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Exponentially Consistent Outlier Hypothesis Testing

for Continuous Sequences
Lina Zhu and Lin Zhou

Abstract

In outlier hypothesis testing, one aims to detect outlying sequences among a given set of sequences, where most sequences
are generated i.i.d. from a nominal distribution while outlying sequences (outliers) are generated i.i.d. from a different anomalous
distribution. Most existing studies focus on discrete-valued sequences, where each data sample takes values in a finite set. To
account for practical scenarios where data sequences usually take real values, we study outlier hypothesis testing for continuous
sequences when both the nominal and anomalous distributions are unknown. Specifically, we propose distribution free tests and
prove that the probabilities of misclassification error, false reject and false alarm decay exponentially fast for three different test
designs: fixed-length test, sequential test, and two-phase test. In a fixed-length test, one fixes the sample size of each observed
sequence; in a sequential test, one takes a sample sequentially from each sequence per unit time until a reliable decision can be
made; in a two-phase test, one adapts the sample size from two different fixed values. Remarkably, the two-phase test achieves a
good balance between test design complexity and theoretical performance. We first consider the case of at most one outlier, and
then generalize our results to the case with multiple outliers where the number of outliers is unknown.

Index Terms

Maximum mean discrepancy, Anomalous detection, Large Deviations, False reject, False alarm

I. INTRODUCTION

In outlier hypothesis testing (OHT), one is given a set of M observed sequences. Most of the sequences are generated i.i.d.

from a nominal probability density function (pdf) fN while the rest of the sequences named outliers are generated i.i.d. from

an anomalous pdf fA. The task of OHT is to identify the set of outliers. A misclassification error event occurs if a wrong set

of sequences are claimed to be outliers; a false alarm event occurs if a set of sequences are claimed to be outliers while there

is no outlier in observed sequences; a false reject event occurs if no sequence is claimed to be outliers while there are outliers

in the observed sequences. Motivated by practical applications of anomalous detection including analyzing anomalous traffic

pattern to identify sensitive data from a hacked computer [1] and extracting anomalous MRI images to alarm malignant tumors

[2], we study the tradeoff among the probabilities of misclassification error, false alarm and false reject of outlier hypothesis

testing for continuous sequences when the number of outliers is unknown.

When the generating distributions are known, outlier hypothesis testing generalizes binary hypothesis testing. In binary

hypothesis testing, one is given a test sequence Y n = (Y1, . . . , Yn) and two known distributions f1 and f2. The task is

to decide whether Y n is generated i.i.d. from f1 or f2. There are two types of error events: type-I error and type-II error

events. Specifically, a type-I error event occurs if Y n is claimed to be generated from f2 while Y n is actually generated

from f1. Analogously, a type-II error event occurs if Y n is claimed to be generated from f1 while Y n is actually generated

from f2. Typically, there are two types of tests: the fixed-length and the sequential tests. In a fixed-length test, one is given

a sequence of a fixed length n. In a sequential test, one takes each sample per unit time until a reliable decision can be

made and thus the length of the observed sequence is a random variable. For a fixed-length test, the tradeoff between the

type-I and type-II error probabilities for optimal tests is characterized by the Chernoff-Stein lemma [3] in the Neyman-Pearson

setting and by Blahut [4] for the Bayesian setting. Specifically, the Chernoff-Stein lemma states that for the optimal test, the

type-II error probability decays exponentially fast with respect to the sample length n at the speed of the Kullback-Leibler

(KL) divergence [5] of two distributions D(f1‖f2) when the type-I error probability is upper bounded by a constant. Balahut

characterized the tradeoff between the decay rates (also known as error exponents) of the type-I and type-II error probabilities

by showing that when type-I error exponent is λ, the maximal type-II error exponent is given by a function E(λ) of λ such

that maxλ≥0 E(λ) = E(0) = D(f1‖f2).
For sequential tests, the optimal performance of binary hypothesis testing was derived by Wald [6] in the Bayesian setting,

who showed that the error exponent pair (D(f2‖f1), D(f1‖f2)) can be achieved simultaneously. In other words, an optimal

sequential test resolves the tradeoff between the type-I and type-II error exponents for fixed-length tests and allows both type-I

and type-II error probabilities to decay exponentially fast at maximal possible rates. Thus, an optimal sequential test has

significantly better performance than an optimal fixed-length test. However, the superior performance of an optimal sequential

test is achieved at the cost of high design complexity. This is because in a sequential test, after collecting each data sample,
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one needs to determine whether to continue collecting additional samples or to make a decision. In contrast, in a fixed-length

test, one makes a decision directly when a fixed number of samples are collected.

One might wonder whether there exists a test that can balance the design complexity and performance between the fixed-

length and the sequential tests for binary hypothesis testing. To answer this question, Lalitha and Javidi [7] proposed a two-phase

test and demonstrated that the test could achieve error exponents close to the sequential test with design complexity similar

to a fixed-length test. Specifically, the test consists of two phases: the first phase is a fixed-length test taking n samples, the

second phase is another fixed-length test taking additional (K − 1)n samples for some real number K ≥ 1 and the second

phase proceeds only if the first phase outputs a reject option.

For the more practical case where the generating distributions are unknown, outlier hypothesis testing is closely related

with statistical classification initiated by Gutman [8]. In the binary case, one is given a testing sequence Y n and two training

sequences (Xn
1 , X

n
2 ), where for each i ∈ {1, 2}, Xn

i is generated i.i.d. from an unknown distribution fi. The task is to

determine whether Y n is generated i.i.d. from an unknown distribution f1 or another unknown distribution f2. Note that binary

classification is more practical than binary hypothesis testing since in practical applications, the exact distributions are usually

unavailable. Instead, training samples are provided. The performance of fixed-length tests was characterized by Gutman [8]

and Zhou, Tan, Motani [9] while the performance of sequential tests was characterized by Haghifam, Tan and Khsiti [10] and

Hsu, Li and Wang [11]. The two-phase tests were proposed and analyzed by Diao, Zhou and Bai [12], [13].

For outlier hypothesis testing with discrete-valued sequences, the performance of fixed-length tests was characterized by

Li and Veeravalli [14] and by Zhou, Wei and Hero [15]. The performance of sequential tests was characterized by Li and

Veeravalli [16]. However, the corresponding results for continuous sequences are limited. The only known result is by Zou et

al. [17] for fixed-length tests. Specifically, the authors of [17] designed a testing using the maximum mean discrepancy (MMD)

metric with a reproducing kernel Hilbert space [18], and showed that the test is exponentially consistent under mild conditions

in the sense that all error probabilities decay exponentially fast for any unknown nominal and anomalous distributions.

However, the results of Zou et al. [17] have several limitations. Firstly, the results were only established for fixed-length

tests while both sequential and two-phase tests were not studied. Secondly, for fixed-length tests, Zou et al. [17] proposed to

check whether each sequence is an outlier individually instead of considering the more powerful joint test that identifies the set

of outliers simultaneously. To solve the above two problems, we propose distribution free tests and prove that the probabilities

of misclassification error, false reject and false alarm decay exponentially fast for three different test designs: fixed-length test,

sequential test, and two-phase test. Our main contributions are summarized as follows.

A. Main contributions

We study outlier hypothesis testing for continuous observed sequences and propose exponentially consistent tests when both

generating distributions are unknown. We first consider the case where there is at most one outlier. In this setting, the null

hypothesis indicates that there is no outlier and each non-null hypothesis specifies a possible outlier. Depending on the way

where the samples are obtained, we propose three test designs: the fixed-length test, the sequential test and the two-phase

test. In a fixed-length test, one fixes the sample size of each observed sequence; in a sequential test, one takes one sample

sequentially from each sequence per unit time until a reliable decision can be made; in a two-phase test, one adapts the sample

size from two different fixed values. For all three tests, we prove that the probabilities of misclassification, false reject and false

alarm decay exponentially fast. Furthermore, we show that the sequential test achieves larger exponents than the fixed-length

test. Finally, analytically and numerically, we show that by changing design parameters, our two-phase test either reduces to a

fixed-length test or approximately achieves the performance of a sequential test and thus strikes a good balance between test

design complexity and outlier detection performance.

We next consider the more practical case where the number of outliers could be more than one and is unknown. To deal

with the unknown number of outliers, for all three types of tests, we first estimate the number of outliers and then identify the

set of outliers if the estimated number is positive. For each test, we analyze its achievable performance and characterize the

exponential decay rates for the probabilities of misclassification, false reject and false alarm. In this case, a misclassification

event occurs if the number of outliers is estimated positive and incorrectly or if the number of outliers is estimated correctly

but the set of outliers is identified incorrectly. A false reject event occurs if the number of outliers is estimated as zero when

there are outliers while a false alarm event occurs if the number of outliers is estimated positive when there is no outlier.

Compared with the case of at most one outlier, the analysis of the misclassification probability is further complicated since

the error event concerning estimating the number of outliers requires additional efforts. Analogous to the case of at most one

outlier, we show that the two-phase test bridges over the fixed-length test and the sequential test by having performance close

to the sequential test and having design complexity propositional to the fixed-length test. Furthermore, we show that there is

a penalty of not knowing the number of outliers, analytically and numerically.

B. Other Related works

We recall other non-exhaustive studies on binary hypothesis testing, binary classification and outlier hypothesis testing.

Sason [19] studied moderate-deviations of binary hypothesis testing. Zeitouni, Ziv and Merhav [20] demonstrated the asymptotic
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optimality of the generalized likelihood ratio test (GLRT) for composite binary hypothesis testing. Merhav and Ziv [21] derived

the Bayesian error exponent for binary classification. Hsu and Wang [22] considered binary classification with mismatched

empirically observed statistics, where the training sequences are generated from distributions that are perturbed versions of

the true generating distribution under each hypothesis. For outlier hypothesis testing of discrete data samples, Bu, Zou and

Veeravalli proposed a linear-complexity test using the clustering idea and showed that the test is exponentially consistent [23].

C. Organization of the Rest of the Paper

The rest of the paper is organized as follows. In Section II, we set up the notation, formulate the problem of outlier hypothesis

testing and recall the definition of the MMD metric. In Section III, we present theoretical results when there is at most one

outlier for three test designs: fixed-length, sequential and two-phase tests. In Section IV, we generalize our results to the case

of multiple outliers, where the number of outliers is unknown. Numerical examples are provided in Section V to illustrate our

theoretical benchmarks. In Section VI, we conclude the paper and discuss future research directions. All proofs are deferred

to appendices for smooth presentation of the paper.

II. PROBLEM FORMULATION

Notation

We use R, R+ and N to denote the set of real numbers, non-negative real numbers and natural numbers, respectively. All

logarithms are base e. All sets are denoted in calligraphic font (e.g., X ). Random variables and their realizations are in upper

case (e.g., X) and lower case (e.g., x), respectively. Given any event A, we use Pr{A} to denote the probability that A occurs.

We use Y n = (Y1, . . . , Yn) to denote a random vector of length n ∈ N. The set of all probability density functions (pdf)

defined on R is denoted as F(R). For any integers (a, b) ∈ N
2, we use [a : b] to denote the set of integers between a and b

and we use [a] to denote [1 : a].

A. Case of at Most One Outlier

Fix integers (M,n) ∈ N
2. Let Yn = {Y n

1 , Y n
2 , ..., Y n

M} ∈ (Rn)M be a set of M sequences, where for each i ∈ [M ], Y n
i

is generated i.i.d. from either a nominal distribution fN ∈ F(R) or an anomalous distribution fA ∈ F(R). Any sequence that

is generated i.i.d. from fA is an outlier. Motivated by practical applications, we assume that (fN, fA) are both unknown. Let

M := [M ] denote the set of all integers from 1 to M . Assume that there is at most one outlier among all M sequences Yn.

The task is to design a test Φ = (τ, φτ ), which includes a potentially random stopping time τ ∈ N and a decision rule φτ ,

to decide among the following M + 1 hypotheses:

• Hi, i ∈ M: the i-th sequence is the outlier.

• Hr: there is no outlier.

The random stopping time τ is with respect to the filtration {Fn}n∈N, where Fn is generated by σ-algebra σ{Y n
1 , . . . Y n

M}
for each n ∈ N.

Under any pair of nominal and anomalous distributions (fN, fA) ∈ F(R)2, to evaluate the performance of a test Φ = (τ, φτ ),
for each i ∈ M, we consider the following misclassification error and false reject probabilities under hypothesis Hi:

βi(φτ |fN, fA) := Pi{φτ (Y
τ ) /∈ {Hi,Hr}}, (1)

ζi(φτ |fN, fA) := Pi{φτ (Y
τ ) = Hr}, (2)

where under the distribution Pi, Y
n
i is generated i.i.d. from the unknown anomalous distribution fA and Y n

j is generated i.i.d.

from the unknown nominal distribution fN when j 6= i. Note that βi(φτ |fN, fA) bounds the probability of the misclassification

error event where the test incorrectly claims a wrong sequence Y n
j with j 6= i as the outlier, while ζi(φτ |fN, fA) bounds the

probability of the false reject event where the test incorrectly claims that there is no outlier while Y n
i is the outlier.

In addition, we also need the following false alarm probability under the null hypothesis:

PFA(φτ |fN, fA) := Pr{φτ (Y
τ ) 6= Hr}, (3)

where under the distribution Pr, all sequences are generated i.i.d. from the unknown nominal distribution fN . Note that

PFA(φτ |fN, fA) bounds the probability of the false alarm event where the test incorrectly claims there is an outlier when all

the sequences are nominal samples.

In the first part of this paper, we propose a fixed-length test, a sequential test and a two-phase test for the case of at most one

outlier. For each test, we show that all three error probabilities decay exponentially fast. In particular, the sequential test has

the largest exponential decay rates while the fixed length test enjoys the simplest design. Our two-phase test, which combines

two fixed-length tests with different sample sizes, strikes a good balance between design complexity and performance.
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B. Case of Multiple Outliers

A more practical case is where there are multiple outliers but the number of outliers is unknown. Since at most less than

half of all sequences can be outliers, the number of outliers is naturally upper bounded by T := ⌈M
2 ⌉ − 1 ≥ 1. In this case,

our task is to estimate the number of outliers and identify the set of outliers if the estimated number is positive.

Let B ⊆ M be a subset of M = [M ], and let YB := {Y n
i }i∈B be the sequences in Yn with indices specified by

the set B. Fix any positive integer t ∈ N and let Ct := {B ⊆ M : |B| = t} be the set of all subsets of M of size t.
Furthermore, let C :=

⋃

t∈[T ] Ct. The number of hypotheses thus increases from M + 1 for the case of at most one outlier to

|C|+ 1 =
∑

t∈[T ] |Ct|+ 1 for the case of at most T outliers. The test design and performance metrics are similar as the case

with at most one outlier except that the non-null hypotheses change from {Hi}i∈M to {HB}B∈C. Specifically, our task is to

design a test Φ = (τ, φτ ) to decide among the following |C|+ 1 hypotheses:

• HB , B ∈ C: the indices of the outliers are specified by B.

• Hr: there is no outlier.

