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Abstract

Recent works have shown an interest in investigating the frequentist asymptotic properties of
Bayesian procedures for high-dimensional linear models under sparsity constraints. However,
there exists a gap in the literature regarding analogous theoretical findings for non-linear
models within the high-dimensional setting. The current study provides a novel contribution,
focusing specifically on a non-linear mixed-effects model. In this model, the residual variance
is assumed to be known, while the covariance matrix of the random effects and the regression
vector are unknown and must be estimated. The prior distribution for the sparse regression
coefficients consists of a mixture of a point mass at zero and a Laplace distribution, while
an Inverse-Wishart prior is employed for the covariance parameter of the random effects.
First, the effective dimension of this model is bounded with high posterior probabilities.
Subsequently, we derive posterior contraction rates for both the covariance parameter and
the prediction term of the response vector. Finally, under additional assumptions, the
posterior distribution is shown to contract for recovery of the unknown sparse regression
vector at the same rate as observed in the linear case.

Keywords Posterior contraction rate · Sparse priors · Non-linear mixed-effects models · High-dimensional
regression

1 Introduction

Recent statistical literature has shown a keen interest in estimating high-dimensional models under sparsity
assumptions, with different approaches proposed over the past few decades in both Bayesian and frequentist
frameworks. The developed methodologies are numerous and use a large variety of techniques such as convex
and non-convex penalization techniques, shrinkage methods and sparsity-inducing priors. In Bayesian analy-
sis, a category of proposed priors includes those defined as mixtures of two distributions, commonly referred
to as spike-and-slab priors. These priors have proven to be useful and relevant in many high-dimensional
applications as demonstrated in (George and McCulloch, 1993, 1997; Tadesse and Vannucci, 2021).

The frequentist asymptotic properties of Bayesian sparse linear regression models with various types of
mixture priors have been widely investigated, particularly in Narisetty and He (2014), Castillo et al. (2015),
and Ročková and George (2018) with the spike-and-slab Gaussian prior, the discrete spike-and-slab prior,
and the spike-and-slab lasso prior respectively. Subsequently, these investigations were extended to multi-
variate linear regression with an unknown residual covariance matrix, as discussed by Ning et al. (2020) with
a discrete spike-and-slab prior and Shen and Deshpande (2022) with a multivariate spike-and-slab lasso prior.
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The classical techniques for determining posterior contraction rates (see e.g. (Castillo et al., 2015)) face lim-
itations when the residual covariance matrix is unknown. In such scenarios, the general theory based on the
average squared Hellinger distance proves inadequate for obtaining rates in terms of the Euclidean norm for
parameters. To overcome this difficulty, an alternative approach has been introduced, leveraging the average
Rényi divergence of order 1/2. As underscored by Ning et al. (2020), this method enables the construction of
exponentially powerful tests that are required by the general theory (Ghosal and Van der Vaart, 2017), facili-
tating a more effective determination of posterior contraction rates in Bayesian analysis. Another theoretical
aspect requires adaptation to the general theory when the residual covariance matrix is unknown. Indeed,
classical proofs require lower bounds for prior mass around true parameter values, but when the residual
covariance matrix is unknown, this condition can only be fulfilled if the true parameter set is bounded, as
discussed in works of Ning et al. (2020) and Jeong and Ghosal (2021a,b).

Recent advancements have expanded the study of estimation and selection properties to more
complex models than sparse linear regression models, such as sparse generalized linear models
(Jiang, 2007; Jeong and Ghosal, 2021a) or sparse linear regression models with nuisance parameters
(Jeong and Ghosal, 2021b). To our knowledge, there are no similar theoretical results for non-linear models
in high-dimensional contexts. The absence of theoretical results in this domain may reflect the inherent
challenges and complexities associated with extending such analyses to non-linear models. The present pa-
per provides a contribution in this direction, focusing on a specific non-linear model which also contains
random effects. Mixed-effects models have been introduced to analyze observations collected repeatedly on
several individuals in a population of interest, commonly encountered in fields such as pharmacokinetics or
biological growth modeling for example (Pinheiro and Bates, 2000; Lavielle, 2014). These models, which are
generally non-linear, may use high-dimensional covariates to describe inter-individual variability. Our paper
deals with a generalization of the linear mixed-effects model to a non-linear marginal version where the fixed
effects are non-linear functions of the regression parameter, while the random effects are incorporated into
the model in a linear manner (see e.g. Demidenko (2013)). Such non-linear marginal mixed-effects models
are easier to handle than more general non-linear mixed-effects models because the mean and the covariance
matrix of the response variable are explicit. However, despite their practical appeal, there has been a lack
of theoretical exploration concerning non-linear marginal mixed models in high-dimensional context. In this
paper, posterior contraction rates are obtained for both the covariance matrix and the prediction term in a
high-dimensional setting by using a mixture of a point mass at zero and a Laplace distribution prior on the
regression coefficients and an inverse Wishart prior on the covariance matrix. These results are extended to
the regression coefficients themselves under additional assumptions.

This paper is organized as follows. Section 2 describes the non-linear marginal mixed model to introduce
the notation, defines the prior distributions, along with the necessary assumptions. Section 3 provides the
main results on the posterior contraction. Finally, the proofs of the theorems are given in Section 4. Proofs
of technical lemmas are postponed in Appendix.

Notation This paragraph describes the notations used in this paper for a generic matrix A and a generic
vector θ ∈ R

k. We note Sθ = {j|θj 6= 0} the support of θ and sθ = |Sθ| its cardinal. The euclidean

norm, the ℓ1-norm and the infinity norm are respectively noted ‖θ‖2 =

√

∑k
i=1 θ2

i , ‖θ‖1 =
∑k

i=1 |θi|, and

‖θ‖∞ = maxi ‖θi‖. The transpose of A is denoted by A⊤. For a square matrix A, we note ρmin(A) and
ρmax(A) the minimum and maximum eigenvalues of A, respectively. The spectral norm of a matrix A is

denoted ‖A‖sp = ρ
1/2
max(A⊤A), and the Frobenius norm is noted ‖A‖F = Tr(A⊤A)1/2 = (

∑

i,j x2
ij)1/2. The

matrix norm ‖A‖∗ is defined as ‖A‖∗ = maxj ‖A·j‖2 for A·j the j-th column of A. The identity matrix of
size m is denoted Im.

For sequences an and bn, the notation an . bn means that for n large enough an is bounded above by a
constant multiple of bn, i.e. an ≤ Cbn for n large enough, where C > 0 is independent of n. We denote

an = o(bn) if
an

bn
−→

n→∞
0.

2 Model description

2.1 Non-linear marginal mixed-effects model

Mixed-effects models are sophisticated multivariate statistical models employed to analyze repeated obser-
vations, usually collected over time, on multiple statistical subjects, incorporating both fixed and random
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effects into the model for accurate description (Lavielle, 2014; Demidenko, 2013). We consider the following
mixed-effects model:

Yi = fi(Xiβ) + Ziξi + εi, εi
ind.∼ Nni(0, σ2Ini ), ξi

i.i.d.∼ Nq(0, Γ), i = 1, . . . , n. (1)

In the above equation, n is the number of individuals, Yi ∈ R
ni and ni are the vector and the number of

observations for subject i respectively, ξi ∈ R
q is a vector composed of q random effects, εi ∈ R

ni is the
error term. Xi ∈ R

q×p and Zi ∈ R
ni×q are design matrices composed of explanatory variables that relate

the observations to fixed-effects β ∈ R
p and to the random effects respectively. In the development of a

mixed-effects model, a significant focus lies on the covariate selection process in Xi, which amounts to the
identification of non-null components in β, as it allows establishing connections between inter-individual vari-
ability and measured individual characteristics. In the above model, the function fi defines the relationship
between observations of subject i and the explanatory variables in Xi which are pivotal in this stage of model
construction and are commonly denoted as covariates in subsequent discussions. To draw parallels with the
classical literature on mixed-effects models for longitudinally repeated data, we define

fi(x) = (f(x, ti1), f(x, ti2), . . . , f(x, tini ))
⊤,

where tij represents the j-th observation time for individual i, and f : Rq × R → R denotes a regression
function chosen to effectively capture the longitudinally observed phenomenon. While opting for fi(Xiβ) =
Xiβ yields the standard linear mixed-effects model, it’s common in many applications to select a non-linear
function f . Moreover, when f is non-linear, Model (1) is alternatively referred to as the non-linear marginal
mixed-effects model (as discussed in (Demidenko, 2013)). The term "marginal mixed-effects model" is derived
from the fact that, unlike numerous other non-linear mixed-effects models, both the expectation and variance
of the observations possess an explicit expression. The distribution of Yi defined through (1) is thus fully
characterized:

Yi ∼ N (fi(Xiβ), ∆Γ,i), where ∆Γ,i = ZiΓZ⊤
i + σ2Ini . (2)

In the following, the residual variance σ2 and the number q of true random effects are assumed to be
known. The aim is to estimate (β, Γ) ∈ B × H in an high-dimensional setting where p >> n and obtain
posterior contraction results. We establish below appropriate priors to achieve these goals.

2.2 Prior specification

Drawing from classical literature in high-dimensional Bayesian analysis, this study adopts an approach
employing priors that induce sparsity in β coefficients. For that purpose, we jointly consider a prior πp on
the number s of non-zero coefficients in β and a Laplace prior on the non-zero coefficients in β while setting
the other components in β to zero:

(S, β) 7→ πp(s)
(

p
s

) gS(βS)δ0(βSc), (3)

where S is a subset of s elements in {1, . . . , p} that represents the support of β, i.e. the positions of its non-
zero elements, Sc is the complementary subset of zero coefficients in β, βS = {βℓ|ℓ ∈ S} and βSc = {βℓ|ℓ /∈ S}
are the non-zero and the zero coefficients in β respectively, δ0 is the Dirac measure at zero on R

p−s and

gS(βS) =
∏

ℓ∈S

λ

2
exp(−λ|βℓ|). (4)

Concerning the random effects covariance matrix Γ, a conjugate inverse-Wishart prior is used:

π(Γ) ∝ |Γ|− d+q+1
2 exp

(

−1

2
Tr(ΣΓ−1)

)

,

where Σ is a positive definite matrix of size q × q, and d > q − 1 the degree of freedom. This prior is chosen
for a practical matter. Note that, as discussed in Ning et al. (2020), the inverse-Wishart prior may induce
sub-optimal posterior contraction rate due to its weaker tail property when q increases to infinity. However,
here q is assumed to be fixed so the rate should not be impacted by this property.
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2.3 Assumptions

The frequentist assumption that the data, n independent observations Y (n) = (Yi)1≤i≤n ∈ R
N , where

N =
∑n

i=1 ni, has been generated from model (1) for a given sparse regression parameter β0 and a given
random effects covariance matrix Γ0 is made. The expectation under these true parameters is denoted
E0. The support of the true parameter β0 is denoted S0 and its cardinal s0. The maximum number of
observations per individual is defined as Jn = max1≤i≤n ni.

2.3.1 Assumptions on the non-linear model structure

Assumptions have to be made on the regression function f to obtain posterior contraction. A first natural
condition is the Lipschitz assumption, allowing for easy control of the regression function from its inputs.

Assumption A1. f : Rq × R → R is K-Lipschitz with respect to its first component:

∀x, y ∈ R
q, ∀t ∈ R, |f(x, t) − f(y, t)| ≤ K‖x − y‖2

Remark 1. Under assumption A1, notice we have that fi : Rq → R
ni is

√
K2ni-Lipschitz for ‖ · ‖2.

