
ON THE ZEROS OF THE MILLER BASIS OF CUSP FORMS

ROEI RAVEH

Abstract. We study the zeros of cusp forms in the Miller basis whose van-

ishing order at infinity is a fixed number m. We show that for sufficiently

large weights, the finite zeros in the fundamental domain of such forms, all lie
on the circular part of the boundary of the fundamental domain. We further

show and quantify an effective bound for the weight, which is linear in terms

of m.

1. Introduction

Let k ≥ 0 be an even integer, and let Mk denote the linear space of modular
forms of weight k for the modular group Γ = PSL2 (Z). Each modular form f has
a q-expansion (i.e. Fourier series),

f(τ) =

∞∑
n=n0

af (n) q
n, q = e2πiτ

where τ ∈ H, and n0 = ord∞ (f).

For any nonzero f ∈ Mk, we have the valence formula (see [15]):

(1.1) ord∞ (f) +
1

2
ordi (f) +

1

3
ordρ (f) +

∑
z∈F∖{i,ρ}

ordz (f) =
k

12
,

where F is the usual fundamental domain and ρ = e
2πi/3 = − 1

2 +
√
3
2 . Writing

k = 12ℓ+ k′ where k′ ∈ {0, 4, 6, 8, 10, 14}, we obtain

(1.2) ℓ ≥ ord∞ (f) .

Those formulas provide a powerful tool for studying modular forms via their zeros.
(1.1) suggests that for a nonzero modular form of weight k, there are about k

12 −
ord∞(f) zeros in the fundamental domain F . The space Mk is finite-dimensional
and is spanned by the Eisenstein series (2.4) and the space of cusp forms Sk, with
dimSk = ℓ. The zeros of the Eisenstein series were studied in 1970 by F. Rankin
and P. Swinnerton-Dyer [9]. In their paper, they proved that all the zeros of the
Eisenstein series in the fundamental domain lie on the arc A =

{
eiθ : π

2 ≤ θ ≤ 2π
3

}
and become uniformly distributed in A as k → ∞. This argument of Rankin and
Swinnerton-Dyer was used to prove similar results, for instance, [3], [10]. For dif-
ferent types of results about zeros of various modular forms, see [4], [7], [11], [12],
[13], [14], [16].

This research was supported by the European Research Council (ERC) under the European
Union’s Horizon 2020 research and innovation program (grant agreement No. 786758).
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This paper will discuss the zeros of the Miller basis of modular forms. The

elements of the Miller basis {gk,m}ℓm=0 are uniquely defined for every 0 ≤ m ≤ ℓ
by requiring

gk,m(τ) = qm +O
(
qℓ+1

)
.

The Miller basis forms a canonical basis of Mk in the sense that it is a basis of
reduced row echelon form. In particular, we are interested in the cusp forms of the
Miller basis gk,1, . . . , gk,ℓ.

W. Duke and P. Jenkins [1] showed that the “gap forms” gk,0 = 1+O
(
qℓ+1

)
has

all its zeros on the arc A in the fundamental domain. This is not generally true for
gk,m with m ≥ 1, for example, as pointed out in [1], g132,9 doesn’t have all its zeros
on the arc A. Nevertheless, an asymptotic result can be achieved:

Theorem 1.1. Fix m ≥ 1. There exists α, β > 0 so that if ℓ > αm + β, then all
the zeros of gk,m in the fundamental domain lie on the arc

{
eiθ : π

2 ≤ θ ≤ 2π
3

}
, and

become uniformly distributed on the arc.

In §2 we discuss some needed background on modular forms and the Miller basis.
In §3 we will prove Theorem 1.1. In §4 we quantify those bounds and show we can
choose α = 4.5 and β = 9.5. Finally, in §5 we investigate the behavior of gk,1, and
prove the following:

Theorem 1.2. For every ℓ ≥ 1, all the zeros of gk,1(τ) = q + O
(
qℓ+1

)
in the

fundamental domain lie on the arc.

2. Background and preliminaries on modular forms

2.1. Definitions. Let k ≥ 0 be an even integer, and let H = {τ : Im(τ) > 0}
denote the upper half plane. Let f : H → C be a holomorphic function; we say that
f is a modular form of weight k if

(2.1) f

(
aτ + b

cτ + d

)
= (cτ + d)

k
f(τ), ∀

(
a b
c d

)
∈ PSL2 (Z) .

and f is bounded as Im(τ) → ∞. If f vanishes as Im(τ) → ∞, we say that f is a
cusp form.

Remark. We can replace (2.1) with the following conditions:

f(τ) = f(τ + 1),(2.2)

f(τ) = τ−kf(−1/τ).(2.3)

When k ≥ 4, there exists a nonzero modular form in Mk known as the (normal-
ized) Eisenstein series

(2.4) Ek(τ) =
1

2

∑
(m,n)∈Z2

gcd(m,n)=1

1

(mτ + n)
k
= 1− γk

∞∑
n=1

σk−1(n)q
n,

where σk−1(n) =
∑

d|n d
k−1, γk = 2k

Bk
, and Bk is the k-th Bernoulli number.

One can also define the Eisenstein series of weight 2

(2.5) E2(τ) =
1

2ζ (2)

∑
n̸=0

1

n2
+

1

2ζ (2)

∑
m̸=0

∑
n∈Z

1

(mτ + n)
2 = 1− 24

∞∑
n=1

σ1(n)q
n.
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While E2 is not a modular form, it has some modular properties and transforms as

(2.6) E2 (−1/τ) = τ2E2 (τ) +
6τ

iπ
.

The first cusp form we encounter is the Modular Discriminant,

(2.7) ∆(τ) =
1

1728

(
E3

4(τ)− E2
6(τ)

)
= q

∞∏
n=1

(1− qn)
24

=

∞∑
n=1

τ(n)qn.

The coefficients τ(n) are known as Ramanujan’s tau function and are all integers.
Lastly, there is a meromorphic modular form of weight 0, Klein’s absolute invariant,
or the j-function:

(2.8) j(τ) =
E3

4(τ)

∆(τ)
= q−1 + 744 +

∞∑
n=1

c(n)qn,

where the coefficients c(n) are all integers.

2.2. The Miller Basis for Modular Forms. Let m ∈ {1, . . . , ℓ}, and denote:

ek,m = ∆ℓEk′jℓ−m.

Notice that ek,m has integer coefficients and that

ek,m =
(
qℓ +O

(
qℓ+1

)) (
q−ℓ+m +O

(
q−ℓ+m+1

))
= qm +O

(
qm+1

)
.

Using Gaussian elimination we obtain a basis of reduced row echelon form, {gk,m}ℓm=1.
Moreover, for any m ∈ {1, . . . , ℓ} there exists a unique polynomial Fk,m ∈ Z[x] of
degree ℓ−m, so that

(2.9) gk,m = ∆ℓEk′Fk,m(j) = qm +O
(
qℓ+1

)
.

Remark. Following each step in the Gaussian elimination process, we can see that
Fk,m has integer coefficients. The polynomial Fk,m is the associated Faber polyno-
mial of gk,m; Faber polynomials play a major role in the study of zeros of modular
forms (see [14]), and we will discuss those in detail in §5.1.

2.3. Modular Forms on the Arc and Under Conjugation. Let f ∈ Mk, and
consider its q-expansion f(τ) =

∑∞
n=0 anq

n. Suppose an are all real, then:

(2.10) f(τ) =

∞∑
n=0

ane2πinτ =

∞∑
n=0

ane
2πin(−τ) = f(−τ).

Suppose τ = eiθ, with θ ∈
[
π
2 ,

2π
3

]
. We have τ = 1/eiθ and from (2.3) we get

f (eiθ) = f
(
−1/eiθ

)
= eikθf

(
eiθ
)
,

which yields,

(2.11) eikθ/2f (eiθ) = e−ikθ/2f (eiθ) = eikθ/2f
(
eiθ
)
.

So, g(θ) = eikθ/2f(eiθ) is real valued.

3. Proof of theorem 1.1

We begin with proving some bounds on ∆.
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3.1. Bounds and properties of ∆.

Proposition 3.1. For all θ ∈
[
π
2 ,

2π
3

]
,

∣∣∆ (eiθ)∣∣ ≥ |∆(i)| =
(

ϖ√
2π

)12

= 0.00178537 . . .

with ϖ = 2
∫ 1

0
dx√
1−x4

= 2.622057 . . ., and

∣∣∆ (eiθ)∣∣ ≤ |∆(ρ)| = 27

256

(
ϖ′

π

)12

= 0.00480514 . . .

with ϖ′ = 2
∫ 1

0
dx√
1−x6

= 2.42865 . . ..

Lemma 3.2. (i) The function e4 (θ) = e2iθE4

(
eiθ
)
is negative for all θ ∈[

π
2 ,

2π
3

)
and vanishes at 2π

3 .