Under any pair of nominal and anomalous distributions (fN, fA) ∈ F(R)2, for each B ∈ C, we consider the following

misclassification error and false reject probabilities under the non-null hypothesis HB:

βB(φτ |fN, fA) := PB{φτ (Y
τ ) /∈ {HB,Hr}}, (4)

ζB(φτ |fN, fA) := PB{φτ (Y
τ ) = Hr}, (5)

where under the distribution PB , Y n
j is generated i.i.d. from the unknown anomalous distribution fA if j ∈ B and Y n

j is

generated i.i.d. from the unknown nominal distribution fN if j /∈ B. The false alarm probability PFA(φτ |fN, fA) under the

null hypothesis is exactly the same as (3).

Analogously to (4) and (5), βB(φτ |fN, fA) bounds the probability of the misclassification error event where the test incorrectly

claims a wrong set of sequences as outliers, while ζB(φτ |fN, fA) bounds the probability of the false reject event where the

test claims there is no outlier when there are outliers.

C. MMD Metric

Consistent with [17], we adopt the MMD metric [24] to design our tests. Given any two distributions f1 and f2, the MMD

distance between f1 and f2 is defined as

MMD2(f1, f2) := Ef1f1 [k(X,X ′)]− 2Ef1f2 [k(X,Y )] + Ef2f2 [k(Y, Y
′)], (6)

where k(·, ·) is a kernel function associated with the Reproducing Kernel Hilbert Spaces [25] and (X,X ′, Y, Y ′) ∼ f1f1f2f2.

Note that MMD2(f1, f2) = 0 if f1 = f2. A usually adopted kernel function is the following Gaussian kernel function

k(x, y) := exp

{

−
(x− y)2

2σ2
0

}

, (7)

where (x, y) ∈ R2 and σ0 ∈ R+ is an positive real number. In this paper, we adopt the Gaussian kernel function in numerical

examples to illustrate our theoretical results.

Given two sequences xn1 = [x1, x2, ..., xn1
] and yn2 = [y1, y2, ..., yn2

] sampled i.i.d. from distributions f1 and f2,

respectively, the MMD between the two sequences is defined as

MMD2(xn1 , yn2) :=
1

n1(n1 − 1)

∑

i,j∈[n1],i6=j

k(xi, xj) +
1

n2(n2 − 1)

∑

i,j∈[n2],i6=j

k(yi, yj)

−
2

n1n2

∑

i∈[1,n1],j∈[1,n2]

k(xi, yj). (8)

It was shown in [24, Lemma 6] that MMD2(xn1 , yn2) is an unbiased estimator of MMD2(f1, f2), i.e., lim
n1,n2→∞

MMD2(xn1 , yn2) =

MMD2(f1, f2).
To illustrate the MMD metric, in Fig. 1, we plot 10 realizations of MMD2(xn1 , yn2) as a function of n1 and n2 when

f1 = N (0, 1), f2 = N (1, 1), where n1 = n2 = n increases from 100 to n = 18000 with the interval of 100. The results show

that MMD2(xn1 , yn2) converges to its expected value MMD2(f1, f2) as the sample size n tends to infinity.

In Fig. 2, we plot MMD2(xn1 , yn2) when n1 = n2 = 6000, f1 = N (µ1, σ
2), f2 = N (µ2, σ

2) as a function for the absolute

difference between the mean values (µ1, µ2) for different variance values of σ2. When µ1 = µ2, the two distributions (f1, f2)
are the same and it is observed that MMD2(xn1 , yn2) is roughly zero. As |µ1 −µ2| grows, the two distributions become more

different and the value of MMD2(xn1 , yn2) increases. The MMD metric is a distance metric for the generating distributions

of continuous sequences and can be used similarly as the KL divergence for the discrete sequences in [9], [14] to design tests

for outlier hypothesis testing with continuous sequences.
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Fig. 1. The values of MMD2(xn1 , yn2 ) when (xn1 , yn2 ) are generated i.i.d. from two Gaussian distributions with mean values (0, 1) and the same variance
1 when the Gaussian kernel is used and n1 = n2 = n.
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Fig. 2. The values of MMD2(xn1 , yn2 ) when (xn1 , yn2 ) are generated i.i.d. from two Gaussian distributions with mean values (µ1, µ2) when the Gaussian
kernel is used and n1 = n2 = 6000.

III. RESULTS FOR AT MOST ONE OUTLIER

In this section, we present our results for fixed-length, sequential and two-phase tests when there is at most one outlier. For

each case, we present the test, explain the asymptotic intuition why the test works, present our theoretical results and discuss

the significance of our results.

A. Fixed-length Test

1) Test Design and Asymptotic Intuition: In a fixed-length test, the stopping time τ is fixed and set to be a positive integer

n ∈ N. To present our test, given any observed sequences yn = (yn1 , . . . , y
n
M ), we need the following scoring function for

each i ∈ [M ]:
Gi(y

n) = max
j∈Mi

MMD2(ynj , ȳ
n
i,j), (9)

where Mi := {j ∈ [M ], j 6= i} denotes all integers in [M ] except i, and ȳn
i,j := {ynk}k∈[M ]:k 6=i,k 6=j collects all observed

sequences yn except yni and ynj . Furthermore, define the following two quantities:

i∗(yn) := argmin
i∈[M ]

Gi(y
n), (10)
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h(yn) := min
i∈[M ]: i6=i∗(yn)

Gi(y
n), (11)

where i∗(yn) denotes the index of sequence that has the smallest scoring function and h(Yn) denotes the second minimal

value of all scoring functions.

For any positive real number λ ∈ R+, given observed sequences yn, our fixed-length test operates as follows:

φn(y
n) =

{

Hi : if h(yn) > λ and i∗(yn) = i;

Hr : otherwise.
(12)

Specifically, the test φn claims that yni is the outlier if the i-th scoring function Gi(y
n) is smallest among all M scoring

functions and the second minimal scoring function h(yn) = min
k∈Mi

Gk(y
n) is above the threshold λ while the test claims that

there is no outlier if the second minimal scoring function h(yn) is no greater than the threshold λ.

We now explain the asymptotic intuition why the test in (12) works. First consider the case that the i-th sequence yni is the

outlier for some i ∈ [M ]. It follows that Gi(y
n) → 0 as the sample size n → ∞. On the other hand, for any k 6= i, the scoring

function satisfies Gk(y
n) ≥ MMD2(yni , ȳ

n
k,i) → MMD2(fN, fA) > 0 as n → ∞. Thus, min

k∈Mi

Gk(y
n) converges to a value

greater than MMD2(fN, fA). Therefore, if the threshold satisfies 0 < λ < MMD2(fN, fA), as the sample size n increases,

the outlier yni can always be found correctly. Next consider the case that there is no outlier. In this case, all sequences are

generated i.i.d. from the unknown nominal distribution fN. Analogously, it follows that Gi(y
n) → 0 for all i ∈ [M ]. Thus, as

long as λ > 0, the correct decision Hr would be decided by the fixed-length test φn when the sample size is large enough. In

summary, when 0 < λ < MMD2(fN, fA), no error event would be made asymptotically. In the next subsection, we show that

all three kinds of error probabilities decay exponentially fast.

2) Theoretical Results and Discussions: Consider any kernel function k(x, y) such that the maximum value is finite, i.e.,

K0 := max(x,y)∈X×Y k(x, y) < ∞. One valid kernel function is the Gaussian kernel function in (7), which satisfies the above

constraint with K0 = 1. The following theorem characterizes the exponential decay rates of the probabilities of misclassification,

false reject, and false alarm for the test in (12) when the number of outliers is at most one.

Theorem 1. Under any pair of nominal and anomalous distributions (fN, fA), for any positive real number λ ∈ R+, the test

in (12) ensures that

1) for each i ∈ [M ], the misclassification and false reject probabilities satisfy

lim inf
n→∞

−
1

n
log βi(φn|fN, fA) ≥

λ2

8K2
0

(

1 + 1
M−2

) , (13)

lim inf
n→∞

−
1

n
log ζi(φn|fN, fA) ≥

(

MMD2(fN, fA)− λ
)2

8K2
0

(

1 + 1
M−2

) I(λ < MMD2(fN, fA)), (14)

where I(·) is the indicator function.

2) the false alarm probability satisfies

lim inf
n→∞

−
1

n
log PFA(φn|fN, fA) ≥

λ2

8K2
0

(

1 + 1
M−2

) . (15)

The proof of Theorem 1 is provided in Appendix A. The key point is to use the statistical properties of the scoring function

Gi(Y
n) for each i ∈ M and apply the McDiarmid’s inequality [26], which is recalled in Lemma 1.

Analogously to [15, Theorem 3] for the discrete case, Theorem 1 implies that the threshold λ tradeoffs the homogeneous

misclassification and false alarm exponent λ2

8K2
0(1+ 1

M−2 )
and the false reject exponent

(MMD2(fN,fA)−λ)
2

8K2
0(1+ 1

M−2 )
. Specifically, if λ

increases, the false reject exponent decreases while the homogeneous misclassification and false alarm exponent increases.

Theorem 1 implies that all three kinds of error probabilities decay exponentially with respect to the sample size n if the

threshold λ satisfies that 0 < λ < MMD2(fN, fA). Since the nominal and anomalous distributions (fN, fA) are both unknown,

choosing a threshold λ determines the set of nominal and anomalous distributions for which all three kinds of error probabilities

decay exponentially fast, which is given by F(λ) :=
{

(fN, fA) ∈ F(R)2 : MMD2[fN, fA] > λ
}

.

Furthermore, it follows from Theorem 1 that as the number of observed sequences M increases, all three exponent rates

increase. This result is consistent with the intuition and the corresponding achievability result [15, Theorem 3] for the discrete

case. This is because with more observed sequences, it is easier to estimate the nominal distribution and identify the outlier.

Finally, we remark that our fixed-length test is not comparable to the test in [17, Eq. (6)] for a known number of outliers

or [17, Eq. (6)] for unknown number of outliers. This is because for both tests in [17] focus on the non-null hypothesis and

the false alarm probability was not studied.
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B. Sequential test

1) Test Design and Asymptotic Intuition: In this section, we present a sequential test with a random stopping time τ and the

decision rule φτ . Let N ∈ N be a fixed integer. Given two positive real numbers (λ1, λ2) ∈ R
2
+, for any observed sequences

yn = {yn1 , . . . , y
n
M}, the stopping time τ of our sequential test is defined as follows:

τ = inf{n ∈ N : n ≥ N − 1, and h(yn) > λ1, or h(yn) < λ2}, (16)

where N is a design parameter of the sequential test to avoid stopping too early. At the stopping time τ , we run the fixed-length

test in (12) with (n, λ) replaced by (τ, λ1). Note that if λ1 ≤ λ2, the stopping time τ always equals to N−1 and the sequential

test reduces to the fixed-length test in (12). Thus, we require that λ1 > λ2 to ensure the test has random stopping time and

thus superior performance as demonstrated in Theorem 2.

We next discuss the asymptotic intuition why the sequential test works. First consider the case that yni is the outlier for

some i ∈ [M ]. In this case, it follows that Gi(y
n) → 0 and Gk(y

n) → MMD2(fN, fA) for any k 6= i. It follows that

h(yn) → MMD2(fN, fA). Thus, when N is sufficiently large, if 0 < λ2 < λ1 < MMD2(fN, fA), the sequential test could

make a correct decision. On the other hand, if there is no outlier, it follows that Gk(y
n) → 0 for all k ∈ [M ] and thus

h(yn) → 0. When N is sufficiently large and λ2 > 0, the null hypothesis could be correctly output. In summary, as long

as the thresholds satisfy 0 < λ2 < λ1 < MMD2(fN, fA), when N is sufficiently large, the sequential test makes no error

asymptotically. In the following theorem, we explicitly bound the average stopping time E[τ ] under each hypothesis and show

that all three kinds of error probabilities decay exponentially fast with the same exponent rate with respect to the average

stopping time if 0 < λ2 < λ1 < MMD2(fN, fA).
2) Theoretical Results and Discussions:

Theorem 2. Under any pair of nominal and anomalous distributions (fN, fA), for any positive real numbers (λ1, λ2) ∈ R
2
+

such that λ1 > λ2, our sequential test ensures that

1) when N is sufficiently large, the average stopping time satisfies

max
i∈[M ]

EPi
[τ ] ≤

{

N if λ1 < MMD2(fN, fA),
∞ otherwise.

(17)

EPr
[τ ] ≤ N. (18)

2) for each i ∈ [M ], the misclassification and false reject error probabilities satisfy that if λ1 < MMD2(fN, fA),

lim inf
N→∞

−
1

EPi
[τ ]

log βseq
i (φτ |fN, fA|) ≥

λ2
1

8K2
0

(

1 + 1
M−2

) , (19)

lim inf
N→∞

−
1

EPi
[τ ]

log ζseqi (φτ |fN, fA) ≥
(MMD2(fN, fA)− λ2)

2

8K2
0

(

1 + 1
M−2

) , (20)

3) the false alarm probability satisfies

lim inf
N→∞

−
1

EPr
[τ ]

log Pseq
FA(φτ |fN, fA) ≥

λ2
1

8K2
0

(

1 + 1
M−2

) . (21)

The proof of Theorem 2 is provided in Appendix B. To prove Theorem 2, we first upper bound the average stopping time

under each non-null hypothesis and the null hypothesis. Subsequently, we use the similar idea to prove Theorem 1 to bound all

three kinds of error probabilities, including calculating the expected value of the scoring function and applying the McDiarmid’s

inequality [26].

It follows from Theorems 1 and 2 that both the sequential test and the fixed-length test achieve the same misclassification

and false alarm exponent while the sequential test achieves a larger false reject exponent. Furthermore, the sequential test

resolves the tradeoff between the false reject exponent and the homogeneous misclassification and false alarm exponent. The

superior performance of the sequential test results from the freedom to stop at any possible time and the uses of two different

thresholds (λ1, λ2).
If one considers the Bayesian error probability criterion by calculating a weighted sum of three error probabilities, the

error exponent is then the smallest exponent rate among exponent rates of three error probabilities. For the fixed-length

test, the achievable Bayesian exponent is maxλ∈(0,MMD2(fN,fA)) min

{

λ2

8K2
0
(1+ 1

M−2
)
, (MMD2(fN,fA)−λ)2

8K2
0
(1+ 1

M−2
)

}

, which equals to

(MMD2(fN,fA))2

32K2

0
(1+ 1

M−2
)

when λ = 1
2MMD2(fN, fA). In contrast, for the sequential test, the Bayesian exponent equals to

max
(λ1,λ2)∈(0,MMD2(fN,fA)):λ1>λ2

min







λ2
1

8K2
0

(

1 + 1
M−2

) ,
(MMD2(fN, fA)− λ2)

2

8K2
0

(

1 + 1
M−2

)







, (22)
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which is greater than
(MMD2(fN,fA)−ε)

2

8K2
0(1+ 1

M−2 )
for any ε ∈ (0, 1

2MMD2(fN, fA)) by setting λ2 = ε and λ1 = MMD2(fN, fA) − ε.

Thus, the Bayesian exponent of the sequential test is larger than the Bayesian exponent of the fixed-length test.

