with a BM25 corpus graph and
a monoELECTRA scoring model:

BM25 >> GARBM25 (monoELECTRA) (5)
Where in Equation 5, GARBM25 (monoELECTRA) represents

adaptive re-ranking over a BM25 corpus graph using monoELEC-
TRA.

3.3 Experimental Setup
We use the following retrieval components, grouped into methods
that perform retrieval or re-ranking and methods that perform
query expansion in the form of query reformulation (QR), pseudo-
relevance feedback (PRF), or adaptive re-ranking (GAR).

Retrieval:
• DPH [3] & BM25 [18]: Lexical retrieval from a Terrier inverted

index over the msmarco-passage-v2 corpus.
• SPLADE2: A distilled SPLADE++ learned sparse model [10, 11].
• monoELECTRA3: A cross-encoder pre-trained with ELECTRA-

style objectives [7] and fine-tuned with 31 localized nega-
tives [16].

Query Expansion:
• Bo1 : Pseudo-relevance feedback using the DFR Bo1 model [2]

over a Terrier index.
• Gen-QR (QR(LLM)): Using the generative encoder-decoder

FLAN-T54 [6] to provide zero-shot query expansion terms with
term weights controlled uniformly by the parameter 𝛽 = 0.5. In
all cases, we use tuned generation hyperparameters from Wang
et al. [22].

• Gen-PRF (PRF𝐶 (LLM)): Using the generative encoder-decoder
FLAN-T5 to provide query expansion terms using a first-stage
ranking as context 𝐶 . Term weights are again controlled uni-
formly by the parameter 𝛽 = 0.5.

• GAR𝐺 (𝑆) : Graph-based Adaptive Re-Ranking using corpus
graph 𝐺 and scoring function 𝑆 [13]. We use a BM25-based
corpus graph with a re-ranking budget of 5000 and 32 nearest
neighbours.
All experiments were conducted in PyTerrier using the ir-

datasets package for corpora and additional test sets (DL-2021 [8],
DL-2022 [9]). PyTerrier is available from https://github.com/terrier-
2naver/splade-cocondenser-ensembledistil
3crystina-z/monoELECTRA_LCE_nneg31
4google/flant5-xxl

https://github.com/terrier-org/pyterrier
https://github.com/terrier-org/pyterrier
https://github.com/terrier-org/pyterrier
https://github.com/terrier-org/pyterrier
https://github.com/terrier-org/pyterrier
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org/pyterrier and the implementation of monoELECTRA is avail-
able from https://github.com/terrierteam/pyterrier_dr. The imple-
mentation of GAR is available from https://github.com/terrierteam/
pyterrier_adaptive and the implementation of Generative QR and
PRF are available from https://github.com/Parry-Parry/pyterrier_
GenerativeQR.We perform all experiments on a de-dupedmsmarco-
v2 corpus due to the added benefits for GAR corpus graph traversal
preventing duplicate nearest neighbours. We then added dupli-
cates before submission. All experiment code is available from
https://github.com/Parry-Parry/terrier_trec_2023.

4 SUBMITTED RUNS
We submitted six group runs to the passage ranking task. We also
submitted five baseline runs.We did not participate in the document
ranking task.

4.1 Baseline Runs
As baseline runs submitted to the 2023 Deep Learning passage
ranking track, we chose two sparse retrieval models, one learned
and one non-parametric model, one sparse retrieval model with
query expansion and two sparse retrieval models re-ranked by a
monoELECTRA cross-encoder. All baselines are summarised as
follows:
• uofg_tr_dph: Performs DPH retrieval on our passage sparse

index.
• uofg_tr_s : Performs SPLADE retrieval retrieval on an msmarco-

passage-v2 SPLADE learned sparse index.
• uofg_tr_dph_bo1: Performs Bo1 divergence from randomness

query expansion over DPH retrieval on our passage sparse index.
• uofg_tr_be: Re-Ranks a first-stage BM25 retrieval using a mono-

ELECTRA cross-encoder.
• uofg_tr_se: Re-Ranks a first-stage SPLADE retrieval using mo-

noELECTRA.

4.2 Submitted Group Runs
For the 2023 Deep Learning passage ranking track, we submitted
the following three group runs:
• uofg_tr_se_gb: Performs SPLADE retrieval, adaptively re-ranked

by monoELECTRA and a BM25 graph.
• uofg_tr_qr_be_gb: Performs Generative Query Reformulation

before BM25 retrieval, adaptively re-ranked by monoELECTRA
and a BM25 graph.