(ii) The function δ(θ) = e6iθ∆
(
eiθ
)
is negative for all θ ∈

[
π
2 ,

2π
3

]
.

(iii) The function e2 (θ) = eiθE2

(
eiθ
)
+ 3

iπ is real valued and is negative for all

θ ∈
(
π
2 ,

2π
3

]
.

Proof. (i) E4 has a unique zero in the fundamental domain, at ρ = e2πi/3.
Therefore, e4 is continuous and nonzero for all θ ∈

[
π
2 ,

2π
3

)
. Hence, it is

enough to show that e4
(
π
2

)
< 0, and indeed

−e4

(π
2

)
= E4 (i) = 1 + 240

∞∑
n=1

σ3 (n) e
−2πn ≥ 1 > 0.

(ii) We know that ∆ never vanishes, thus δ never vanishes. Hence, it is enough
to show that δ

(
π
2

)
< 0. Indeed,

δ
(π
2

)
= −∆(i) =

E4 (i)
3

1728
> 0,

since E4(i) > 0.
(iii) First, we will show that e2 is real valued. Since E2 has real Fourier coeffi-

cients, we have E2(τ) = E2 (−τ). Using (2.6) we obtain

e2(θ) = e−iθE2 (eiθ)−
3

iπ
= e−iθE2

(
−e−iθ

)
− 3

iπ

= e−iθ

(
e2iθE2

(
eiθ
)
+

6eiθ

iπ

)
− 3

iπ
= eiθE2

(
eiθ
)
+

3

iπ
= e2 (θ) .

Using (2.6) again, we get E2 (i) =
3
π , and thus

e2

(π
2

)
= eiπ/2E2 (i) +

3

iπ
= i

3

π
− 3

π
i = 0.

We claim that e2 is decreasing on
[
π
2 ,

2π
3

]
, which yields e2(θ) < 0 for all

θ ∈
(
π
2 ,

2π
3

]
. We will show that de2

dθ < 0:
Using an identity of Ramanujan [8], we know that

1

2πi

dE2

dτ
=

E2
2 − E4

12
.
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Hence,

de2
dθ

(θ) =
d

dθ

(
eiθE2 (θ) +

3

iπ

)
= ieiθE2

(
eiθ
)
+ eiθ

d

dθ

(
E2

(
eiθ
))

= i

(
e2 (θ)−

3

iπ

)
+ eiθ · ieiθ dE2

dτ

(
eiθ
)

= ie2 (θ)−
3

π
− e2iθ

π

6

(
E2

(
eiθ
)2 − E4

(
eiθ
))

= ie2 (θ)−
3

π
− π

6

((
eiθE2

(
eiθ
))2 − e4 (θ)

)
= ie2 (θ)−

3

π
+

π

6
e4 (θ) +

π

6

(
e2 (θ)−

3

iπ

)2

= ie2 (θ)−
3

π
+

π

6
e4 (θ)−

π

6
e2 (θ)

2
+

e2 (θ)

i
+

3

2π

= − 3

2π
− π

6
e2 (θ)

2
+

π

6
e4 (θ) .

Since e4 (θ) < 0 for all θ ∈
[
π
2 ,

2π
3

)
we obtain de2

dθ (θ) < 0 for all θ ∈
(
π
2 ,

2π
3

]
.
□

We now have the tools to prove the following lemma, which implies Proposition
3.1,

Lemma 3.3. The function δ(θ) is decreasing on
[
π
2 ,

2π
3

]
.

Proof. Taking the logarithmic derivative of ∆, we get

q

d∆
dq

∆
= 1− 24

∞∑
n=1

n
qn

1− qn
= E2 (τ) ,

therefore

d∆

dτ
= 2πiE2∆.

Hence,

dδ

dθ
(θ) = 6ie6iθ∆

(
eiθ
)
+ e6iθ · ieiθ d∆

dτ

(
eiθ
)
= 6iδ (θ)− 2πe6iθ · eiθE2

(
eiθ
)
∆
(
eiθ
)

= 6iδ (θ)− 2π

(
e2 (θ)−

3

iπ

)
δ (iθ) = −2πe2 (θ) δ (θ) .

Since e2 < 0 for all θ ∈
(
π
2 ,

2π
3

]
and δ (θ) < 0 for all θ ∈

[
π
2 ,

2π
3

]
we get dδ

dθ (θ) < 0

for all θ ∈
(
π
2 ,

2π
3

]
. Hence, δ is decreasing on

[
π
2 ,

2π
3

]
. □

Proof of Proposition 3.1. Since
∣∣∆ (eiθ)∣∣ is increasing on

[
π
2 ,

2π
3

]
, for all θ ∈

[
π
2 ,

2π
3

]
we have

∆ (i) ≤
∣∣∆ (eiθ)∣∣ ≤ |∆(ρ)|.
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Since ∆ =
E3

4−E2
6

1728 and since E4 (ρ) = 0, E6 (i) = 0 we get

∆ (i) =
E4 (i)

3

1728
(3.1)

∆ (ρ) = −E6 (ρ)
2

1728
(3.2)

Hurwitz [5] showed that ∑
(m,n)∈Z2∖{(0,0)}

1

(mi+ n)
=

ϖ4

15
,

with ϖ = 2
∫ 1

0
dx√
1−x4

= 2.622057 . . ., hence

E4 (i) =
1

2ζ(4)

∑
(m,n)∈Z2∖{(0,0)}

1

(mi+ n)
=

3ϖ4

π4
.

Therefore,

∆ (i) =
E4 (i)

3

1728
=

(
E4 (i)

12

)3

=

(
ϖ√
2π

)12

= 0.00178537 . . . .

Katayama [6] gives a generalization of Hurwitz’s formula∑
(m,n)∈Z2∖{(0,0)}

1

(mρ+ n)
6 =

ϖ′6

35
,

with ϖ′ = 2
∫ 1

0
dx√
1−x6

= 2.42865 . . ., hence

E6 (ρ) =
1

2ζ (6)

∑
(m,n)∈Z2∖{(0,0)}

1

(mρ+ n)
6 =

945

2π6

ϖ′6

35
=

27ϖ′6

2π6
.

Therefore,

∆(ρ) = −E6 (ρ)
2

1728
= − 27

256

(
ϖ′

π

)12

= −0.00480514 . . . .

□

Proposition 3.4. (i) For all τ ∈ H with e−2π Im(τ) ≤ 1
3 ,

|∆(τ)| ≥ e−2π Im(τ)

(
1− e−2π Im(τ) − e−4π Im(τ) − 2e−4π Im(τ)

1− e−2π Im(τ)

)24

.

(ii) For all τ ∈ H

|∆(τ)| ≤ e−2π Im(τ)

(
1 + 2e−2π Im(τ) +

2e−8π Im(τ)

1− e−4π Im(τ)

)24

.

Proof. (i) Firstly, recall that by the pentagonal number theorem (Euler) for
any |z| < 1 we have:

∞∏
n=1

(1− zn) = 1 +
∑
k=1

(−1)k
(
z

k(3k+1)
2 + z

k(3k−1)
2

)
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and the series on the RHS converges absolutely.
Due to the absolute convergence, we can change the order of summation,
and write:

∞∏
n=1

(1− zn) = 1 +

∞∑
k=1

(
zk(6k+1) + zk(6k−1) − z(2k−1)(3k−1) − z(2k−1)(3k−2)

)
= 1 + z7 + z5 − z − z2 +

∞∑
k=2

z6k
2 (

zk + z−k − z−5k+1 − z−7k+2
)

(⋆)

Let z ∈ (0, 1). For all k ≥ 1, z−5k+1 < z−7k+2 and since 0 ≤ 5k2 − 7k + 2

we also have z6k
2−7k+2 ≤ zk

2

.
Therefore,

z6k
2 (

zk + z−k − z−5k+1 − z−7k+2
)
≥ −z6k

2 (
z−5k+1 + z−7k+2

)
> −2z6k

2

z−7k+2 > −2zk
2

≥ −2zk

Hence,
∞∏

n=1

(1− zn) ≥ 1− z − z2 − 2

∞∑
k=1

zk = 1− z − z2 − 2z2

1− z
.

Thus, for any τ ∈ H with e−2π Im(τ) ≤ 1
3 we have:∣∣∣∣∣q

∞∏
n=1

(1− qn)
24

∣∣∣∣∣ ≥ |q|

( ∞∏
n=1

(1− |q|n)

)24

= e−2π Im(τ)

( ∞∏
n=1

(
1− e−2πn Im(τ)

))24

≥ e−2π Im(τ)

(
1− e−2π Im(τ) − e−4π Im(τ) − 2e−4π Im(τ)

1− e−2π Im(τ)

)24

.

