
ar
X

iv
:2

40
5.

01
20

9v
1 

 [
m

at
h.

A
P]

  2
 M

ay
 2

02
4

On the Cauchy problem for the fractional Keller–Segel system in

variable Lebesgue spaces*

Gastón Vergara-Hermosilla1, Jihong Zhao2

1LaMME, Univ. Evry, CNRS, Université Paris-Saclay, 91025, Evry, France

2School of Mathematics and Information Science, Baoji University of Arts and Sciences,

Baoji, Shaanxi 721013, China

May 3, 2024

Abstract

In this paper, we are mainly concerned with the well-posed problem of the fractional Keller–Segel

system in the framework of variable Lebesgue spaces. Based on carefully examining the algebraical

structure of the system, we reduced the fractional Keller–Segel system into the generalized nonlinear

heat equation to overcome the difficulties caused by the boundedness of the Riesz potential in a

variable Lebesgue spaces, then by mixing some structural properties of the variable Lebesgue spaces

with the optimal decay estimates of the fractional heat kernel, we were able to establish two well-

posedness results of the fractional Keller–Segel system in this functional setting.

Keywords: Fractional Keller–Segel system; well-posedness; variable Lebesgue spaces.

2020 AMS Subject Classification: 35A01, 35M11, 46E30, 92C17

1 Introduction

In this paper we study the Cauchy problem of the fractional Keller–Segel system defined in the whole

space R
n: 




∂tu+ Λαu+∇ · (u∇φ) = 0,

−∆φ = u,

u(0, x) = u0(x), x ∈ R
n

(1.1)

where n ≥ 2, u and φ are two unknown functions which stand for the cell density and the concentration

of the chemical attractant, respectively, and the anomalous (normal) diffusion is modeled by a fractional

power of the Laplacian with 1 < α ≤ 2. The positive operator Λα = (−∆)
α
2 is defined by

Λαu(x) := σn,αP.V.

∫

Rn

u(x)− u(y)

|x− y|n+α
dy

and σn,α is a normalization constant. A simple alternative representation is given through the Fourier

transform as Λαu = F−1[|ξ|αFu(ξ)], where F and F−1 are the Fourier transform and the inverse

Fourier transform, respectively.

*E-mail: gaston.vergarahermosilla@univ-evry.fr, jihzhao@163.com.
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2 Well-posedness of the Fractional Keller–Segel System in Variable Lebesgue Spaces

The system (1.1) was first proposed by Escudero in [13], where it was used to describe the spatiotem-

poral distribution of a population density of random walkers undergoing Lévy flights. Obviously, when

α = 2, the system (1.1) becomes to the well-known elliptic-parabolic Keller–Segel system:





∂tu−∆u = −∇ · (u∇φ),

−∆φ = u,

u(0, x) = u0(x), R
n.

(1.2)

This system is a mathematical model of chemotaxis, which was formulated by Keller–Segel [17] in

1970s, while it is also connected with astrophysical models of gravitational self-interaction of massive

particles in a cloud or a nebula (cf. [1, 2]). It is well-known that the system (1.2) admits global solution

if the initial total mass
∫
Rn u0(x)dx (n ≥ 2) is small enough, and it may blow up in finite time for

large initial data, we refer the readers to see [14, 15] for a comprehensive review of these aspects of

parabolic-elliptic system like (1.2), and to [4,16,19,21,22,24,25,31] for very recent well-posedness and

ill-posedness results on the related system.

For the fractional Keller–Segel system (1.1), We know from [13,26] that the one dimensional system

(1.1) possesses global solutions not only in the case α = 2 but also in the case 1 < α < 2. However,

a singularity appears in finite time when 0 < α < 1 if the initial configuration of cells is sufficiently

concentrated, see the paper [6] due to Bournaveas–Calvez for a extended discussion about it. Moreover,

when n ≥ 2, the solutions of (1.1) globally exist for small initial data and may blow up in finite time for

large initial data. In the following we list some analytical results concerning about the global existence

or blow-up for this system:

• For 1 < α < 2, Biler–Karch [3] established global well-posedness of system (1.1) with small

initial data in the critical Lebesgue space L
n
α (Rn), they also proved the finite time blowup of

nonnegative solutions with initial data imposed on large mass or high concentration conditions;

• For 1 < α < 2, Biler–Wu [5] established global well-posedness of system (1.1) with small initial

data in critical Besov space Ḃ1−α
2,q (R2);