As outlined in the introduction, to satisfy the condition of prior mass around the true parameters, they
should be confined within a specific subset of the parameter space characterized by bounded norms.

Assumption A2. The true value β0 belongs to B0 :=
{

β ∈ R
p : ‖β‖∞ . λ−1 log(p)

}

, where λ is the regular-
ization parameter of the Laplace distribution defined in equation (4).

Assumption A3. The true covariance matrix of the random effects Γ0 belongs to
H0 := {Γ : 1 . ρmin(Γ) ≤ ρmax(Γ) . 1}, and we denote ρΓ > 0 and ρΓ > 0 the bounds such that:
ρΓ ≤ ρmin(Γ0) ≤ ρmax(Γ0) ≤ ρΓ.

Assumption A2 allows that the prior assigns sufficient mass on a Kullback-Leibler neighborhood of β0. In
the same way, assumption A3 enables to put sufficient mass around the true parameter Γ0 in terms of Frobe-
nius norm. Similar conditions can be found in the work of Ning et al. (2020), Jeong and Ghosal (2021b),
and Song and Liang (2023). This is in contrast to Castillo et al. (2015)’s work where they obtain a result
uniformly over the entire parameter space because they have explicit expressions to satisfy this condition
directly in their case of univariate regression with known variance. Also, it is assumed that β0 is not the
zero vector, and that p does not converge faster than exponential of n (see assumption A4).

Assumption A4. The true support size satisfies s0 > 0 and the following high-dimensional setting is consider
s0 log(p) = o(n).

2.3.2 Assumptions on the prior distributions

The importance of the prior πp lies in its essential role in representing the sparsity of the parameter. The
crucial aspect of the prior πp on model dimension is to appropriately reduce the influence of larger models
while maintaining sufficient weight for the true one. It is revealed that an exponential decrease effectively
fulfills this requirement (Castillo et al., 2015). The following assumption is made on πp.

Assumption A5 (Prior dimension). For some constants A1, A2, A3, A4 > 0,

A1p−A3πp(s − 1) ≤ πp(s) ≤ A2p−A4πp(s − 1) , for s = 1, . . . , p

Examples of priors satisfying this assumption A5 are given in Castillo and van der Vaart (2012) and
Castillo et al. (2015). In fact, this type of prior is more generic than the discrete spike-and-slab prior. Indeed,
if each coordinate βℓ is modeled as a mixture (1 − r)δ0 + rG, where G follows the Laplace distribution, it
can be realized as a prior of the form (3) by selecting πp as a binomial distribution with parameters p and r.
Since r controls the level of sparsity, which is unknown, a classical Bayesian strategy is to put a hyper-prior
Beta(1, pu) with u > 1. Then, the overall prior satisfies the exponential decay rate A5. Furthermore, the
regularization parameter of the Laplace prior λ must be bounded from below and above, as specified in the
following assumption. Indeed, an excessively large value of λ would shrink non-zero coordinates of β towards
0, which is undesirable. Conversely, a too small value of λ may introduce false signals in the support, thereby
slowing down the posterior contraction rate.

Assumption A6. The regularization parameter λ of the Laplace prior on the non-zero coordinates of β satis-
fies:

‖X‖∗Kn

L1pL2
≤ λ ≤ L3‖X‖∗Kn√

n
,
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for some constants L1, L2, L3 > 0, where Kn =
√

K2Jn and X =







X1

...
Xn






∈ R

nq×p.

Similar condition can be found in Jeong and Ghosal (2021b) for example.

2.3.3 Assumptions about the experimental design

For Γ1, Γ2 ∈ H, we define the pseudo distance d2
n(Γ1, Γ2) =

1

n

∑n
i=1 ‖∆Γ1,i − ∆Γ2,i‖2

F , where ∆Γ,i is defined

in equation (2). The following three assumptions on the model A7, A8, A9 enable to control the maximum
Frobenius norm of the difference between covariance matrices from the average Frobenius norm:

max
i

‖∆Γ1,i − ∆Γ2,i‖2
F . ‖Γ1 − Γ2‖2

F . d2
n(Γ1, Γ2) =

1

n

n
∑

i=1

‖∆Γ1,i − ∆Γ2,i‖2
F .

This point is demonstrated in Appendix B, Lemma B3.

Assumption A7. The quantity
1

n

∑n
i=1 1ni≥q is bounded.

Assumption A7 means that the number of individuals i such as the number of observations ni is greater
than the number of random effects q is of the order of n, that is ni is probably greater than q, which seems
statistically reasonable to be able to estimate q random effects. This is a necessary assumption for the
identifiability of the model.

Assumption A8. For each 1 ≤ i ≤ n such that ni ≥ q, Zi is of full rank, i.e. mini

{

ρ
1/2
min(Z⊤

i Zi) : ni ≥ q
}

& 1.

We denote by ρZ the bound: mini

{

ρ
1/2
min(Z⊤

i Zi) : ni ≥ q
}

≥ ρZ .

Assumption A9. For each 1 ≤ i ≤ n, the maximum of ‖Zi‖sp is bounded, i.e. maxi ‖Zi‖sp . 1. We denote
by ρZ the bound: maxi ‖Zi‖sp ≤ ρZ .

Similar assumptions can be found in Theorem 10 of Jeong and Ghosal (2021b) for the linear mixed-effects
model.

3 Posterior contraction results

In this section, we provide results on posterior contraction rates in sparse non-linear marginal mixed-effects
model under suitable assumptions presented in Section 2.3. To achieve this, we first analyze a dimensionality
property of the support of β. Then, we determine how quickly the posterior contracts based on the average
Rényi divergence. Finally, we use this information about Rényi contraction to establish the rates for the
parameters relative to more practical metrics.

3.1 Support size control

First, it is essential to examine the support size of β in order to then focus on models of relatively small sizes.
The following theorem shows that the posterior distribution tends to concentrate on models of relatively
small sizes, not much larger than the true one.

Theorem 1 (Effective dimension). In model (1), with prior specifications outlined in Section 2.2, and as-
suming the validity of previous assumptions A1-A9, there exists a constant C1 > 0 such that the following
convergence holds:

sup
β0∈B0,Γ0∈H0

E0

[

Π

(

β : |Sβ | > C1s0

∣

∣

∣

∣

Y (n)

)]

−→
n→∞

0.

Proof of this theorem is provided in Section 4.1. The derivation of the posterior contraction rate heavily
relies on a technical lemma which provides a lower bound for the denominator of the posterior distribution
with probability tending to 1, see Lemma 1 in Section 4.1. More precisely, this lemma is employed in deriving
our main results on effective dimension and posterior contraction rates, as outlined in Theorems 1 and 2.
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3.2 Posterior contraction rates

As discussed in the introduction, the classical approach for determining posterior contraction rates encounters
limitations when dealing with the unknown nature of the random effects covariance matrix. Indeed, this
approach based on the average squared Hellinger distance faces inadequacies in obtaining rates in terms
of the Euclidean norm for the parameters in this context. Specifically, the issue arises from the fact that
establishing proximity using the average squared Hellinger distance between multivariate normal densities
with individual-specific mean and an unknown covariance does not guarantee average proximity in terms of
the Euclidean distance for the mean parameters in these densities. To overcome this challenge, the proposed
solution is a direct utilization of the average Rényi divergence of order 1/2 (see Definition 1). This approach
is highlighted for its high manageability in the context of multivariate normal distributions and its ability to
ensure closeness in terms of the desired Euclidean distance. Examples of the application of this theory can
be found in the works of Ning et al. (2020) and Jeong and Ghosal (2021b), further supporting the efficacy of
the average Rényi divergence in overcoming the limitations associated with the unknown covariance matrix
for random effects.

Definition 1. For two n-variates densities f =
∏n

i=1 fi and g =
∏n

i=1 gi of independent variables, the average
Rényi divergence (of order 1/2) is defined by:

Rn(f, g) = − 1

n

n
∑

i=1

log

(∫

√

figi

)

Based on the result of Theorem 1, the following theorem establishes the rate of contraction of the posterior
distribution towards the truth with respect to the average Rényi divergence.

Theorem 2 (Contraction rate, Rényi). In model (1), with prior specifications outlined in Section 2.2, we
denote by pβ,Γ =

∏n
i=1 pβ,Γ,i the joint density, with pβ,Γ,i representing the density of the ith observation

vector yi, and p0 representing the true joint density. Assuming the previous assumptions A1-A9 hold, as well
as log(Jn) . log(p), then there exists a constant C2 > 0 such that:

sup
β0∈B0,Γ0∈H0

E0

[

Π

(

(β, Γ) ∈ B × H : Rn(pβ,Γ, p0) > C2
s0 log(p)

n

∣

∣

∣

∣

Y (n)

)]

−→
n→∞

0.

The proof can be found in Section 4.2. This proof is based on the general theory of posterior contraction
rate of Ghosal et al. (2000); Ghosal and Van Der Vaart (2007); Ghosal and Van der Vaart (2017), which re-
lies on the construction and existence of exponentially powerful tests (see also Castillo (2024) for more
details).

While Theorem 2 provides a fundamental result on posterior contraction, it does not offer precise interpre-
tations for the parameters β and Γ. The following theorem relies on the form of the average Rényi divergence
to obtain more concrete contraction rates. Specifically, it demonstrates that the posterior distribution of
the prediction term and Γ contracts towards their true respective values at certain rates, relative to metrics
more easily understandable than the average Rényi divergence.

Theorem 3 (Recovery). In model (1), with prior specifications outlined in Section 2.2, and assuming As-
sumptions A1-A9, as well as log(Jn) . log(p), then there exist constants C3, C4, C5 > 0 such that:

sup
β0∈B0,Γ0∈H0

E0

[

Π

(

Γ : dn(Γ, Γ0) > C3

√

s0 log(p)

n

∣

∣

∣

∣

Y (n)

)]

−→
n→∞

0,

sup
β0∈B0,Γ0∈H0

E0

[

Π

(

Γ : ‖Γ − Γ0‖F > C4

√

s0 log(p)

n

∣

∣

∣

∣

Y (n)

)]

−→
n→∞

0,

sup
β0∈B0,Γ0∈H0

E0



Π



β :

√

√

√

√

1

n

n
∑

i=1

‖fi(Xiβ) − fi(Xiβ0)‖2
2 > C5

√

s0 log(p)

n

∣

∣

∣

∣

Y (n)







 −→
n→∞

0.

The proof can be found in Section 4.3. By comparing our theorem to Castillo et al. (2015)’s results in
Bayesian, or Bühlmann and Van De Geer (2011)’s results in frequentist framework, in simple linear regres-
sion, it can be observed that the same rates are achieved for the prediction term. For the covariance term,
the rate obtained in Theorem 3 coincides with that obtained for linear regression with nuisance parameters
by Jeong and Ghosal (2021b).
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The last theorem gives precise interpretations of the posterior contraction result for the parameter β. The
posterior contraction rates with respect to more concrete metrics are derived based on additional conditions,
summarized by Assumptions A10 and A11.

Assumption A10. For all i ∈ {1, . . . , n}, δ > 0 and t ∈ R,
{

β ∈ R
p :
∣

∣f(Xiβ, t) − f(Xiβ0, t)
∣

∣ ≤ δ
}

⊂
{

β ∈ R
p :
∣

∣f(Xiβ, t) − f(Xiβ0, t)
∣

∣ & ‖Xi(β − β0)‖2

}

.

