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Abstract. Neural networks are often overconfident about their pre-
dictions, which undermines their reliability and trustworthiness. In
this work, we present a novel technique, named Error-Driven Un-
certainty Aware Training (EUAT), which aims to enhance the ability
of neural models to estimate their uncertainty correctly, namely to
be highly uncertain when they output inaccurate predictions and low
uncertain when their output is accurate. The EUAT approach oper-
ates during the model’s training phase by selectively employing two
loss functions depending on whether the training examples are cor-
rectly or incorrectly predicted by the model. This allows for pursu-
ing the twofold goal of i) minimizing model uncertainty for correctly
predicted inputs and ii) maximizing uncertainty for mispredicted in-
puts, while preserving the model’s misprediction rate. We evaluate
EUAT using diverse neural models and datasets in the image recog-
nition domains considering both non-adversarial and adversarial set-
tings. The results show that EUAT outperforms existing approaches
for uncertainty estimation (including other uncertainty-aware train-
ing techniques, calibration, ensembles, and DEUP) by providing un-
certainty estimates that not only have higher quality when evaluated
via statistical metrics (e.g., correlation with residuals) but also when
employed to build binary classifiers that decide whether the model’s
output can be trusted or not and under distributional data shifts.

1 Introduction
Deep Neural Networks (DNNs) have achieved remarkable perfor-
mance across various domains and are increasingly utilized to auto-
mate intricate decision-making processes. However, a critical limita-
tion of current neural models is their tendency to display overconfi-
dence in their predictions [11, 2]. This overconfidence persists even
when erroneous predictions are made, ultimately compromising the
reliability and trustworthiness of the models.

Recent research efforts [10, 5, 9, 12, 34] have been dedicated to en-
hancing the trustworthiness of DNNs by estimating the model’s pre-
dictive uncertainty through various approaches. Bayesian neural net-
works (BNNs) [34, 43, 44] offer an elegant framework for modeling
uncertainty [38]. However, while BNNs provide theoretically sound
uncertainty estimates, they incur prohibitive costs, being impracti-
cal for large datasets and complex models. To mitigate these chal-
lenges, various approximations have been introduced. For instance,
Monte Carlo (MC) dropout [10], which leverages dropout regular-
ization during both training and inference stages to approximate the
behavior of BNNs.

Furthermore, numerous studies [27, 23, 45, 41, 33] have focused
on calibrating the models’ predicted uncertainty in different ways.
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These works can be categorized into two primary groups based on
whether they: 1) account for the uncertainty during training by intro-
ducing an additional term in the loss function to quantify the model’s
predictive uncertainty, or ii) implement a post-processing stage to
calibrate the model’s predicted probabilities using a validation set.
Although post-processing methods have empirically proven to be ef-
fective and cost-efficient [27], they present additional calibration pa-
rameters that are sensitive to the method and data used. On the other
hand, despite being more expensive, learning-based methods have
achieved better performance for uncertainty estimation [26, 32].

In this work, we mix both approaches by introducing Error-Driven
Uncertainty Aware Training (EUAT), a specialized training proce-
dure for classification tasks that aims at improving the model’s uncer-
tainty estimation by imposing high uncertainty for erroneous outputs
and low uncertainty for accurate predictions. To achieve this two-
fold goal, during training, EUAT iterates between two loss functions
depending on whether the training examples are correctly or incor-
rectly predicted by the model. More in detail, our approach extends
a base loss function, which aims to minimize the classification error
rate (e.g., cross-entropy (CE)), with an additional term whose objec-
tive is to maximize the model’s uncertainty for misclassifications and
minimize uncertainty for correct classified inputs. However, to sep-
arate the correctly and incorrectly classified inputs and speed up the
training procedure, we first consider pre-train the model and then we
apply EUAT to conduct a post-learning-based phase to improve its
uncertainty.

We conducted an extensive evaluation of EUAT on classifica-
tion tasks using popular image recognition models and benchmarks,
where we compared our approach against several state-of-the-art
methods for uncertainty estimation using six different evaluation
metrics. Further, we extended our assessment to a binary classifi-
cation problem, which presents a particularly interesting case in-
volving the class inversion of the high uncertainty outputs that are
likely to be wrong classified. We also evaluate our technique in an
out-of-distribution detection task, where corrupted inputs are used to
evaluate the model, and at last, we integrate our function into ad-
versarial training settings in order to identify possible misclassifica-
tions based on uncertainty. We detail the challenges encountered in
each domain/task. In general, EUAT presents the best performance in
more than 60% of the metrics considered, and in the majority of the
cases where the baselines are more competitive, EUAT is still able
to achieve similar performance metrics. Further, in all the scenarios
considered, we show that our strategy can better separate wrong and
accurate predictions based on uncertainty, increasing the reliability
and trustworthiness of the models.

ar
X

iv
:2

40
5.