• For 1 < α ≤ 2, Zhai [33] proved global existence, uniqueness and stability of solutions of system

(1.1) in critical Besov space with general potential type nonlinear term;

• For 1 < α ≤ 2, Wu–Zheng [30] proved local well-posedness and global well-posedness of system

(1.1) with small initial data in critical Fourier–Herz space Ḃ2−2α
q (Rn) for 1 < α ≤ 2 and 2 ≤ q ≤

∞, they also proved that system (1.1) is ill-posedness in Ḃ−2
q (Rn) and Ḃ−2

∞,q(R
n) with α = 2 and

2 < q ≤ ∞;

• For 0 < α ≤ 1, Sugiyama–Yamamoto–Kato [27] proved local existence with large data and

global existence with small data in critical Besov space Ḃ
−α+n

p
p,q (Rn) for n ≥ 3, 2 ≤ p < n and

1 ≤ q < 2;

• For 1 < α ≤ 2, Zhao [34] showed global existence and analyticity of solutions with small initial

data in critical Besov space Ḃ
−α+n

p
p,q (Rn) (1 ≤ p < ∞, 1 ≤ q ≤ ∞) and Ḃ−α

∞,1(R
n). For the

limit case α = 1, the global existence and analyticity of solutions with small initial data in critical

Besov space Ḃ
−1+n

p

p,1 (Rn) (1 ≤ p <∞) and Ḃ−1
∞,1(R

n) were also obtained;

• Parts of these results were also extended for the other generalized chemotaxis models and the

fractional power drift-diffusion system of bipolar type, we refer the readers to see [9,11,27,32,35]

for more results.
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Motivated by a series of papers [8, 28, 29], in this paper we study questions concerning about the

well-posedness of system (1.1) in the framework of the Lebesgue spaces with variable exponent. The

variable Lebesgue spaces are a generalization of the classical Lebesgue spaces, replacing the constant

exponent p ∈ [1,+∞) with a variable exponent function p(·) : Rn → [1,+∞). As we will see in

the following lines, the resulting Banach spaces Lp(·)(Rn) have many properties similar to the Lp(Rn)
spaces, however, such spaces allow some functions with singularity at some point x0, which is not in Lp

for any 1 ≤ p <∞ due to it either grows too quickly at x0 or decays too slowly at infinity, thus there are

surprising and subtle issues that make them very different of the classical ones. To define the variable

Lebesgue spaces Lp(·)(Ω) with a measurable set Ω ⊂ R
n, we resort to a more subtle approach which is

similar to that used to define the Luxemburg norm on the Orlicz spaces.

Let P(Ω) be the set of all Lebesgue measurable functions p(·) : Ω → [1,+∞]. We recall the

following definition.

Definition 1.1 Given a measurable set Ω ⊂ R
n and p(·) ∈ P(Ω), for a measurable function f , we

define

‖f‖Lp(·) := inf

{
λ > 0 : ρp(·)

(
f

λ

)
≤ 1

}
, (1.3)

where the modular function ρp(·) associated with p(·) is given by

ρp(·)(f) :=

∫

Ω
|f(x)|p(x)dx.

Moreover, if the set on the right-hand side of (1.3) is empty then we define ‖f‖Lp(·) = ∞.

For the classical Lebesgue space Lp(Ω) (1 ≤ p <∞), its norm is directly defined by

‖f‖Lp :=

(∫

Ω
|f(x)|pdx

) 1
p

. (1.4)

Note that if the exponent function p(·) is a constant, i.e. if p(·) = p ∈ [1,∞), then we obtain the usual

norm (1.3) via the modular function ρp.

Definition 1.2 Given a measurable set Ω ⊂ R
n and p(·) ∈ P(Ω), we define the variable exponent

Lebesgue spaces Lp(·)(Ω) to be the set of Lebesgue measurable functions f such that ‖f‖Lp(·) < +∞.

It is easy to verify that Lp(·)(Ω) is a vector space, and the function ‖ · ‖Lp(·) defines a norm on

Lp(·)(Ω), thus Lp(·)(Ω) is a normed vector space. Actually, Lp(·)(Ω) is a Banach space associated with

the norm ‖ · ‖Lp(·) . For a complete presentation of the theory of a variable Lebesgue spaces, we refer to

the readers to see books [10, 12].

Now we state the main results of this paper. The first result is the global existence of solutions of

system (1.1) with small initial data in mixed variable Lebesgue space (see Section 2 for the definition of

this space).