This assumption, as well as Assumption A7, is a necessary condition for the identifiability of the model
and allows to derive posterior contraction rate for β from the third assertion of Theorem 3. In particular,
this assumption implies that for all i ∈ {1, . . . , n} and t ∈ R, the true Xiβ0 does not lie in a neighborhood of
critical points of f(·, t), which seems a reasonable assumption. To ensure the identifiability of the parameter
β, a kind of assumption of "local invertibility" for the Gram matrix X⊤X is also required. For this purpose,
we define the following compatibility numbers drawing from the literature (Castillo et al., 2015).

Definition 2. For all s > 0, the smallest scaled singular value of dimension s is defined as:

φ2(s) = inf
β:1≤sβ≤s

‖Xβ‖2

‖X‖∗‖β‖2
.

Definition 3. For all s > 0, the uniform compatibility number in dimension s is defined as:

φ1(s) = inf
β:1≤sβ≤s

‖Xβ‖2
√

sβ

‖X‖∗‖β‖1
.

Assumption A11. For each 1 ≤ i ≤ n, the maximum of ‖Xi‖∗ is bounded, i.e. maxi ‖Xi‖∗ . 1, and

β0 ∈ B0 :=

{

β ∈ B0 :
s2

0 log(p)

‖X‖2
∗φ2

1((C1 + 1)s0)
= o(1)

}

.

Typically, the first assertion in this assumption is commonly satisfied in practical scenarios. The second
assertion concerns the true parameter β0 and will be used for recovery of Xβ in ℓ2-norm and β with respect
to the ℓ1-norm and the ℓ2-norm. Since φ2(s) ≤ φ1(s) for all s > 0 by the Cauchy-Schwarz inequality, φ1

can be removed if the smallest scaled singular value φ2 is bounded away from zero. Note that under specific
conditions on the design matrix, the compatibility numbers can be bounded away from zero (see Example
7 of Castillo et al. (2015) for further discussion). Thus, since by the first assertion of Assumption A11,
‖X‖2

∗ . n, the second assertion implies that s2
0 log(p) = o(n). This condition is similar to that obtained in

Jeong and Ghosal (2021a).

Theorem 4 (Posterior contraction rate for β). In model (1), with prior specifications outlined in Section 2.2,
and assuming Assumptions A1-A11, as well as log(Jn) . log(p), then there exist constants C6, C7, C8 > 0
such that:

sup
β0∈B0,Γ0∈H0

E0

[

Π

(

β : ‖X(β − β0)‖2 > C6

√

s0 log(p)

∣

∣

∣

∣

Y (n)

)]

−→
n→∞

0,

sup
β0∈B0,Γ0∈H0

E0

[

Π

(

β : ‖β − β0‖2 > C7

√

s0 log(p)

‖X‖∗φ2((C1 + 1)s0)

∣

∣

∣

∣

Y (n)

)]

−→
n→∞

0,

sup
β0∈B0,Γ0∈H0

E0

[

Π

(

β : ‖β − β0‖1 > C8
s0

√

log(p)

‖X‖∗φ1((C1 + 1)s0)

∣

∣

∣

∣

Y (n)

)]

−→
n→∞

0.

The proof can be found in Section 4.4. These rates coincide with those obtained by
Jeong and Ghosal (2021a) or Jeong and Ghosal (2021b), respectively for generalized linear model and lin-
ear regression with nuisance parameters. Since the compatibility numbers can be bounded away from zero
under some conditions (see above), they can be removed from the rates.

4 Proofs of main theorems

In this section, proofs of the main theorems are provided. First, additional notations used for the proofs
are introduced. Let Λn(β, Γ) =

∏n
i=1 pβ,Γ,i/p0,i be the likelihood ratio of pβ,Γ =

∏n
i=1 pβ,Γ,i, where pβ,Γ,i is

the density of the i-th observation vector yi, and p0 =
∏n

i=1 p0,i =
∏n

i=1 pβ0,Γ0,i the density with the true
parameters β0 and Γ0. For two densities f and g, let K(f, g) =

∫

f(x) log (f(x)/g(x)) dx the Kullback-Leibler

divergence, and V (f, g) =
∫

f(x) |log (f(x)/g(x)) − K(f, g)|2 dx the Kullback-Leibler variation.

7
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4.1 Proof of Theorem 1

The proof of Theorem 1 is based on the following technical lemma which provides a lower bound for the
denominator of the posterior distribution, with the probability tending to 1.

Lemma 1. Suppose that Assumptions A1-A9 are satisfied. Then, there exists a positive constant M such that

P0

(∫

Λn(β, Γ)dΠ(β, Γ) ≥ πp(s0)e−M(s0 log(p)+log(n))

)

−→ 1, (5)

when n tends to infinity.

This lemma is demonstrated in Appendix A.1.

Proof of Theorem 1. Let B = {(β, Γ) ∈ B × H : |Sβ| > s̃}, with an integer s̃ ≥ s0. First, by Bayes formula:

Π(B|Y (n)) =

∫

B
Λn(β, Γ)dΠ(β, Γ)

∫

Λn(β, Γ)dΠ(β, Γ)
. (6)

Let us prove that E0

[

Π(B|Y (n))
]

tends to 0 as n tends to infinity uniformly for β0 ∈ B0 and Γ0 ∈ H0, and
choose a suitable s̃. Let An be the event that appears in Equation (5). We can write

E0

[

Π
(

B|Y (n)
)]

= E0

[

Π
(

B|Y (n)
)

1An

]

+ E0

[

Π
(

B|Y (n)
)

1Ac
n

]

. (7)

where the second term tends to 0 by using Lemma 1.

Concerning the first term, by definition of An, we have that

E0

[

Π
(

B|Y (n)
)

1An

]

= E0

[

∫

B
Λn(β, Γ)dΠ(β, Γ)

∫

Λn(β, Γ)dΠ(β, Γ)
1An

]

≤ E0

[∫

B

Λn(β, Γ)dΠ(β, Γ)πp(s0)−1eM(s0 log(p)+log(n))
1An

]

≤ πp(s0)−1 exp {M(s0 log(p) + log(n))}E0

[∫

B

Λn(β, Γ)dΠ(β, Γ)1An

]

Now, we get that

E0

[∫

B

Λn(β, Γ)dΠ(β, Γ)1An

]

≤ E0

[∫

B

pβ,Γ(y)

p0(y)
dΠ(β, Γ)

]

=

∫ ∫

B

pβ,Γ(y)dΠ(β, Γ)dy

= Π(B)

using Fubini-Tonelli theorem and since pβ,Γ is a density. Thus,

E0

[

Π
(

B|Y (n)
)

1An

]

≤ πp(s0)−1 exp {M(s0 log(p) + log(n))}Π(B),

and by Assumption A5,

Π(B) = Π(|Sβ | > s̃) =

p
∑

s=s̃+1

πp(s)

≤ πp(s0)

p
∑

s=s̃+1

(

A2p−A4
)s−s0

= πp(s0)
(

A2p−A4
)s̃+1−s0

p−s̃−1
∑

k=0

(

A2p−A4
)k

≤ πp(s0)
(

A2p−A4
)s̃+1−s0 1

1 − A2p−A4
,

8
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for p large enough to ensure that A2p−A4 < 1. Thus finally we have

E0

[

Π
(

B|Y (n)
)

1An

]

≤ πp(s0)−1 exp {M(s0 log(p) + log(n))}Π(B)

≤ exp
{

M(s0 log(p) + log(n)) + (s̃ + 1 − s0) log(A2p−A4)
} 1

1 − A2p−A4

= exp

{

log(p)

(

Ms0 + M
log(n)

log(p)
− A4(s̃ + 1 − s0)

)

+ (s̃ + 1 − s0) log(A2)

}

1

1 − A2p−A4

where log(n)/ log(p) ≤ 1 as p > n. Thus, as (1 − A2p−A4)−1 tends to 1 when n → ∞, we choose s̃ as the
largest integer that is smaller than C1s0 (such as s̃ + 1 > C1s0), for some constant C1 large enough to have
Ms0 + M − A4(C1s0 − s0) < 0, and then we have that

E0

[

Π
(

B|Y (n)
)

1An

]

≤ exp
{

log(p) (Ms0 + M − A4(C1s0 − s0)) + (s̃ + 1 − s0) log(A2)
} 1

1 − A2p−A4
−→

n→∞
0.

Finally, by Equation (7), we conclude that E0

[

Π(B|Y (n))
]

−→ 0, for this well-chosen s̃. Thus, we have also

that E0

[

Π

(

β : |Sβ | > C1s0

∣

∣

∣

∣

Y (n)

)]

−→ 0, which concludes the proof of the theorem.

4.2 Proof of Theorem 2

Proof of Theorem 2. Let Bn = {β ∈ B|sβ ≤ C1s0}, R∗
n(β, Γ) = Rn(pβ,Γ, p0) and ǫn =

√

s0 log(p)

n
.

E0

[

Π

(

(β, Γ) ∈ B × H : R∗
n(β, Γ) > C2ǫ2

n

∣

∣

∣

∣

Y (n)

)]

≤ E0

[

Π

(

(β, Γ) ∈ Bn × H : R∗
n(β, Γ) > C2ǫ2

n

∣

∣

∣

∣

Y (n)

)]

+ E0

[

Π
(

Bc
n|Y (n)

)]

where the second term tends to 0 when n goes to infinity by Theorem 1.

Therefore, given D =
{

(β, Γ) ∈ Bn × H : R∗
n(β, Γ) > C2ǫ2

n

}

, proving Theorem 2 consists in showing that

E0

[

Π
(

D|Y (n)
)]

goes to 0 as n tends to infinity uniformly for β0 ∈ B0 and Γ0 ∈ H0.

This proof is based on the construction and existence of exponentially powerful tests to show contraction
rates of posterior distributions (see Ghosal et al. (2000); Ghosal and Van der Vaart (2017) for more details).
More precisely, we want to construct a test ϕn such that on an appropriate sieve B∗

n × Hn ⊂ Bn × H we
have, for some constants M1, M2 > 0:

E0[ϕn] . e−M1nǫ2
n , sup

(β,Γ)∈B∗
n×Hn:R∗

n(β,Γ)>C2ǫ2
n

E(β,Γ)[1 − ϕn] ≤ e−M2nǫ2
n (8)

where the sieve B∗
n × Hn shall satisfy that the prior mass of Bn\B∗

n and H\Hn decreases rapidly enough to
balance the denominator of the posterior. Indeed, assuming that we have constructed such a test, then, for
An the event that appears in Equation (5):

E0

[

Π
(

D|Y (n)
)]

= E0

[

Π
(

D|Y (n)
)

1An

]

+ E0

[

Π
(

D|Y (n)
)

1Ac
n

]

= E0

[

Π
(

D|Y (n)
)

1An(1 − ϕn) + Π
(

D|Y (n)
)

1Anϕn

]

+ E0

[

Π
(

D|Y (n)
)

1Ac
n

]

≤ E0

[

Π
(

D|Y (n)
)

1An(1 − ϕn)
]

+ E0 [ϕn] + P0 (Ac
n)

9
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where by construction of ϕn, E0 [ϕn] −→ 0
n→∞

, and P0 (Ac
n) −→ 0

n→∞
by Lemma 1.