01
20

5v
1 

 [
cs

.L
G

] 
 2

 M
ay

 2
02

4



Table 1: Uncertainty Confusion Matrix
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2 Related Work
In this section, we first review different formulations of the problem
of estimating models’ uncertainty, and the corresponding metrics,
proposed in the literature. Subsequently, we analyze existing meth-
ods to estimate the uncertainty of DNNs. Finally, we discuss methods
aimed at improving uncertainty estimation by adjusting the model’s
outputs via post-processing or uncertainty-aware training techniques.

Problem definition and metrics. The problem of accurately esti-
mating model uncertainty has been formalized using two main theo-
retical frameworks. One such formalization is based on the notion
of calibration, which aims at aligning the probabilities output by
the model with the true likelihood of the predicted outcomes [14].
An alternative formalization is based on the Uncertainty Confusion
Matrix (UCM) [3, 20], as defined in Table 1. The UCM specializes
the concept of confusion matrix to evaluate the ability to leverage
the model’s uncertainty to discern correct predictions. For example,
different metrics such as the expected calibration error (ECE) [33],
adaptive calibration error [36], or test-based calibration error [31],
have been proposed to measure the calibration error of a model. On
the other hand, leveraging the UCM, several works [20, 3] have ex-
ploited additional metrics such as uncertainty accuracy (uA) and the
uncertainty area under the curve (uAUC) to enhance the reliability of
uncertainty estimates.

Uncertainty Estimation. One important foundation of these works
lies in the computation of uncertainty. Uncertainty in DNNs plays a
pivotal role in quantifying the reliability and robustness of their pre-
dictions. There are two main types of uncertainty: epistemic uncer-
tainty, associated with the model’s lack of knowledge or data, and
aleatoric uncertainty, linked to the inherent randomness and unpre-
dictability within the training data. Various metrics are employed to
measure these types of uncertainty such as predictive entropy (PE)
and mutual information (MI) [1]. However, quantifying uncertainty
with DNNs is a challenging task. Bayesian methods [34, 28] can
directly provide an estimate of the uncertainty by parameterizing
the parameters of the network with distributions. However, train-
ing BNNs usually comes with a prohibitive cost. Thus, several ap-
proximations have been developed. Monte Carlo (MC) dropout [10],
which is one of the most popular techniques for uncertainty quan-
tification on DNNs [1, 4], proposed as a Bayesian approximation to
estimate the uncertainty by sampling multiple dropout masks during
training and inference phases and aggregating the predictions, pro-
viding a probabilistic estimate that allows the quantification of un-
certainty. One can also approximate and estimate model uncertainty
by computing the variance of the output predictions [5, 9, 25]. Ad-
ditionally, Markov Chain Monte Carlo (MCMC) methods [12] offer
another avenue for drawing the posterior distribution (albeit, those
require a long time to converge to the final distribution [1, 34]). Fur-
ther, Variational Inference (VI) is a technique used to estimate the un-

certainty of BNNs by approximating the posterior distribution over
the model’s weights, which are treated as random variables with as-
sociated probability distributions. Training the network to approxi-
mate these distributions enables the capture of inherent uncertainty
in the model’s predictions. Moreover, we can also resort to models
that output an uncertainty estimation, such as Deep Gaussian Pro-
cesses [6], or use Laplace approximations for uncertainty [29], or
deep ensemble methods that offer yet another approach to estimate
model uncertainty [24, 1], by aggregating the outputs of each learner
in the ensemble and computing relevant metrics such as the entropy
or MI. At last, to account for the computation overhead of the pre-
vious methods (resulting, for example, from training multiple mod-
els to the ensemble or performing several forward passes using MC
dropout), DEUP [23] trains a new simple estimator to predict the un-
certainty of the base model exploiting its error/loss, and DUN [2]
leverages the outputs of different layers of a DNN to measure the
uncertainty.

In this work, we resort to MC dropout to estimate the uncertainty
of our models and compute the PE using the outputted distributions.
Distinctly, we explicitly aim to increase the uncertainty of misclassi-
fications by maximizing the PE of the wrong prediction, while mini-
mizing the global error rate.

Post-processing Calibration Methods. Model calibration be-
comes especially critical in tasks where estimated uncertainties play
a fundamental role in risk assessment. Thus, a first set of works aims
at calibrating a fully trained model by applying a post-processing
phase to align the output probabilities with the true likelihood of the
predicted outcomes of events occurring [14]. DNNs are not inher-
ently calibrated, and several techniques, such as Platt Scaling [39],
Isotonic Regression [45], Temperature Scaling [14], or Beta Calibra-
tion [22], can be employed to fine-tune the probabilities outputted
by the model ensuring a more accurate alignment with true out-
come frequencies. Moreover, Krishnan et al. [20] introduced an ac-
curacy versus uncertainty calibration (AvUC) loss function devised
to obtain well-calibrated uncertainties while simultaneously preserv-
ing or enhancing model accuracy, and they extended their approach
by proposing a post-hoc calibration phase that extends Temperature
Scaling using AvUC. In addition, Karandikar et al. [18] proposed
an extension of ECE and AvUC by developing a soft version of the
binning operation underlying these calibration-error estimators, and
also extended their approach for post-processing calibration by opti-
mizing the temperature parameter in the temperature scaling method
based on the soft calibration error. Complementary, Gupta et al. [15]
presented a binning-free calibration approach. However, these cal-
ibration methods can be very sensitive to both the model and the
validation set [27] and perform suboptimally when faced with shifts
in data distribution [37].