(ii) By the pentagonal number theorem and the triangle inequality:∣∣∣∣∣
∞∏

n=1

(1− zn)

∣∣∣∣∣ ≤ 1+

∞∑
k=1

∣∣∣(−1)k
(
z

k(3k+1)
2 + z

k(3k−1)
2

)∣∣∣ ≤ 1+

∞∑
k=1

|z|
k(3k+1)

2 +|z|
k(3k−1)

2 .

For all |z| < 1, we have |z|
k(3k+1)

2 < |z|
k(3k−1)

2 .

In addition, since k(3k−1)
2 ≥ 2k for all k ≥ 2, we obtain:

|z|
k(3k+1)

2 + |z|
k(3k−1)

2 ≤ 2 |z|
k(3k−1)

2 ≤ 2 |z|2k .
Thus,∣∣∣∣∣

∞∏
n=1

(1− zn)

∣∣∣∣∣ ≤ 1 + 2 |z|+
∞∑
k=2

2 |z|2k = 1 + |z|+ 2 |z|4

1− |z|2
,

which shows

|∆(τ)| ≤ e−2π Im(τ)

(
1 + 2e−2π Im(τ) +

2e−8π Im(τ)

1− e−4π Im(τ)

)24

,

for all τ ∈ H, and concludes our proof.
□

Corollary 3.5. For all θ ∈ [π/2, 2π/3], x ∈ [−1/2, 1/2]:

(3.3)

∣∣∣∣ ∆(eiθ)

∆(x+ 0.65i)

∣∣∣∣ < 1

2
,
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and

(3.4)

∣∣∣∣ ∆(eiθ)

∆(x+ 0.75i)

∣∣∣∣ ≤ 7

10
.

Proof. Substitute τ = x+ 0.65i,

|∆(x+ 0.65i)| ≥ e−
13π
10

(
1− e−

13π
10 − e−

13π
5 − 2e−

26π
5

1− e−
13π
10

)24

> 0.01

Now, using Proposition 3.1, we know
∣∣∆(eiθ)

∣∣ < 0.005 for all θ ∈
[
π
2 ,

2π
3

]
. For all

θ ∈ [π/2, 2π/3], x ∈ [−1/2, 1/2]:∣∣∣∣ ∆(eiθ)

∆(x+ 0.65i)

∣∣∣∣ ≤ 0.005

0.01
=

1

2
.

Similarly, we can get: ∣∣∣∣ ∆(eiθ)

∆(x+ 0.75i)

∣∣∣∣ ≤ 7

10
.

□

Figure 1.
∣∣∆(eiθ)

∣∣ on the interval
[
π
2 ,

2π
3

]
For the proof of Theorem 1.1 we will also need the following proposition:

Proposition 3.6. Fix m ≥ 1. There exists c1, c2 > 0 so that if ℓ > c1m+ c2, then
we have ∣∣∣eikθ/2e2πm sin θgk,m(eiθ)− 2 cos (kθ/2 + 2πm cos θ)

∣∣∣ < 2

for all θ ∈
(
π
2 ,

2π
3

)
. Furthermore, c1 = π

2 log(10/7) .
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3.2. Proof of Proposition 3.6. We use the method introduced in the work of W.
Duke and P. Jenkins in [1]. We begin with the statement and proof of the following
version of Lemma 2 in [1]:

Lemma 3.7. Let R > 0. There exists A > 1 so that for all z ∈ F with |j(z)| < R
we have

gk,m(z) =

∫ 1/2+iA

−1/2+iA

∆ℓ(z)Ek′(z)E14−k′(τ)

∆ℓ+1(τ) (j(τ)− j(z))
e2πimτdτ.

Proof. We have j(τ) = q−1+744+P (q) where P (q) = O(|q|) as Im(τ) → ∞. Thus,
there exists N > 0 so that for any τ ∈ H with Im(τ) > N , we have |P (q)| < 744.
Choose A > max(N, 1) such that e2πA > R+ 1488. For any Im(τ) ≥ A,

(3.5) |j(τ)| ≥ 1

|q|
− 744− |P (q)| > e2π Im(τ) − 1488 ≥ e2πA − 1488 > R.

Thus, there exists A > 1 so that j
([
− 1

2 + iA, 1
2 + iA

])
⊂ C \ {|z| < R}. Denote

C = j
([
− 1

2 + iA, 1
2 + iA

])
, and γ :

[
− 1

2 + iA, 1
2 + iA

]
→ C as the curve γ(τ) =

j(τ). Then γ is a closed, simple, and smooth curve onto C, oriented clockwise.
Let U ⊂ C be the bounded connected component of C \ C, and let |ζ| < R. So
ζ ∈ U , and the Faber polynomial Fk,m is holomorphic on U . Thus, using Cauchy’s
formula,

Fk,m(ζ) =
1

2πi

∫
C

Fk,m(ξ)

ξ − ζ
dξ =

−1

2πi

∫ 1/2+iA

−1/2+iA

Fk,m(j(τ))

j(τ)− ζ

dj

dτ
(τ)dτ.

To calculate dj
dτ , we use the following identity, which is due to Ramanujan [8]:

q
dE4

dq
=

E2E4 − E6

3
.

Hence,

q
dj

dq
=

3q dE4

dq E2
4∆− q d∆

dq E
3
4

∆2
=

(E2E4 − E6)E
2
4∆− E2∆E3

4

∆2
= −E6E

2
4

∆
,

which, using the chain rule, yields:

(3.6)
dj

dτ
=

dj

dq

dq

dτ
= 2πiq

dj

dq
= −2πi

E14

∆
.

Therefore,

(3.7) Fk,m(ζ) =

∫ 1/2+iA

−1/2+iA

Fk,m(j(τ))

j(τ)− ζ

E14(τ)

∆(τ)
dτ.

We have gk,m(τ) = qm+qℓ+1G(τ), where G is a holomorphic function and ord∞G =
0. Therefore, we have:

(3.8) Fk,m (j(τ)) =
qm

∆ℓ(τ)Ek′(τ)
+

qℓ+1G(τ)

∆ℓ(τ)Ek′(τ)
=

qm

∆ℓ(τ)Ek′(τ)
+ q

G(τ)

P ℓ(τ)Ek′(τ)
,
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where P (τ) =
∏

n≥1 (1− qn)
24
. Plugging (3.8) in (3.7), we get:

Fk,m (ζ) =

∫ 1/2+iA

−1/2+iA

e2πimτ

∆ℓ(τ)Ek′(τ)

E14(τ)

∆(τ) (j(τ)− ζ)
dτ

+

∫ 1/2+iA

−1/2+iA

q
G(τ)

P ℓ(τ)Ek′(τ)

E14(τ)

∆(τ) (j(τ)− ζ)
dτ.

Under the change of variables τ → q, the contour of integration deforms into a circle
of radius e−2πA around the origin (oriented counter-clockwise). Doing so with the
second integral gives us

Fk,m (ζ) =

∫ 1/2+iA

−1/2+iA

e2πimτ

∆ℓ(τ)Ek′(τ)

E14(τ)

∆(τ) (j(τ)− ζ)
dτ

+
1

2πi

∫
{|q|=e−2πA}

G(τ)

P ℓ(τ)Ek′(τ)

E14(τ)

∆(τ) (j(τ)− ζ)
dq.

The function q 7→ G(τ)
P ℓ(τ)Ek′ (τ)

Fk,m(j(τ))
j(τ)−ζ

E14(τ)
∆(τ) is holomorphic on the disk

{
|q| < e−2πA

}
,

so by Cauchy’s Theorem:

(3.9) Fk,m (ζ) =

∫ 1/2+iA

−1/2+iA

e2πimτ

∆ℓ+1(τ)Ek′(τ)

E14(τ)

j(τ)− ζ
dτ.

Now, let z ∈ F and suppose that |j(z)| < R. Substituting ζ = j(z) into (3.9) and
multiplying by ∆ℓ(z)Ek′(z), we get:
(3.10)

gk,m(z) = ∆ℓ(z)Ek′(z)Fk,m (j(z)) =

∫ 1/2+iA

−1/2+iA

∆ℓ(z)Ek′(z)E14−k′(τ)

∆ℓ+1(τ) (j(τ)− j(z))
e2πimτdτ.

□

Equipped with Lemma 3.7, we will lower the contour of integration, collecting
poles as we decrease it from its initial height.

Fix m ≥ 1. For briefness, we denote

(3.11) G(τ, z) =
∆ℓ(z)Ek′(z)E14−k′(τ)

∆ℓ+1(τ) (j(τ)− j(z))
e2πimτ .

Using (3.6), and the identity E14−k′Ek′ = E14 we can write

(3.12) G(τ, z) =
e2πimτ

−2πi

∆ℓ(z)Ek′(z)

∆ℓ(τ)Ek′(τ)

d
dτ (j(τ)− j(z))

j(τ)− j(z)
,

which will be useful for calculating residues.