Now for the first term, by the Bayes formula (6), we have that

E0

[

Π
(

D|Y (n)
)

1An(1 − ϕn)
]

= E0

[

∫

D Λn(β, Γ)dΠ(β, Γ)
∫

Λn(β, Γ)dΠ(β, Γ)
1An(1 − ϕn)

]

≤ E0

[∫

D

Λn(β, Γ)dΠ(β, Γ)πp(s0)−1eM(s0 log(p)+log(n))(1 − ϕn)

]

But, grant Assumption A5, we have that: πp(s0)−1 ≤ A−1
1 pA3πp(s0 − 1)−1 and by iteration

− log(πp(s0)) . s0 log(p) − log(πp(0)) . s0 log(p)

since 1 =
∑p

s=1 πp(s) ≤ ∑p
s=1(A2p−A4)sπp(0) . πp(0) by assumption A5. Thus, for a constant C large

enough, πp(s0)−1eM(s0 log(p)+log(n)) ≤ eCs0 log(p) = eCnǫ2
n, since log(n) . s0 log(p). So, by using the Fubini-

Tonelli theorem,

E0

[

Π
(

D|Y (n)
)

1An(1 − ϕn)
]

≤
∫

D

E(β,Γ) [1 − ϕn] dΠ(β, Γ) × eCnǫ2
n

≤
(

∫

D∩(B∗
n×Hn)

E(β,Γ) [1 − ϕn] dΠ(β, Γ) + Π(Bn\B∗
n) + Π(H\Hn)

)

× eCnǫ2
n

≤
(

sup
(β,Γ)∈D∩(B∗

n×Hn)

{

E(β,Γ) [1 − ϕn]
}

+ Π(Bn\B∗
n) + Π(H\Hn)

)

× eCnǫ2
n

≤
(

e−M2nǫ2
n + Π(Bn\B∗

n) + Π(H\Hn)
)

× eCnǫ2
n

by construction of ϕn, equation (8). Then for M2 large enough and by the condition on the prior mass of
Bn\B∗

n and H\Hn, we have that E0

[

Π
(

D|Y (n)
)

1An(1 − ϕn)
]

−→
n→∞

0, and finally E0

[

Π
(

D|Y (n)
)]

−→
n→∞

0,

what was wanted to be demonstrated.

Thus, to complete the proof, we need to demonstrate the existence of such a test ϕn satisfying (8) on an
appropriate sieve B∗

n × Hn such that the prior mass of Bn\B∗
n and H\Hn have an exponential decrease.

Construction of the test ϕn: To this end, we want to apply Lemma D.3 of Ghosal and Van der Vaart (2017),
which directly allows to construct the test ϕn with appropriate control of error probabilities as described in
(8) to test the true value against the whole of the alternative intersected with the sieve. To apply this lemma,
we need to construct local tests with exponentially small errors to compare the true value with a subset of
the alternative, centered at any (β1, Γ1) ∈ B×H which is adequately distant from the true value with respect
to the average Rényi divergence. The other condition to apply this Lemma is that the minimum number
N∗

n of these small subsets of the alternative needed to cover a sieve B∗
n × Hn is appropriately controlled in

terms of ǫn.

First, the following lemma constructs an appropriate local test by employing the likelihood ratio to compare
the true value with a subset of the alternative and by controlling the second order moment of the likelihood
ratios in these small pieces of the alternative. For (β1, Γ1) ∈ B × H, we denote by p1 the associated density,
and E1 and P1 the expectation and probability under p1.

Lemma 2. For a given positive sequence (γn), (β1, Γ1) ∈ B × H such that Rn(p0, p1) ≥ ǫ2
n, where

ǫn =

√

s0 log(p)

n
, define

F1,n =

{

(β, Γ) ∈ B × H :
1

n

n
∑

i=1

‖fi(Xiβ) − fi(Xiβ1)‖2
2 ≤ ǫ2

n

16γn
, dn(Γ, Γ1) ≤ ǫ2

n

2Jnγn
, max

1≤i≤n
‖∆−1

Γ,i‖sp ≤ γn

}

.

Grant Assumptions A7-A9 and A4, then there exists a test ϕn such that

E0[ϕn] ≤ e−nǫ2
n, and sup

(β,Γ)∈F1,n

Eβ,Γ[1 − ϕn] ≤ e−nǫ2
n/16.

10
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This lemma is demonstrated in Appendix A.2.

Now, we still have to construct an appropriate sieve B∗
n × Hn such that the prior mass of Bn\B∗

n and
H\Hn have an exponential decrease, and the minimum number N∗

n of the small subsets of the alternative
needed to cover the sieve satisfies log(N∗

n) . nǫ2
n.

Define the sieve as follows:

B∗
n =

{

β ∈ B|sβ ≤ C1s0, ‖β‖∞ ≤ pL2+2

Kn‖X‖∗

}

, Hn =
{

Γ ∈ H|n−M ≤ ρmin(Γ) ≤ ρmax(Γ) ≤ eMnǫ2
n

}

for a constant M , and define F1,n as in Lemma 2 with γn = nM /ρZ
2. Remark that, with this choice of γn,

the last condition max1≤i≤n ‖∆−1
Γ,i‖sp ≤ γn is always satisfy in the sieve. Indeed, ‖∆−1

Γ,i‖sp = ρmax(∆−1
Γ,i) =

ρ−1
min(∆Γ,i). But ρmin(∆Γ,i) ≥ σ2 + ρmin(ZiΓZ⊤

i ) ≥ ρmin(Γ)ρZ
2 ≥ n−M ρZ

2 by Assumption A8 and since

Γ ∈ Hn. So finally, max1≤i≤n ‖∆−1
Γ,i‖sp ≤ γn for Γ ∈ Hn.

First, we show that Bn\B∗
n and H\Hn have an exponential decrease. Using Assumption A5, we obtain

that

Π(Bn\B∗
n) = Π

({

β ∈ B|sβ ≤ C1s0, ‖β‖∞ >
pL2+2

Kn‖X‖∗

})

=
∑

S:s≤C1s0

πp(s)
(

p
s

)

∫

{

βS :‖βS‖∞>
pL2+2

Kn‖X‖∗

} gS(βS)dβS

≤
∑

S:s≤C1s0

(A2p−A4)s

(

p
s

)

∫

{

βS:‖βS‖∞>
pL2+2

Kn‖X‖∗

} gS(βS)dβS

≤
∑

S:s≤C1s0

(A2p−A4)s

(

p
s

)

∑

ℓ∈S

∫

{

|βℓ|>
pL2+2

Kn‖X‖∗

}

λ

2
e−λ|βℓ|dβℓ

Then, by using the tail probability of the Laplace distribution
∫

|x|>t
λ
2 e−λ|x|dx = e−λt for every t > 0, and

since there is
(

p
s

)

support S of size s, we obtain:

Π(Bn\B∗
n) ≤

∑

S:s≤C1s0

(A2p−A4 )s

(

p
s

) se
−λ

pL2+2

Kn‖X‖∗

≤
C1s0
∑

s=1

s(A2p−A4 )se
−λ

pL2+2

Kn‖X‖∗

≤ C1s0e
−λ

pL2+2

Kn‖X‖∗
C1s0
∑

s=1

(A2p−A4 )s

. s0e
−λ

pL2+2

Kn‖X‖∗ . s0e
−

λ

L1
p2

Thus, Π(Bn\B∗
n)eCnǫ2

n −→
n→∞

0 for every C > 0 since nǫ2
n = s0 log(p) = o(p2).

Now,

11
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Π(H\Hn) = Π
({

Γ ∈ H|ρmin(Γ) < n−M or ρmax(Γ) > eMnǫ2
n

})

≤ Π
({

Γ ∈ H|ρmin(Γ) < n−M
})

+ Π
({

Γ ∈ H|ρmax(Γ) > eMnǫ2
n

})

= Π
({

Γ ∈ H|ρmax(Γ−1) ≥ nM
})

+ Π
({

Γ ∈ H|ρmin(Γ−1) ≤ e−Mnǫ2
n

})

≤ b1e−b2nb3M × b4e−b5Mnǫ2
n

for some constants b1, b2, b3, b4, b5 > 0 by Lemma 9.16 of Ghosal and Van der Vaart (2017) since

Γ−1 ∼ Wq(d, Σ−1). So, Π(H\Hn)eCnǫ2
n −→

n→∞
0 for every C > 0, for M large enough.

Finally, we have to prove that the minimum number N∗
n of the small subsets of the alternative of the form

F1,n needed to cover the sieve satisfies log(N∗
n) . nǫ2

n. First, note that for every β, β′ ∈ B, by Assumption A1,
the inequality ‖Xθ‖2 ≤ ‖X‖∗‖θ‖1, we have:

1

n

n
∑

i=1

‖fi(Xiβ) − fi(Xiβ
′)‖2

2 ≤ 1

n

n
∑

i=1

K2
n‖Xi(β − β′)‖2

2 =
K2

n

n
‖X(β − β′)‖2

2

≤ K2
n

n
‖X‖2

∗‖β − β′‖2
1

≤ p2K2
n

n
‖X‖2

∗‖β − β′‖2
∞

Thus, we define

F ′
1,n =

{

(β, Γ) ∈ B × H :
p2K2

n

n
‖X‖2

∗‖β − β′‖2
∞ + d2

n(Γ, Γ1) ≤ 1

16J2
nγ2

nn3
, max

1≤i≤n
‖∆−1

Γ,i‖sp ≤ γn

}

,

with the same (β1, Γ1) used in F1,n, and therefore we have F ′
1,n ⊂ F1,n. Thus, since N∗

n is the minimum
number of the small subsets of the alternative of the form F1,n needed to cover the sieve B∗

n × Hn, with
F1,n ⊃ F ′

1,n, we have that N∗
n is bounded above by the minimum number of the small subsets of the

alternative of the form F ′
1,n needed to cover the sieve B∗

n × Hn. This last minimum number is denoted by
N ′

n. In the following, for a pseudo-metric space (F , d), let N(ǫ, F , d) denote the minimal number of ǫ-balls
that cover F .

Now, note that if (β, Γ) ∈ B∗
n ×Hn with ‖β −β1‖∞ ≤ 1

6npKnJnγn‖X‖∗
and dn(Γ, Γ1) ≤ 1

6n3/2Jnγn
, then

(β, Γ) ∈ F ′
1,n (by using that the last condition is satisfy for all Γ ∈ Hn). Thus,

N ′
n ≤ N

(

1

6npKnJnγn‖X‖∗
, B∗

n, ‖ · ‖∞

)

× N

(

1

6n3/2Jnγn
, Hn, dn

)

.

Then,

log(N∗
n) ≤ log N

(

1

6npKnJnγn‖X‖∗
, B∗

n, ‖ · ‖∞

)

+ log N

(

1

6n3/2Jnγn
, Hn, dn

)

. (9)

Recall that B∗
n =

{

β ∈ B|sβ ≤ C1s0, ‖β‖∞ ≤ pL2+2

Kn‖X‖∗

}

, to cover B∗
n, we have to choose at most ⌊C1s0⌋

non-zero β coordinates and we need to recover a ball in R
⌊C1s0⌋ with radius

pL2+2

Kn‖X‖∗
, with balls of radius

1

6npKnJnγn‖X‖∗
. Therefore,

N

(

1

6npKnJnγn‖X‖∗
, B∗

n, ‖ · ‖∞

)

≤
(

p

⌊C1s0⌋

)

(

6pL2+3nJnγn

)⌊C1s0⌋

.
(

6pL2+4nJnγn

)⌊C1s0⌋
as

(

p

⌊C1s0⌋

)

(⌊C1s0⌋)! ≤ p⌊C1s0⌋

12
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So, the first term in the right side of equation (9) is bounded by:

log N

(

1

6npKnJnγn‖X‖∗
, B∗

n, ‖ · ‖∞

)

. s0 log(p) = nǫ2
n

since, by the assumption of Theorem 2, we have log(Jn) . log(p) and log(n) . log(p).