Uncertainty Aware Training Methods. One fundamental aspect
of training DNNs is the choice of a loss function. Although CE stands
out as a common choice for addressing classification problems, it
tends to increase the over-confidence of the resulting model [14, 32].
Thus, since accounting for predictive uncertainty during training im-
proves model calibration [20], several loss functions have been de-
veloped to extend existing ones, aiming to incorporate the model’s
uncertainty. These learning-based methods such as focal loss [26] or
label smoothing [26] introduce an additional term addressing model
uncertainty. These terms are typically balanced using corresponding
weights introducing as a consequence additional hyper-parameters.
Similarly, Shamsi et al. [41] proposed two loss functions that ex-
tend the CE by adding a new term to address the model’s uncer-



tainty that can be determined through the PE or the ECE. Addition-
ally, Einbinder et al [8] introduced an uncertainty-aware conformal
loss function CE loss by adding a new term that quantifies uncer-
tainty via conformal prediction. CALS [27] exploits the Augmented
Lagrangian Multiplier method to adaptively learn the weights of the
penalties to balance each term in the new loss function. Separately,
class uncertainty-aware (CUA) loss [19] tailored object detection in-
troduces the uncertainty of each class to augment the loss value when
prediction results are uncertain. Further, Ding et al. [7] developed an
uncertainty-aware loss for selective medical image segmentation that
considers uncertainty in the training process to directly maximize
the accuracy on the confident segmentation subset, rather than the
accuracy on the whole dataset. Differently from the aforementioned
works, our approach takes a distinct path by focusing on leveraging a
pre-trained model to deliberately increase the uncertainty associated
with incorrectly classified inputs without degrading the overall error
rate.

Further, through our novel method, the objective is to empower
Machine Learning (ML) systems to recognize possible model mis-
classification in production and take customized actions accordingly.
This idea can be further extended to adversarial training scenarios,
where the deliberate increase in uncertainty for misclassified adver-
sarial inputs enhances the system’s ability to detect and respond to
potential attacks in production.

3 Error-Driven Uncertainty Aware Training

DNNs often exhibit overconfidence in their predictions [11, 2]. Thus,
in this work, we address this problem by proposing a loss function
called Error-Driven Uncertainty Aware Training that shifts the focus
toward refining the uncertainty guarantees of a pre-trained model by
increasing the uncertainty associated with misclassifications while
reducing the error rate and uncertainty of correct predictions. We as-
sert that if a model reaches a stagnation phase in terms of quality and
the pursuit of further training offers negligible benefit, it should, at
the very least, produce high uncertainty values for incorrect predic-
tions.

In order to achieve our design goals, we start the process by query-
ing a pre-trained model to determine which inputs of the training
dataset are wrong and correctly classified. Subsequently, we create
two sets, one with incorrect classified inputs W and the other with
the correct ones C. We resize the correct classified inputs’ set by ran-
domly selecting samples until the two sets have the same size. Then,
in order to reduce overfitting, we mix wrong and correct classified
inputs. Our approach employs distinct loss functions for each set.
Since our objective is to deliberately increase the uncertainty of mis-
classifications, we minimize the CE and maximize the uncertainty
(determined via MC dropout and PE) for the wrong-classified inputs
while, for the correct-classified inputs, we minimize the CE and the
uncertainty, i.e.,

LEUAT(fθ(x), y)=

{
LCE(fθ(x), y)-LU (fθ(x), y) ∀(x, y) ∈ W
LCE(fθ(x), y)+LU (fθ(x), y) ∀(x, y) ∈ C

(1)
where the cross-entropy loss is given by

LCE(fθ(x), y) = −
1

K

K∑
i=1

t(xi) log(fθ(xi)), (2)

(t(x) denotes the true label given the input x), and the uncertainty

Algorithm 1 Pseudo-code to train a model with EUAT loss function.

1: Input: model f , training set S, optimizer opt
2: Output: model f
3: no_inputs = 0
4: while True do ▷ spot condition
5: W , C ← f (S) ▷ WrongW & correct C classified sets
6: C ← Random(C, |W|)
7: LW(f(x), y)=LCE(f(x), y)-LU (f(x), y) ∀(x, y)∈W ...