Assume z = eiθ. Since j(eiθ) ∈ [0, 1728], we can choose R > 1728 and get A > 1
so that:

gk,m(z) =

∫ 1/2+iA

−1/2+iA

G(τ, z)dτ.

We begin to lower the contour of integration from its initial height A to some A′

(which we will determine later).

When
√
3
2 < A′ < sin θ, we have two poles inside the region of integration at τ = eiθ
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and τ = ei(π−θ), as demonstrated in Figure 2.

0 1−1

i

ρ

z −1/z

Figure 2. The contour of integration when
√
3
2 < A′ < sin θ.

Calculating the residues using (3.12), we obtain:

Res
τ=z

G(τ, z) =
e2πimz

−2πi
, Res

τ=−1/z
G(τ, z) =

z−ke2πim(−1/z)

−2πi
.

Therefore, we get:∫ 1/2+iA′

−1/2+iA′
G(τ, eiθ)dτ = gk,m(eiθ)− e2πimeiθ − e−ikθe−2πime−iθ

.

Multiplying both sides by eikθ/2e2πm sin θ gives us:

(3.13) eikθ/2e2πm sin θ

∫ 1/2+iA′

−1/2+iA′
G(τ, eiθ)dτ

= eikθ/2e2πm sin θgm(eiθ)− 2 cos (kθ/2 + 2πm cos θ) .

For convenience, we denote:

(3.14) I(A′) = e2πm sin θ

∫ 1/2+iA′

−1/2+iA′

∣∣G(τ, eiθ)
∣∣ dτ.

Since G(τ, z) has a simple pole whenever τ ∼ z, we need to check which poles are
relevant as we continue to decrease A′:

Lemma 3.8. The only possible poles in D =
{
τ ∈ H : |Re(τ)| ≤ 1

2 , Im(τ) ≥ 2
5

}
are

−1
z+1 ,

z
z+1 and −1

z−1 ,
z

z−1 .

Proof. Let γ =
(
a b
c d

)
∈ PSL2 (Z), and suppose γ ̸= id. We divide into cases:

Case I. Suppose |cd| = 0:
If c = 0, then γ = ( 1 ∗

0 1 ), and since γ ̸= id we have |Re(γ.z)| > 1
2 .

If d = 0, then −bc = 1, and thus γ =
( ∗ −1
1 0

)
, so again we have |Re(γ.z)| >

1
2 . Hence, γ.z /∈ D.
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Case II. Suppose |cd| ≥ 2:
In this case, c2 + d2 ≥ 5, and∣∣ceiθ + d

∣∣2 = c2 + d2 + 2cd cos θ ≥ c2 + d2 − |cb| ≥ 1

2

(
c2 + d2

)
≥ 5

2
.

Hence,

Im(γ.eiθ) =
Im(eiθ)

|ceiθ + d|2
≤ 2

5
.

Case III. Suppose |cd| = 1:
Since γ ∈ PSL2 (Z), we can assume WLOG that c = 1.
If d = 1, then a−b = 1, and thus γ.z = a+ −1

1+eiθ
. Therefore Re(γ.z) = a− 1

2 .

If d = −1, then a+ b = 1, and thus γ.z = a+ −1
1−eiθ

. Therefore Re(γ.z) =

a+ 1
2 .

In the third case, we can see that the only possible poles in D are τ = −1
z+1 and

τ = z
z+1 , and later τ = −1

z−1 and τ = z
z−1 . □

We see that
(3.15)

Im

(
−1

eiθ + 1

)
= Im

(
eiθ

eiθ + 1

)
=

sin θ

2 + 2 cos θ
≥ sin θ

2− 2 cos θ
= Im

(
−1

eiθ − 1

)
and Re

(
eiθ

eiθ+1

)
= Re

(
−1

eiθ−1

)
= 1

2 .

This means that for values of θ close to π/2, the two poles are too close to each
other, so we divide them into cases:

3.2.1. Suppose π
2 ≤ θ < 1.9. We have Im

(
−1

1+eiθ

)
< 0.75, so we set A′ = 0.75.

Thus, the quantity we need to bound is:
(3.16)

I(0.75) ≤ max
|x|≤1/2

e2πm(sin θ−0.75)

∣∣∣∣ ∆(eiθ)

∆(x+ 0.75)

∣∣∣∣ℓ ∣∣∣∣ Ek′(eiθ)E14−k′(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣ .
Lemma 3.8 and (3.15) yield that there exists a lower bound for the difference∣∣j(x+ 0.75i)− j(eiθ)

∣∣.
We also have ∆(z) ̸= 0 for all z ∈ H, and since Ek′ , E14−k′ , ∆, and j are all
holomorphic in H, there exists B1 ≥ 0 so that

(3.17) max
|x|≤ 1

2

∣∣∣∣ Ek′(eiθ)E14−k′(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣ < eB1 .

Additionally, by (3.4), for all x ∈
[
− 1

2 ,
1
2

]
and all θ ∈

(
π
2 ,

2π
3

)
,

(3.18)

∣∣∣∣ ∆(eiθ)

∆(x+ 0.75i)

∣∣∣∣ < e− log(10/7).

Plugging (3.17) and (3.18) into (3.16), we obtain:

(3.19) I(0.75) ≤ e2πm(sin θ−0.75)−log(10/7)ℓ+B1 .
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3.2.2. Suppose 1.9 ≤ θ ≤ 2π
3 . In this case, the pole at τ = −1

eiθ−1
is of height at

most 0.4. Choosing A′ = 0.65 and adding a little semicircle to our contours (see
Figure 3) gives us:

(3.20) eikθ/2e2πm sin θ

∫ 1/2

−1/2

G(τ + 0.65i, eiθ)dτ

= eikθ/2e2πm sin θ

(
−2πiResτ= −1

1+z
G(τ, z) +

∫ 1/2

−1/2

G(τ + 0.65i, eiθ)dτ

)
.

Calculating the residue, we get:

Res
τ= −1

1+z

G(τ, z) =
(z + 1)−ke2πim(

−1
1+z )

−2πi
.

Therefore,

0 1−1

i
ρ z −1/z

−1/(1+z) z/(1+z)

Figure 3. The contour of integration when θ ∈
[
1.9, 2π

3

]
.

−2πieikθ/2e2πm sin θ Resτ= −1
1+z

G(τ, z) =
eπm(2 sin θ−tan(θ/2))e−2πim cos θ

2+2 cos θ

(2 cos(θ/2))
k

.

Together with (3.20), we have:

(3.21)

∣∣∣∣∣eikθ/2e2πm sin θ

∫ 1/2

−1/2

G(τ + 0.65i, eiθ)dτ

∣∣∣∣∣ ≤ eπm(2 sin θ−tan(θ/2))

(2 cos(θ/2))
k

+ I(0.65).

Consider the derivative of the first term on the RHS:
(3.22)(
eπm(2 sin θ−tan(θ/2))

(2 cos(θ/2))
k

)′

=
eπm(2 sin θ−tan(θ/2))

(
(k sin θ)/2 + πm

(
4 cos2(θ/2) cos θ − 1

))
2k+1 cosk+2(θ/2)

.

Therefore, if k ≥ 8π√
3
m, then for all θ ∈

[
θ
2 ,

2π
3

]
, we get:

(3.23)

(
eπm(2 sin θ−tan(θ/2))

(2 cos(θ/2))
k

)′

≥
eπm(2 sin θ−tan(θ/2))

(√
3k
4 k + πm (−1− 1)

)
2k+1 cosk+2(θ/2)

≥ 0.
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This shows that the first term on the RHS in (3.21) is increasing. So it is bounded
by its value at 2π

3 , which means:

eπm(2 sin θ−tan(θ/2))

(2 cos(θ/2))
k

≤ 1,

for all θ ∈
[
π
2 ,

2π
3

]
. Thus, we are left to deal with

(3.24)

I(0.65) ≤ max
|x|≤1/2

e2πm(sin θ−0.65)

∣∣∣∣ ∆(eiθ)

∆(x+ 0.65i)

∣∣∣∣ℓ ∣∣∣∣ Ek′(eiθ)E14−k′(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣ .
As in the previous case, Lemma 3.8 and (3.15) yield that there exists a lower bound
for the difference ∣∣j(x+ 0.65i)− j(eiθ)

∣∣.
This is sufficient to imply that there exists B2 ≥ 0 so that

(3.25) max
|x|≤ 1

2

∣∣∣∣ Ek′(eiθ)E14−k′(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣ < eB2 .

Additionally, by (3.3), for all x ∈
[
− 1

2 ,
1
2

]
and all θ ∈

(
π
2 ,

2π
3

)
,

(3.26)

∣∣∣∣ ∆(eiθ)

∆(x+ 0.65i)

∣∣∣∣ < e− log(2).