Similarly, for the second term in the right side of equation (9), note that Hn ⊂
{

Γ ∈ H : ‖Γ‖F ≤ √
qeMnǫ2

n

}

,

and therefore by assumption A9:

log N

(

1

6n3/2Jnγn
, Hn, dn

)

≤ log N

(

1

6n3/2Jnγn
,
{

Γ ∈ H : ‖Γ‖F ≤ √
qeMnǫ2

n

}

, dn

)

≤ log N

(

1

6n3/2JnγnρZ
2 ,
{

Γ ∈ H : ‖Γ‖F ≤ √
qeMnǫ2

n

}

, ‖ · ‖F

)

. q2 log(
√

qeMnǫ2
nn3/2Jnγn) . nǫ2

n

as log(Jn) . log(p) and log(n) . log(p).

Finally, log(N∗
n) . nǫ2

n. Thus, Lemma D.3 of Ghosal and Van der Vaart (2017) can be applied and gives
that for every ǫ > ǫn, there exists a test ϕn satisfying

E0[ϕn] ≤ 2eB1nǫ2
n−nǫ2

and sup
(β,Γ)∈B∗

n×Hn:R∗
n(β,Γ)>ǫ2

E(β,Γ)[1 − ϕn] ≤ e−nǫ2/16

for some constant B1 > 0. Then, choosing ǫ = C2ǫn for C2 large enough, we obtain that the test ϕn satisfies
(8), which concludes the proof, as demonstrated above.

4.3 Proof of Theorem 3

Proof of Theorem 3. The contraction rate of the posterior distribution with respect to the average Rényi

divergence R∗
n(β, Γ) = Rn(pβ,Γ, p0) is provided by Theorem 2. Denote ǫn =

√

s0 log(p)

n
this rate. We have

that, for all β0 ∈ B0, Γ0 ∈ H0,

E0

[

Π
(

R|Y (n)
)]

−→
n→∞

1.

where R =
{

(β, Γ) ∈ B × H : R∗
n(β, Γ) ≤ C2ǫ2

n

}

. However, since for all (β, Γ) ∈ B × H, pβ,Γ =
∏n

i=1 pβ,Γ,i,
with pβ,Γ,i = Nni (fi(Xiβ), ∆Γ,i) in Model (1), the average Rényi divergence is equal to:

R∗
n(β, Γ) = Rn(pβ,Γ, p0) = − 1

n

n
∑

i=1

log

(∫

√

pβ,Γ,i(yi)p0,i(yi)dyi

)

= − 1

n

n
∑

i=1

log
(

1 − g2(∆Γ,i, ∆Γ0,i)
)

+
1

4n

n
∑

i=1

‖(∆Γ,i + ∆Γ0,i)
−1/2(fi(Xiβ) − fi(Xiβ0))‖2

2

where we used the Sherman-Morrison-Woodbury formula, with

g2(∆Γ,i, ∆Γ0,i) = 1 − det(∆Γ,i)
1/4 det(∆Γ0,i)

1/4

det((∆Γ,i + ∆Γ0,i)/2)1/2
.

Remark that for all 1 ≤ i ≤ n, g2(∆Γ,i, ∆Γ0,i) ≥ 0 since, with ∆∗
Γ,i = ∆

−1/2
Γ0,i ∆Γ,i∆

−1/2
Γ0,i :

det(∆Γ,i)
1/4 det(∆Γ0,i)

1/4

det((∆Γ,i + ∆Γ0,i)/2)1/2
=

(

1

2ni
det(∆∗1/2

Γ,i + ∆∗−1/2

Γ,i )

)−1/2

=

(

ni
∏

k=1

1

2
(d

1/2
k + d

−1/2
k )

)−1/2

≤ 1

13
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where dk are the eigenvalues of ∆∗
Γ,i, and using that ∀x ≤ 0, x + x−1 ≥ 2.

Thus, by Theorem 2, this implies that, for (β, Γ) ∈ R:

ǫ2
n & − 1

n

n
∑

i=1

log
(

1 − g2(∆Γ,i, ∆Γ0,i)
)

+
1

4n

n
∑

i=1

‖(∆Γ,i + ∆Γ0,i)
−1/2(fi(Xiβ) − fi(Xiβ0))‖2

2

& − 1

n

n
∑

i=1

log
(

1 − g2(∆Γ,i, ∆Γ0,i)
)

≥ 1

n

n
∑

i=1

g2(∆Γ,i, ∆Γ0,i)

since log(1 − x) ≤ −x for all x ≥ 0. Now, by Lemma 10 of Jeong and Ghosal (2021b), we obtain that
g2(∆Γ,i, ∆Γ0,i) & ‖∆Γ,i − ∆Γ0,i‖2

F if g2(∆Γ,i, ∆Γ0,i) is small enough for each i ∈ {1, . . . , n}. Thus, by
defining In,δ = {1 ≤ i ≤ n : g2(∆Γ,i, ∆Γ0,i) ≥ δ}, for some δ > 0 small, we have:

ǫ2
n &

1

n

∑

i/∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F +

1

n

∑

i∈In,δ

g2(∆Γ,i, ∆Γ0,i)

&
1

n

∑

i/∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F =

1

n

n
∑

i=1

‖∆Γ,i − ∆Γ0,i‖2
F − 1

n

∑

i∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F

≥ M1d2
n(Γ, Γ0) − M1

|In,δ|
n

max
1≤i≤n

‖∆Γ,i − ∆Γ0,i‖2
F

≥ M1d2
n(Γ, Γ0) − M2ǫ2

n max
1≤i≤n

‖∆Γ,i − ∆Γ0,i‖2
F

≥ (M1 − M3ǫ2
n)d2

n(Γ, Γ0)

where we used that
|In,δ|

n
. ǫ2

n since

ǫ2
n &

1

n

∑

i/∈In,δ

g2(∆Γ,i, ∆Γ0,i) &
|In,δ|

n
× δ,

and thanks to Lemma B3 for the last inequality. Then, since ǫ2
n −→

n→∞
0, M1 − M3ǫ2

n is bounded away from 0,

the last inequation implies that ǫn & dn(Γ, Γ0), which proves the first assertion of Theorem 3. Now, thanks
to Lemma B3, we have also that ǫn & ‖Γ − Γ0‖F , which proves the second assertion of Theorem 3.

Also, by Theorem 2, for (β, Γ) ∈ R, since g2(∆Γ,i, ∆Γ0,i) ≥ 0, we have that:

ǫ2
n & − 1

n

n
∑

i=1

log
(

1 − g2(∆Γ,i, ∆Γ0,i)
)

+
1

4n

n
∑

i=1

‖(∆Γ,i + ∆Γ0,i)
−1/2(fi(Xiβ) − fi(Xiβ0))‖2

2

≥ M4

4n

n
∑

i=1

‖(∆Γ,i + ∆Γ0,i)
−1/2(fi(Xiβ) − fi(Xiβ0))‖2

2

≥ M4

4n

n
∑

i=1

ρmin((∆Γ,i + ∆Γ0,i)
−1)‖fi(Xiβ) − fi(Xiβ0)‖2

2

using that for A symmetric matrix, ‖Ax‖2
2 ≥ ρmin(A2)‖x‖2

2 for all vector x.

Now, since ρmin((∆Γ,i + ∆Γ0,i)
−1) = ρ−1

max(∆Γ,i + ∆Γ0,i), we want to upper bound ρmax(∆Γ,i + ∆Γ0,i)
uniformly across i ∈ {1, . . . , n}. Thus, by using Weyl’s inequality:

ρmax(∆Γ,i + ∆Γ0,i) ≤ ρmax(∆Γ,i − ∆Γ0,i) + 2ρmax(∆Γ0,i) ≤ ‖∆Γ,i − ∆Γ0,i‖F + 2ρ∆

by Lemma B2 where ρ∆ denotes the uniform upper bound of the eigenvalues of (∆Γ0,i)i. Thus, by Lemma
B3,

max
1≤i≤n

ρmax(∆Γ,i + ∆Γ0,i) ≤ max
1≤i≤n

‖∆Γ,i − ∆Γ0,i‖F + 2ρ∆ ≤ dn(Γ, Γ0) + 2ρ∆ ≤ C3ǫn + 2ρ∆,
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by the first assertion of Theorem 3.

Finally, we obtain that:

ǫ2
n ≥ M4

4n(C3ǫn + 2ρ∆)

n
∑

i=1

‖fi(Xiβ) − fi(Xiβ0)‖2
2,

and since C3ǫn + 2ρ∆ −→
n→∞

2ρ∆, we finally obtain that for n large enough

ǫn &

√

1

n

∑n
i=1 ‖fi(Xiβ) − fi(Xiβ0)‖2

2, which gives the last assertion of Theorem 3.

4.4 Proof of Theorem 4

Proof of Theorem 4. Let us consider β0 ∈ B0 ⊂ B0 and Γ0 ∈ H0. The contraction rate of the posterior
distribution for the prediction term is provided by Theorem 3 and we have in particular that: for all
β0 ∈ B0, Γ0 ∈ H0,

E0

[

Π

(

Pn

∣

∣

∣

∣

Y (n)

)]

−→
n→∞

1,

where Pn =
{

β : 1
n

∑n
i=1 ‖fi(Xiβ) − fi(Xiβ0)‖2

2 . ǫ2
n

}

and ǫn =
√

s0 log(p)
n .

Now, note that for i ∈ {1, . . . , n}, and δ > 0, if we assume that ‖fi(Xiβ) − fi(Xiβ0)‖2 ≤ δ, then for all
j ∈ {1, . . . , ni}, |f(Xiβ, tij) − f(Xiβ0, tij)| ≤ δ and so by Assumption A10

|f(Xiβ, tij) − f(Xiβ0, tij)| & ‖Xi(β − β0)‖2.

Therefore, ‖fi(Xiβ) − fi(Xiβ0)‖2
2 & ni‖Xi(β − β0)‖2

2 & ‖Xi(β − β0)‖2
2, as ni ≥ 1. Thus, using the same idea

used in the proof of Theorem 3, we define In,δ = {1 ≤ i ≤ n : ‖fi(Xiβ) − fi(Xiβ0)‖2
2 > δ}, for some δ > 0

small. Thus, for β ∈ Pn,

ǫ2
n &

1

n

n
∑

i=1

‖fi(Xiβ) − fi(Xiβ0)‖2
2 =

1

n

∑

i∈In,δ

‖fi(Xiβ) − fi(Xiβ0)‖2
2 +

1

n

∑

i/∈In,δ

‖fi(Xiβ) − fi(Xiβ0)‖2
2

&
1

n

∑

i/∈In,δ

‖Xi(β − β0)‖2
2 =

1

n

n
∑

i=1

‖Xi(β − β0)‖2
2 − 1

n

∑

i∈In,δ

‖Xi(β − β0)‖2
2

&
1

n
‖X(β − β0)‖2

2 − |In,δ|
n

max
1≤i≤n

‖Xi(β − β0)‖2
2

Then, by the first assertion of Assumption A11, we have that

max
1≤i≤n

‖Xi(β − β0)‖2
2 ≤ max

1≤i≤n
‖Xi‖2

∗‖β − β0‖2
1 . ‖β − β0‖2

1.