▷ Minimize CE-PE for wrong outputs
8: LC(f(x), y)=LCE(f(x), y)+LU (f(x), y) ∀(x, y)∈C ...

▷ Minimize CE+PE for correct outputs
9: L(f(x), y)=LW(f(x), y)+LC(f(x), y) ▷ Add losses

10: L.backward() ▷ Gradient estimation
11: opt.step() ▷ Back-propagation computation
12: no_inputs += (|W| + |C|)
13: if no_inputs > epoch_size then
14: f .test() ▷ Test f if trained with the same amount of data as

the dataset
15: end if
16: end while
17: return f

loss is measured by resorting to predictive entropy H

LU (fθ(x), y) = H[P (y|x)] = −
∑
y∈Y

P (y|x) logP (y|x), (3)

where P (y|x) is the model’s output distribution over the set of pos-
sible outcomes Y obtained via MC dropout by approximating the
model’s output predictions using the average across parameters θi
sampled from a dropout distribution

p(y|D, x) ≈ 1

N

N∑
i=1

p(y|θi, x). (4)

We decided to also minimize uncertainty for correct-classified inputs
in order to avoid a peak in the global model’s uncertainty. By us-
ing this approach, the model is able to better separate the erroneous
and correct predictions using the uncertainty of each individual fore-
cast. We also implement an early stopping policy based on the dif-
ferent evaluation metrics considered. It should also be noted that this
proposed loss function is differentiable and continuous. The pseudo-
code of the method proposed is described in Algorithm 1.

By resorting to EUAT, which effectively distinguishes between the
uncertainty of accurate and erroneous predictions, we enhance the
quality of uncertainty estimates and ultimately improve the reliabil-
ity and trustworthiness of the model. Operationalizing the model in
production involves assessing the uncertainty associated with each
prediction. When the prediction falls below an uncertainty threshold,
the model outcome can be trusted. Otherwise, when the uncertainty
is above the threshold, the prediction is untrustworthy, warranting
further scrutiny or review by human evaluators. Consequently, tun-
ing the uncertainty threshold becomes fundamental. Akin to the im-
plementation of the early stopping policy, we also explore various
evaluation metrics to select the threshold.

In this work, we have considered classification tasks using differ-
ent image recognition models. Thus, given the model’s prediction,
we can promptly categorize it as either accurate or erroneous, and
place it in the respective set. The early stopping policy and threshold
selection are individually optimized for each metric.

We also consider a binary classification problem where the high-
uncertainty output predictions that are likely to be wrongly classified



can be inverted to the opposite class. Given the particularities of this
problem, we tune the uncertainty threshold for EUAT differently by
maximizing the number of correct predictions (i.e., true positives and
true negatives) that are below the threshold and the number of incor-
rect predictions that are above the threshold (false positives and false
negatives). Then, in production, when the outputted uncertainty is
larger than the threshold, we can directly flip the prediction for the
opposite class, and this way improve the model’s quality.

At last, we can also use EUAT to perform adversarial training. It
should be noted that our approach does not aim to identify adver-
sarial attacks using uncertainty; rather, when applied to AT focuses
on identifying misclassifications based on the output uncertainty, re-
gardless of whether they result from an attack or not. Equivalently,
we can separate the wrong and correct predictions (clean and adver-
sarial) in the two sets and train directly with our loss function. Since
the function is differentiable, we can solve the optimization problem
to find the perturbation using adversarial training methods like Fast
Gradient Descent Method (FGSM) [13] or Project Gradient Descent
(PGD) [30]. Similar to Smith and Gal [42], we acknowledge that
neither dropout nor our method alone can be considered a reliable
adversarial defense. Rather, we advocate for the joint use of all these
methods when training a model adversarially in order to achieve bet-
ter guarantees and trade-offs of accuracy, robustness, and uncertainty,
yielding resilient models harder to attack.

4 Evaluation
In this section, we report the evaluation of the EUAT on a variety of
domains and tasks.

4.1 Experimental Setup, Benchmarks, and Baselines

To evaluate EUAT, we employed four models and datasets widely
used in the image recognition domain namely, ResNet50 [16]
with ImageNet [40], Wide-ResNet-28x10 [46] with Cifar100 [21],
ResNet18 with Cifar10, and ResNet18 with SVHN [35]. We also
considered a binary classification model (using ResNet18 with Ci-
far10 to verify if there is a cat in an image), and an out-of-distribution
(OOD) detection task, where corrupted inputs using distributional
data shifts are used to evaluate the model. Finally, we evaluate our
approach in adversarial training settings using three models/datasets
mentioned above in the image recognition domain.

All the models and training procedures were implemented in
Python3 via the Pytorch framework and trained using a single Nvidia
RTX A4000.