Theorem 1.3 Let n ≥ 2, 1 < α ≤ 2 such that n
2(α−1) > 1, and let p(·) ∈ P log(Rn) with 1 < p− ≤

p(·) ≤ p+ < +∞. For any ∇(−∆)−1u0 ∈ L
p(·)

n
α−1

(Rn), there exists a positive constant ε such that if the

initial data u0 satisfies

‖∇(−∆)−1u0‖Lp(·)
n

α−1

≤ ε, (1.5)

then the system (1.1) admits a unique global solution u such that

∇(−∆)−1u ∈ L
p(·)

n
α−1

(Rn, L∞(0,+∞)) . (1.6)
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The main reason we considered the mixed variable Lebesgue space L
p(·)

n
α−1

(Rn) is essentially technical

and it is motivated by the lack of flexibility of the indices that intervene in the boundedness of the Riesz

transforms. Moreover, we should emphasize the fact that, in Theorem 1.3, we first measure the behavior

of solutions for the time variable t in the usual L∞ space, then we measure the behavior of solution for

the space variable x in the mixed variable Lebesgue space L
p(·)

n
α−1

(Rn).

In our second result, we change the order of the variables: we first measure the behavior of solutions

for the space variable x in the usual Lebesgue space Lp(Rn), then we measure the behavior of solution

for the time variable t in the variable Lebesgue space Lq(·)(0, T ).

Theorem 1.4 Let n ≥ 2, 1 < α ≤ 2, q(·) ∈ P log(0,+∞) with 2 < q− ≤ q(·) ≤ q+ < +∞, and p > n
α

satisfying the relationship α
q(·) +

n
p
< 1, and p̄(·) ∈ Pemb

p (Rn). Then for any ∇(−∆)−1u0 ∈ Lp̄(·)(Rn),
there exists a time T > 0 such that the system (1.1) admits a unique local solution u satisfying

∇(−∆)−1u ∈ Lq(·) (0, T ;Lp(Rn)) . (1.7)

The rest of this paper is organized as follows. In Section 2, we present the detailed review of the

properties of the variable exponent Lebesgue spaces and list all kinds of analytic estimates in terms

of the bounded properties of singular integral operators in the variable Lebesgue spaces, moreover, we

recall some decay estimates of the fractional heat kernels involved in the proof of our main results. In

Sections 3 and 4, we establish the linear and nonlinear estimates of solutions in each solution spaces,

then complete the proofs of Theorem 1.3 and Theorem 1.4 by the Banach fixed point theorem.

2 Preliminaries

In this section we introduce some conventions and notations, and state some basic results. For the latter

we refer to the books [10, 12].

We use the notations C as a generic harmless constant, i.e. a constant whose value may change

from appearance to appearance. By χΩ we denote the characteristic function of Ω ⊂ R
n. The notation

X →֒ Y denotes continuous embedding from X to Y . For any p(·) ∈ P(Ω), we denote

p− := essinfx∈Ω p(x), p
+ := esssupx∈Ω p(x).

Throughout this paper, we will always assume that 1 < p− ≤ p+ < +∞.

2.1 The variable Lebesgue spaces

We collect some properties of the variable exponent Lebesgue spaces. The first one is a generalization

of the Hölder’s inequality (cf. [10], Corollary 2.28; [12], Lemma 3.2.20).

Lemma 2.1 Given two exponent functions p1(·), p2(·) ∈ P(Ω), define p(·) ∈ P(Ω) by 1
p(x) = 1

p1(x)
+

1
p2(x)

. Then there exists a constant C such that for all f ∈ Lp1(·)(Ω) and g ∈ Lp2(·)(Ω), we have

fg ∈ Lp(·)(Ω) and

‖fg‖Lp(·) ≤ C‖f‖Lp1(·)‖g‖Lp2(·) . (2.1)

Note that in the classical Lebesgue Lp(Ω) (1 ≤ p < +∞), the norm can be represented by using the

norm conjugate formula

‖f‖Lp ≤ sup
‖g‖

Lp′≤1

∫

Ω
|f(x)g(x)| dx, (2.2)



Gastón Vergara-Hermosilla, Jihong Zhao 5

where 1 < p′ ≤ +∞ is a conjugate of p, i.e. 1
p
+ 1

p′
= 1. A slightly weaker analog of the equality (2.2)

is true for the variable Lebesgue spaces. Indeed, given p(·) ∈ P(Ω), we define the conjugate exponent

function of p(·) by the formula
1

p(x)
+

1

p′(x)
= 1, x ∈ Ω.