Remark that for β such as sβ ≤ C1s0, we have sβ−β0 ≤ sβ + s0 ≤ (C1 + 1)s0, thus by Theorem 1 and by

Definition 3, we obtain that: ‖β − β0‖2
1 ≤ s0‖X(β − β0)‖2

2

‖X‖2
∗φ2

1((C1 + 1)s0)
, so

max
1≤i≤n

‖Xi(β − β0)‖2
2 .

s0‖X(β − β0)‖2
2

‖X‖2
∗φ2

1((C1 + 1)s0)
.

Then, by using |In,δ| . nǫ2
n, since ǫ2

n & 1
n

∑

i∈In,δ
‖fi(Xiβ) − fi(Xiβ0)‖2

2 &
|In,δ|

n × δ, we have that:

ǫ2
n &

(

1 − s0|In,δ|
‖X‖2

∗φ2
1((C1 + 1)s0)

)

1

n
‖X(β − β0)‖2

2

&

(

1 − s0nǫ2
n

‖X‖2
∗φ2

1((C1 + 1)s0)

)

1

n
‖X(β − β0)‖2

2.
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Moreover, since β0 ∈ B0, 1 − s0nǫ2
n

‖X‖2
∗φ2

1((C1 + 1)s0)
is bounded away from 0. This implies that

‖X(β − β0)‖2
2 . nǫ2

n which gives the first assertion of Theorem 4.

Finally, by definition of the uniform compatibility number φ1 and the smallest scaled singular value φ2, we
obtain that:

ǫ2
n &

‖X‖2
∗φ2

1((C1 + 1)s0)

s0n
‖β − β0‖2

1,

and ǫ2
n &

‖X‖2
∗φ2

2((C1 + 1)s0)

n
‖β − β0‖2

2,

which proves the last two assertions of the theorem.
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Appendices

Appendix A Proofs of technical lemmas

A.1 Proof of Lemma 1

First, we define a Kullback-Leibler neighbourhood around p0,i

Dn =

{

(β, Γ) ∈ B × H
∣

∣

∣

∣

n
∑

i=1

K(p0,i, pβ,Γ,i) ≤ c1 log(n),
n
∑

i=1

V (p0,i, pβ,Γ,i) ≤ c1 log(n)

}

for a constant c1 large enough. Then, by Lemma 10 of Ghosal and Van Der Vaart (2007), we have that, for
every C > 0,

P0

(∫

Dn

Λn(β, Γ)dΠ(β, Γ) ≤ e−(1+C)c1 log(n)Π(Dn)

)

≤ 1

C2c1 log(n)
. (10)

The proof of the lemma consists in showing that there exists M > 0 such that
e−(1+C)c1 log(n)Π(Dn) & πp(s0)e−M(s0 log(p)+log(n)). Indeed by combining this result with Inequality (10),
since

∫

Dn
Λn(β, Γ)dΠ(β, Γ) ≤

∫

Λn(β, Γ)dΠ(β, Γ), we have that

P0

(∫

Λn(β, Γ)dΠ(β, Γ) ≥ πp(s0)e−M(s0 log(p)+log(n))

)

≥ P0

(∫

Dn

Λn(β, Γ)dΠ(β, Γ) ≥ πp(s0)e−M(s0 log(p)+log(n))

)

≥ P0

(∫

Dn

Λn(β, Γ)dΠ(β, Γ) ≤ e−(1+C)c1 log(n)Π(Dn)

)

≥ 1 − 1

C2c1 log(n)
−→

n→∞
1,

that concludes the proof. Thus, it remains to show that e−(1+C)c1 log(n)Π(Dn) ≥ πp(s0)e−M(s0 log(p)+log(n)),
or, more precisely, we need to exhibit a lower bound of Π(Dn).

In Model (1), we have that pβ,Γ,i = N (fi(Xiβ), ∆Γ,i), with ∆Γ,i = ZiΓZ⊤
i + σ2Ini . By Lemma 9 of

Jeong and Ghosal (2021b), the Kullback-Leibler divergence and variation of the i-th individual are
respectively expressed as:

K(p0,i, pβ,Γ,i) =
1

2

[

log

( |∆Γ,i|
|∆Γ0,i|

)

+ Tr(∆Γ0,i∆
−1
Γ,i) − ni +

∥

∥

∥∆
−1/2
Γ,i (fi(Xiβ) − fi(Xiβ0))

∥

∥

∥

2

2

]

,

V (p0,i, pβ,Γ,i) =
1

2

[

Tr
(

∆Γ0,i∆
−1
Γ,i∆Γ0,i∆

−1
Γ,i

)

− 2Tr(∆Γ0,i∆
−1
Γ,i) + ni

]

+
∥

∥

∥
∆

1/2
Γ0,i∆

−1
Γ,i (fi(Xiβ) − fi(Xiβ0))

∥

∥

∥

2

2
.

Then, by denoting ρi,k, for k = 1, . . . , ni, the eigenvalues of ∆
1/2
Γ0,i∆

−1
Γ,i∆

1/2
Γ0,i, we obtain that

K(p0,i, pβ,Γ,i) =
1

2

[

−
ni
∑

k=1

log(ρi,k) −
ni
∑

k=1

(1 − ρi,k) + ‖∆
−1/2
Γ,i (fi(Xiβ) − fi(Xiβ0)) ‖2

2

]

,

V (p0,i, pβ,Γ,i) =
1

2

ni
∑

k=1

(1 − ρi,k)2 + ‖∆
1/2
Γ0,i∆

−1
Γ,i (fi(Xiβ) − fi(Xiβ0)) ‖2

2.
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Our goal is to find a lower bound of Π(Dn), so we want to find an upper bound of
∑n

i=1 K(p0,i, pβ,Γ,i) and
∑n

i=1 V (p0,i, pβ,Γ,i).

Let us first focus on the term V (p0,i, pβ,Γ,i). By Lemma 10 of Jeong and Ghosal (2021b), we obtain that:

ni
∑

k=1

(1 − ρ−1
i,k )2 ≤ ρ−2

min(∆Γ0,i)‖∆Γ,i − ∆Γ0,i‖2
F .

By using Weyl’s inequality and Assumptions A9 and A3, Lemma B2 shows that there exist ρ0 > 0 and
ρ0 > 0 such that:

ρ0 ≤ min
i

ρmin(∆Γ0,i) ≤ max
i

ρmax(∆Γ0,i) ≤ ρ0. (11)

Thus

max
i

ni
∑

k=1

(1 − ρ−1
i,k )2 ≤ ρ0

−2 max
i

‖∆Γ,i − ∆Γ0,i‖2
F ,

and in particular, maxi,k(1 − ρ−1
i,k )2 ≤ ρ0

−2 maxi ‖∆Γ,i − ∆Γ0,i‖2
F . Thus, if maxi ‖∆Γ,i − ∆Γ0,i‖2

F → 0 on

Dn, we will have that maxi,k |1 − ρ−1
i,k | → 0, that is each ρi,k tends to 1 and so:

ni
∑

k=1

(1 − ρi,k)2 .

ni
∑

k=1

(1 − ρ−1
i,k )2 ≤ ρ0

−2‖∆Γ,i − ∆Γ0,i‖2
F . ‖∆Γ,i − ∆Γ0,i‖2

F , (12)

where the first inequality is due to |1 − x−1| . |1 − x| . |1 − x−1| for x → 1, which enables to bound the
first term of V (p0,i, pβ,Γ,i).

Now, prove that maxi ‖∆Γ,i − ∆Γ0,i‖2
F tends to 0 on Dn. We introduce the set

In,δ = {1 ≤ i ≤ n|∑ni

k=1(1 − ρi,k)2 ≥ δ}, for δ > 0 small. We denote by |In,δ| its cardinal. Then for
(β, Γ) ∈ Dn, since

∑n
i=1 V (p0,i, pβ,Γ,i) ≤ c1 log(n), we have that, on the one hand:

n
∑

i=1

ni
∑

k=1

(1 − ρi,k)2 ≤ c1 log(n),

and on the other hand,

n
∑

i=1

ni
∑

k=1

(1 − ρi,k)2 =
∑

i∈In,δ

ni
∑

k=1

(1 − ρi,k)2 +
∑

i/∈In,δ

ni
∑

k=1

(1 − ρi,k)2

& δ|In,δ| +
∑

i/∈In,δ

ni
∑

k=1

(

1 − 1

ρi,k

)2

since for i /∈ In,δ,
∑ni

k=1(1 − ρi,k)2 < δ, for δ > 0 small, so each |1 − ρi,k| is less than
√

δ, and we have that

|1 − x−1| . |1 − x| . |1 − x−1| for x → 1, so |1 − ρi,k| & |1 − ρ−1
i,k |. Then, by using Lemma 10 of

Jeong and Ghosal (2021b), we obtain that

n
∑

i=1

ni
∑

k=1

(1 − ρi,k)2 & δ|In,δ| +
∑

i/∈In,δ

1

ρ2
max(∆Γ0,i)

‖∆Γ,i − ∆Γ0,i‖2
F

By (11), we obtain that

c1 log(n) ≥
n
∑

i=1

ni
∑

k=1

(1 − ρi,k)2 & δ|In,δ| +
1

ρ0
2

∑

i/∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F

that is equivalent to

log(n)

n
&

1

n

n
∑

i=1

ni
∑

k=1

(1 − ρi,k)2 & δ
|In,δ|

n
+

1

nρ0
2

∑

i/∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F
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In particular, δ
|In,δ|

n
.

log(n)

n
for δ > 0 small that implies |In,δ| . log(n). We have also that

log(n)

n
&

1

nρ0
2

∑

i/∈In,δ
‖∆Γ,i − ∆Γ0,i‖2

F , that is

log(n)

n
&

1

n

∑

i/∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F . (13)

Then,

1

n

∑

i/∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F =

1

n

n
∑

i=1

‖∆Γ,i − ∆Γ0,i‖2
F − 1

n

∑

i∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F

≥ d2
n(Γ, Γ0) − |In,δ|

n
max

1≤i≤n
‖∆Γ,i − ∆Γ0,i‖2

F

By Lemma B3, with Assumptions A7, A8 and A9, for Γ1, Γ2 ∈ H, we have that

max
i

‖∆Γ1,i − ∆Γ2,i‖2
F . ‖Γ1 − Γ2‖2

F . d2
n(Γ1, Γ2).

Thus, there exist some constants M1 > 0 and M2 > 0:

1

n

∑

i/∈In,δ

‖∆Γ,i − ∆Γ0,i‖2
F ≥ M1 max

1≤i≤n
‖∆Γ,i − ∆Γ0,i‖2

F − |In,δ|
n

max
1≤i≤n

‖∆Γ,i − ∆Γ0,i‖2
F

≥
(

M1 − |In,δ|
n

)

max
1≤i≤n

‖∆Γ,i − ∆Γ0,i‖2
F

≥
(

M1 − M2
log(n)

n

)

max
1≤i≤n

‖∆Γ,i − ∆Γ0,i‖2
F (14)

since |In,δ| . log(n). Finally, by combining (13) and (14), since
log(n)

n
→ 0, we obtain that, on Dn,

max
1≤i≤n

‖∆Γ,i − ∆Γ0,i‖2
F .

log(n)

n
−→

n→∞
0.