To train the models, we used a dropout rate of 0.3 and resorted
to stochastic gradient descent to minimize the loss function using a
momentum of 0.9 and a batch size of 64 for all the models, a learn-
ing rate of 0.01 and weight decay of 10−5 for ResNet50/ImageNet
and 0.1 and 0 for the remaining ones, respectively. Before training
the model using EUAT, we pre-trained the models using CE loss
and then decreased the learning rate by 103× when applying EUAT.
Additionally, we exploited automatic mixed precision to train the
ResNet50/ImageNet and Wide-ResNet/Cifar100. The models were
trained during 60 epochs (except in the binary classification problem
where it was trained for 200 epochs). More in detail, we pre-trained
the models for 30 epochs (100 epochs in the binary classification
problem) before starting the second phase of training where we ap-
plied the EUAT. The implementation of the training pipeline and ad-
ditional information to ensure the reproducibility of results are pro-
vided in the supplemental material.

We compared EUAT against the CE loss, model calibration,
DEUP [23], an ensemble of five learners [24], CALS [27], and a loss
function incorporating both CE and PE (CE+PE) [41]. To calibrate
the model and train DEUP’s additional error predictor, we created a
validation set comprising 10% randomly selected samples from the
test set. Further, we resort to Isotonic regression [45] to calibrate the
model, achieving superior results compared to other methods like
Platt scaling [39], temperature scaling [14], and beta calibration [22].
Although we experimented DEUP with different validation set sizes,
to ensure fairness, we maintained consistency by employing the same
validation set size in both cases.

We evaluate the different baselines using six different metrics.
First, we report the uncertainty accuracy (uA) (Eq. 5) and the un-
certainty area under the curve (uAUC), which are computed based
on the Uncertainty Confusion Matrix [3] defined in Table 1.

uA =
TC + TU

TC + TU + FC + FU
(5)

We also evaluate the models using the correlation between the resid-
uals of the model and predicted uncertainties (Corr. w/ res.) [23],
and the Wasserstein distance of the uncertainty between the sets of
correct and wrong predictions (Wasser. dist.). At last, we report the
ECE and the model’s error. The uncertainty/confidence of the models
is always computed via MC dropout using the normalized PE, except
for DEUP, which resorts to the loss values of the base model to esti-
mate the quality of its predictions (for a fair comparison, after testing
the model trained with DEUP, we had to normalize the loss values).
Moreover, we optimize each metric considered independently by em-
ploying an early stopping policy and tuning the uncertainty threshold,
and we report the best values obtained for each metric.

4.2 Experimental results

Next, we report the results obtained using EUAT in the different do-
mains evaluated.

4.2.1 Image Recognition Models

We start by reporting in Table 2 the results obtained using four
models/datasets for image recognition: ResNet50/ImageNet, Wide-
ResNet/Cifar100, ResNet18/Cifar10, and ResNet18/SVHN. Across
all baselines and metrics, it is evident that EUAT consistently demon-
strates superior performance, outperforming others in 16 out of 24
cases. Notably, in the cases where the baselines are more competitive,
the differences are marginal (e.g., the error using EUAT increases
by 3.4%, 13.8%, and 14.6% compared to the best baseline training
a Wide-ResNet/Cifar100, ResNet18/Cifar10, and ResNet18/SVHN,
respectively).

EUAT presents the best uA when training a ResNet50 with Im-
ageNet and a Wide-ResNet with Cifar100, and yields minimal re-
duction of 0.5% and 0.3% in the uA when training a ResNet18 with
Cifar10 and SVHN compared with the best baselines (namely, en-
semble and CALS, respectively). Additionally, EUAT consistently
outperforms existing approaches in terms of uAUC and the correla-
tion between the residuals of the model and predicted uncertainties.
EUAT achieves an improvement on the uAUC by up to 15.1%, 8.9%,
64.3%, 28.1%, 8.5%, and 20.4% compared to CE, calibration, DEUP,
deep ensemble, CALS, and CE+PE, respectively. Moreover, the cor-
relation between the model’s residuals and predicted uncertainties
improves by 20%, 20.7%, 8.6%, and 11.5% when using EUAT for
training ResNet50 with ImageNet, Wide-ResNet with Cifar100, and



Table 2: Comparison of EUAT against the baselines using different evaluation metrics and considering four benchmarks.
Benchmark Baseline uA uAUC Corr. w/ res. Wasser. dist. ECE Error

ResNet50/ImageNet

EUAT 0.804 0.878 0.655 0.301 0.223 0.439
CE 0.749 0.812 0.546 0.220 0.224 0.513
Calibration 0.743 0.807 0.538 0.193 0.274 0.535
DEUP 0.580 0.591 0.291 0.030 0.429 0.522
Ensemble 0.745 0.809 0.536 0.213 0.245 0.506
CALS 0.746 0.809 0.542 0.214 0.235 0.525
CE+PE 0.755 0.786 0.530 0.141 0.382 0.524