The above analyses show that the sequential test achieves significantly better performance than the fixed-length test. This

mainly results from the freedom of choosing a random stopping time. Specifically, if it is challenging to identify the outlier

among a tuple of sequences, one can choose to collect more samples until a reliable decision could be made. However, such a

test design is complicated since one needs to check the stopping criterion after collecting each data sample. One might wonder

whether we can achieve the superior performance of the sequential test with a simple test design similar to a fixed-length test.

In the next subsection, we answer this question affirmatively by proposing a test with two possible stopping times and prove

that the test balances the performance of a fixed-length or a sequential test by choosing different test parameters.

C. Two-phase test

1) Test Design and Asymptotic Intuition: Fix two integers (K,n) ∈ N
2. Similarly to the sequential test, our two-phase test

has a random stopping time τ . However, the difference is that τ can only take two possible values, either n or Kn. This is

the reason why the test is named the two-phase test. Fix three positive real numbers (λ1, λ2, λ3) ∈ R
3
+. For any observed

sequences yKn = {yKn
1 , . . . , yKn

M }, the random stopping time τ satisfies

τ :=

{

n : if h(yn) > λ1 or h(yn) < λ2;

Kn : otherwise.
(23)

At the stopping time τ , our two-phase test operates as follows. When τ = n, φτ (y
τ ) applies the fixed-length test φn(y

n) in

(12) with λ replaced by λ1; when τ = Kn, φτ (y
τ ) applies the fixed-length test φn(y

n) in (12) with n replaced by Kn and

λ replaced by λ3.

In summary, our two-phase test operates as follows. In the first phase, the test takes n samples to perform a fixed-length

test with a reject option. The reject decision is output when λ2 < min
k∈Mi

Gk(y
n) < λ1, which means that no hypothesis could

be reliably decided and thus more samples are required. Once a reject decision is made in the first phase, our test proceeds

in the second phase, where (K − 1)n additional samples are collected and a fixed-length test without a rejection is used to

make a final decision. Note that the thresholds (λ1, λ2) play a similar role in the two-phase test as in the sequential test. The

asymptotic intuition why the two-phase test works is highly similar to the sequential test and thus omitted.

2) Theoretical Results and Discussions: The performance of our two-phase test is characterized in the following theorem.

Theorem 3. Under any pair of nominal and anomalous distributions (fN, fA), for any positive real numbers (λ1, λ2, λ3) ∈ R
3
+

such that λ2 < λ1, our two-phase test ensures that

1) when n is sufficiently large, the average stopping time satisfies

max
i∈[M ]

EPi
[τ ] ≤

{

n+ 1, if λ1 < MMD2(fN, fA),
Kn otherwise.

(24)

EPr
[τ ] ≤ n+ 1. (25)

2) for each i ∈ [M ], the misclassification and false reject error probabilities satisfy that if λ1 < MMD2(fN, fA),

lim inf
n→∞

−
1

EPi
[τ ]

log βtp
i (φτ |fN, fA) ≥ min







λ2
1

8K2
0

(

1 + 1
M−2

) ,
Kλ2

3

8K2
0

(

1 + 1
M−2

)







, (26)

lim inf
n→∞

−
1

EPi
[τ ]

log ζtpi (φτ |fN, fA) ≥ min

{

(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

) , (27)

K
(

MMD2(fN, fA)− λ3

)2

8K2
0

(

1 + 1
M−2

) I(λ3 < MMD2(fN, fA))

}

. (28)

Otherwise, if λ1 ≥ MMD2(fN, fA), the exponents of misclassification and false reject error probabilities are the same

as those of fixed-length test with λ3 playing the role of λ.

3) the false alarm probability satisfies

lim inf
n→∞

−
1

EPr
[τ ]

log Ptp
FA(φn|fN, fA) ≥ min







λ2
1

8K2
0

(

1 + 1
M−2

) ,
Kλ2

3

8K2
0

(

1 + 1
M−2

)







. (29)

The proof of Theorem 3 is provided in Appendix C. To prove Theorem 3, we first upper bound the average stopping time

E[τ ] under each non-null hypothesis and the null hypothesis, using the definition of the stopping time τ in (23) and the equality
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E[X ] =
∑

a∈N
Pr{X ≥ a} for any positive integer random variable X . Subsequently, we upper bound three kinds of error

probabilities at the stopping time by generalizing the proof techniques for Theorem 1.

Comparing Theorem 3 with Theorems 1 and 2, we conclude that the two-phase test bridges over the fixed-length test and

the sequential test. Specifically, if we set λ1 = λ2 = λ3 = λ and K = 1, the two-phase test reduces to a fixed-length test.

On the other hand, if K is large enough, it follows from Theorem 3 that the achievable error exponents of the two-phase test

are exactly the same as the sequential test. Analogous to the discussion of the Bayesian exponent below Theorem 2, we list

in Table. I the best achievable Bayesian exponent of the fixed-length test, the sequential test and the two-phase test, where

ε ∈ (0,MMD2(fN, fA)) is arbitrary. As observed, by changing the design parameters, the two-phase test bridges over the

fixed-length and the sequential test.

TABLE I
THE BEST ACHIEVABLE BAYESIAN EXPONENT OF THE FIXED-LENGTH TEST, THE SEQUENTIAL TEST AND THE TWO-PHASE TEST.

Test Fixed-length Sequential Two-phase

The best achievable
Bayesian exponent

(MMD2(fN,fA))2

32K2
0
(1+ 1

M−2
)

(MMD2(fN,fA)−ε)2

8K2
0
(1+ 1

M−2
)

min

{

(MMD2(fN,fA)−ε)2

8K2
0

(

1+ 1

M−2

) ,
K(MMD2(fN,fA))2

32K2
0

(

1+ 1

M−2

)

}

IV. RESULTS FOR MULTIPLE OUTLIERS

In this section, we present our results when there might exist multiple outliers and the number of outliers is unknown.

A. Fixed-length Test

Recall that the unknown number of outliers s satisfies 0 ≤ s ≤ T = ⌈M
2 ⌉ − 1, Ct = {B ⊆ M : |B| = t} for each t ∈ [T ]

collects all subsets of M of size t and C =
⋃

t∈[T ] Ct. To present our test, we generalize the scoring function in (9) as follows.

Given any sequences yn, for each B ∈ C, define the following scoring function:

GB(y
n) = max

j∈MB

MMD2(ynj , ȳ
n
B,j), (30)

where MB := {j ∈ [M ], j /∈ B} denotes all indices in [M ] that do not belong to the set B, and ȳn
B,j := {yni }i∈MB: i6=j

collects all sequences yn
MB

except ynj . Furthermore, for each t ∈ [T ], define the following two quantities:

I∗
t (y

n) := argmin
B∈Ct

GB(y
n), (31)

ht(y
n) := min

D∈Ct: D6=I∗
t (y

n)
GD(y

n), (32)

where I∗
t (Y

n) denotes the set that minimizes the scoring function with size t and ht(Y
n) denotes the second minimal value

of the scoring function.

1) Test Design and Asymptotic Intuition: Since the number of outliers s is unknown, our task is two fold: estimate the

number of outliers as ŝ and identify the set of outliers. Using the scoring function, given observed sequences yn, our test

estimates the number of outliers as follows:

ŝ :=

{

t ∈ [T ] if ht(y
n) > λ and ∀ t̃ ∈ [t+ 1 : T ], ht̃(y

n) < λ,
0 otherwise.

(33)

If ŝ = 0, a null hypothesis Hr is decided. Otherwise, our test further identifies the set of outliers using the following minimal

scoring function test:

φn(y
n) = I∗

ŝ (y
n). (34)

In summary, the test φn claims that there is no outlier if the second minimal scoring function ht(y
n) is less than the

threshold λ for each t ∈ [T ]. Otherwise, the test φn estimates the number of outliers as the largest number in [T ] such that the

second minimal scoring function ht(y
n) is greater than the threshold λ. Subsequently, given a positive estimated number ŝ,

the test φn identifies yn
B as the indices of outliers if the scoring function GB(y

n) is smallest among all |Ct| scoring functions.

We now explain the asymptotic intuition why the above test works. First consider s > 0 and let B ∈ Cs denote the indices

set of outliers. For each t > s, the set CB
t := {D ∈ Ct : B ⊆ D} has size of at least M − s > 2. Given any set D ∈ CB

t , the

scoring function satisfies GD(y
n) → 0 as n → ∞ since each sequence ynj with j ∈ MD is generated from the same nominal

distribution. Thus, for any t > s, the second minimal scoring function satisfies lim infn→∞ ht(y
n) → 0. When t = s, the

scoring function GB(y
n) → 0. For any D ∈ Cs such that D 6= B, the scoring function satisfies that as n → ∞,

GD(y
n) ≥ max

j∈MD∩B
MMD2(ynj , ȳ

n
D,j) →

(

1−
s

M − s− 1

)2

MMD2(fN, fA). (35)
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Thus, as n → ∞, hs(y
n) converges to a value greater than

(

1− s
M−s−1

)2

MMD2(fN, fA). Therefore, the correct number of

outliers could be estimated if 0 < λ <
(

1− s
M−s−1

)2

MMD2(fN, fA). The intuition why the test can identify the correct set

of outliers is very similar to the case of at most one outlier and thus omitted. Next consider the case of s = 0. In this case, it

follows that for any set D ∈ C, the scoring function satisfies GD(y
n) → 0 as n → ∞. Thus, if λ > 0, the correct decision of

null hypothesis can be made.

2) Theoretical Results and Discussions: For ease of notation, given any non-negative real number y ∈ R+, define the

following two exponent functions:

g1(y|fN, fA) :=
y2

8K2
0

(

1 + 1
M−T−1

) . (36)

g2(y|fN, fA) :=

(

(

1− s
M−s−1

)2

MMD2(fN, fA)− y

)2

8K2
0

(

1 + 1
M−s−1

) . (37)

The following theorem characterizes the exponential decay rates of the probabilities of misclassification, false reject, and

false alarm for the test in (34) when the number of outliers is at most T .

Theorem 4. Under any pair of nominal and anomalous distributions (fN, fA), given any positive real number λ ∈ R+, the

test in (34) ensures that

1) when s > 1 and λ <
(

1− s
M−s−1

)2

MMD2(fN, fA), for each B ∈ Cs, the misclassification and false reject probabilities

satisfy

lim inf
n→∞

−
1

n
log βB(φn|fN, fA) ≥ min {g1(λ|fN, fA), g2(λ|fN, fA)} , (38)

lim inf
n→∞

−
1

n
log ζB(φn|fN, fA) ≥ g2(λ|fN, fA), (39)

2) when s = 1 and λ < MMD2(fN, fA), for each B ∈ Cs, the misclassification and false reject probabilities satisfy

lim inf
n→∞

−
1

n
log βB(φn|fN, fA) ≥ g1(λ|fN, fA), (40)

lim inf
n→∞

−
1

n
log ζB(φn|fN, fA) ≥

(

MMD2(fN, fA)− λ
)2

8K2
0

(

1 + 1
M−2

) . (41)

3) the false alarm probability satisfies

lim inf
n→∞

−
1

n
log PFA(φn|fN, fA) ≥ g1(λ|fN, fA). (42)

The proof of Theorem 4 is provided in Appendix D, which generalizes the proof of Theorem 1 by considering multiple

outliers with a more complicated analyses for misclassification probabilities, where additional analyses for the probability of

estimating the number of outliers incorrectly are required. In particular, under each non-null hypothesis, a misclassification

event occurs if the number of outliers is estimated incorrectly or if a wrong set of sequences is claimed as outliers. The event

of estimating the number of outliers incorrectly can be further decomposed to the event that the estimated number Ŝ > s and

the other event that 0 < Ŝ < s, where the latter event occurs if s > 1. The exponents for the probability of the two events

lead to two exponent terms inside the minimization. Furthermore, the exponent for the probability of finding a wrong set of

sequences as outliers equals to λ2

8K2
0(1+ 1

M−s−1 )
, which is lower bounded by λ2

8K2
0(1+ 1

M−T−1 )
since s ≤ T .

Theorem 4 implies that when s > 1, under each non-null hypothesis HB , the misclassification exponent is lower bounded by

the minimal value of the exponent lower bounds for false reject and false alarm probabilities. This is because when the number

of outliers is unknown, the misclassification error event could occur under both the cases of correct and incorrect estimate of

s. We show in Appendix D that the analyses of the false reject and false alarm probabilities share similarly to the analyses of

the probabilities of the events 0 < Ŝ < s and Ŝ > s, respectively.

Similar to the case of at most one outlier, one can also consider the Bayesian error probability criterion for the fixed-length

test with multiple outliers when the number of outliers is unknown. Specifically, for s > 1, the achievable Bayesian exponent

is lower bounded by

max
λ∈

(

0,(1− s
M−s−1)

2
MMD2(fN,fA)

)

min

{

g1(λ|fN, fA), g2(λ|fN, fA)

}

≥

(

1− s
M−s−1

)4

(MMD2(fN, fA))
2

32K2
0(1 +

1
M−T−1 )

, (43)
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where the inequality is achieved when λ = 1
2

(

1− s
M−s−1

)2

MMD2(fN, fA). The Bayesian exponent decreases when s

increases. This is because the second term inside the minimization decreases as s increases since both
(

s
M−s−1 ,

1
M−s−1

)

increase in s. Intuitively, this is because when the number of outliers increases, the differences among scoring functions

decrease, which makes it more challenging to identify the correct set of outliers. Specifically, for any D that collects the indices

of both nominal sequences and outliers, the scoring function maxj∈MD∩B MMD2(ynj , ȳ
n
D,j) decreases when the number s of

outliers increases. This is because the mixture distribution of ȳn
D,j will be closer to fA when s increases.

Furthermore, the case of at most outlier corresponds to T = 1 and the result in Theorem 1 is recovered from Theorem 4 by

setting T = 1. However, we note that when T > 1, even if s = 1, the misclassification exponent under each hypothesis HB

with B ∈ Cs is smaller compared to the case of T = 1. This is because when T > 1, we need to consider the error event that

the estimated number of outliers is greater than s, which results in the exponent λ2

8K2
0(1+ 1

M−T−1 )
.

When the number of outliers s > 0 is known, there would be no false alarm event and any reject decision is a false reject,

which indicates that further investigation is required to identify the correct set of outliers. In this case, we can apply the test in

(12) with (i∗(yn), h(yn)) replaced by (I∗
s (y

n), hs(y
n)), respectively. Similarly to the proof of Theorem 4, for each B ∈ Cs,

the misclassification and false reject probabilities satisfy

lim inf
n→∞

−
1

n
log βB(φn|fN, fA) ≥

λ2

8K2
0

(

1 + 1
M−s−1

) , (44)

lim inf
n→∞

−
1

n
log ζB(φn|fN, fA) ≥ g2(λ|fN, fA). (45)

Note that both exponents are no less than the corresponding results of unknown s. The above results imply that there is a

penalty in the exponents when the number of outliers is unknown. In Fig. 7, we provide a numerical example to show the

penalty of not knowing the number of outliers.