Plugging (3.25) and (3.26) into (3.24), we obtain:

(3.27) I(0.65) ≤ e2πm(sin θ−0.65)−log(2)ℓ+B2 .

Now, denote

(3.28) c1 = max

(
π

2 log (10/7)
,

7π

10 log (2)

)
=

π

2 log (10/7)
,

and

(3.29) c2 = max

(
B1 − log (2)

log (10/7)
,

B2

log (2)

)
.

Suppose ℓ > c1m+ c2, so by (3.19)

(3.30) I(0.75) ≤ e
πm
2 −log(10/7)ℓ+B1 < elog(2) = 2.

By (3.27),

(3.31) 1 + I(0.65) ≤ 1 + e
7πm
10 −log(2)ℓ+B2 < 1 + e0 = 2.

Therefore,

(3.32) max (I(0.65) + 1, I(0.75)) < 2.

Finally, using (3.13) and (3.21), we get:
(3.33)∣∣∣eikθ/2e2πm sin θgm(eiθ)− 2 cos (kθ/2 + 2πm cos θ)

∣∣∣ ≤ max (I(0.65) + 1, I(0.75)) ,

which implies:

(3.34)
∣∣∣eikθ/2e2πm sin θgk,m(eiθ)− 2 cos (kθ/2 + 2πm cos θ)

∣∣∣ < 2,

and completes our proof of Proposition 3.6.
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3.3. Proof of Theorem 1.1. Choose α = 4.5 ≥ c1 and β = c2. Let k ≥ 0 be
an even integer with ℓ > αm + β. Denote D = ℓ −m and h(θ) = kθ

2 + 2πm cos θ,
consider the derivative of h:

h′(θ) = k/2− 2πm sin θ = (k − 4πm sin θ) /2 ≥ (k − 4πm) /2.

Since k ≥ 12ℓ > 12αm ≥ 4πm, we have h′(θ) ≥ 0. Therefore, h increases from
πk
4 = 3πℓ+ πk′

4 to πk
3 − πm = 3πℓ+ πk′

3 + πD, passing through D + 1 consecutive

integer multiples of π. Let n0 be the least integer such that πn0 ∈
[
πk
4 , πk

3 − πm
]
.

Thus, there exists π
2 ≤ θ0 < θ1 < . . . < θD ≤ 2π

3 such that h (θj) = πn0 + πj for all

0 ≤ j ≤ D. We have cos (h (θj)) = (−1)j+n0 . So, by Proposition 3.6 we get:

2 + 2 · (−1)j+n0 > eikθj/2e2πm sin θjgk,m(eiθj ) > −2 + 2 · (−1)j+n0

Hence, the function θ 7→ eikθ/2e2πm sin θgk,m(eiθ) is continuous and changes its sign
in the interval (θj−1, θj), showing that it attains the value zero at least once in
each of those intervals. Since there are D intervals, we deduce that gk,m(eiθ) has
D zeros. Hence, the form gk,m has D = ℓ −m zeros on the arc A, in addition to
the m zeros of gk,m at infinity. In other words, all of the finite zeros of gk,m in the
fundamental domain are on the arc A. We are left to show that the zeros of gk,m
are uniformly distributed on the arc:
Let z1, . . . , zD ∈ [π/2, 2π/3] be the D zeros of the form gk,m under the parametriza-
tion θ 7→ eiθ and let [a, b] ⊂ [π/2, 2π/3]. Since h is increasing, we have zj ∈ [a, b]
if and only if h (zj) ∈ [h (a) , h (b)]. By definition h (zj) is between two consecutive
integer multiples of π, therefore the number of zeros in the interval [a, b] is roughly
the number of integer multiples in the interval [h (a) , h (b)], i.e.

# {1 ≤ j ≤ D : zj ∈ [a, b]}

= # {n ∈ Z : πn ∈ [h (a) , h (b)]}+O (1) =

⌊
h (b)− h (a)

π

⌋
+O (1) .

Hence,

# {1 ≤ j ≤ D : zj ∈ [a, b]}
D

=
h (b)− h (a)

πD
+O

(
1

D

)
=

k (b− a)

2πD
+ 2πm

cos (b)− cos (a)

D
+O

(
1

D

)
=

(12ℓ+ k′) (b− a)

2π (ℓ−m)
+O

(
1

D

)
ℓ→∞−−−→ 6 (b− a)

π
=

b− a
2π
3 − π

2

.

Thus, the zeros become uniformly distributed which implies Theorem 1.1.

4. Quantifying the bounds

In this section, we will quantify the constants c1 and c2 in Proposition 3.6, which
will determine α and β in Theorem 1.1. Specifically, we will prove:

Theorem 4.1. Fix m ≥ 1. For all k = 12ℓ + k′, if ℓ > 4.5m + 9.5 then all the
zeros of gk,m in the fundamental domain lie on the arc

{
eiθ : π

2 ≤ θ ≤ 2π
3

}
.
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4.1. Outline of the Proof of Theorem 4.1. As shown in Proposition 3.6, we
have c1 = π

2 log(10/7) ≤ 4.5. Thus, we are left to quantify c2. To determine c2, we

need to quantify the bounds B1 in (3.17)

(3.17) max
|x|≤ 1

2

∣∣∣∣ Ek′(eiθ)E14−k′(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣ < eB1 ,

and B2 in (3.25)

(3.25) max
|x|≤ 1

2

∣∣∣∣ Ek′(eiθ)E14−k′(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣ < eB2 .

We will do so in the following manner:

(1) In §4.2, we will find a lower bound to the differences

max
|x|≤ 1

2

∣∣j (x+ i0.75)− j
(
eiθ
)∣∣

where θ ∈ [π/2, 1.9], and

max
|x|≤ 1

2

∣∣j (x+ i0.65)− j
(
eiθ
)∣∣

where θ ∈ [1.9, 2π/3].
(2) In §4.3, §4.4 and §4.5, we will find an upper bounds for E4 and E6 on the

arc A, and on the horizontal lines of height 0.65 and 0.75. Those bounds,
together with the following identities,

E8 = E2
4 ,

E10 = E4E6,

E14 = E2
4E6,

would yield upper bounds for Ek′ for all k′ ∈ {0, 4, 6, 8, 10, 14}.
(3) We will use Proposition 3.4 to obtain a lower bound on ∆(x + i0.65) and

∆(x+ i0.75).

Lastly, we will substitute the bounds above in (3.17) and (3.25) and get B1 = 4.04
and B2 = 5.2.

4.2. Bounds for the j-function.

Lemma 4.2. (i) For all θ ∈
[
π
2 , 1.9

]
we have

(4.1) max
x∈[− 1

2 ,
1
2 ]

∣∣j(x+ 0.75i)− j(eiθ)
∣∣ ≥ 158.

(ii) For all θ ∈
[
1.9, 2π

3

]
we have

(4.2) max
x∈[− 1

2 ,
1
2 ]

∣∣j(x+ 0.65i)− j(eiθ)
∣∣ ≥ 299.

Proof. We begin with a few basic facts on the j-function:

(1) The q-expansion of j has integer coefficients, thus j(x+ iy) = j(−x+ iy).
(2) The j-function is injective on the fundamental domain and onto C.
(3) j(τ) is real if and only if τ lies on the boundary of the fundamental domain

or the imaginary line. Specifically, j maps the line
{
− 1

2 + it : t >
√
3
2

}
onto

(−∞, 0), the arc A =
{
eiθ : π

2 ≤ θ ≤ 2π
3

}
onto the interval [0, 1728], and the

line {it : t > 1} onto (1728,∞).
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(4) For all n ≥ 1 we have c(n) ≤ e4π
√
n, where c(n) are the coefficients of the

j-function (for the proof of this fact see [2] or A.3).

Since the j-function is real on the arc, the function x 7→
∣∣j(x+ iy)− j(eiθ)

∣∣ is an
even function. Thus,

(4.3) max
|x|≤ 1

2

∣∣j(x+ iy)− j(eiθ)
∣∣ = max

x∈[0, 12 ]

∣∣j(x+ iy)− j(eiθ)
∣∣.

Furthermore, since j on the fundamental domain is injective and real on its bound-
ary, the function θ 7→ j(eiθ) is decreasing on

[
π
2 ,

2π
3

]
(since j(i) = 1728 and

j(ρ) = 0).

(i) The case y = 3
4 and θ ∈

[
π
2 , 1.9

]
: In this case j(eiθ) ∈

[
j(e1.9i), 1728

]
and

a simple MATLAB calculation yields j(e1.9i) ≥ 271. Examining the plot of
the real and imaginary parts of j(x+0.75i) on

[
0, 1

2

]
(see figure 4), we can

see that a bound to (4.3) is achievable by subdividing the interval
[
0, 1

2

]
.