Hence, by using Equation (12), we obtain that:

1

n

n
∑

i=1

V (p0,i, pβ,Γ,i) =
1

2n

n
∑

i=1

ni
∑

k=1

(1 − ρi,k)2 +
1

n

n
∑

i=1

‖∆
1/2
Γ0,i∆

−1
Γ,i (fi(Xiβ) − fi(Xiβ0)) ‖2

2

.
1

n

n
∑

i=1

‖∆Γ,i − ∆Γ0,i‖2
F +

1

n

n
∑

i=1

‖∆
1/2
Γ0,i‖2

sp‖∆−1
Γ,i‖2

sp‖fi(Xiβ) − fi(Xiβ0)‖2
2

since ‖Ax‖2 ≤ ‖A‖sp‖x‖2. Then, by Lemma B2, we have that ‖∆
1/2
Γ0,i‖2

sp = ρmax(∆Γ0,i) . 1 for each

i ∈ {1, . . . , n}. Moreover, on Dn,

‖∆−1
Γ,i‖sp = ρmax(∆−1

Γ,i) = ρmax(∆
−1/2
Γ0,i ∆

1/2
Γ0,i∆

−1
Γ,i∆

1/2
Γ0,i∆

−1/2
Γ0,i )

≤ ρmax(∆
1/2
Γ0,i∆

−1
Γ,i∆

1/2
Γ0,i)‖∆

−1/2
Γ0,i ‖2

sp by Lemma B1

. ρmax(∆
1/2
Γ0,i∆

−1
Γ,i∆

1/2
Γ0,i) = max

k
ρi,k . 1

since ‖∆
−1/2
Γ0,i ‖2

sp = ρmax(∆−1
Γ0,i) = ρmin(∆Γ0,i)

−1 ≤ ρ0
−1 by Lemma B2, and since each ρi,k tends to 1 on

Dn. Then, using Assumption A1, that is each fi is Kn-Lipschitz, we deduce that:

1

n

n
∑

i=1

V (p0,i, pβ,Γ,i) . d2
n(Γ, Γ0) +

K2
n

n
‖X(β − β0)‖2

2.
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Let us now focus on the term K(p0,i, pβ,Γ,i). We have shown that on Dn each |1 − ρi,k| is small for each i

and k, so: log(ρi,k) = log(1 − (1 − ρi,k)) ∼ −(1 − ρi,k) − (1 − ρi,k)2

2
, and so

− log(ρi,k) − (1 − ρi,k) ∼ (1 − ρi,k)2

2
. Thus, by using Inequality (12):

1

n
K(p0,i, pβ,Γ,i) =

1

2n

n
∑

i=1

[

−
ni
∑

k=1

log(ρi,k) −
ni
∑

k=1

(1 − ρi,k) + ‖∆
−1/2
Γ,i (fi(Xiβ) − fi(Xiβ0)) ‖2

2

]

.
1

2n

n
∑

i=1

(

1

2
‖∆Γ,i − ∆Γ0,i‖2

F + ‖∆
−1/2
Γ,i ‖2

sp‖fi(Xiβ) − fi(Xiβ0)‖2
2

)

. d2
n(Γ, Γ0) +

K2
n

n
‖X(β − β0)‖2

2,

by Assumption A1 and since ‖∆−1
Γ,i‖sp . 1 on Dn. Thus, we obtain finally that 1

n K(p0,i, pβ,Γ,i) and

1
n V (p0,i, pβ,Γ,i) are bounded above by d2

n(Γ, Γ0) +
K2

n

n
‖X (β − β0)‖2

2 up to a multiplicative constant.

Then, for c1 large enough,

Π(Dn) = Π

(

(β, Γ) ∈ B × H
∣

∣

∣

∣

1

n

n
∑

i=1

K(p0,i, pβ,Γ,i) ≤ c1
log(n)

n
,

1

n

n
∑

i=1

V (p0,i, pβ,Γ,i) ≤ c1
log(n)

n

)

≥ Π

(

(β, Γ) ∈ B × H
∣

∣

∣

∣

d2
n(Γ, Γ0) +

K2
n

n
‖X(β − β0)‖2

2 ≤ 2
log(n)

n

)

≥ Π

(

Γ ∈ H
∣

∣

∣

∣

d2
n(Γ, Γ0) ≤ log(n)

n

)

Π

(

β ∈ B
∣

∣

∣

∣

K2
n

n
‖X(β − β0)‖2

2 ≤ log(n)

n

)

≥ Π

(

Γ ∈ H
∣

∣

∣

∣

d2
n(Γ, Γ0) ≤ log(n)

n

)

Π

(

β ∈ B
∣

∣

∣

∣

K2
n

n
‖X‖2

∗‖β − β0‖2
1 ≤ log(n)

n

)

since ‖Xθ‖2 ≤ ‖X‖∗‖θ‖1. For the first term, we have that:

Π

(

Γ ∈ H
∣

∣

∣

∣

d2
n(Γ, Γ0) ≤ log(n)

n

)

= Π

(

Γ ∈ H
∣

∣

∣

∣

1

n

n
∑

i=1

‖∆Γ,i − ∆Γ0,i‖2
F ≤ log(n)

n

)

≥ Π

(

Γ ∈ H
∣

∣

∣

∣

max
i

‖∆Γ,i − ∆Γ0,i‖2
F ≤ log(n)

n

)

≥ Π

(

Γ ∈ H
∣

∣

∣

∣

‖Γ − Γ0‖2
F ≤ 1

ρZ
4

log(n)

n

)

= Π

(

Γ ∈ H
∣

∣

∣

∣

‖Γ − Γ0‖F ≤ 1

ρZ
2

√

log(n)

n

)

by Lemma B3 and Assumption A9. Thus, by Assumption A3:

‖Γ − Γ0‖F = ‖Γ
1/2
0 (Γ

−1/2
0 ΓΓ

−1/2
0 − Id)Γ

1/2
0 ‖F

≤ ‖Γ0‖sp‖Γ
−1/2
0 ΓΓ

−1/2
0 − Id‖F

≤ ρΓ‖Γ
−1/2
0 ΓΓ

−1/2
0 − Id‖F

By using Lemma B4, we obtain that:

Π

(

Γ ∈ H
∣

∣

∣

∣

d2
n(Γ, Γ0) ≤ log(n)

n

)

≥ Π

(

Γ ∈ H
∣

∣

∣

∣

‖Γ
−1/2
0 ΓΓ

−1/2
0 − Id‖F ≤ ρΓ

−1ρZ
−2

√

log(n)

n

)

≥ Π

(

Γ ∈ H
∣

∣

∣

∣

q
⋂

k=1

{

1 ≤ ρk(Γ
−1/2
0 ΓΓ

−1/2
0 ) ≤ 1 + ρΓ

−1ρZ
−2

√

log(n)

qn

})
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Then, denoting by A = Γ
−1/2
0 ΓΓ

−1/2
0 ∈ R

q×q, since Γ ∼ IWq(d, Σ), we known that

A ∼ IWq(d, Γ
−1/2
0 ΣΓ

−1/2
0 ), and so A−1 ∼ Wq(d, Γ

1/2
0 Σ−1Γ

1/2
0 ). Then, using Lemma 6.3 of

Ning et al. (2020)) on the eigenvalues of a Wishart distribution, we obtain that, for large n and since q is
fixed:

Π

(

Γ ∈ H
∣

∣

∣

∣

d2
n(Γ, Γ0) ≤ log(n)

n

)

≥
(

a1te2d

8
√

π

)−q (
2dq

ea1t

)−dq/2 (
d

2e

)−q2/2

(det(Γ
1/2
0 Σ−1Γ

1/2
0 ))−d/2×

exp

(

−a1(1 + t)Tr(Γ
−1/2
0 ΣΓ

−1/2
0 )

2

)

with a1 =

(

1 + ρΓ
−1ρZ

−2

√

log(n)

qn

)−1

and t = ρΓ
−1ρZ

−2

√

log(n)

qn
.

Finally, for n large enough, we have that:

log

(

Π

(

Γ ∈ H
∣

∣

∣

∣

d2
n(Γ, Γ0) ≤ log(n)

n

))

& − log(n).

Concerning the second term Π

(

β ∈ B
∣

∣

∣

∣

K2
n

n
‖X‖2

∗‖β − β0‖2
1 ≤ log(n)

n

)

in the lower bound of Π(Dn), by

defining BS0,n =

{

βS0 ∈ R
s0

∣

∣

∣

∣

Kn√
n

‖X‖∗‖βS0 − β0,S0‖1 ≤
√

log(n)

n

}

we have that:

Π

(

β ∈ B
∣

∣

∣

∣

K2
n

n
‖X‖2

∗‖β − β0‖2
1 ≤ log(n)

n

)

≥ Π

(

S = S0, β ∈ B
∣

∣

∣

∣

Kn√
n

‖X‖∗‖β − β0‖1 ≤
√

log(n)

n

)

≥ πp(s0)
(

p
s0

)

∫

BS0,n

gS0(βS0)dβS0

≥ πp(s0)
(

p
s0

) e−λ‖β0‖1

∫

BS0,n

gS0(βS0 − β0,S0)dβS0

because gS is the Laplace distribution so satisfy the inequality gS0(βS0 ) ≥ e−λ‖β0‖1 gS0(βS0 − β0,S0). Then,
since s0 > 0 by Assumption A4 and using the equation (6.2) of Castillo et al. (2015), we obtain that:

∫

BS0,n

gS0(βS0 − β0,S0)dβS0 ≥ e−λ

√
log(n)

Kn‖X‖∗

(

λ

√
log(n)

Kn‖X‖∗

)s0

s0!

≥ e−L3

√

log(n)
n

(√
log(n)

L1pL2

)s0

s0!

by Assumption A6. We deduce that, by using
(

p
s0

)

s0! ≤ ps0 :
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Π

(

β ∈ B
∣

∣

∣

∣

K2
n

n
‖X‖2

∗‖β − β0‖2
1 ≤ log(n)

n

)

≥ πp(s0)
(

p
s0

) e−λ‖β0‖1 e−L3

√

log(n)
n

(√
log(n)

L1pL2

)s0

s0!

≥ πp(s0) log(n)s0/2 exp

(

−(L2 − 1)s0 log(p) − L3

√

log(n)

n
− s0 log(L1) − λ‖β0‖1

)

≥ πp(s0) exp
(

−C̃s0 log(p)
)

for a constant C̃ since s0 +
√

log(n)
n + s0 log(p) . s0 log(p) and λ‖β0‖1 . s0 log(p) by Assumption A2.

Finally, there exists a constant L such that:

Π(Dn) ≥ Π

(

Γ ∈ H
∣

∣

∣

∣

d2
n(Γ, Γ0) ≤ log(n)

n

)

Π

(

β ∈ B
∣

∣

∣

∣

K2
n

n
‖X‖2

∗‖β − β0‖2
1 ≤ log(n)

n

)

≥ πp(s0)e−L(s0 log(p)+log(n))

Thus, we have shown that e−(1+C)c1 log(n)Π(Dn) ≥ πp(s0)e−M(s0 log(p)+log(n)) for some constant M , as
required to conclude the proof of Lemma 1.