Finally, we remark that Theorem 4 generalizes [9, Theorem 6] for discrete sequences to continuous sequences, analogous

to how Theorem 1 generalizes [9, Theorem 3]. In fact, [9, Theorem 6] holds only if the number of outliers is either zero

or known as a positive number s. In contrast, Theorem 4 holds when the number of outliers is unknown, which can be any

number from zero to the maximal allowable number of outliers T . To deal with the more complicated case, Theorem 4 further

solves the problem of estimating the number of outliers and introduces additional terms inside the misclassification exponent

when s > 1. When specializing Theorem 4 to the setting in [9, Theorem 6], we can apply the same test when the number of

outliers is known in the last comment, and consider the additional possible event of false alarm. Analogously to the proof of

Theorem 4, one can show that the misclassification and false reject probabilities satisfy (44) and (45) while the false alarm

probability satisfies

lim inf
n→∞

−
1

n
log PFA(φn|fN, fA) ≥

λ2

8K2
0

(

1 + 1
M−s−1

) . (46)

B. Sequential test

1) Test Design and Asymptotic Intuition: In this section, we present a sequential test with a random stopping time τ and the

decision rule φτ . Let N ∈ N be a fixed integer. Given two positive real numbers (λ1, λ2) ∈ R
2
+, for any observed sequences

yn = {yn1 , . . . , y
n
M}, the stopping time τ of our sequential test is defined as follows:

τ = inf{n ∈ N : n ≥ N − 1, and ∃ t ∈ [T ] : ∀ t̄ ∈ [t+ 1 : T ], ht̄(y
n) < λ2, ht(y

n) > λ1,

or ∀ t ∈ [T ], ht(y
n) < λ2}, (47)

where N is a design parameter of the sequential test to avoid stopping too early. At the stopping time τ , given sequences yτ ,

our sequential test estimates the number of outliers as follows:

ŝ :=

{

t ∈ [T ] if ht(y
τ ) > λ1 and ∀ t̃ ∈ [t+ 1 : T ], ht̃(y

τ ) < λ2

0 otherwise
(48)

If ŝ = 0, a null hypothesis Hr is decided. Otherwise, our test further identifies the set of outliers using the minimal scoring

function test specified in (34) with n replaced by τ . Note that if λ1 ≤ λ2, the stopping time τ always equals to N − 1 and the

sequential test reduces to the fixed-length test in (34). Thus, we require that λ1 > λ2 to ensure the test has random stopping

time and thus superior performance as demonstrated in Theorem 5.

The asymptotic intuition why the sequential test works follows by combining the corresponding arguments for the sequential

test tailored to the case of at most one outlier and the arguments for fixed-length test for an unknown number of outliers.
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2) Theoretical Results and Discussions: Recall the definitions of g1(y|fN, fA) and g2(y|fN, fA) in (36) and (37), respectively.

The following theorem characterizes the exponential decay rates of the probabilities of misclassification, false reject, and false

alarm for the sequential test when the number of outliers is unknown.

Theorem 5. Under any pair of nominal and anomalous distributions (fN, fA), given any positive real numbers (λ1, λ2) ∈ R
2
+

such that λ1 > λ2, our sequential test ensures that

1) when N is sufficiently large and s > 1, the average stopping time satisfies

max
B∈C

EPB
[τ ] ≤

{

N if λ1 <
(

1− s
M−s−1

)2

MMD2(fN, fA),

∞ otherwise.
(49)

EPr
[τ ] ≤ N. (50)

If s = 1, the results above still hold by replacing
(

1− s
M−s−1

)2

MMD2(fN, fA) with MMD2(fN, fA).

2) when s > 1 and λ1 <
(

1− s
M−s−1

)2

MMD2(fN, fA), for each B ∈ Cs, the misclassification and false reject probabilities

satisfy

lim inf
N→∞

−
1

EPB
[τ ]

log βseq
B (φn|fN, fA) ≥ min {g1(λ1|fN, fA), g2(λ2|fN, fA)} , (51)

lim inf
N→∞

−
1

EPB
[τ ]

log ζseqB (φn|fN, fA) ≥ g2(λ2|fN, fA), (52)

3) when s = 1 and λ1 < MMD2(fN, fA), for each B ∈ Cs, the misclassification and false reject probabilities satisfy

lim inf
N→∞

−
1

EPB
[τ ]

log βseq
B (φn|fN, fA) ≥ g1(λ1|fN, fA), (53)

lim inf
N→∞

−
1

EPB
[τ ]

log ζseqB (φn|fN, fA) ≥

(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

) . (54)

4) the false alarm probability satisfies

lim inf
N→∞

−
1

EPr
[τ ]

log Pseq
FA (φn|fN, fA) ≥ g1(λ1|fN, fA). (55)

The proof of Theorem 5 is similar to the proof of Theorem 2 and provided in Appendix E for completeness.

Analogous to the result for the fixed-length test in Theorem 4, the misclassification exponent of the sequential test equals

to the minimum of the false reject and false alarm exponents. Comparing Theorems 4 and 5, we conclude that the sequential

test resolves the tradeoff between the false reject exponent and the false alarm exponent of the fixed-length test. Analogous

to the case of at most one outlier, when the number of outliers is unknown, the superior performance of the sequential test

also results from the freedom to stop at any possible time and the uses of two different thresholds (λ1, λ2). If one considers

the Bayesian error probability by calculating a weighted sum of three error probabilities, for s > 1, the Bayesian exponent is

lower bounded by

max
(λ1,λ2)∈

(

0,(1− s
M−s−1)

2
MMD2(fN,fA)

)

:λ1>λ2

min {g1(λ1|fN, fA), g2(λ2|fN, fA)} , (56)

which is greater than

(

(1− s
M−s−1 )

2
MMD2(fN,fA)−ε

)

2

8K2
0(1+ 1

M−T−1 )
for any ε ∈

(

0,
(

1 − s
M−s−1

)2

MMD2(fN, fA)
)

when λ2 = ε and

λ1 =
(

1 − s
M−s−1

)2

MMD2(fN, fA) − ε. Since the number of outliers is unknown and might be greater than one, the

achievable Bayesian exponent is smaller than the corresponding result for the case of at most one outlier discussed below

Theorem 2. When T = 1, the Bayesian exponent reduces to the result for the case of at most one outlier. Analogous to the

fixed-length test, the Bayesian exponent decreases when the number of outliers s increases.

C. Two-phase test

1) Test Design and Asymptotic Intuition: Fix two integers (K,n) ∈ N
2. Similarly to the case of at most one outlier, our

two-phase test also has a random stopping time τ which only take two possible values, either n or Kn. Given three positive

real numbers (λ1, λ2, λ3) ∈ R
3
+, for any observed sequences yKn = {yKn

1 , . . . , yKn
M }, the random stopping time satisfies

τ :=

{

n : if ∃ t ∈ [T ] : ∀ t̄ ∈ [t+ 1 : T ], ht̄(y
n) < λ2, ht(y

n) > λ1, or ∀ t ∈ [T ], ht(y
n) < λ2,

Kn : otherwise.
(57)
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Specifically, the test stops at τ = n if the null hypothesis is believed to be true via the condition that ∀ t ∈ [T ], ht(y
n) < λ2 or

if a non-null hypothesis with t number of outliers is believed to be true via the condition that ht(y
n) > λ1 and ∀ t̄ ∈ [t+1 : T ],

ht̄(y
n) < λ2. It both conditions are not satisfied, the test proceeds to collect (K − 1)n samples and stops at τ = Kn.

At the stopping time τ , given sequences yτ , our two-phase test operates as follows. When τ = n, our test estimates the

number of outliers using (33) and identifies the set of outliers using the minimal scoring function test φn(y
n) in (34). When

τ = Kn, we estimate the number of outliers using (33) with n replaced by Kn and then apply the fixed-length test φn(y
n)

in (34) with (n, λ) replaced by (Kn, λ3). In summary, our two-phase test consists of two fixed-length tests using n and

Kn samples, respectively. Thus, the asymptotic intuition why the two-phase test works follows from the arguments for the

fixed-length test and is omitted. Note that when λ2 > λ1, we always have τ = n and thus the two-phase test reduces to the

fixed-length test. Thus, to avoid degenerate cases, we require that λ2 < λ1 as in the sequential test.

2) Theoretical Results and Discussions: Recall the definitions of g1(y|fN, fA) and g2(y|fN, fA) in (36) and (37), respectively.

The performance of our two-phase test is characterized in the following theorem.

Theorem 6. Under any pair of nominal and anomalous distributions (fN, fA), given any positive real numbers (λ1, λ2, λ3) ∈
R

3
+ such that λ1 > λ2, our two-phase test ensures that

1) when n is sufficiently large and s > 1, the average stopping time satisfies

max
B∈C

EPB
[τ ] ≤

{

n+ 1, if λ1 <
(

1− s
M−s−1

)2

MMD2(fN, fA),

Kn otherwise.
(58)

EPr
[τ ] ≤ n+ 1. (59)

If s = 1, the results above still hold by replacing
(

1− s
M−s−1

)2

MMD2(fN, fA) with MMD2(fN, fA).

2) when s > 1 and max{λ1, λ3} <
(

1− s
M−s−1

)2

MMD2(fN, fA), for each B ∈ Cs, the misclassification and false reject

probabilities satisfy

lim inf
n→∞

−
1

EPB
[τ ]

log βtp
B (φn|fN, fA) ≥ min {g1(λ1|fN, fA),Kg1(λ3|fN, fA), g2(λ2|fN, fA),Kg2(λ3|fN, fA)} , (60)

lim inf
n→∞

−
1

EPB
[τ ]

log ζtpB (φn|fN, fA) ≥ min {g2(λ2|fN, fA),Kg2(λ3|fN, fA)} , (61)

If λ1 ≥
(

1− s
M−s−1

)2

MMD2(fN, fA), the exponents of misclassification and false reject error probabilities are the

same as those of fixed-length test with λ3 playing the role of λ.

3) when s = 1 and max{λ1, λ3} < MMD2(fN, fA), for each B ∈ Cs, the misclassification and false reject probabilities

satisfy

lim inf
n→∞

−
1

EPB
[τ ]

log βtp
B (φn|fN, fA) ≥ min {g1(λ1|fN, fA),Kg1(λ3|fN, fA)} , (62)

lim inf
n→∞

−
1

EPB
[τ ]

log ζtpB (φn|fN, fA) ≥ min

{

(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

) ,
K
(

MMD2(fN, fA)− λ3

)2

8K2
0

(

1 + 1
M−2

)

}

. (63)

If λ1 ≥ MMD2(fN, fA), the exponents of misclassification and false reject error probabilities are the same as those of

fixed-length test with λ3 playing the role of λ.

4) the false alarm probability satisfies

lim inf
n→∞

−
1

EPr
[τ ]

log Ptp
FA(φn|fN, fA) ≥ min {g1(λ1|fN, fA),Kg1(λ3|fN, fA)} . (64)

The proof of Theorem 6 generalizes the proof of Theorem 3 to the case of unknown number of outliers and is provided in

Appendix F.

Analogous to the case of at most one outlier, the performance of the two-phase test bridges over the performance of the

fixed-length test in Theorem 4 and the sequential test in Theorem 5. Specifically, if one considers the Bayesian error probability

by calculating a weighted sum of three error probabilities, for s > 1, we list the best achievable Bayesian exponent of three

tests in table (II), where ε ∈
(

0,
(

1− s
M−s−1

)2

MMD2(fN, fA)
)

is arbitrary. As observed, by changing the design parameters,

the two-phase test bridges over the fixed-length and the sequential tests.
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TABLE II
THE BEST ACHIEVABLE BAYESIAN EXPONENT OF THE FIXED-LENGTH TEST, THE SEQUENTIAL TEST AND THE TWO-PHASE TEST WITH MULTIPLE

OUTLIERS.

Test Fixed-length Sequential Two-phase

The best
achievable
Bayesian
exponent

(

1− s
M−s−1

)

4
(MMD2(fN,fA))2

32K2
0
(1+ 1

M−T−1
)

(

(

1− s
M−s−1

)

2
MMD2(fN,fA)−ε

)

2

8K2
0
(1+ 1

M−T−1
)

min







(

(

1− s
M−s−1

)

2
MMD2(fN,fA)−ε

)

2

8K2
0

(

1+ 1

M−T−1

) ,
K

(

1− s
M−s−1

)

4
(MMD2(fN,fA))2

32K2
0

(

1+ 1

M−T−1

)







V. NUMERICAL RESULTS

In this section we simulate the performance of our proposed tests and compare the performance with the tests in [17, Eq.

(13)]. Without loss of generality, assume that the first s sequences of the M observed sequences Yn = (Y n
1 , Y n

2 , ..., Y n
M ) are

outliers. In the calculation of the MMD metric (8), the Gaussian kernel in (7) with σ = 1 is used. Unless otherwise stated, we

set M = 10.

In Fig. 3, for the case of at most one outlier, we plot the sum of simulated misclassification and false reject error probabilities

of fixed-length, sequential, and two-phase tests in Section III and compare the performance of our tests with the test in [17,

Eq. (13)]. We set n ∈ [50] as the sample length of the fixed-length test and the first phase of the two-phase test. For the

sequential test, we set N ∈ [50] where N−1 is the starting length. The expected stopping length of the fixed-length test is thus

n while those of sequential and two-phase tests are obtained by averaging the stopping times over 15000 independent runs of

our tests. As observed from Fig. 3, our proposed fixed-length test has better performance than the test in [17]. Furthermore,

our two-phase test and sequential test achieve much better performance than the fixed-length test. As the expected stopping

time increases, the sequential test achieves best performance while the two-phase test achieves relatively better performance

at very small expected stopping times. The latter is because when N is small, the sequential test tends to stop too early and

makes wrong decisions. The above numerical results are consistent with our theoretical analyses in Section III.
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Fig. 3. Plot of the sum of simulated misclassification and false reject probabilities when there is s = 1 outlier among M = 10 observed sequences for our
fixed-length test in Section III-A, our sequential test in Section III-B, and our two-phase test in Section III-C and the fixed-length test of Zou et al. in [17,
Eq. (13)]. As observed, our fixed-length test outperforms Zou’s test. Furthermore, both our two-phase and sequential tests achieve better performance than
the fixed-length test. Finally, the sequential test has best performance for large expected stopping times while the two-phase test has best performance when
E[τ ] is relatively small. The latter occurs since the sequential test tends to stop too early and makes a wrong decision when the key parameter N is small,
which leads to a rather small expected stopping time.