Figure 4. The real and imaginary parts of j(x+ 0.75i) on
[
0, 1

2

]
For any n ≥ 8 we have 4π

√
n− 2π

3 n ≤ − π
100n, thus

c(n)e−
2π
3 n ≤ e4π

√
n− 2π

3 n ≤ e−
π

100n.

Denote f(x) =
∑7

n=−1 c(n)e
− 2π

3 ne2πinx, then:

|j(x+ 0.75i)− f(x)| ≤
∞∑

n=8

c(n)e−
2π
3 n ≤

∞∑
n=8

e−
π

100n =
e−

8π
100

1− e−
π

100
< 26.

Let us subdivide the interval into three parts:
• x ∈ [0, 0.1]: After plotting Re(f(x)) in MATLAB (see figure 5), we
can conclude that Re(f(x)) > 2000, which yields

Re(j(x+ 0.75i)) ≥ Re(f(x))− 26 > 2000− 26 = 1974.
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Hence, for all x ∈ [0, 0.1]:∣∣j(x+ 0.75i)− j(eiθ)
∣∣ ≥ ∣∣Re(j(x+ 0.75i)− j(eiθ))

∣∣
≥ Re(j(x+ 0.75i))− j(eiθ) ≥ 1974− 1728 = 246.

Figure 5. The real part of f(x) on [0, 0.1]

• x ∈ [0.1, 0.2]: Here, we will plot Im(f(x)) in MATLAB (see figure 6),
and conclude that Im(f(x)) > 2000, which yields

Im(j(x+ 0.75i)) ≥ Im(f(x))− 26 > 2000− 26 = 1974.

Hence, for all x ∈ [0.1, 0.2]:∣∣j(x+ 0.75i)− j(eiθ)
∣∣ ≥ Im(j(x + 0.75i)) ≥ 1974.

• x ∈ [0.2, 0.5]: We will plot Re(f(x)) in MATLAB (see Figure 7) again,
we can conclude that Re(f(x)) < 87, which yields

Re(j(x+ 0.75i)) ≤ Re(f(x)) + 26 < 87 + 26 = 113.

Hence, for all x ∈ [0.2, 0.5]:∣∣j(x+ 0.75i)− j(eiθ)
∣∣ ≥ ∣∣Re(j(x+ 0.75i)− j(eiθ))

∣∣
≥ j(eiθ)− Re(j(x+ 0.75i)) ≥ 271− 113 = 158.

Finally, we can conclude that for all θ ∈
[
π
2 , 1.9

]
:

(4.1) max
x∈[− 1

2 ,
1
2 ]

∣∣j(x+ 0.75i)− j(eiθ)
∣∣ ≥ 158.

(ii) The case y = 13
20 and θ ∈

[
1.9, 2π

3

]
: In this case j(eiθ) ∈

[
0, j(e1.9i)

]
and a simple calculation shows j(e1.9i) ≤ 272. For any n ≥ 10 we have
4π

√
n− 13π

10 n ≤ − π
100n, thus

c(n)e−
13π
10 n ≤ e4π

√
n− 13π

10 n ≤ e−
π

100n.
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Figure 6. The imaginary part of f(x) on [0.1, 0.2]

Figure 7. The real part of f(x) on [0.2, 0.5]

Denote g(x) =
∑9

n=−1 c(n)e
− 13π

10 ne2πinx, then:

||j(x+ 0.65i)| − |g(x)|| ≤ |j(x+ 0.65i)− g(x)| ≤
∞∑

n=8

e−
π

100n =
e−

π
10

1− e−
π

100
< 24.

Which shows
|j(x+ 0.65i)| > |g(x)| − 24.

Plotting |g(x)| in MATLAB (see Figure 8) we can deduce |g(x)| ≥ 595.
Hence,

(4.2)
∣∣j(x+ 0.65i)− j(eiθ)

∣∣ ≥ |j(x+ 0.65i)| − j(eiθ) > 595− 24− 272 = 299.
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Figure 8. |g(x)| on [0, 0.5]

□

4.3. Monotonicity of
∣∣E4

(
eiθ
)∣∣ and ∣∣E6

(
eiθ
)∣∣. For k = 4, 6, we define

ek (θ) = e
ikθ
2 Ek

(
eiθ
)
,

and for k = 2, we define

e2 (θ) = eiθE2

(
eiθ
)
+

3

iπ
.

Lemma 4.3. (i) The function e6 (θ) = e3iθE6 (θ) is positive for all θ ∈
(
π
2 ,

2π
3

]
and vanishes at π

2 .

(ii) The function
∣∣E4

(
eiθ
)∣∣ is a decreasing function on

[
π
2 ,

2π
3

]
. In particular,

for all θ ∈
[
π
2 , 1.9

]
we have

(4.4)
∣∣E4

(
eiθ
)∣∣ ≤ E4 (i) =

3ϖ4

π4
= 1.455761 . . . ,

with ϖ = 2
∫ 1

0
dx√
1−x4

= 2.622057 . . ., and for all θ ∈
[
1.9, 2π

3

]
(4.5)

∣∣E4

(
eiθ
)∣∣ ≤ ∣∣E4

(
e1.9i

)∣∣ = 0.900253 . . . .

(iii) The function
∣∣E6

(
eiθ
)∣∣ is an increasing function on

[
π
2 ,

2π
3

]
. In particular,

for all θ ∈
[
π
2 , 1.9

]
we have

(4.6)
∣∣E6

(
eiθ
)∣∣ ≤ ∣∣E6

(
e1.9i

)∣∣ = 1.980151 . . . ,

and for all θ ∈
[
1.9, 2π

3

]
(4.7)

∣∣E6

(
eiθ
)∣∣ ≤ |E6 (ρ)| =

27ϖ′6

2π6
= 2.881536 . . . .

with ϖ′ = 2
∫ 1

0
dx√
1−x6

= 2.622057 . . ..
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Proof. (i) E6 has a unique zero in the fundamental domain, at i = eπi/2.
Therefore, e4 is continuous and nonzero for all θ ∈

(
π
2 ,

2π
3

]
. Hence, it is

enough to show that e6
(
2π
3

)
> 0. As we previously saw, by [6]

e6

(
2π

3

)
= e2πiE6 (ρ) =

27ϖ′6

2π6
> 0.

(ii) Since e4 is negative, we have
∣∣E4

(
eiθ
)∣∣ = −e4 (θ). Hence, it is enough to

show de4
dθ > 0. Indeed, recall the following Ramanujan’s identity,

1

2πi

dE4

dτ
=

E2E4 − E6

3
.

Then,

de4
dθ

(θ) =
d

dθ

(
e2iθE4

(
eiθ
))

= 2ie2iθE4

(
eiθ
)
+ e2iθ

d

dθ

(
E4

(
eiθ
))

= 2ie4 (θ)− 2πe2iθeiθ
dE4

dτ

(
eiθ
)

= 2ie4 (θ)−
2π

3
e2iθeiθ

(
E2

(
eiθ
)
E4

(
eiθ
)
− E6

(
eiθ
))

= 2ie4 (θ)−
2π

3
e4 (θ)

(
e2 (θ)−

3

iπ

)
+

2π

3
e6
(
eiθ
)

=
2π

3
(e6 (θ)− e4 (θ) e2 (θ))

By (i), e6 > 0 and as we saw in Lemma 3.2, e2 < 0 and e4 < 0 which shows
de4
dθ > 0, and thus e4 is an increasing function. The bound (4.4) follows
from a result which is due to Hurwitz [5],

E4 (i) =
3ϖ4

π4
.

The bound (4.5) follows from a simple calculation:

e4 (1.9) = −0.900253 . . . .

(iii) Since e6 is positive, we have
∣∣E6

(
eiθ
)∣∣ = e6 (θ). Hence, it is enough to show

de6
dθ > 0. Indeed, recall the following Ramanujan’s identity,

1

2πi

dE6

dτ
=

E2E6 − E2
4

2
.



22 ROEI RAVEH

Then,

de6
dθ

(θ) =
d

dθ

(
e3iθE6

(
eiθ
))

= 3ie3iθE4

(
eiθ
)
+ e3iθ

d

dθ

(
E6

(
eiθ
))

= 3ie6 (θ)− 2πe3iθeiθ
dE6

dτ

(
eiθ
)

= 3ie6 (θ)− πe3iθeiθ
(
E2

(
eiθ
)
E6

(
eiθ
)
− E4

(
eiθ
)2)

= 3ie6 (θ)− πe6 (θ)

(
e2 (θ)−

3

iπ

)
+ πe4

(
eiθ
)2

= π
(
e4 (θ)

2 − e6 (θ) e2 (θ)
)

By (i), e6 > 0 and as we saw in Lemma 3.2, e2 < 0. Hence, de6
dθ > 0, which

shows that e6 is an increasing function. The bound (4.6) follows from a
simple calculation:

e6(1.9) = 1.980151 . . . .