Then the norm ‖ · ‖Lp(·) satisfies the following norm conjugate formula (cf. [12], Corollary 3.2.14).

Lemma 2.2 Let p(·) ∈ P(Ω), and let p′(·) be the conjugate of p(·). Then we have

1

2
‖f‖Lp(·) ≤ sup

‖g‖
Lp′(·)≤1

∫

Ω
|f(x)g(x)| dx ≤ 2‖f‖Lp(·) . (2.3)

We know that every function in the variable Lebesgue space is locally integrable, and it holds the

following embedding result with a sharper embedding constant (cf. [10], Corollary 2.48).

Lemma 2.3 Given two exponent functions p1(·), p2(·) ∈ P(Ω) with 1 < p+1 , p
+
2 < +∞. Then

Lp2(·)(Ω) →֒ Lp1(·)(Ω) if and only if p1(x) ≤ p2(x) almost everywhere. Furthermore, in this case

we have

‖f‖Lp1(·) ≤ (1 + |Ω|) ‖f‖Lp2(·) . (2.4)

An interesting fact in the setting of variable Lebesgue spaces is given by the extension of the result

presented in Lemma 2.3 to whole space R
n.

Before presenting a result about it, we must stress the fact that not all properties of the usual Lebesgue

spaces Lp(Ω) can be generalized to the variable Lebesgue spaces. For example, the variable Lebesgue

spaces are not translation invariant, thus the convolution of two functions f and g is not well-adapted,

and the Young’s inequality are not valid anymore (cf. [10], Section 5.3). In consequence, new ideas

and techniques are need to tackle with the boundedness of many classical operators appeared in the

mathematical analysis of PDEs. A classical approach to study these difficulties is to consider some

constraints on the variable exponent, and the most common one is given by the so-called log-Hölder

continuity condition. We introduce the following definition.

Definition 2.4 Let p(·) ∈ P(Rn) such that there exists a limit 1
p∞

= lim|x|→∞
1

p(x) .

• We say that p(·) is locally log-Hölder continuous if for all x, y ∈ R
n, there exists a constant C

such that
∣∣ 1
p(x) −

1
p(y)

∣∣ ≤ C

log(e+ 1
|x−y|

)
;

• We say that p(·) satisfies the log-Hölder decay condition if for all x ∈ R
n, there exists a constant

C such that
∣∣ 1
p(x) −

1
p∞

∣∣ ≤ C
log(e+|x|);

• We say that p(·) is globally log-Hölder continuous in R
n if it is locally log-Hölder continuous and

satisfies the log-Hölder decay condition;

• We define the class of variable exponents P log(Rn) as

P log(Rn) := {p(·) ∈ P(Rn) : p(·) is globally log-Hölder continuous in R
n} .

With this notion of variable exponent at hand, we characterize a class of variable exponents for which is

possible to obtain an analogous result to Lemma 2.3 in the setting of unbounded domains.

Definition 2.5 Given a constant exponent p ∈ (1,+∞), we define the class of variable exponents

Pemb
p (Rn) as the set

Pemb
p (Rn) :=

{
p̄(·) ∈ P log(Rn) : p ≤ (p̄)− ≤ (p̄)+<+∞ and

pp̄(x)

p̄(x)− p
→ +∞ as |x| → +∞

}
.
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Then, a consequence of considering a variable exponent in Pemb
p (Rn) is given by following result

(cf. Theorem 2.45 and Remark 2.46 in [10]).

Lemma 2.6 Let p ∈ (1,+∞) and p̄(·) ∈ Pemb
p (Rn). Then we have Lp̄(·)(Rn) →֒ Lp(Rn), and there

exists a constant C > 0 such that

‖f‖Lp ≤ C‖f‖Lp̄(·) . (2.5)

On the other hand, for any p(·) ∈ P log(Rn), we have the following results in terms of the Hardy-

Littlewood maximal function and Riesz transforms (cf. [10], Theorem 3.16 and Theorem 5.42; [12],

Theorem 4.3.8 and Corollary 6.3.10).