Wide-ResNet/Cifar100

EUAT 0.858 0.891 0.711 0.216 0.162 0.273
CE 0.794 0.774 0.546 0.128 0.235 0.296
Calibration 0.787 0.836 0.580 0.226 0.146 0.312
DEUP 0.699 0.601 0.300 0.052 0.252 0.328
Ensemble 0.742 0.696 0.466 0.089 0.294 0.332
CALS 0.813 0.831 0.589 0.233 0.114 0.264
CE+PE 0.779 0.740 0.518 0.099 0.252 0.300

ResNet18/Cifar10

EUAT 0.914 0.921 0.626 0.410 0.018 0.099
CE 0.905 0.866 0.576 0.273 0.025 0.103
Calibration 0.898 0.893 0.533 0.329 0.030 0.108
DEUP 0.917 0.563 0.297 0.032 0.039 0.094
Ensemble 0.919 0.840 0.545 0.224 0.039 0.087
CALS 0.907 0.875 0.563 0.283 0.012 0.101
CE+PE 0.907 0.837 0.566 0.213 0.052 0.102

ResNet18/SVHN

EUAT 0.960 0.927 0.638 0.479 0.011 0.047
CE 0.956 0.841 0.572 0.232 0.021 0.047
Calibration 0.953 0.902 0.537 0.346 0.026 0.051
DEUP 0.960 0.564 0.312 0.040 0.024 0.044
Ensemble 0.960 0.756 0.515 0.162 0.029 0.043
CALS 0.963 0.867 0.569 0.264 0.011 0.041
CE+PE 0.959 0.799 0.547 0.184 0.029 0.045
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(b) Wide-ResNet/Cifar100
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(c) ResNet18/Cifar10
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(d) ResNet18/SVHN

Figure 1: Normalized uncertainty distribution of correct and incorrect predictions for the different baselines (the average value of each distri-
bution is marked with a black square, and the median with a pink triangle).

ResNet18 with Cifar10 and SVHN compared to the best-performing
baseline in each scenario.

Next, the effectiveness of EUAT in distinguishing correct predic-
tions from misclassifications based on the predicted uncertainty is
assessed using the Wasserstein distance of the uncertainty between

the sets of correct and wrong predictions. More in detail, on aver-
age across all models/datasets, the Wasserstein distance increases by
up to 1.7×, 1.3×, 9.7×, 2.3×, 1.4×, and 2.2× using EUAT com-
pared to CE, calibration, DEUP, ensemble, CALS, and CE+PE, re-
spectively. At last, we evaluate the impact of using EUAT on the



Table 3: Comparison of EUAT against the baselines using different evaluation metrics and considering a binary classification problem.

Baseline uA uAUC Corr. Wasser. ECE Error Error F1 Precision TPR TNRw/ res. dist. w/o flip w/ flip
EUAT 0.861 0.816 0.446 0.405 0.112 0.152 0.139 0.860 0.863 0.858 0.864
CE 0.845 0.759 0.435 0.350 0.113 0.152 0.221 0.763 0.823 0.712 0.847
Calib. 0.783 0.779 0.366 0.356 0.313 0.159 0.290 0.733 0.670 0.809 0.603
DEUP 0.844 0.591 0.323 0.049 0.124 0.172 0.178 0.812 0.859 0.771 0.874
Ensemble 0.861 0.683 0.358 0.216 0.112 0.147 0.163 0.834 0.847 0.822 0.852
CALS 0.831 0.748 0.407 0.326 0.119 0.164 0.163 0.834 0.847 0.822 0.852
CE+PE 0.811 0.690 0.360 0.274 0.153 0.184 0.225 0.759 0.817 0.709 0.842

Table 4: Comparison of EUAT against the baselines using different
evaluation metrics and tested with out-of-distribution samples with
Cifar10.

Baseline uA uAUC Corr. Wasser. ECE Errorw/ res. dist.
EUAT 0.754 0.796 0.529 0.255 0.143 0.489
CE 0.691 0.676 0.311 0.126 0.292 0.539
Calib. 0.619 0.553 0.110 0.036 0.497 0.619
DEUP 0.617 0.509 0.072 0.004 0.551 0.617
Ensemble 0.753 0.734 0.426 0.177 0.237 0.555
CALS 0.686 0.716 0.383 0.147 0.216 0.464
CE+PE 0.681 0.663 0.299 0.103 0.418 0.568

ECE and models’ misclassification rate. EUAT results in lower ECE
in two cases (ResNet50/ImageNet and ResNet18/SVHN), while a
slight increase is observed in the other two (Wide-ResNet/Cifar100
and ResNet18/Cifar10) Importantly, the error rate remains consis-
tent across all benchmarks for all baselines, with a notable improve-
ment observed in the ResNet50/ImageNet benchmark, showcasing a
reduction of 13.2% (compared to the best baseline, namely, a deep
ensemble). Furthermore, the large gains of EUAT were obtained us-
ing larger models and datasets, where the model is less accurate, and
thus, by prioritizing the training of incorrect predictions, the EUAT
is able to yield significant improvements.