• uofg_tr_b_grf_e_gb: Performs Generative Relevance Feedback
over a first-stage BM25 retrieval re-ranked by monoELECTRA
and a BM25 graph.

4.3 Additional Runs
For the 2023 Deep Learning passage ranking track, we submitted
the following additional three runs:
• uofg_tr_qr_be: Performs Generative Query Reformulation before

BM25 retrieval re-ranked by monoELECTRA.
• uofg_tr_b_grf_e: Performs Generative Relevance Feedback over

a first-stage BM25 retrieval re-ranked by monoELECTRA.
• uofg_tr_be_gb: Performs BM25 retrieval, adaptively re-ranked

by monoELECTRA and a BM25 graph.

5 RESULTS & ANALYSIS
In Table 1, we present the performance of each of our runs contrast-
ing group runs with baseline runs5 and the Best and Median results
averaged across all judged topics. Across all metrics, our group runs
improve over the median, with our additional runs also improving
over the median in some cases, notably when adaptive re-ranking
is applied with monoELECTRA over BM25 (uogtr_be_gb).

Generative methods versus SPLADE. Our SPLADE baseline
re-ranked with monoELECTRA (uogtr_se) outperforms all runs
with BM25 first stages in terms of Recall@100 and MAP even when
adaptive re-ranking is applied and outperforms all Gen-QR runs
in terms of nDCG@10. As generative relevance feedback is a com-
pletely zero-shot method, this is not unexpected and consistent
performance improvements are observed across all metrics. Com-
paring uogtr_be and uogtr_qr_be, the diversification of query terms
by Gen-QR is effective in improving first-stage lexical ranking mod-
els but fails to outperform the expansions of the learned SPLADE
model. We observe improvements over SPLADE when applying
Gen-PRF in nDCG@10, MAP, and R@100, suggesting that the con-
text provided from the first-stage ranking is sufficient to ground
expansion terms to suitable topics.

GAR is a stronger standalone method. Contrasting the use
of generative relevance feedback (uogtr_qr_be and uogtr_b_grf_e)
against the use of GAR (uogtr_be_gb) we observe that GAR alone
provides stronger candidates to the re-ranking stage than Gen-QR
or Gen-PRF improving both precision and recall based metrics. Fur-
thermore, measured by 4 of 5 metrics, the use of GAR is more effec-
tive in improving performance than the use of SPLADE expansions.
We propose that this is due to the rank bias of the GAR algorithm, as
candidate texts are chosen from the neighbourhood of the highest-
ranking documents aligning well with the cluster hypothesis in
contrast to the zero-shot expansion terms provided by generative
relevance feedback. However, the computational expense of GAR is
determined by a compute budget, and further research is warranted
to find the Pareto-optimal approach for smaller budgets.

Gen-PRF with GAR is most effective. Our most effective run
by P@10 and nDCG@10 uses Gen-PRF and adaptive re-ranking.
We observe improvements in nDCG@10 over SPLADE expansions
(0.5489 versus 0.5394) when using GAR, suggesting that the diversi-
fication provided by generative expansion terms can be more effec-
tive in providing a strong initial pool for GAR corpus graph traver-
sal. We note that SPLADE-based runs (uogtr_se and uogtr_se_gb)
have greater recall and MAP than any generative relevance feed-
back pipelines. However, the zero-shot nature of these approaches
coupled with user tendencies to only interact with the top 10 re-
sults of a search [12] reinforces generative relevance feedback as a
compelling approach compared to learned first-stage models. Fur-
thermore, addressing RQ (1), we find that Gen-QR and Gen-PRF
generalise to a new test set and improve the retrieval performance
of a monoELECTRA-based pipeline with and without adaptive re-
ranking.

https://github.com/terrier-org/pyterrier
https://github.com/terrierteam/pyterrier_dr
https://github.com/terrierteam/pyterrier_adaptive
https://github.com/terrierteam/pyterrier_adaptive
https://github.com/Parry-Parry/pyterrier_GenerativeQR
https://github.com/Parry-Parry/pyterrier_GenerativeQR
https://github.com/Parry-Parry/terrier_trec_2023
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Table 1: Results on the TREC Deep Learning 2023 Passage Ranking task. Best and Median performance is an aggregate over the
best-performing model for each topic. Runs that outperform the median are denoted with ⋄. The strongest performance in
each metric is denoted bold, the second strongest is underlined.