The bound (4.5) follows from a generalization of Hurwitz result, which is
due to Katayama [6],

E6 (ρ) =
27ϖ6

2π6
.

□

4.4. Bounds for E4.

Lemma 4.4. (i) For all x ∈
[
− 1

2 ,
1
2

]
,

(4.8) |E4 (x+ 0.65i)| < 5.9.

(ii) For all x ∈
[
− 1

2 ,
1
2

]
,

(4.9) |E4 (x+ 0.75i)| < 3.45.

Proof. Recall,

E4 (τ) = 1 + 240

∞∑
n=1

σ3(n)q
n.

(i) An upper bound for |E4(x + 0.65i)| For all n ≥ 3 we have n4e−
13π
20 n ≤ 3

10 ,
and thus∣∣∣|E4 (x+ 0.65i)| −

∣∣∣1 + 240e−
13π
10 e2πix + 2160e−

13π
5 e4πix

∣∣∣∣∣∣ ≤ 240

∞∑
n=3

σ3(n)e
− 13π

10 n

≤ 240

∞∑
n=3

n4e−
13π
10 n ≤ 240 · 3

10

∞∑
n=3

e−
13π
20 n = 72

e−
39π
20

1− e−
13π
20

<
1

5
= 0.2.

Now, we have∣∣∣1 + 240e−
13π
10 e2πix + 2160e−

13π
5 e4πix

∣∣∣ ≤ 1 + 240e−
13π
10 + 2160e−

13π
5 < 5.7

Hence,

(4.8) |E4 (x+ 0.65i)| ≤ 5.9.
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(ii) An upper bound for |E4(x + 0.75i)|: For all n ≥ 3 we have n4e−
3π
4 ≤ 1

5 ,
and thus∣∣∣|E4 (x+ 0.75i)| −

∣∣∣1 + 240e−
2π
3 e2πix + 2160e−3πix

∣∣∣∣∣∣ ≤ 240

∞∑
n=3

σ3(n)e
− 2π

3 n

≤ 240

∞∑
n=7

n4e−
2π
3 n ≤ 240 · 1

5

∞∑
n=3

e−
3π
4 n = 48

e−
9π
4

1− e−
3π
4

<
1

20
= 0.05.

Now, we have∣∣∣1 + 240e−
2π
3 e2πix + 2160e−3πe4πix

∣∣∣ ≤ 1 + 240e−
2π
3 + 2160e−3π < 3.4

Hence,

(4.9) |E4 (x+ 0.75i)| < 3.45.

□

4.5. Bounds for E6.

Lemma 4.5. (i) For all x ∈
[
− 1

2 ,
1
2

]
,

(4.10) |E6 (x+ 0.65i)| < 14.26.

(ii) For all x ∈
[
− 1

2 ,
1
2

]
,

(4.11) |E6 (x+ 0.75i)| < 5.25.

Proof. Recall

E6(τ) = 1− 504

∞∑
n=1

σ5(n)q
n.

(i) An upper bound for |E6(x + 0.65i)|: For all n ≥ 3 we have n6e−
13π
20 n ≤ 8

5 ,
and thus∣∣∣|E6 (x+ 0.65i)| −

∣∣∣1− 504e−
13π
10 e2πix − 16632e−

13π
5 e4πix

∣∣∣∣∣∣ ≤ 504

∞∑
n=3

σ6(n)e
− 13π

10 n

≤ 504

∞∑
n=3

n6e−
13π
10 n ≤ 504 · 8

5

∞∑
n=3

e−
13π
20 n =

4032

5

e−
39π
20

1− e−
13π
20

< 2.05.

Now, we have∣∣∣1− 504e−
13π
10 e2πix − 16632e−

13π
5 e4πix

∣∣∣ = ∣∣∣∣(1− 252e−
13π
10 e2πix

)2
− 80136e−

13π
5 e4πix

∣∣∣∣
≤
∣∣∣∣(1− 252e−

13π
10

)2
− 80136e−

13π
5

∣∣∣∣ < 12.21.

Hence,

(4.10) |E6 (x+ 0.65i)| ≤ 14.26.
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(ii) An upper bound for |E6(x + 0.75i)|: For all n ≥ 1 we have n6e−
3π
4 n ≤ 7

10 ,
and thus∣∣∣|E6 (x+ 0.75i)| −

∣∣∣1− 504e−
2π
3 e2πix − 16632e−3πe4πix

∣∣∣∣∣∣ ≤ 504

∞∑
n=3

σ6(n)e
− 2π

3 n

≤ 504

∞∑
n=3

n6e−
2π
3 n ≤ 504 · 7

10

∞∑
n=3

e−
3π
4 n =

4032

5

e−
9π
4

1− e−
3π
4

< 0.35.

Now, we have∣∣∣1− 504e−
2π
3 e2πix − 16632e−3πe4πix

∣∣∣ = ∣∣∣∣(1− 252e−
2π
3 e2πix

)2
− 80136e−3πe4πix

∣∣∣∣
≤
∣∣∣∣(1− 252e−

2π
3

)2
− 80136e−3π

∣∣∣∣ < 4.9

Hence,

(4.11) |E6 (x+ 0.75i)| < 5.25.

□

4.6. Proof of Theorem 4.1. We consider both cases for all six different choices
of k′.

Case I. y = 3
4 and θ ∈

[
π
2 , 1.9

]
:

By Proposition 3.4 we get |∆(x+ 0.75i)| > 0.007. Now,
For k′ = 0:

max
|x|≤1/2

∣∣∣∣ E14(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣∣ E6(x+ 0.75i) · (E4(x+ 0.75i))
2

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣∣
≤ 5.25 · (3.45)2

0.007 · 158
< 56.5.

For k′ = 4:

max
|x|≤1/2

∣∣∣∣ E4(e
iθ)E10(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣ E4(e
iθ)E6(x+ 0.75i)E4(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣
≤ 1.46 · 5.25 · 3.45

0.007 · 158
< 24.

For k′ = 6:

max
|x|≤1/2

∣∣∣∣ E6(e
iθ)E8(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣∣ E6(e
iθ) (E4(x+ 0.75i))

2

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣∣
≤ 1.99 · (3.45)2

0.007 · 158
< 21.42.
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For k′ = 8:

max
|x|≤1/2

∣∣∣∣ E8(e
iθ)E6(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣∣
(
E4(e

iθ)
)2

E6(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣∣
≤ (1.46)2 · 5.25

0.007 · 158
< 10.12.

For k′ = 10:

max
|x|≤1/2

∣∣∣∣ E10(e
iθ)E4(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣ E6(e
iθ)E4(e

iθ)E4(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣
≤ 1.99 · 1.46 · 3.45

0.007 · 158
< 9.07.

For k′ = 14:

max
|x|≤1/2

∣∣∣∣ E14(e
iθ)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣∣ E6(e
iθ) ·

(
E4(e

iθ)
)2

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣∣
≤ 1.99 · (1.46)2

0.007 · 158
< 3.84.

Therefore, for any k′ ∈ {0, 4, 6, 8, 10, 14},

(4.12) max
|x|≤ 1

2

∣∣∣∣ Ek′(eiθ)E14−k′(x+ 0.75i)

∆(x+ 0.75i) (j(x+ 0.75i)− j(eiθ))

∣∣∣∣ < e4.04.

Hence, we got B1 = 4.04.

Case II. y = 13
20 and θ ∈

[
1.9, 2π

3

]
: By Proposition 3.4 we get |∆(x+ 0.65i)| > 0.01.

Now,
For k′ = 0:

max
|x|≤1/2

∣∣∣∣ E14(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣∣ E6(x+ 0.65i) · (E4(x+ 0.65i))
2

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣∣
≤ 14.26 · 36

299 · 0.01
< 171.7.
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For k′ = 4:

max
|x|≤1/2

∣∣∣∣ E4(e
iθ)E10(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣ E4(e
iθ)E6(x+ 0.65i)E4(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣
≤ 0.9022 · 14.26 · 6

2.99
< 25.82.

For k′ = 6:

max
|x|≤1/2

∣∣∣∣ E6(e
iθ)E8(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣∣ E6(e
iθ) (E4(x+ 0.65i))

2

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣∣
≤ 2.89 · 36

2.99
< 34.8.

For k′ = 8:

max
|x|≤1/2

∣∣∣∣ E8(e
iθ)E6(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣∣
(
E4(e

iθ)
)2

E6(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣∣
≤ 0.90222 · 14.26

2.99
< 3.9.

For k′ = 10:

max
|x|≤1/2

∣∣∣∣ E10(e
iθ)E4(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣ E6(e
iθ)E4(e

iθ)E4(x+ 0.65i)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣
≤ 2.89 · 0.9022 · 6

2.99
< 5.24.