In Fig. 4, for the same setting as Fig. 3, we plot the average running times of all four tests as a function of the expected

stopping time. As observed, the sequential test is most computationally complicated while the two-phase test and the fixed-

length test have roughly the same computational complexity. The above results are consistent with our test design and theoretical

findings. Combining Figs. 3 and 4, one conclude that our two-phase test strikes a good tradeoff between the performance and

the design complexity between our fixed-length and sequential tests. One might note that the fixed-length test of Zou et al.

in [17] has the smallest computational complexity. This is because the test of Zou et al. checks whether each sequence is an

outlier independently by calculating only one MMD metric and comparing the value with a threshold, which has complexity

of O(M). In contrast, our fixed-length test needs to calculate M − 1 MMD values for each sequence, leading to a complexity

of O(M2). However, as shown in Fig. 3, the fixed-length test of Zou et al. in [17] has the worst performance.
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Fig. 4. Plot of the simulated average running times of our fixed-length, sequential, and two-phase tests in Section III and the fixed-length test of Zou et al. in
[17, Eq. (13)] as a function of the expected stopping time when there is s = 1 outlier among M = 10 observed sequences. As observed, our fixed-length and
two-phase tests have much smaller running times than sequential test. Combining Figs. 3 and 4, one conclude that our two-phase test strikes a good tradeoff
between the performance and the design complexity between our fixed-length and sequential tests.

In Fig. 5, again for the same setup as in Fig. 3, we plot running times of the fixed-length, sequential and two-phase tests

for 300 independent runs of tests for different realizations of test sequences. Specifically, we set n = 20 as sample length for

fixed-length test and the sample length in the first phase for the two-phase test, and set N − 1 = 19 be the starting sample

length of the sequential test. As observed, the sequential test is most sensitive to the variation of test sequences. Specifically,

the sequential test tends to have a very large variance for the random stopping time, which leads to a significantly longer

running time. In contrast, our two-phase test is much more stable.
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Fig. 5. Simulated average running times of our fixed-length, sequential, and two-phase tests in Sections III-A, III-B, and III-C for 300 independent runs of
tests for different realizations of test sequences, when there is s = 1 outlier among M = 10 observed sequences. As observed, our two-phase test is much
more stable than the sequential test in terms of the random stopping time.

In Fig. 6 we plot the sum of simulated misclassification and false reject error probabilities of our fixed-length and two-

phase tests in Sections IV-A and IV-C, respectively. The number of outliers is assumed unknown but upper bounded by T
(T ≤ ⌈M

2 ⌉ − 1 = 4). Analogously to the case of at most one outlier, we compare the performance of our proposed tests

with the MMD-based test in [17, Eq. (13)] when there are under multiple outliers and the number of outliers is unknown.

Similar conclusions as in the case of at most one outlier hold. In particular, once again, our fixed-length test in Section IV-A

outperforms the fixed-length test in [17].
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Fig. 6. Plot for the sum of simulated misclassification and false reject probabilities for our fixed-length test in Section IV-A and two-phase test in Section IV-C
and the fixed-length test of Zou et al. in [17, Eq. (13)], when there are s = 2 outliers among M = 10 observed sequences . As observed, our fixed-length
test also outperforms the test of test of Zou et al.. Furthermore, our two-phase test achieves better performance than the fixed-length test as E[τ ] tends to
infinity.

Finally, in Fig. 7, for the same setting as Fig. 6, we compare the performance of our fixed-length test in Section IV-A when

the number of outliers is unknown with the corresponding simpler test when the number of outliers is known. As observed,

there is a penalty in the performance of not knowing the number of outliers, which is consistent with our remark below

Theorem 4.
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Fig. 7. Plot of the sum of simulated misclassification and false reject probabilities for our fixed-length test in Section IV-A with known and unknown s
when there are s = 2 outliers among M = 10 observed sequences for λ = 0.3MMD2(fN, fA). As observed, there is a penalty in the performance of not
knowing the number of outliers.

VI. CONCLUSION

We studied outlier hypothesis testing for continuous observed sequences and constructed three kinds of test using MMD:

fixed-length, sequential and two-phase tests. We considered both the case of at most one outlier and the case when the number

of outliers could be multiple and unknown. For both cases, we analyzed the performance of all three tests by characterizing

the achievable exponential decay rates for probabilities of misclassification, false reject and false alarm. In both cases, we

showed that the two-phase test bridges over fixed-length and sequential tests by having performance close to the sequential test

and having design complexity propositional to the fixed-length test. Our analyses in the case of unknown number of outliers
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involved a careful analysis of the error event concerning estimating the number of outliers incorrectly and clarified the penalty

of not knowing the number of outliers.

We next discuss future directions. Firstly, we studied achievable performance of various tests when the number of outliers is

uncertain and the generating distributions are unknown. It would be worthwhile to derive converse results for all settings in this

paper to check whether our results are optimal in any regime. Towards this goal, one might modify the generalized Neyman-

Pearson criterion used in the discrete case [9]. Secondly, we were interested in the asymptotic performance and proposed tests

that have exponential complexity with respect to the number of outliers. For practical uses, it would be of interest to propose

low-complexity tests that could achieve performance close to the benchmarks in this paper. To do so, one might generalize the

clustering-based low-complexity test tailored for discrete sequences to continuous sequences [23]. Furthermore, we assumed that

each nominal sample follows the same unknown nominal distribution and each outlier follows the same unknown anomalous

distribution. In practical applications, the nominal samples and outliers could have different distributions that center around

certain distributions. For this case, it would be interesting to generalize the idea in [27] for binary classification of discrete

sequences to outlier hypothesis testing of continuous sequences. Finally, it would be of value to generalize the ideas in this

paper to other statistical inference problems, e.g., distributed detection [28], [29], quickest change-point detection [30], [31]

and clustering [32], [33].

APPENDIX

A. Proof of Theorem 1

Consistent with [17], we need the following McDiarmid’s inequality [26] to bound error probabilities.

Lemma 1. Let g : Xn → R be a function such that for each i ∈ [n], there exists a constant ci < ∞ such that

sup
xn∈Xn,x̃∈X

∣

∣g(x1, . . . , xi, . . . , xn)− g(x1, . . . , xi−1, x̃, xi+1, . . . , xn)
∣

∣ ≤ ci. (65)

Let Xn be generated i.i.d. from a pdf f ∈ P(R). For any ε > 0, it follows that

Pr
{

g(Xn)− Ef [g(X
n)] > ε

}

< exp

{

−
2ε2

∑n

i=1 c
2
i

}

. (66)

Recall that Yn collects all observed sequences (Y n
1 , . . . , Y n

M ), Ȳn
i,j collects all sequences except (Y n

i , Y n
j ) and M = [M ].

Given above definitions and recalling the definition of the test in (12), we can bound three kinds of error probabilities. First

consider the misclassification probability. For each i ∈ [M ], the misclassification probability βi(φn|fN, fA) satisfies

βi(φn|fN, fA) = Pi{φn(Y
n) /∈ {Hi,Hr}} (67)

= Pi {i
∗(Yn) 6= i and h(Yn) > λ} (68)

≤ Pi {Gi(Y
n) > λ} (69)

≤ Pi

{

∃ j ∈ Mi,MMD2(Y n
j , Ȳn

i,j) > λ
}

(70)

≤
∑

j∈Mi

Pi

{

MMD2(Y n
j , Ȳn

i,j) > λ
}

(71)

where (69) follows since Gi(Y
n) ≥ h(Yn) when i∗(Yn) 6= i, (70) follows from the definition of Gi(·) in (9).

To further upper bound (71), we need to apply McDiarmid’s inequality. To do so, we need to calculate the expected value

of MMD2(Y n
j , Ȳn

i,j) and the parameters ci for each i ∈ [(M − 1)n]. Note that under hypothesis Hi, Y
n
i is the outlier and all

other sequences are generated i.i.d. from the nominal distribution. It follows from the definition of the MMD metric in (8) that

EPi
[MMD2(Y n

j , Ȳn
i,j)] = 0. (72)

To bound the Lipschitz constant {ci}, given any observed sequences yn = (yn1 , . . . , y
n
M ), for each i ∈ [M ], define the function

gi,j(ȳ
n
i ) := MMD2(ynj , ȳ

n
i,j), where ȳn

i collects all sequences except yni and ȳn
i,j collects all sequences except (yni , y

n
j ). Note

that gi,j(ȳ
n
i ) is a function of (M − 1)n parameters. For each k ∈ [(M − 1)n], if the k-th element of ȳn

i is replaced by ỹ, we

use gi,j(ȳ
n
i , k, ỹ) to denote the corresponding function value. For each (j, k) ∈ Mi × [(M − 1)n], define

ci,jk := sup
yn,ỹ

|gi,j(ȳ
n
i )− gi,j(ȳ

n
i , k, ỹ)|. (73)

Given any i ∈ [M ], for each j ∈ Mi and any k ∈ [(M − 1)n], similarly to [Eg. (27)-(32)][17], it follows that

|ci,jk | ≤
4K0

n
, k ∈ [n], (74)

|ci,jk | ≤
4K0

(M − 2)n
, k ∈ [n+ 1, (M − 1)n]. (75)
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Thus,

∑

k∈[(M−1)n]

(ci,jk )2 ≤
16K2

0

n

(

1 +
1

M − 2

)

. (76)

Using McDiarmid’s inequality, (71) and (76) leads to

βi(φn|fN, fA) ≤ (M − 1) exp







−nλ2

8K2
0

(

1 + 1
M−2

)







. (77)

Analogously, the false alarm probability PFA is upper bounded as follows

PFA(φn|fN, fA) = Pr{φn(Y
n) 6= Hr} (78)

= Pr{h(Y
n) > λ} (79)

=
∑

i∈[M ]

Pr {i
∗(Yn) = i, and h(Yn) > λ} (80)

≤
∑

i∈[M ]

Pr{i
∗(Yn) = i, and ∃ k ∈ Mi : Gk(Y

n) > λ} (81)

≤
∑

i∈[M ]

∑

k∈Mi

Pr{Gk(Y
n) > λ} (82)

≤
∑

i∈[M ]

∑

k∈Mi

∑

j∈Mk

Pr{MMD2(Y n
j , Ȳn

j,k) > λ} (83)

≤ M(M − 1)2 exp







−nλ2

8K2
0

(

1 + 1
M−2

)







, (84)

where (81) follows since when i∗(Yn) = i, h(Yn) = minj∈Mi
Gj(Y

n) if a false alarm happens, there must exists k ∈ [M ]
that satisfies Gk(Y

n) > λ, (83) follows from the definition of Gi() in (9) and the union bound similarly to (71), and (84)

follows from the McDiarmid’s inequality similarly to (77) since EPr
[MMD2(Y n

j , Ȳn
j,k)] = 0 for each (j, k) ∈ M2 under the

null hypothesis.

Finally, we bound the false reject probability as follows for each i ∈ [M ]:

ζi(φn|fN, fA) = Pi(φn(Y
n) = Hr) (85)

= Pi(h(Y
n) < λ) (86)

≤ Pi

{

∃ (j, k) ∈ M2 : j 6= k, and Gj(Y
n) < λ, Gk(Y

n) < λ
}

(87)

≤
∑

j∈[M ]

∑

k∈Mj

Pi{Gj(y
n) < λ and Gk(Y

n) < λ} (88)

≤
∑

j∈Mi

∑

k∈Mj

Pi{Gj(Y
n) < λ}+

∑

k∈Mi

Pi{Gk(Y
n) < λ} (89)

≤ (M − 1)
∑

j∈Mi

Pi{Gj(Y
n) < λ}+

∑

k∈Mi

Pi{Gk(Y
n) < λ} (90)

≤ M
∑

j∈Mi

Pi{Gj(Y
n) < λ} (91)

= M
∑

j∈Mi

Pi

{

max
k∈Mj

MMD2(Y n
k , Ȳn

j,k) < λ
}

(92)

≤ M
∑

j∈Mi

Pi{MMD2(Y n
i , Ȳn

j,i) < λ}, (93)

where (87) follows from the test design in (12), (88) follows from the definition of h(Yn) in (11), (89) follows since

Pr{Gj(Y
n) < λ, Gk(Y

n) < λ} ≤ min{Pr{Gj(Y
n) < λ},Pr{Gk(Y

n) < λ}}, (92) follows from the definition of Gj(·) in

(9), (93) follows since when j ∈ Mi, MMD2(Y n
i , Ȳn

j,i) ≤ maxk∈Mj
MMD2(Y n

k , Ȳn
j,k) < λ.

It is left to upper bound (93) using the McDiarmid’s inequality. To do so, we need to calculate the expected value of

MMD2(Y n
i , Ȳn

j,i) and calculate the Lipschitz continuous parameters. Note that under hypothesis Hi, Y
n
i is the outlier and all

other sequences are nominal samples, generated i.i.d. from the nominal distribution. It follows from the definition of the MMD

metric in (8) that

EPi
[MMD2(Y n

i , Ȳn
j,i)] = MMD2(fN, fA). (94)
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To bound the Lipschitz constant {ci,k}, we follow the idea below (71). Given any observed sequences yn = (yn1 , . . . , y
n
M ),

for each i ∈ [M ] and j ∈ Mi, define the function gj,i(ȳ
n
j ) := MMD2(yni , ȳ

n
j,i), where ȳn

j collects all sequences except ynj .

Note that gj,i(ȳ
n
j ) is a function of (M − 1)n parameters. For each k ∈ [(M − 1)n], if the k-th element of ȳn

j is replaced by

ỹ, we use gj,i(ȳ
n
j , k, ỹ) to denote the corresponding function value. For each (j, k) ∈ Mi × [(M − 1)n], define

ci,jk := sup
yn,ỹ

|gj,i(ȳ
n
j )− gj,i(ȳ

n
j , k, ỹ)|. (95)

Similarly to (76), we obtain

∑

k∈[(M−1)n]

(cj,ik )2 ≤
16K2

0

n

(

1 +
1

M − 2

)

. (96)

Combining (93) and (96), it follows from McDiarmid’s inequality that if λ < MMD2(fN, fA),

ζi(φn|fN, fA) ≤ M(M − 1) exp







−n
(

MMD2(fN, fA)− λ
)2

8K2
0

(

1 + 1
M−2

)







, (97)

On the other hand, if λ ≥ MMD2(fN, fA), ζi(φn|fN, fA) ≤ 1.

Finally, note that M is finite and taking the sample size n to infity, it follows from (77), (84), and (97) that the exponent

rates of three error probabilities satisfy

lim
n→∞

−
1

n
log βi(φn|fN, fA) ≥

λ2

8K2
0

(

1 + 1
M−2

) , (98)

lim
n→∞

−
1

n
log ζi(φn|fN, fA) ≥

(

MMD2(fN, fA)− λ
)2

8K2
0

(

1 + 1
M−2

) I(λ < MMD2(fN, fA)), (99)

lim
n→∞

−
1

n
log PFA(φn|fN, fA) ≥

λ2

8K2
0

(

1 + 1
M−2

) . (100)

The proof of Theorem 1 is now completed.

B. Proof of Theorem 2

We first bound the expected stopping time under each non-null and null hypothesis. Subsequently, analogously to the analyses

for the fixed-length test, we bound three kinds of error probabilities. Finally, combining the above analyses, we obtain the

desired bound on the achievable exponents of the sequential test.

Recall the definition of the stopping time τ in (16). For each i ∈ [M ], the expected stopping time EPi
[τ ] can be upper

bounded as follows:

EPi
[τ ] ≤

∞
∑

τ ′=1

Pi{τ ≥ τ ′} (101)

≤ N − 1 +

∞
∑

τ ′=N−1

Pi{τ > τ ′}, (102)

where (102) follows since the random stopping time τ ≥ N − 1 by the definition in (16).