Run ID Pipeline P@10 NDCG@10 MRR MAP R@100

Best (Per-topic aggregate) 0.7000 0.7892 0.9939 0.3839 -
Median (Per-topic aggregate) 0.4085 0.5329 0.7803 0.2159 -

Baseline Runs

uogtr_dph DPH 0.1805 0.2825 0.4320 0.0840 0.2310
uogtr_s SPLADE 0.3549 0.4706 0.6725 0.1925 0.4144
uogtr_dph_bo1 DPH » Bo1 » DPH 0.1317 0.2377 0.3613 0.0600 0.1288
uogtr_be BM25 » monoELECTRA 0.3939 0.5227 0.7881⋄ 0.1940 0.3558
uogtr_se SPLADE » monoELECTRA 0.4256⋄ 0.5364⋄ 0.7938⋄ 0.2348⋄ 0.4531

Additional Runs

uogtr_qr_be QR(FLAN-T5) » BM25 » monoELECTRA 0.3963 0.5316 0.8018⋄ 0.1994 0.3668
uogtr_b_grf_e BM25 » PRFTop-P(FLAN-T5) » BM25 » monoELECTRA 0.4122⋄ 0.5376⋄ 0.7790 0.1996 0.3770
uogtr_be_gb BM25 » GAR𝐵𝑀25(monoELECTRA) 0.4159⋄ 0.5451⋄ 0.8046⋄ 0.2285⋄ 0.4240

Group Runs

uogtr_se_gb SPLADE » GAR𝐵𝑀25(monoELECTRA) 0.4293⋄ 0.5394⋄ 0.7934⋄ 0.2401⋄ 0.4706
uogtr_qr_be_gb QR(FLAN-T5) » BM25 » GAR𝐵𝑀25(monoELECTRA) 0.4244⋄ 0.5488⋄ 0.7953⋄ 0.2315⋄ 0.4248
uogtr_b_grf_e_gb BM25 » PRFTop-P(FLAN-T5) » BM25 » GAR𝐵𝑀25(monoELECTRA) 0.4305⋄ 0.5489⋄ 0.7885⋄ 0.2314⋄ 0.4328

(a) Open Directed Queries (b) Closed Directed Queries (c) Advice Queries

Figure 1: Results for each main query type comparing BM25 » monoELECTRA,QR(FLAN-T5) » BM25 » monoELECTRA, BM25 »
PRFTop-P(FLAN-T5) monoELECTRA and SPLADE » monoELECTRA.

5.1 Generative Relevance Feedback
To assess where generative relevance feedback is most effective,
we compare generative expansions with learned expansions via
SPLADE as well as a standard re-ranking pipeline across different
query types. We refer users to the query type definitions proposed
by Broder [4] and expanded by Rose and Levinson [19]. We focus
on directed queries and advice, as the majority of test queries can
be grouped into these classes. As defined by Rose and Levinson
[19], directed queries aim to learn a particular piece of information
about a topic. They can be either closed when there is "a single,
unambiguous answer" to a query or open when the query is an
"open-ended question or one with unconstrained depth". Advice
queries are requests for "advice, ideas, suggestion or instructions".
5Due to an issue with indexing, expansion terms degrade DPH (uogtr_dph_bo1).

We manually classified each Deep Learning 2023 test query into
the groupings mentioned above. From 82 queries, we found that 31
fell in the directed closed class, 23 in the directed open class and
21 in the advice class. We investigate the performance of our runs
within these query groupings.

As shown in Figure 1 (a), in open-directed queries, we find
that Gen-QR is more effective than Gen-PRF or SPLADE in terms
of nDCG@10. As the zero-shot expansions of Gen-QR are not
grounded by either training in-domain or few-shot context from
a first-stage ranker we hypothesize that in cases where the infor-
mation need is broad, the relatively unconstrained diversification
provided by such expansion terms leads to an improvement in both
P@10 and nDCG@10 over other methods. A SPLADE first-stage
retrieval (uogtr_se) shows the strongest performance in terms of
MRR, MAP, and R@100, suggesting that the in-domain training of
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SPLADE allows for the retrieval of more partially relevant docu-
ments than a generative approach.

In Figure 1 (b) we present performance on closed-directed queries.
We observe that any linear trend in metric performance across all
official evaluation metrics observed in Table 1 does not hold for
queries with an unambiguous intent. We consider that diversifi-
cation of terms may be unnecessary in such cases with Gen-PRF
(uogtr_b_grf_e) actually degrading performance over a standard
monoELECTRA re-ranker (uogtr_be) in terms ofMRR. Furthermore,
we observe that in terms of R@100 the grounding of Gen-PRF using
first-stage ranking context does not improve recall over Gen-QR,
reinforcing that pseudo-relevance feedback is unnecessary in these
cases.