Further, in Figure 1, we plot the distribution of the normalized
uncertainty of the correctly and incorrectly predicted sets using the
different baselines. By visualizing these distributions, we verify an
improvement in the separation of the uncertainty of these two sets
using EUAT (which is confirmed by the computation of the Wasser-
stein distance in Table 2). These results confirm the trustworthiness
of the EUAT to improve the model’s uncertainty to separate accurate
and incorrect predictions.

4.2.2 Binary Classification Problem

Next, we proceed by assessing the effectiveness of the EUAT through
a binary classification scenario, wherein high-uncertainty predictions
can be inverted to the opposite class. We compared the models ob-
tained using the different baselines and tuned the uncertainty thresh-
old as described in Section 3. Additionally, we conducted an ex-
tensive evaluation utilizing supplementary metrics such as F1-score,
precision, True Positive Rate (TPR), True Negative Rate (TNR), and
error rates concerning the inversion or retention of high uncertainty
predictions.

Table 3 presents a comprehensive overview of these performance
metrics. Remarkably, the EUAT outperforms other baselines across
9 out of 11 evaluated metrics. More in detail, employing EUAT leads
to significant enhancements in the F1-score, precision, and TPR,
on average, by up to 9.2%, 11.3%, and 11.3%, respectively, with a
corresponding 29.9% reduction in error rates through high uncer-
tainty prediction inversion. Furthermore, our method improves the

uA, uAUC, and the correlation with model residuals by up to 9.9%,
52.5%, and 113.3%, while the Wasserstein distance of the uncer-
tainty between the correct and wrong predicted sets is enhanced by
up to 17.5× (averaging at 4.1×). Lastly, it is noteworthy that the
ECE achieved using the EUAT aligns closely with other baselines,
namely CE, DEUP, Ensemble, and CALS, and reduces on average
across baselines by 18.1%, while the misclassification rate lowers on
average by 6%. These findings underscore the importance of using
EUAT to improve the model quality in a binary classification task.

4.2.3 Out-Of-Distribution Detection Task

Predicted uncertainty can be leveraged to reject difficult examples
with high uncertainty, even when these samples present huge distri-
bution shifts from the dataset used to train. Further, the OOD de-
tection task varies significantly when using different methods and
datasets [18]. Thus, in this section, we evaluate the effectiveness of
EUAT to detect and reject OOD examples based on the predicted un-
certainty. For each baseline, we trained a ResNet18 using the Cifar10
dataset and then tested it using a corrupted version with Gaussian
noise of this dataset (called Cifar10-C [17]). For a fair comparison,
when calibrating the model and training using DEUP, we use an addi-
tional validation set containing 10% of the clean inputs of the original
test set.

In Table 4, we compared EUAT against the other baselines con-
sidering the previous metrics. Notably, in 83% of the metrics con-
sidered, EUAT performs better than the baselines. More in detail,
EUAT improves the uA by 9.2%, 21.9%, 22.2%, 0.25%, 9.9%, and
10.7% compared to CE, calibration, DEUP, ensembles, CALS, and
CE+PE, respectively, while the uAUC increases by 17.7%, 43.9%,
56.7%, 8.4%, 11.2%, and 20.1%. We also verify an enhancement
in the correlation between model residuals and the predicted uncer-
tainty, Wasserstein distance of the uncertainty between the correct
and wrong predicted sets, and ECE of 3.8×, 16.9×, 2.8× on aver-
age compared to the other baselines. Finally, all the baselines, except
CALS, yielded a model with a larger error rate than EUAT.

4.2.4 Adversarial Training

Finally, we evaluate the EUAT in adversarial training settings. We
opted to exclusively train our models with adversarial examples, uti-
lizing the FGSM [13] to generate perturbations, with a predefined
perturbation bound ϵ set to 4/255. Due to resource constraints and
the overhead introduced by adversarial training, we did not deploy
the ResNet50/ImageNet benchmark in adversarial settings.

We report the results of the different baselines on standard and ad-
versarial settings in Table 5. Despite the challenges posed by adver-
sarial scenarios, overall, we see similar trends compared to the stan-
dard training. As expected the adversarial error increases in all base-
lines and benchmarks considered. In half of the scenarios/metrics



Table 5: Comparison of EUAT against the baselines considered using different evaluation metrics in the adversarial training scenario using
three benchmarks.

Standard Settings Adversarial Settings

Benchmark Baseline uA uAUC Corr. w/ Wasser. ECE Error uA uAUC Corr. w/ Wasser. ECE Errorres. dist. res dist.