If λ1 < MMD2(fN, fA), each probability term inside the sum of (102) satisfies

Pi{τ > τ ′} = Pi{λ2 < h(Yτ ′

) < λ1} (103)

≤ Pi{h(Y
τ ′

) < λ1} (104)

≤ M(M − 1) exp







−τ ′
(

MMD2(fN, fA)− λ1

)2

8K2
0

(

1 + 1
M−2

)







, (105)

where (105) follows similarly to (97) except that n is replaced with τ ′ and λ is replaced by λ1. Combining (102) and (105)

leads to

EPi
[τ ] ≤ N − 1 +M(M − 1)

exp

{

−(N−1)(MMD2(fN,fA)−λ1)
2

8K2
0(1+ 1

M−2 )

}

1− exp

{

−(MMD2(fN,fA)−λ1)
2

8K2
0(1+ 1

M−2 )

} , (106)
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if λ1 < MMD2(fN, fA). On the other hand, if λ1 ≥ MMD2(fN, fA), Pi{τ > τ ′} ≤ 1 and EPi
[τ ] ≤ ∞.

Similarly, the expected stopping time under the null hypothesis satisfies:

EPr
[τ ] ≤ N − 1 +

∞
∑

τ ′=N−1

Pr{τ > τ ′} (107)

= N − 1 +
∞
∑

τ ′=N−1

Pr{λ2 < h(Yτ ′

) < λ1} (108)

≤ N − 1 +

∞
∑

τ ′=N−1

Pr{h(Y
τ ′

) > λ2} (109)

≤ N − 1 +M(M − 1)2
exp

{

−(N−1)λ2

2

8K2
0(1+ 1

M−2 )

}

1− exp

{

−λ2
2

8K2
0(1+ 1

M−2 )

} , (110)

where (110) follows similarly to (84) except that n is replaced with τ ′ and λ is replaced by λ2.

Note that for N sufficiently large,

M(M − 1)

exp

{

−(N−1)(MMD2(fN,fA)−λ1)
2

8K2
0(1+ 1

M−2 )

}

1− exp

{

−(MMD2(fN,fA)−λ1)
2

8K2
0(1+ 1

M−2 )

} ≤ 1. (111)

M(M − 1)2
exp

{

−(N−1)λ2

2

8K2
0(1+ 1

M−2 )

}

1− exp

{

−λ2
2

8K2
0(1+ 1

M−2 )

} ≤ 1. (112)

It follows from (106) and (110) that EPi
[τ ] ≤ N and EPr

[τ ] ≤ N when N is sufficiently large and λ1 < MMD2(fN, fA).
For each i ∈ [M ], the misclassification error probability βseq

i (φτ |fN, fA) satisfies

βseq
i (φτ |fN, fA) ≤

∞
∑

τ ′=N−1

Pi{φτ ′(Yτ ′

) /∈ {Hi,Hr}} (113)

≤
∞
∑

τ ′=N−1

Pi{Gi(Y
τ ′

) > λ1} (114)

≤
∞
∑

τ ′=N−1

(M − 1) exp







−τ ′λ2
1

8K2
0

(

1 + 1
M−2

)







(115)

= (M − 1)

exp

{

−(N−1)λ2

1

8K2
0(1+ 1

M−2 )

}

1− exp

{

−λ2
1

8K2
0(1+ 1

M−2 )

} , (116)

where (115) from (77) with n replaced with τ ′ and λ is replaced by λ1.

Similarly, if λ2 < MMD2(fN, fA), the false reject probability ζseqi (φτ |fN, fA) is upper bounded as follows:

ζseqi (φτ |fN, fA) ≤
∞
∑

τ ′=N−1

Pi

{

φτ ′(Yτ ′

) = Hr

}

(117)

≤
∞
∑

τ ′=N−1

Pi

{

h(Yτ ′

) < λ2

}

(118)

≤
∞
∑

τ ′=N−1

M(M − 1) exp







−τ ′
(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

)







(119)

≤ M(M − 1)

exp

{

−(N−1)(MMD2(fN,fA)−λ2)
2

8K2
0(1+ 1

M−2 )

}

1− exp

{

−(MMD2(fN,fA)−λ2)
2

8K2
0(1+ 1

M−2 )

} , (120)
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where (119) follow the result of (97) with n replaced with τ ′ and λ is replaced by λ2.

Finally, the false alarm probability Pseq
FA(φτ |fN, fA) is upper bounded by

Pseq
FA (φτ |fN, fA) ≤

∞
∑

τ ′=N−1

Pr

{

φτ ′(Yτ ′

) 6= Hr

}

(121)

≤
∞
∑

τ ′=N−1

Pr

{

h(Yτ ′

) > λ1

}

(122)

≤
∞
∑

τ ′=N−1

M(M − 1)2 exp







−τ ′λ2
1

8K2
0

(

1 + 1
M−2

)







(123)

≤ M(M − 1)2
exp

{

−(N−1)λ2

1

8K2
0(1+ 1

M−2 )

}

1− exp

{

−λ2
1

8K2
0(1+ 1

M−2 )

} . (124)

where (123) follow the result of (84) with n replaced with τ and λ is replaced by λ1.

Using (116), (120) and (124), we conclude that the achievable exponents of the sequential test satisfy

1) for each i ∈ [M ], if 0 < λ2 < λ1 < MMD2(fN, fA),

lim
N→∞

−
log βseq

i (φτ |fN, fA)

EPi
[τ ]

≥
λ2
1

8K2
0

(

1 + 1
M−2

) . (125)

lim
N→∞

−
log ζseqi (φτ |fN, fA)

EPi
[τ ]

≥

(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

) , (126)

2) for any λ1 > λ2 > 0,

lim inf
N→∞

−
1

EPr
[τ ]

log Pseq
FA(φτ |fN, fA) ≥

λ2
1

8K2
0

(

1 + 1
M−2

) . (127)

The proof of Theorem 2 is now completed.

C. Proof of Theorem 3

Recall that 0 < λ2 < λ3 < λ1. We first bound the probability that the two-phase test proceeds in the second phase under

each non-null and null hypothesis. For each i ∈ [M ], if λ1 < MMD2(fN, fA), it follows that

Pi{τ = Kn} = Pi {λ2 < h(Yn) < λ1} (128)

≤ Pi {h(Y
n) < λ1} (129)

≤ M(M − 1) exp







−n
(

MMD2(fN, fA)− λ1

)2

8K2
0

(

1 + 1
M−2

)







, (130)

where (130) follows from the same idea to prove (97) for the fixed-length test. Therefore, the expected stopping time EPi
[τ ]

satisfies that if λ1 < MMD2(fN, fA),

EPi
[τ ] = nPi{τ = n}+KnPi{τ = Kn} (131)

≤ n+KnPi{τ = Kn} (132)

≤ n+ nKM(M − 1) exp







−n
(

MMD2(fN, fA)− λ1

)2

8K2
0

(

1 + 1
M−2

)







. (133)

On the other hand, if λ1 ≥ MMD2(fN, fA), Pi{τ = Kn} ≤ 1 and thus EPi
[τ ] ≤ Kn.

Similarly, under the null hypothesis, it follows that

Pr{τ = Kn} = Pr {λ2 < h(Yn) < λ1} (134)

≤ Pr {h(Y
τ ) > λ2} (135)
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≤ M(M − 1)2 exp







−nλ2
2

8K2
0

(

1 + 1
M−2

)







, (136)

where (136) follows from the result in (84) for the fixed-length test. The expected stopping time EPr
[τ ] satisfies

EPr
[τ ] = nPr{τ = n}+KnPr{τ = Kn}

≤ n+KnPr{τ = Kn} (137)

≤ n+ nKM(M − 1)2 exp







−nλ2
2

8K2
0

(

1 + 1
M−2

)







. (138)

It follows from (133) and (138) that if λ1 < MMD2(fN, fA), for n sufficiently large,

n(K − 1)M(M − 1) exp







−n
(

MMD2(fN, fA)− λ1

)2

8K2
0

(

1 + 1
M−2

)







≤ 1, (139)

n(K − 1)M(M − 1)2 exp







−nλ2
2

8K2
0

(

1 + 1
M−2

)







≤ 1. (140)

Thus, when n is sufficiently large, the average stopping time satisfies

max
i∈[M ]

EPi
[τ ] ≤

{

n+ 1, if λ1 < MMD2(fN, fA),
Kn otherwise.

(141)

EPr
[τ ] ≤ n+ 1. (142)

We now upper bound three error probabilities. For each i ∈ M, the misclassification probability satisfies

βtp
i (φn|fN, fA) = Pi {τ = n, φn(Y

n) /∈ {Hi,Hr}} (143)

+ Pi

{

τ = Kn, φKn(Y
Kn) /∈ {Hi,Hr}

}

(144)

≤ Pi {φn(Y
n) /∈ {Hi,Hr}}+ Pi

{

φKn(Y
Kn) /∈ {Hi,Hr}

}

(145)

≤ (M − 1) exp







−nλ2
1

8K2
0

(

1 + 1
M−2

)







+ (M − 1) exp







−Knλ2
3

8K2
0

(

1 + 1
M−2

)







, (146)

where (146) follows from the result in (77) with (n, λ) replaced with (n, λ1) and (Kn, λ3), respectively.

If λ1 < MMD2(fN, fA), combining (141) and (146) leads to

lim
n→∞

−
1

EPi
[τ ]

log βtp
i (φn|fN, fA) ≥ min







λ2
1

8K2
0

(

1 + 1
M−2

) ,
Kλ2

3

8K2
0

(

1 + 1
M−2

)







. (147)

On the other hand, if λ1 ≥ MMD2(fN, fA), asymptotically, the two-phase test reduces to the fixed-length test with the sample

size Kn. The misclassification exponent thus is the same the result in (98) for the fixed-length test.

Similarly, if max{λ2, λ3} < MMD2(fN, fA), for each i ∈ [M ], the false reject probability satisfies

ζtpi (φn|fN, fA) = Pi {τ = n, φn(Y
n) = Hr}+ Pi

{

τ = Kn, φKn(Y
Kn) = Hr

}

(148)

≤ Pi {φn(Y
n) = Hr}+ Pi

{

φKn(Y
Kn) = Hr

}

(149)

≤ M(M − 1) exp







−n
(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

)







+M(M − 1) exp







−n
(

MMD2(fN, fA)− λ3

)2

8K2
0

(

1 + 1
M−2

)







, (150)

where (150) follows from the result in (97) with (n, λ) replaced by (n, λ2) and (Kn, λ3), respectively. In addition, if λ1 <
MMD2(fN, fA), combining (141) and (150) leads to

lim inf
n→∞

−
1

EPi
[τ ]

log ζtpi (φτ |fN, fA) ≥ min

{

(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

) ,
K
(

MMD2(fN, fA)− λ3

)2

8K2
0

(

1 + 1
M−2

)

}

. (151)
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Similarly, if λ1 ≤ MMD2(fN, fA), asymptotically, the two-phase test achieves the same false reject exponent in (99) as the

fixed-length test.

Finally, we bound the false alarm probability as follows:

Ptp
FA(φn|fN, fA) = Pr {τ = n, φn(Y

n) 6= Hr}+ Pr

{

τ = Kn, φKn(Y
Kn) 6= Hr

}

(152)

≤ Pr {φn(Y
n) 6= Hr}+ Pr

{

φKn(Y
Kn) 6= Hr

}

(153)

≤ M(M − 1)2 exp







−nλ2
1

8K2
0

(

1 + 1
M−2

)







+M(M − 1)2 exp







−Knλ2
3

8K2
0

(

1 + 1
M−2

)







, (154)

where (154) follows from (84) with (n, λ) replaced by (n, λ1) and (Kn, λ3), respectively.

Combining (142) and (154), the false alarm exponent satisfies

lim inf
n→∞

−
1

EPr
[τ ]

log Ptp
FA(φn|fN, fA) ≥ min







λ2
1

8K2
0

(

1 + 1
M−2

) ,
Kλ2

3

8K2
0

(

1 + 1
M−2

)







. (155)

The proof of Theorem 3 is now completed.

D. Proof of Theorem 4

Recall that Yn denotes the collection of all observed sequences (Y n
1 , . . . , Y n

M ). For any set D ⊂ M, recall that we use

Yn
D to denote all sequences Y n

j with j ∈ D and use Ȳn
D to denote all sequences Y n

j with j ∈ MD. Furthermore, given any

j ∈ MD , recall that we use Ȳn
D,j to denote all sequences in Ȳn

D except Y n
j .

Fix a positive integer s ∈ [T ] and fix B ∈ Cs. Under hypothesis HB , the indices of the outliers are denoted by the set B and

the number of outliers is |B| = s. Given any integers (t, k) ∈ [T ]2 such that k ≤ t, define the following set

CB
t,k :=

{

D ∈ Ct : |D ∩ B| = k, |D ∩MB| = t− k
}

, (156)

where MB denotes the set M\B. Note that CB
t,k collect the set of indices of sequences that have exactly k outliers and t− k

nominal samples under hypothesis HB.

Under hypothesis HB , the misclassification probability is upper bounded as follows:

βB(φn|fN, fA) = PB{φn(Y
n) /∈ {HB,Hr}} (157)

≤ PB{Ŝ = s, φn(Y
n) 6= HB}+ PB{Ŝ 6= s} (158)

= PB{Ŝ = s, φn(Y
n) 6= HB}+ PB{Ŝ > s}+ PB{0 < Ŝ < s} (159)

= PB

{

Ŝ = s, I∗
s (Y

n) 6= B, hs(Y
n) > λ

}

+ PB {∃ t ∈ [s+ 1 : T ], ht(Y
n) > λ}

+ PB {hs(Y
n) < λ} I(s > 1), (160)

where (158) follows since a misclassification error occurs if the number of outliers is estimated wrongly or if the set of

outliers is identified wrongly when the number of outliers is estimated correctly, and (160) follows from the definition of the

fixed-length test specified in (33) and (34). Specifically, the third term in (160) appears since the event 0 < Ŝ < s occurs if

s > 1 and we use the fact that
⋃

t∈[s]{y
n : maxt′∈[t:s] ht′(y

n) < λ} ⊆ {yn : hs(y
n) < λ}.