For k′ = 14:

max
|x|≤1/2

∣∣∣∣ E14(e
iθ)

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣
= max

|x|≤1/2

∣∣∣∣∣ E6(e
iθ) ·

(
E4(e

iθ)
)2

∆(x+ 0.65i) (j(x+ 0.65i)− j(eiθ))

∣∣∣∣∣
≤ 2.89 · 0.90222

2.99
< 1.

Therefore, for any k′ ∈ {0, 4, 6, 8, 10, 14},

(4.13) max
|x|≤ 1

2

∣∣∣∣ Ek′(eiθ)E14−k′(x+ yi)

∆(x+ yi) (j(x+ yi)− j(eiθ))

∣∣∣∣ < e5.2.

Hence, we got B2 = 5.2.



ON THE ZEROS OF THE MILLER BASIS OF CUSP FORMS 27

Finally, substituting B1 = 4.04 and B2 = 5.2 in (3.29) we obtain

c2 = max

(
4.04− log (2)

log (10/7)
,

5.2

log (2)

)
=

4.04− log (2)

log (10/7)
= 9.384 . . . ≤ 9.5.

Which proves Theorem 4.1.

5. Proof of theorem 1.2

In this section, we investigate the zeros of the first element of the Miller basis,
i.e. gk,1. Using Theorem 4.1, we conclude that for any k = 12ℓ+k′ with ℓ > 14, the
form gk,1 has all of its zeros in the fundamental domain on the arc A. Therefore,
we need to show that the zeros of the forms gk,1 such that ℓ ≤ 14 are all on the arc
A. The proof goes through Faber polynomials:

5.1. Faber Polynomials. For any nonzero modular form f ∈ Mk, we associate
a polynomial Ff ∈ C[x] of degree k − ord∞ (f) such that f = ∆ℓEk′Ff (j), where
k = 12ℓ + k′ and k′ ∈ {0, 4, 6, 8, 10, 14}, as before. The polynomial Ff is uniquely
determined and is called the Faber polynomial of f . The valence formula (1.1)
implies that f attains the zeros of Ek′ ; we call these zeros trivial. The roots of Ff

account for all the nontrivial zeros of f , i.e. for any τ ̸∼ i, ρ, we have f(τ) = 0 if
and only if Ff (j(τ)) = 0. Together with the fact that j is injective and maps the
arc A =

{
eiθ : π

2 ≤ θ ≤ 2π
3

}
onto the interval [0, 1728], we get that a form f has all

its zeros in the fundamental domain on the arc A if and only if Ff has all of its
roots in the interval [0, 1728].

Remark. Given some modular form f , it is not hard to compute its Faber polyno-
mial (for more information see §3 in [14]).

Hence, it is sufficient to consider the Faber polynomials of the forms gk,1 and
compute their roots.

5.2. Some Examples.

5.2.1. k = 48. The Faber polynomial of g48,1 is:

F48,1(t) = t3 − 2136t2 + 931860t− 24903328,

and its roots are 28.5703, 565.1814, 1542.2483 ∈ [0, 1728]. See Figure 9.

5.2.2. k = 124. The Faber polynomial of g124,1 is:

F124,1(t) = t9 − 6696t8 + 18182340t7 − 25703594848t6

+ 20207360640402t5 − 8750844530401680t4

+ 1942806055074346280t3 − 188671766710386398400t2

+ 5718177043459037019855t2 − 21437679033112542689512.

Its roots are 4.3445, 44.3322, 153.6441, 350.0448, 628.6821, 959.1844, 1289.5802,
1557.8272, 1708.3603 ∈ [0, 1728]. See Figures 10,11.

Using this method, numerically computing the roots of the polynomial Fk,1 with
1 ≤ ℓ ≤ 14, we can verify that for any even integer k > 14, with 1 ≤ ℓ ≤ 14 the
zeros in the fundamental domain of gk,1 are all on the arc A, which concludes the
proof of Theorem 1.2.



28 ROEI RAVEH

Figure 9. F48,1 on the interval [0, 1728].

Figure 10. F124,1 on the interval [0, 200].

Appendix A.

Proposition A.1. (1) Let α > 0 and let d ≥ 1 be an integer. The function
f : x 7→ xde−αx, is decreasing on

[
d
α ,∞

)
.

(2) For all n ≥ 1 and all x ∈
[
0, 1

2

]
we have n sin(2πx) ≥ |sin(2πnx)|.

Proof. (1) Consider the derivative of f :

f ′(x) = (d− αx)xd−1e−αx.

f ′ is non-positive on
[
d
α ,∞

)
, and therefore f is decreasing on

[
d
α ,∞

)
.
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Figure 11. F124,1 on the interval [0, 1728].

(2) Let n ≥ 1

n−1∑
k=0

e4πikx =
e4πinx − 1

e4πix − 1
=

e2πinx

e2πix
e2πinx − e−2πinx

e2πix − e−2πix
= e2πi(n−1)x sin(2πnx)

sin(2πx)
.

Thus,

n ≥ |sin(2πnx)|
sin(2πx)

.

□

Proposition A.2. Let α ∈
(
0, eπ

√
3
)
and denote S(θ) =

∣∣∣1 + αe2πie
θ
∣∣∣2, then S is

decreasing on
[
π
2 ,

2π
3

]
.

Proof.

S(θ) =
∣∣∣1 + αe2πie

θ
∣∣∣2 =

(
1 + αe−2π sin θ cos(2π cos θ)

)2
+
(
αe−2π sin θ sin(2π cos θ)

)2
= 1 + 2αe−2π sin θ cos(2π cos θ)

+ α2e−4π sin θ
(
cos2(2π cos θ) + sin2(2π cos θ)

)
= 1 + 2αe−2π sin θ cos(2π cos θ) + α2e−4π sin θ

To show that S is non-increasing, consider its derivative, and see that it is non-
positive.

S′(θ) = −4απe−2π sin θ (cos θ cos(2π cos θ)− sin θ sin(2π cos θ))− 4πα2e−4π sin θ cos θ

= −4παe−2π sin θ cos(θ + 2π cos θ)− 4πα2e−4π sin θ cos θ

= −4παe−2π sin θ
(
cos(θ + 2π cos θ) + αe−2π sin θ cos θ

)
On the interval [π/2, 2π/3], θ 7→ cos θ is decreasing from 0 to − 1

2 , in particular it
is non-positive.
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Hence,

αe−2π sin θ cos θ ≤ αe−π
√
3 cos θ ≤ cos θ

for all θ ∈ [π/2, 2π/3].
Therefore,

S′(θ) = −4παe−2π sin θ
(
cos(θ + 2π cos θ) + αe−2π sin θ cos θ

)
≤ −4παe−2π sin θ (cos(θ + 2π cos θ) + cos θ)

= −4παe−2π sin θ (2 cos(θ + π cos θ) cos(π cos θ))

− 8παe−2π sin θ cos(θ + π cos θ) cos(π cos θ)

Now, π cos θ ∈ [−π/2, 0] and thus cos(π cos θ) is non-negative. Furthermore, θ +
π cos θ ∈ [π/6, π/2] and thus cos(θ + π cos θ) is non-negative. Overall, S′(θ) is
non-positive, which proves our proposition. □

The following proposition (and proof) were taken from [2].

Proposition A.3. Let c(n) be the coefficients in the q-expansion of the j-function,

then c(n) < e4π
√
n for all n ≥ 1.

Proof. Let t ∈ (0, 1), by (2.3) we have j (it) = j
(
i
t

)
. Expanding j to its q-series we

get,

(A.1) j (it) = e2πt + 744 +

∞∑
n=1

c(n)e−2πnt = e
2π
t + 744 +

∞∑
n=1

c(n)e−
2πn
t = j

(
i

t

)
.

Hence,

(A.2)

∞∑
n=1

c(n)
(
e−2πnt − e−

2πn
t

)
= e

2π
t − e2πt.

Since t ∈ (0, 1) and c(n) > 0, the terms on the left-hand side are all positive, it
follows for all n ≥ 1:

(A.3) c(n)
(
e−2πnt − e−

2πn
t

)
< e

2π
t − e2πt.

Let n ≥ 2, substitute t = 1√
n
and obtain:

(A.4) c(n) <
e2π

√
n − e

2π√
n

e−2π
√
n − e−2πn

√
n
.

Now, we claim that

(A.5)
e2π

√
n − e

2π√
n

e−2π
√
n − e−2πn

√
n
< e4π

√
n.

Indeed, the inequality above is equivalent to

e2π
√
n − e

2π√
n < e2π

√
n − e4π

√
n−2πn

√
n,

which is equivalent to

e
2π√
n > e4π

√
n−2πn

√
n.

Now, since n ≥ 2 we have 2π√
n
> 4π

√
n− 2πn

√
n. Thus, (A.5) holds for all n ≥ 2.

For n = 1, we have c(1) = 196884 < e4π. Hence, c(n) < e4π
√
n for all n ≥ 1. □
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