Cifar100

EUAT 0.850 0.902 0.709 0.254 0.154 0.303 0.791 0.853 0.643 0.224 0.268 0.436
CE 0.786 0.793 0.565 0.154 0.241 0.329 0.694 0.716 0.430 0.104 0.377 0.460
Calibration 0.771 0.839 0.576 0.271 0.087 0.335 0.734 0.801 0.529 0.222 0.202 0.456
DEUP 0.677 0.585 0.222 0.036 0.235 0.337 0.577 0.584 0.214 0.033 0.391 0.493
Ensemble 0.800 0.817 0.597 0.161 0.183 0.288 0.865 0.852 0.750 0.194 0.334 0.436
CALS 0.788 0.787 0.567 0.159 0.245 0.332 0.689 0.714 0.430 0.105 0.383 0.466
CE+PE 0.773 0.750 0.535 0.113 0.286 0.354 0.625 0.633 0.346 0.059 0.422 0.482

Cifar10

EUAT 0.905 0.921 0.635 0.414 0.031 0.117 0.845 0.883 0.601 0.353 0.031 0.196
CE 0.895 0.898 0.571 0.306 0.011 0.116 0.826 0.847 0.542 0.259 0.028 0.198
Calibration 0.890 0.893 0.528 0.339 0.051 0.119 0.819 0.845 0.513 0.278 0.019 0.201
DEUP 0.904 0.591 0.235 0.044 0.018 0.104 0.804 0.603 0.237 0.034 0.092 0.205
Ensemble 0.923 0.894 0.535 0.310 0.007 0.081 0.901 0.881 0.780 0.348 0.083 0.179
CALS 0.895 0.898 0.579 0.317 0.009 0.117 0.833 0.842 0.542 0.264 0.015 0.196
CE+PE 0.895 0.850 0.564 0.232 0.046 0.119 0.819 0.789 0.505 0.177 0.104 0.197

SVHN

EUAT 0.944 0.947 0.649 0.447 0.030 0.072 0.794 0.848 0.588 0.307 0.020 0.281
CE 0.931 0.893 0.590 0.335 0.009 0.080 0.749 0.773 0.473 0.196 0.134 0.307
Calibration 0.929 0.916 0.521 0.428 0.138 0.082 0.758 0.815 0.516 0.261 0.020 0.299
DEUP 0.933 0.560 0.258 0.035 0.029 0.071 0.667 0.535 0.302 0.022 0.313 0.354
Ensemble 0.951 0.893 0.545 0.333 0.009 0.053 0.881 0.827 0.681 0.221 0.234 0.308
CALS 0.940 0.894 0.592 0.340 0.009 0.069 0.820 0.757 0.481 0.206 0.117 0.200
CE+PE 0.932 0.874 0.596 0.274 0.021 0.078 0.823 0.736 0.449 0.145 0.127 0.187

assessed, EUAT outperforms the baselines. Quantitatively, employ-
ing EUAT yields an average increase in uAUC of 20.2%, 10.9%,
and 17.0%, when training a Wide-ResNet on Cifar100, a ResNet18
on Cifar10, and a ResNet18 on SVHN datasets, respectively. More-
over, while the gains in uA are slightly smaller, they still present
significant improvements of 15.2%, 1.4%, and 2.1% across the same
models/datasets. Additionally, the error rates across baselines exhibit
negligible variance, and we verify a larger separation of the uncer-
tainty of the incorrect and correct predictions when performing AT
with EUAT, which highlights the robustness of our method across
different tasks and domains, reaffirming its efficacy in the challeng-
ing context of adversarial attacks.

5 Conclusion and Future Work

This paper introduces Error-Driven Uncertainty Aware Training, a
novel approach designed to refine the estimation of model uncer-
tainty. EUAT is engineered to achieve two primary objectives: first,
to heighten uncertainty when models generate inaccurate predictions,
and second, to output low uncertainty when predictions are correct.
This dual-purpose strategy is achieved through the usage of two loss
functions, which adapt based on whether training examples are cor-
rectly or incorrectly predicted by the model. By minimizing uncer-
tainty for accurate predictions and maximizing it for mispredictions
while retaining error rates, EUAT aims to enhance model reliability.

We evaluate EUAT against six different baselines and using six
metrics, and the results consistently demonstrate EUAT’s superior
performance across the majority of the considered cases. Even when
faced with competitive baselines, EUAT is still able to achieve com-
parable performance. Furthermore, we extend our evaluation to en-
compass diverse problems, including binary classification, out-of-
distribution detection, and adversarial training settings. Across all
evaluated domains, EUAT demonstrates an enhanced ability to dif-
ferentiate between erroneous and accurate predictions based on un-
certainty levels, thereby increasing model trustworthiness.

Given our current focus on evaluating EUAT solely within classifi-
cation tasks using image recognition models, we envision broadening
our scope to encompass other domains such as regression models or
language models for machine translation or summarization, which
present new and diverse challenges.
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