Analogously to (69) to (71), the first term in (160) is upper bounded as follows:

PB

{

Ŝ = s, I∗
s (Y

n) 6= B, hs(Y
n) > λ

}

≤ PB {GB(Y
n) > λ} (161)

= PB

{

max
j∈MB

MMD2(Yn
j , Ȳ

n
B,j) > λ

}

(162)

≤ PB

{

∃ j ∈ MB, MMD2(Yn
j , Ȳ

n
B,j) > λ

}

(163)

≤
∑

j∈MB

PB

{

MMD2(Yn
j , Ȳ

n
B,j) > λ

}

. (164)

Using the definition of the set CB
t,k, the second item in (160) is upper bounded as follows:

PB {∃ t ∈ [s+ 1 : T ], ht(Y
n) > λ}

≤
∑

t∈[s+1:T ]

PB{ht(Y
n) > λ} (165)

=
∑

t∈[s+1:T ]

∑

V∈Ct

PB{I
∗
t (Y

n) = V , ht(Y
n) > λ} (166)



24

=
∑

t∈[s+1:T ]

∑

V∈CB
t,s

PB {I∗
t (Y

n) = V , ht(Y
n) > λ}+

∑

t∈[s+1:T ]

∑

V∈Ct\CB
t,s

PB {I∗
t (Y

n) = V , ht(Y
n) > λ} (167)

≤
∑

t∈[s+1:T ]

∑

V∈CB
t,s

PB

{

∀ D ∈ CB
t,s \ {V}, GD(Y

n) > λ
}

+
∑

t∈[s+1:T ]

∑

V∈Ct\CB
t,s

PB

{

∀ D ∈ CB
t,s, GD(Y

n) > λ
}

(168)

≤
∑

t∈[s+1:T ]

∑

V∈CB
t,s

min
D∈CB

t,s\{V}
PB {GD(Y

n) > λ}+
∑

t∈[s+1:T ]

∑

V∈Ct\CB
t,s

min
D∈CB

t,s

PB {GD(Y
n) > λ} (169)

≤
∑

t∈[s+1:T ]

∑

V∈CB
t,s

min
D∈CB

t,s\{V}
PB

{

∃ j ∈ MD, MMD2(Yn
j , Ȳ

n
D,j) > λ

}

+
∑

t∈[s+1:T ]

(|Ct| − |CB
t,s|) min

D∈CB
t,s

PB

{

∃ j ∈ MD, MMD2(Yn
j , Ȳ

n
D,j) > λ

}

(170)

≤
∑

t∈[s+1:T ]

∑

V∈CB
t,s

min
D∈CB

t,s\{V}

∑

j∈MD

PB

{

MMD2(Yn
j , Ȳ

n
D,j) > λ

}

+
∑

t∈[s+1:T ]

(|Ct| − |CB
t,s|) min

D∈CB
t,s

∑

j∈MD

PB

{

MMD2(Yn
j , Ȳ

n
D,j) > λ

}

, (171)

where (167) follows by decomposing the set Ct as CB
t,s and Ct \ CB

t,s, (168) follows from the definition of ht(y
n) in (32), (169)

follows from the bound that Pr{A1 and A2} ≤ min{Pr{A1},Pr{A2}} for any events A1 and A2 under any probability

measure, and (170) follows from the definition of the scoring function GD(·) in (30).

When s > 1, the third term in (160) can be further upper bounded as follows:

PB {hs(Y
n) < λ} ≤ PB

{

∃ (D,V) ∈ C2
s : D 6= V , and GD(Y

n) < λ, GV(Y
n) < λ

}

(172)

≤
∑

D∈Cs\{B}

∑

V∈Cs\{D}

PB{GD(Y
n)} < λ} +

∑

V∈Cs\{B}

PB{GV(Y
n) < λ} (173)

≤ (|Cs| − 1)
∑

D∈Cs\{B}

PB{GD(Y
n) < λ}+

∑

V∈Cs\{B}

PB{GV(Y
n) < λ} (174)

= |Cs|
∑

D∈Cs\{B}

PB{GD(Y
n) < λ} (175)

= |Cs|
∑

D∈Cs\{B}

PB

{

max
j∈MD

MMD2(Yn
j , Ȳ

n
D,j) < λ

}

(176)

≤ |Cs|
∑

D∈Cs\{B}

PB

{

max
j∈MD∩B

MMD2(Yn
j , Ȳ

n
D,j) < λ

}

(177)

≤ |Cs|
∑

D∈Cs\{B}

min
j∈MD∩B

PB{MMD2(Yn
j , Ȳ

n
D,j) < λ}, (178)

where (172) follows from the definition of hs(Y
n) in (32), (173) follows since Pr{GD(Y

n) < λ, GV(Y
n) < λ} ≤

min{Pr{GD(Y
n) < λ},Pr{GV(Y

n) < λ}}, (176) follows from the definition of GD(·) in (30), (177) follows because

MD ∩ B is a non-empty set when D 6= B and maxj∈MD∩B MMD2(Y n
j , Ȳn

D,j) ≤ maxk∈MD
MMD2(Y n

k , Ȳn
D,k), and (178)

follows similarly to (169).

The results in (164), (171) and (178) can be further upper bounded by applying the McDiarmid’s inequality in Lemma 1,

analogously to the case of at most one outlier. Consider any set D ∈ C such that B ⊆ D. Under hypothesis HB, for each

j ∈ MD, each sequence Yn
j is a nominal sample and Ȳn

D,j collect nominal samples. It follows from the definition of the

MMD metric in (8) that

EPB
[MMD2(Yn

j , Ȳ
n
D,j)] = 0. (179)

To bound the Lipschitz constant, given any observed sequences yn = (yn1 , . . . , y
n
M ), for each t ∈ [s : T ], given D ∈ Ct such

that B ⊆ D define the function gD,j(ȳ
n
D) := MMD2(ynj , ȳ

n
D,j). Note that gD,j(ȳ

n
D) is a function of (M − t)n parameters. For

each k ∈ [(M − t)n], if the k-th element of ȳn
D is replaced by ỹ, we use gD,j(ȳ

n
D, k, ỹ) to denote the corresponding function

value. For each (j, k) ∈ MD × [(M − t)n], define

cD,j
k := sup

yn,ỹ

|gD,j(ȳ
n
D)− gD,j(ȳ

n
D, k, ỹ)|. (180)

Similarly to (76), we obtain
∑

k∈[(M−t)n]

(cD,j
k )2 ≤

16K2
0

n

(

1 +
1

M − t− 1

)

. (181)
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Applying the McDiarmid’s inequality in Lemma 1 and invoking (181) with D = B such that t = s, it follows from (164)

that

PB

{

Ŝ = s, I∗
s (Y

n) 6= B, hs(Y
n) > λ

}

≤ (M − s) exp







−nλ2

8K2
0

(

1 + 1
M−s−1

)







≤ (M − s)g1(λ|fN, fA). (182)

Similarly, it follows from (171) that

PB {∃ t ∈ [s+ 1 : T ], ht(Y
n) > λ}

≤
∑

t∈[s+1:T ]

|CB
t,s|(M − t) exp







−nλ2

8K2
0

(

1 + 1
M−t−1

)







+
∑

t∈[s+1:T ]

(|Ct| − |CB
t,s|)(M − t) exp







−nλ2

8K2
0

(

1 + 1
M−t−1

)







(183)

=
∑

t∈[s+1:T ]

|Ct|(M − t) exp







−nλ2

8K2
0

(

1 + 1
M−t−1

)







(184)

≤
∑

t∈[s+1:T ]

|Ct|(M − t) exp {−ng1(λ|fN, fA)} . (185)

where g1(λ|fN, fA) was defined in (36).

We now upper bound (178) when s > 1. Given any D ∈ Cs \ {B}, for each j ∈ MD ∩ B, Y n
j is an outlier while ȲD,j

collects both outliers and nominal samples when s > 1 and collects nominal samples when s = 1. It follows that

EPB
[MMD2[Yn

j , Ȳ
n
D,j] =

(M − s− (s− t1))((M − s− (s− t1))n− 1)MMD2(fN, fA)

(M − s− 1)((M − s− 1)n− 1)
, (186)

where t1 = |MD ∩ B| < s denotes the number of outliers in Ȳn
D . When s > 1, it follows that for n sufficiently large,

EPB
[MMD2[Yn

j , Ȳ
n
D,j ] ≥

(

1−
s− t1

M − s− 1

)2

MMD2(fN, fA) (187)

≥

(

1−
s

M − s− 1

)2

MMD2(fN, fA). (188)

We now calculate the Lipschitz constant. Recall the definitions of gD,j(ȳ
n
D) and cD,j

k around (180). Since D ∈ Cs, gD,j(ȳ
n
D)

is a function of (M − s)n parameters. Similarly to (76), we have

∑

k∈[(M−s)n]

(cD,j
k )2 ≤

16K2
0

n

(

1 +
1

M − s− 1

)

. (189)

Combing (188), (189), when s > 1 and λ <
(

1− s
M−s−1

)2

MMD2(fN, fA), it follows from the McDiarmid’s inequality in

Lemma 1 that

PB {hs(Y
n) < λ} ≤ |Cs|(|Cs| − 1) exp {−ng2(λ|fN, fA)} , (190)

where g2(λ|fN, fA) was defined in (37).

Combining (160), (182), (185) and (190), we conclude that when s > 1 and λ <
(

1− s
M−s−1

)2

MMD2(fN, fA), for each

B ∈ Cs,

lim
n→∞

−
1

n
log βB(φn|fN, fA) ≥ min {g1(λ|fN, fA), g2(λ|fN, fA)} . (191)

and when s = 1 and λ < MMD2(fN, fA), for each B ∈ Cs,

lim
n→∞

−
1

n
log βB(φn|fN, fA) ≥ g1(λ|fN, fA). (192)

We next analyze the false reject probability. When s > 1, for each B ∈ Cs, if λ <
(

1− s
M−s−1

)2

MMD2(fN, fA), it

follows that

ζ(φn|fN, fA) = PB{φn(Y
n) = Hr} (193)

= PB{∀ t ∈ [T ], ht(Y
n) < λ} (194)

≤ PB{hs(Y
n) < λ} (195)
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≤ |Cs|(|Cs| − 1) exp {−ng2(λ|fN, fA)} , (196)

where (196) follows from the result in (190). When s = 1, similarly to the analyses leading to (97), if λ < MMD2(fN, fA),
we have

ζ(φn|fN, fA) = PB{∀ t ∈ [T ], ht(Y
n) < λ} (197)

≤ PB{h1(Y
n) < λ} (198)

= M(M − 1) exp







−n
(

MMD2(fN, fA)− λ
)2

8K2
0

(

1 + 1
M−2

)







. (199)

Combining (196) and (199), we conclude that when s > 1 and λ <
(

1− s
M−s−1

)2

MMD2(fN, fA), for each B ∈ Cs,

lim
n→∞

−
1

n
log ζB(φn|fN, fA) ≥ g2(λ|fN, fA), (200)

and when s = 1 and λ < MMD2(fN, fA), for each B ∈ Cs,

lim
n→∞

−
1

n
log ζB(φn|fN, fA) ≥

(

MMD2(fN, fA)− λ
)2

8K2
0

(

1 + 1
M−2

) . (201)

Finally, we upper bound the false alarm probability as follows:

PFA(φn|fN, fA) = Pr{φn(Y
n) 6= Hr} (202)

= Pr {∃ t ∈ [T ], ht(Y
n) > λ} (203)

≤
∑

t∈[T ]

∑

V∈Ct

∑

D∈Ct\{V}

Pr{GD(Y
n) > λ} (204)

≤
∑

t∈[T ]

|Ct|
2(M − t) exp







−nλ2

8K2
0

(

1 + 1
M−t−1

)







(205)

≤
∑

t∈[T ]

|Ct|
2(M − t) exp {−ng1(λ|fN, fA)} , (206)

where (205) follows from the McDiarmid’s inequality in Lemma 1 similarly to (171) and noting that EPr
[GD(Y

n)] = 0. Thus,

lim
n→∞

−
1

n
log PFA(φn|fN, fA) ≥ g1(λ|fN, fA). (207)

The proof of Theorem 4 is now completed.

E. Proof of Theorem 5

The proof of Theorem 5 is similar to the proof of Theorems 2 and 4. Thus, we only emphasize the differences here.

Recall the definitions of exponent functions g1(·) in (36) and g2(·) in (37). Recall the definition of the stopping time τ in

(47). For each non-empty set B ∈ C, the expected stopping time under hypothesis HB is upper bounded as follows:

EPB
[τ ] ≤

∞
∑

τ ′=1

PB{τ ≥ τ ′} (208)

≤ N − 1 +

∞
∑

τ ′=N−1

PB{τ > τ ′} (209)

≤ N − 1 +
∞
∑

τ ′=N−1

PB

{

∃ t ∈ [T ], λ2 < ht(Y
τ ′

) < λ1

}

(210)

≤ N − 1 +

∞
∑

τ ′=N−1

(

PB

{

∃ t ∈ [s+ 1 : T ], ht(Y
τ ′

) > λ2

}

+ PB

{

∃ t ∈ [s], ht(Y
τ ′

) < λ1

}

)

, (211)

where (209) and (210) follow from the definition of the random stopping time τ in (47).
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Recall the definitions of g1(y|fN, fA) and g2(y|fN, fA) in (36) and (37), respectively. Using result in (185) by replacing

(n, λ) by (τ ′, λ2), the first term inside the sum of (211) satisfies

PB

{

∃ t ∈ [s+ 1 : T ], ht(Y
τ ′

) > λ2

}

≤
∑

t∈[s+1:T ]

|Ct|(M − t) exp {−τ ′g1(λ2|fN, fA)} . (212)

Similarly to the derivations leading to (178), the second term inside the sum of (211) satisfies

PB

{

∃ t ∈ [s], ht(Y
τ ′

) < λ1

}

≤
∑

t∈[s−1]

PB{ht(Y
τ ′

) < λ1}I(s > 1) + PB{hs(Y
τ ′

) < λ1} (213)

≤
∑

t∈[s−1]

(|Ct| − 1)
∑

D∈Ct

min
j∈MD∩B

PB

{

MMD2(Yτ ′

j , Ȳτ ′

D,j) < λ1

}

I(s > 1) + PB{hs(Y
τ ′

) < λ1}. (214)

Using (190) with (n, λ) replaced by (τ ′, λ2), the second term of (214) satisfies

PB{hs(Y
τ ′

) < λ1} ≤ (M − 1)M exp{−τ ′g2(λ1|fN, fA)}. (215)

It now suffices to bound the first term in (214) using McDiarmid’s inequality in Lemma 1. Recall the definition of CB
t,k in

(156). Fix t ∈ [s− 1]. Given any set D ∈ Ct, let t1 = |MD ∩ B| the number of outliers in Ȳτ ′

D . When s > 1, for any n ∈ N,

t1 ≤ t and D ∈ CB
t,t1

, analogously to (186), we have

EPB
[MMD2(Yn

j , Ȳ
n
D,j)] =

(M − t− (t− t1))((M − t− (t− t1))n− 1)MMD2(fN, fA)

(M − t− 1)((M − t− 1)n− 1)
(216)

≥

(

1−
t− t1

M − t− 1

)2

MMD2(fN, fA) (217)

≥

(

1−
t

M − t− 1

)2

MMD2(fN, fA) (218)

>

(

1−
s

M − s− 1

)2

MMD2(fN, fA). (219)

When s = 1, EPB
[MMD2(Yn

j , Ȳ
n
D,j)] = MMD2(fN, fA). Similarly to (76), the Lipschitz continuous constants cD,j

k defined

around (180) satisfy

∑

k∈[(M−t)n]

(cD,j
k )2 ≤

16K2
0

n

(

1 +
1

M − t− 1

)

<
16K2

0

n

(

1 +
1

M − s− 1

)

. (220)

Combining (214), (215), (219) and (220), it follows that

PB

{

∃ t ∈ [s], ht(Y
τ ′

) < λ1

}

≤
∑

t∈[1:s]

(|Ct| − 1)|Ct| exp{−τ ′g2(λ1|fN, fA)}I(s > 1)

+ (M − 1)M exp







−τ ′
(

MMD2(fN, fA)− λ1

)2

8K2
0

(

1 + 1
M−s−1

)







I(s = 1). (221)

It follows from (211), (212) and (221) that, for s > 1, and λ1 <
(

1− s
M−s−1

)2

MMD2(fN, fA), the expected stopping

time EPB
[τ ] satisfies

EPB
[τ ] ≤ N − 1 +

∞
∑

τ ′=N−1

PB{τ > τ ′} (222)

≤ N − 1 +





∑

t∈[s+1:T ]

|Ct|(M − t) +
∑

t∈[1:s]

(|Ct| − 1)|Ct|





∞
∑

τ ′=N−1

exp
{

− τ ′ min
{

g1(λ2|fN, fA), g2(λ1|fN, fA)
}

}

(223)

= N − 1 +





∑

t∈[s+1:T ]

|Ct|(M − t) +
∑

t∈[1:s]

(|Ct| − 1)|Ct|





exp
{

− (N − 1)min
{

g1(λ2|fN, fA), g2(λ1|fN, fA)
}

}

1− exp
{

min
{

g1(λ2|fN, fA), g2(λ1|fN, fA)
}

} . (224)
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Similarly, when s = 1, given any λ1 < MMD2(fN, fA), the expected stopping time EPB
[τ ] satisfies

EPB
[τ ] ≤ N − 1 +

∑

t∈[T ]

|Ct|(M − t)

exp

{

−(N − 1)min

{

g1(λ2|fN, fA),
(MMD2(fN,fA)−λ1)

2

8K2
0(1+ 1

M−s−1 )

}}

1− exp
{

min
{

g1(λ2|fN, fA),
(MMD2(fN,fA)−λ1)

2

8K2
0(1+ 1

M−s−1 )

}

} . (225)

Thus, if N is sufficiently large, EPB
[τ ] ≤ N if λ1 <

(

1− s
M−s−1

)2

MMD2(fN, fA) when s > 1 and λ1 < MMD2(fN, fA)

when s = 1.