In Figure 1 (c) we present performance on advice queries. We
observe that Gen-QR generally performs worse than Gen-PRF and
SPLADE in terms of P@10 and nDCG@10. Upon inspection of
generated expansions by Gen-QR, we observe that without either
fine-tuning or first-stage context to ground expansion terms, the
LLM directly generated advice instead of expansion terms. As we re-
moved stopwords post-generation, much of the semantic structure
was not used. However, many terms formed a part of an answer as
opposed to more general terms for expansion. Inherently this is an
artefact of the instruction-tuning of FLAN-T5, it does not appear
to affect search more generally, as we still observe strong perfor-
mance across other query types. However, this finding may explain
the margin between Gen-QR and Gen-PRF. In future applications,
either fine-tuning or the use of a stronger LLM may alleviate this
issue. In the case of question-style or conversational-style queries,
the LLM misunderstands the full instruction and instead attempts
to answer the question directly which is not always conducive to
the generation of effective expansion terms.

Concerning RQ (2), we find that generative relevance feedback
can improve directed queries with both clear and ambiguous intent.
However, performance can be harmed when a query is posed as a
conversational style question, as the underlying LLM can attempt
to answer the question instead of generating suitable expansion
terms.

5.2 Convergence of Adaptive Re-Ranking
Observing similar performance (identical top 10 texts for multiple
test queries) when adaptive re-ranking is applied with a large cor-
pus graph and budget regardless of first-stage ranker (uogtr_be_gb
and uogtr_se_gb), we consider that by using GAR, the need for
complex first-stage retrieval may be reduced. As relevance judge-
ments are not available at the time of analysis, we instead use Deep
Learning 2022 relevance judgements and test queries for this anal-
ysis. To assess the effect of compute budget on GAR, we apply
adaptive ranking with a compute budget ranging from 100 to 5000
texts. Following TREC Deep Learning assessments, we truncate the
final rankings to 100 texts. We contrast GAR with full re-ranking,
allowing the first-stage retriever to rank up to 5000 texts.

We observe in Figure 2 (a) that rankings by Rank Biased Overlap
(RBO) become increasingly correlated as budget increases, with
the trend plateauing around a budget of 4000. Around a budget of
1000, variance begins to increase as rankings converge, whereas,
below this point, BM25 and SPLADE rankings are almost completely

diverging. As one would expect, the correlation between full re-
rankings of BM25 and SPLADE is not as strong, however does
follow a similar trend to adaptive re-ranking.

We also observe that from a budget of 2000, it can be seen in
Figure 2 (b) that BM25 and SPLADE first stages are within a small
margin of each other in terms of nDCG@10, we found that on both
P@10 and R@100, a similar trend was present. We observe that
SPLADE is only marginally improved by adaptive re-ranking, as
is shown by contrast with full re-ranking and performance mea-
sured on the Deep Learning 2023 test queries (uogtr_se versus
uogtr_se_gb) in Table 1. We observe that full re-ranking of BM25
fails to show continuous improvement with nDCG@10 perfor-
mance plateauing around a budget of 2000, similar to adaptive
re-ranking, however, at a significantly lower value (t-test, p < 0.05).
This can be attributed to lexical mismatch as full re-ranking is
limited by term overlap with a query, whereas GAR can make
document-wise term overlap comparisons. We find that metric per-
formance between SPLADE and BM25 using adaptive re-ranking
is insignificant from a budget of 2000 (t-test, p < 0.05). Addressing
RQ (3), in cases where labelled data is unavailable or financially
infeasible to collect, this finding is compelling as the performance
of a learned sparse model can be closely replicated by BM25 when
using adaptive re-ranking with the caveat that one must have a
suitable re-ranker.

6 CONCLUSIONS
In summary, our participation in the TREC 2023 Deep Leaning track
has been insightful in validating recent approaches to the expan-
sion of both query terms and first-stage rankings. In answering
our research questions, we have found that generative relevance
feedback can transfer to a monoELECTRA cross-encoder and is
further bolstered by adaptive re-ranking. We find that though gen-
erative relevance feedback can be generally effective, the approach
is sensitive to the form of the query being direct as opposed to con-
versational, in which case performance can degrade due to artefacts
from instruction-tuning. We also find that with sufficient compute
budget and corpus graph size, a first-stage lexical model can closely
replicate the metric performance of a learned sparse retrieval model,
with both models’ rankings becoming increasingly correlated by
RBO reaching a maximum correlation of 0.80.
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