A.2 Proof of Lemma 2

Let (β1, Γ1) ∈ B × H such that Rn(p0, p1) ≥ ǫ2
n. First, for testing H0: p = p0 against H1: p = p1, consider

the most powerful test ϕn = 1Λn(β1,Γ1)≥1 given by the Neyman-Pearson lemma, where Λn(β1, Γ1) =
p1

p0
be

the likelihood ratio of p1 and p0. Thus,

E0[ϕn] = P0(
√

Λn(β1, Γ1) ≥ 1) =

∫

1√
p1(y)≥

√
p0(y)

p0(y)dy

≤
∫

√

p0(y)p1(y)dy = e−nRn(p0,p1) ≤ e−nǫ2
n

by assumption on (β1, Γ1). This proves the first result of the lemma.

Then, for the second part of the lemma, note that:

E1[1 − ϕn] = P1(
√

Λn(β1, Γ1) ≤ 1) ≤
∫

√

p0(y)p1(y)dy ≤ e−nǫ2
n (15)

However, by using Cauchy-Schwarz inequality:

Eβ,Γ[1 − ϕn] =

∫

(1 − ϕn(y))
pβ,Γ(y)

p1(y)
dp1(y)

≤ E1[1 − ϕn]1/2
E1

[

(

pβ,Γ

p1

)2
]1/2

≤ e−nǫ2
n/2

E1

[

(

pβ,Γ

p1

)2
]1/2

by Equation (15). Therefore, the test ϕn can also have exponentially small error of type II at other

alternatives if we can controlled the second term: we want to show that E1

[

(

pβ,Γ

p1

)2
]1/2

≤ e7nǫ2
n/16 for

every (β, Γ) ∈ F1,n.
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Recall that here pβ,Γ =
∏n

i=1 Nni (fi(Xiβ), ∆Γ,i), where ∆Γ,i = ZiΓZ⊤
i + σ2Ini . By denoting

∆∗
Γ,i = ∆

−1/2
Γ,i ∆Γ1,i∆

−1/2
Γ,i , then for (β, Γ) ∈ F1,n, if 2∆∗

Γ,i − Id and 2Id − ∆∗−1

Γ,i are non-singular matrices

for every i ∈ {1, · · · , n}, we can show that:

E1

[

(

pβ,Γ

p1

)2
]

=

n
∏

i=1

[

det(∆∗
Γ,i)

1/2 det(2Id − ∆∗−1

Γ,i )−1/2
]

×

exp

{

n
∑

i=1

‖(2∆∗
Γ,i − Id)−1/2∆

−1/2
Γ,i (fi(Xiβ) − fi(Xiβ1))‖2

2

}

. (16)

Let us now prove that these matrices are non-singular. We have, for all k ≤ ni,

max
1≤i≤n

‖∆∗
Γ,i − Id‖sp = max

1≤i≤n
ρmax(|∆∗

Γ,i − Id|) ≥ max
1≤i≤n

|ρk(∆∗
Γ,i) − 1|. (17)

Note that

max
1≤i≤n

‖∆∗
Γ,i − Id‖sp = max

1≤i≤n
‖∆

−1/2
Γ,i (∆Γ1,i − ∆Γ,i)∆

−1/2
Γ,i ‖sp

≤ max
1≤i≤n

‖∆−1
Γ,i‖sp‖∆Γ1,i − ∆Γ,i‖F

≤ max
1≤i≤n

‖∆−1
Γ,i‖spdn(Γ, Γ1)

≤ ǫ2
n

2Jn

by Lemma B3 and since (β, Γ) ∈ F1,n. Thus, for all k ≤ ni, max1≤i≤n |ρk(∆∗
Γ,i) − 1| ≤ ǫ2

n

2Jn
. We deduce

that

1 − ǫ2
n

2Jn
≤ min

1≤i≤n
ρmin(∆∗

Γ,i) ≤ max
1≤i≤n

ρmax(∆∗
Γ,i) ≤ 1 +

ǫ2
n

2Jn
. (18)

Therefore, since
ǫ2

n

2Jn
−→

n→∞
0 by Assumption A4, and for all k ≤ ni, ρk(2∆∗

Γ,i − Id) = 2ρk(∆∗
Γ,i) − 1 and

ρk(2Id − ∆∗−1

Γ,i ) = 2 − ρk(∆∗−1

Γ,i ) = 2 − ρ−1
k (∆∗

Γ,i), we deduce that 2∆∗
Γ,i − Id and 2Id − ∆∗−1

Γ,i are

non-singular on F1,n for every i ∈ {1, · · · , n}.

For concluding the proof, it remains to bound the right side term of (16). By using (18) and the
inequalities (1 − x2)/(1 − 2x) ≤ 1 + 3x for x > 0 small, and 1 + x ≤ ex, we obtain for n large enough:

det(∆∗
Γ,i)

1/2 det(2Id − ∆∗−1

Γ,i )−1/2 =

(

ni
∏

k=1

ρk(∆∗
Γ,i)

)1/2( ni
∏

k=1

2 − ρ−1
k (∆∗

Γ,i)

)−1/2

=

(

ni
∏

k=1

ρk(∆∗
Γ,i)

2 − ρ−1
k (∆∗

Γ,i)

)1/2

≤









1 − ǫ4
n

4J2
n

1 +
ǫ2

n

Jn









ni/2

≤
(

1 + 3
ǫ2

n

2Jn

)ni/2

≤ exp

(

3
niǫ

2
n

4Jn

)

≤ e3ǫ2
n/4
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Moreover, for n large enough,

n
∑

i=1

‖(2∆∗
Γ,i − Id)−1/2∆

−1/2
Γ,i (fi(Xiβ) − fi(Xiβ1))‖2

2

≤ max
1≤i≤n

‖(2∆∗
Γ,i − Id)−1‖sp max

1≤i≤n
‖∆−1

Γ,i‖sp

n
∑

i=1

‖fi(Xiβ) − fi(Xiβ1)‖2
2

≤ 2γn
nǫ2

n

16γn
=

nǫ2
n

8

since (β, Γ) ∈ F1,n. Finally, by using (16), we conclude that E1

[

(

pβ,Γ

p1

)2
]1/2

≤ e3nǫ2
n/8enǫ2

n/16 = e7nǫ2
n/16,

and so sup(β,Γ)∈F1,n
Eβ,Γ[1 − ϕn] ≤ e−nǫ2

n/16, which concludes the proof.

Appendix B Useful lemmas

Lemma B1. For A and B two matrices, ρmin(B)‖A‖2
sp ≤ ρmax(ABA⊤) ≤ ρmax(B)‖A‖2

sp.

Proof. By the Courant–Fischer–Weyl min-max principle,

ρmax(ABA⊤) = max
x 6=0

〈ABA⊤x, x〉
‖x‖2

= max
x 6=0

〈BA⊤x, A⊤x〉
‖x‖2

= max
x 6=0

〈BA⊤x, A⊤x〉
‖A⊤x‖2

‖A⊤x‖2

‖x‖2

≤ ρmax(B)max
x 6=0

‖A⊤x‖2

‖x‖2

= ρmax(B)ρmax(AA⊤)

= ρmax(B)‖A‖2
sp

We obtain the other inequality with similar arguments.

Lemma B2. Grant Assumptions A3 and A9. Thus, ∆Γ0,i := ZiΓ0Z⊤
i + σ2Ini satisfies:

1 . min
i

ρmin(∆Γ0,i) ≤ max
i

ρmax(∆Γ0,i) . 1

Proof. By the Weyl’s inequality, for 1 ≤ i ≤ n,

ρmin(∆Γ0,i) ≥ ρmin(ZiΓ0Z⊤
i ) + σ2 ≥ σ2

since ZiΓ0Z⊤
i is a positive definite matrix. Thus mini ρmin(∆Γ0,i) ≥ σ2, otherwise, mini ρmin(∆Γ0,i) & 1.

For the other inequality, by the Weyl’s inequality, we have that

ρmax(∆Γ0,i) ≤ ρmax(ZiΓ0Z⊤
i ) + σ2.

Then, by Lemma B1, we have that:

ρmax(ZiΓ0Z⊤
i ) ≤ ρmax(Γ0)‖Zi‖2

sp

and by Assumptions A3 and A9,

max
i

ρmax(∆Γ0,i) ≤ ρmax(Γ0) max
i

‖Zi‖2
sp + σ2 . 1.
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Lemma B3. For Γ1, Γ2 ∈ H, under Assumptions A7, A8 and A9, we have that

max
i

‖∆Γ1,i − ∆Γ2,i‖2
F . ‖Γ1 − Γ2‖2

F . d2
n(Γ1, Γ2) =

1

n

n
∑

i=1

‖∆Γ1,i − ∆Γ2,i‖2
F .

Proof. First,
‖∆Γ1,i − ∆Γ2,i‖2

F = ‖Zi(Γ1 − Γ2)Z⊤
i ‖2

F ≤ ‖Zi‖4
sp‖Γ1 − Γ2‖2

F ,

since ‖AB‖F ≤ ‖A‖sp‖B‖F , and by Assumption A9, we have that

max
1≤i≤n

‖∆Γ1,i − ∆Γ2,i‖2
F . ‖Γ1 − Γ2‖2

F .

Then, by Assumption A8, for each i such that ni ≥ q, Z⊤
i Zi is invertible and

‖Γ1 − Γ2‖2
F = ‖(Z⊤

i Zi)
−1Z⊤

i Zi(Γ1 − Γ2)Z⊤
i Zi(Z

⊤
i Zi)

−1‖2
F ≤ ‖Zi(Γ1 − Γ2)Z⊤

i ‖2
F ‖(Z⊤

i Zi)
−1Z⊤

i ‖4
sp.

Then, by Assumption A7, we have that

max
1≤i≤n

‖∆Γ1,i − ∆Γ2,i‖2
F . ‖Γ1 − Γ2‖2

F ≤ 1
∑n

i=1 1ni≥q

∑

i:ni≥q

‖Zi(Γ1 − Γ2)Z⊤
i ‖2

F ‖(Z⊤
i Zi)

−1Z⊤
i ‖4

sp

.
1

n

∑

i:ni≥q

‖Zi(Γ1 − Γ2)Z⊤
i ‖2

F ‖(Z⊤
i Zi)

−1Z⊤
i ‖4

sp

.
1

n

n
∑

i=1

‖Zi(Γ1 − Γ2)Z⊤
i ‖2

F =
1

n

n
∑

i=1

‖∆Γ1,i − ∆Γ2,i‖2
F = d2

n(Γ1, Γ2).

where the last inequality uses assumptions A8 and A9.

Lemma B4. For a positive definite symmetric matrix A ∈ R
q×q such as its eigenvalues satisfy

1 ≤ ρ1(A) ≤ ... ≤ ρq(A) ≤ 1 +
ǫ√
q

, then ‖A − Iq‖F ≤ ǫ.

Proof. Observe that

‖A − Iq‖F ≤ ǫ ⇔ Tr((A − Iq)2) ≤ ǫ2 since A is symmetric

⇔
q
∑

k=1

ρk(A − Iq)2 ≤ ǫ2

⇔
q
∑

k=1

(ρk(A) − 1)2 ≤ ǫ2.

By assumption, for 1 ≤ k ≤ q, we have that 0 ≤ ρk(A) − 1 ≤ ǫ√
q

and then max1≤k≤q(ρk(A) − 1)2 ≤ ǫ2

q
.

Hence, since
∑q

k=1(ρk(A) − 1)2 ≤ q × max1≤k≤q(ρk(A) − 1)2 ≤ ǫ2 and so ‖A − Iq‖F ≤ ǫ.
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