We next upper bound the average stopping time under the null hypothesis. It follows from the definition of τ in (47) that

EPr
[τ ] ≤ N − 1 +

∞
∑

τ ′=N−1

Pr{τ > τ ′} (226)

≤ N − 1 +

∞
∑

τ ′=N−1

Pr

{

∃ t ∈ [T ], λ2 < ht(Y
τ ′

) < λ1

}

(227)

≤ N − 1 +

∞
∑

τ ′=N−1

Pr

{

∃ t ∈ [T ], ht(Y
τ ′

) > λ2

}

(228)

≤ N − 1 +
∑

t∈[T ]

|Ct|
2

∞
∑

τ ′=N−1

exp {−τ ′g1(λ2|fN, fA)} (229)

≤ N − 1 +
∑

t∈[T ]

|Ct|
2
exp

{

− (N − 1)g1(λ2|fN, fA)
}

1− exp
{

− g1(λ2|fN, fA)
} (230)

where (229) follows from (206) with (n, λ) replaced by (τ ′, λ2). If N is sufficiently large, EPr
[τ ] ≤ N .

In the remaining part of the proof, we upper bound three kinds of error probabilities. We first bound the misclassification and

false reject probabilities by considering B ∈ Cs when s > 1 and λ1 <
(

1− s
M−s−1

)2

MMD2(fN, fA). The misclassification

probability satisfies

βseq
B (φτ |fN, fA) ≤

∞
∑

τ ′=N−1

PB{φτ ′(Yτ ′

) /∈ {HB,Hr}} (231)

≤
∞
∑

τ ′=N−1

PB{Ŝ = s, φτ ′(Yτ ′

) 6= HB}+
∞
∑

τ ′=N−1

PB{Ŝ 6= s} (232)

≤

(

(M − s) +
∑

t∈[s+1:T ]

|Ct|(M − t)

)

∞
∑

τ ′=N−1

exp
{

− τ ′g1(λ1|fN, fA)
}

+ |Cs|(|Cs| − 1)

∞
∑

τ ′=N−1

exp
{

− τ ′g2(λ2|fN, fA)
}

, (233)

where (233) follows from (182), (185), and (190) with (n, λ) replaced with (τ ′, λ1) and (τ ′, λ2), respectively. The false reject

probability satisfies

ζseqB (φτ |fN, fA) ≤
∞
∑

τ ′=N−1

PB

{

φτ ′(Yτ ′

) = Hr

}

(234)

≤ |Cs|(|Cs| − 1)

∞
∑

τ ′=N−1

exp
{

− τ ′g2(λ2|fN, fA)
}

, (235)

where (235) follows from (196) with (n, λ) replaced by (τ ′, λ2).

Combining (224), (233) and (235), when s > 1 and λ2 <
(

1− s
M−s−1

)2

, for each B ∈ Cs, it follows that

lim
N→∞

−
1

EPB
[τ ]

log βseq
B (φn|fN, fA) ≥ min {g1(λ1|fN, fA), g2(λ2|fN, fA)} . (236)

lim
N→∞

−
1

EPB
[τ ]

log ζseqB (φn|fN, fA) ≥ g2(λ2|fN, fA). (237)
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We next bound the misclassification and false reject probabilities by considering B ∈ Cs when s = 1 and λ1 < MMD2(fN, fA).
Using (185) with (n, λ) replaced by (τ ′, λ1), the misclassification error probability satisfies

βseq
B (φτ |fN, fA) ≤

∑

t∈[1:T ]

|Ct|(M − t)

∞
∑

τ ′=N−1

exp {−τ ′g1(λ1|fN, fA)} . (238)

Similarly, using (199), the false reject probability satisfies

ζseqB (φτ |fN, fA) ≤ M(M − 1)

∞
∑

τ ′=N−1

exp







−τ ′
(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

)







. (239)

Thus, Combining (225), (225) and (239), when s = 1 and λ2 < MMD2(fN, fA), it follows that for each B ∈ Cs,

lim
N→∞

−
1

EPB
[τ ]

log βseq
B (φn|fN, fA) ≥ g1(λ1|fN, fA)., (240)

lim
N→∞

−
1

EPB
[τ ]

log ζseqB (φn|fN, fA) ≥
(MMD2(fN, fA)− λ2)

2

8K2
0

(

1 + 1
M−2

) . (241)

Finally, the false alarm probability is upper bounded by

Pseq
FA(φτ |fN, fA) ≤

∞
∑

τ ′=N−1

Pr

{

φτ ′(Yτ ′

) 6= Hr

}

(242)

≤
∞
∑

τ ′=N−1

Pr

{

∃ t ∈ [T ], ht(Y
τ ′

) > λ1

}

(243)

≤
∑

t∈[T ]

|Ct|
2(M − t)

∞
∑

τ ′=N−1

exp {−τ ′g1(λ2|fN, fA)} (244)

where (244) follows from (206) with (n, λ) replaced by (τ ′, λ1). Combining (230) and (244), it follows that

lim
N→∞

−
1

EPr
[τ ]

log Pseq
FA(φτ |fN, fA) ≥ g1(λ1|fN, fA). (245)

The proof of Theorem 5 is now completed.

F. Proof of Theorem 6

The proof of Theorem 6 is similar to the proof of Theorems 3, 4 and 5. Thus, we only emphasize the differences here.

Recall the definitions of exponent functions g1(·) in (36) and g2(·) in (37). We first bound the probability that the two-phase

test proceeds to the second phase under each hypothesis so that the expected stopping time under each hypothesis is well

bounded. Subsequently, we upper bound three kinds of error probabilities using the results for the fixed-length test in 4 and

obtain the desired exponential lower bounds.

Fix a non-empty set B ∈ Cs for some s > 1. When λ1 <
(

1− s
M−s−1

)2

MMD2(fN, fA), it follows that

PB{τ = Kn} ≤ PB {∃ t ∈ [T ], λ2 < ht(Y
n) < λ1} (246)

≤ PB {∃ t ∈ [s+ 1 : T ], ht(Y
n) > λ2}+ PB {∃ t ∈ [s], ht(Y

n) < λ1} . (247)

≤
∑

t∈[s+1:T ]

|Ct|(M − t) exp {−ng1(λ2|fN, fA)} +
∑

t∈[1:s]

(|Ct| − 1)|Ct| exp {−ng2(λ1|fN, fA)} , (248)

where (248) follows from the results of (212) and (221) with τ ′ replaced by n. Similarly, when s = 1 and λ1 < MMD2(fN, fA),
we have

PB{τ = Kn} ≤
∑

t∈[s+1:T ]

|Ct|(M − t) exp {−ng1(λ2|fN, fA)} (249)

+M(M − 1) exp







−n
(

MMD2(fN, fA)− λ1

)2

8K2
0

(

1 + 1
M−2

)







. (250)
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Thus, if λ1 <
(

1− s
M−s−1

)2

MMD2(fN, fA) when s > 1 or if λ1 < MMD2(fN, fA) when s = 1, when n is sufficient large,

the expected stopping time satisfies that for each B ∈ Cs,

EPB
[τ ] = n+ (K − 1)nPB{τ = Kn} (251)

≤ n+ 1, (252)

where (252) follows by using (248) and (250), analogously to the case of sequential test.

Similarly, under the null hypothesis, it follows that

Pr{τ = Kn} ≤ Pr {∃ t ∈ [T ], λ2 < ht(Y
n) < λ1} (253)

≤ Pr {∃ t ∈ [T ], ht(Y
n) > λ2} (254)

≤
∑

t∈[T ]

|Ct|
2 exp {−ng1(λ2|fN, fA)} . (255)

where (255) follows from (206). Thus, when n is sufficiently large,

EPr
[τ ] = n+ (K − 1)nPr{τ = Kn} (256)

≤ n+ 1. (257)

In subsequent analyses, we upper bound each of the three error probabilities. First consider the misclassification and false

reject probability for B ∈ Cs when s > 1. When max{λ1, λ3} <
(

1− s
M−s−1

)2

MMD2(fN, fA), it follows that

βtp
B (φn|fN, fA) ≤ PB{φn(Y

n) /∈ {HB,Hr}}+ PB{φKn(Y
Kn) /∈ {HB,Hr}} (258)

≤
∑

t∈[s:T ]

|Ct|(M − t) exp {−ng1(λ1|fN, fA)}+ |Cs|(|Cs| − 1) exp {−ng2(λ2|fN, fA)}

+
∑

t∈[s:T ]

|Ct|(M − t) exp {−ng1(λ3|fN, fA)} + |Cs|(|Cs| − 1) exp {−ng2(λ3|fN, fA)} (259)

≤





∑

t∈[s:T ]

|Ct|(M − t) + |Cs|(|Cs| − 1)





×

(

exp
{

− nmin
{

g1(λ1|fN, fA), g2(λ2|fN, fA)
}

}

+ exp
{

− nmin
{

Kg1(λ3|fN, fA),Kg2(λ3|fN, fA)
}

}

)

,

(260)

where (259) follows by combining the results in (160), (182), (185) and (190) by replacing λ with λ1 and λ2 for τ = n, and

replacing (n, λ) with (Kn, λ3) for τ = Kn. Thus, combining (252) and (260) leads to

lim
n→∞

−
1

EPB
[τ ]

log βtp
B (φn|fN, fA) ≥ min

{

g1(λ1|fN, fA),Kg1(λ3|fN, fA), g2(λ2|fN, fA),Kg2(λ3|fN, fA)
}

. (261)

The false reject probability satisfies

ζtpB (φn|fN, fA) ≤ PB{φn(Y
n) = Hr}+ PB{φKn(Y

Kn) = Hr} (262)

≤ |Cs|(|Cs| − 1)
(

exp {−ng2(λ2|fN, fA)}+ exp {−Kng2(λ3|fN, fA)}
)

, (263)

where (263) follows from (196) where λ is replaced with λ2 and λ3. Thus, using (252), it follows that

lim
n→∞

−
1

EPB
[τ ]

log ζtpB (φn|fN, fA) ≥ min {g2(λ2|fN, fA),Kg2(λ3|fN, fA)} . (264)

If λ1 ≥
(

1− s
M−s−1

)2

MMD2(fN, fA), EPB
[τ ] = Kn and the two-phase test reduces to the fixed-length one. Therefore, the

exponent is the same as that of the fixed-length one.

Now consider the case of s = 1. When max{λ1, λ3} < MMD2(fN, fA), it follows that

βtp
B (φn|fN, fA) ≤ (M − 1) exp {−ng1(λ1|fN, fA)}+

∑

t∈[2:T ]

|Ct|(M − t) exp {−ng1(λ1|fN, fA)}

+ (M − 1) exp {−Kng1(λ3|fN, fA)} +
∑

t∈[2:T ]

|Ct|(M − t) exp {−Kng1(λ3|fN, fA)} (265)

≤
∑

t∈[T ]

|Ct|(M − t) (exp {−ng1(λ1|fN, fA)} + exp {−Kng1(λ3|fN, fA)}) (266)
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≤ 2
∑

t∈[T ]

|Ct|(M − t) exp {−nmin {g1(λ1|fN, fA),Kg1(λ3|fN, fA)}} (267)

where (265) follows by using the results of (182) and (185) with s = 1 and by replacing (n, λ) with (n, λ1) and (Kn, λ3),
respectively. Thus, using (252), it follows that

lim
n→∞

−
1

EPB
[τ ]

log βtp
B (φn|fN, fA) ≥ min {g1(λ1|fN, fA),Kg1(λ3|fN, fA)} . (268)

Similarly, we have

ζtpB (φn|fN, fA) ≤ M(M − 1)



exp







−n
(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

)







+ exp







−Kn
(

MMD2(fN, fA)− λ3

)2

8K2
0

(

1 + 1
M−2

)









 (269)

and

lim
n→∞

−
1

EPB
[τ ]

log ζtpB (φn|fN, fA) ≥ min

{

(

MMD2(fN, fA)− λ2

)2

8K2
0

(

1 + 1
M−2

) ,
K
(

MMD2(fN, fA)− λ3

)2

8K2
0

(

1 + 1
M−2

)

}

, (270)

where (269) follows from the result of (199). If λ1 ≥ MMD2(fN, fA), the exponent is the same as that of the fixed-length

one.

Finally, the false alarm probability satisfies

Ptp
FA(φ

n|fN, fA) ≤ Pr{φn(Y
n) 6= Hr}+ Pr{φKn(Y

Kn) 6= Hr} (271)

≤
∑

t∈[T ]

|Ct|
2(M − t) exp {−ng1(λ1|fN, fA)}+

∑

t∈[T ]

|Ct|
2 exp {−Kng1(λ3|fN, fA)} , (272)

where (272) follows from the result in (206) by replacing (n, λ) with (n, λ1) and (n, λ3).
Thus, using (257), it follows that

lim
n→∞

−
1

EPr
[τ ]

log Ptp
FA(φ

n|fN, fA) ≥ min {g1(λ1|fN, fA),Kg1(λ3|fN, fA)} . (273)

The proof of Theorem 6 is now completed.
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