Lemma 2.7 Let p(·) ∈ P log(Rn) with 1 < p− ≤ p+ < +∞. Then for any f ∈ Lp(·)(Rn), there exists a

positive constant C such that

‖M(f)‖Lp(·) ≤ C‖f‖Lp(·), (2.6)

where M is the Hardy-Littlewood maximal function defined by

M(f)(x) := sup
x∈B

1

|B|

∫

B

|f(y)|dy,

and B ⊂ R
n is an open ball with center x. Furthermore,

‖Rj(f)‖Lp(·) ≤ C‖f‖Lp(·) for any 1 ≤ j ≤ n, (2.7)

where Rj (1 ≤ j ≤ n) are the usual Riesz transforms, i.e. F (Rjf) (ξ) = −
iξj
|ξ|F(f)(ξ).

We also need to use the boundedness of the Riesz potential in the variable Lebesgue spaces.

Definition 2.8 Given 0 < β < n, for any measurable function f , define the Riesz potential Iβ also

referred to as the fractional integral operator with index β, to be the convolution operator

Iβ(f)(x) := C(β, n)

∫

Rn

|f(y)|

|x− y|n−β
dy, (2.8)

where

C(β, n) =
Γ(n−β2 )

π
n
2 2βΓ(β2 )

.

The Riesz potential is well defined on the variable Lebesgue spaces, and if p+ < n
β

and f ∈

Lp(·)(Rn), then Iβ(f)(x) converges for every x. Moreover, we have the following boundedness result

(cf. [10], Theorem 5.46).

Lemma 2.9 Let p(·) ∈ P log(Rn) with 1 < p− ≤ p+ < +∞, and let 0 < β < n
p+

. Then for any

f ∈ Lp(·)(Rn), there exists a positive constant C such that

‖Iβ(f)‖Lq(·) ≤ C‖f‖Lp(·) with
1

q(·)
=

1

p(·)
−
β

n
. (2.9)

According to the estimate (2.9), there is a very strong relationship between the variable indices p(·)
and q(·), which leads to a strict restriction to apply Lemma 2.9. In order to relax the applicable scope of

(2.9), we introduce the definition of the mixed Lebesgue spaces (cf. [7]).
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Definition 2.10 Let p(·) ∈ P log(Rn) with 1 < p− ≤ p+ < +∞, and let 1 < r < +∞. Then we define

the mixed Lebesgue space L
p(·)
r (Rn) as the intersection of the spaces Lp(·)(Rn) and Lr(Rn), i.e.

Lp(·)r (Rn) := Lp(·)(Rn)
⋂
Lr(Rn),

which is endowed with the norm

‖f‖
L
p(·)
r

:= max{‖f‖Lp(·) , ‖f‖Lr}.

The mixed Lebesgue space L
p(·)
r (Rn) clearly inherits some properties of the spaces Lp(·)(Rn) and

Lr(Rn). For example, we have the Hölder’s inequality

‖fg‖
L
p(·)
r

≤ C‖f‖
L
p1(·)
r1

‖g‖
L
p2(·)
r2

(2.10)

with 1
p(·) =

1
p1(·)

+ 1
p2(·)

and 1
r
= 1

r1
+ 1

r2
, and the Riesz transforms are also bounded in these spaces, i.e.

‖Rj(f)‖Lp(·)
r

≤ C‖f‖
L
p(·)
r

for any 1 ≤ j ≤ n. (2.11)

Furthermore, we have the following mixed Hardy-Littlewood-Sobolev inequality (cf. [7], Theorem 4) .

Lemma 2.11 Let p(·) ∈ P log(Rn) with 1 < p− ≤ p+ < +∞, and let 1 < r < +∞. Then for any

0 < β < min{ n
p+
, n
r
}, and f ∈ L

p(·)
r (Rn), there exists a positive constant C such that

‖Iβ(f)‖Lq(·) ≤ C‖f‖
L
p(·)
r

with q(·) =
np(·)

n− βr
. (2.12)

Notice that if we set p(·) = r we recover the inequality (2.9) in the framework of the usual Lebesgue

spaces. Moreover, since the number r does not depend on p−, p+ and p(x), the condition in (2.12) gives

us more flexibility than the condition in (2.9).

2.2 Estimates of the Fractional Heat Kernel

Let us recall some crucial estimates of the fractional heat kernel Gαt (x) involved in the integral formula-

tion of system (1.1), where

Gαt (x) = F−1(e−t|ξ|
α

) = (2π)−
n
2

∫

Rn

eix·ξe−t|ξ|
α

dξ.

The first one is the point-wise estimate of the fractional heat kernel Gαt (x) (cf. [23], Remark 2.1).

Lemma 2.12 For α > 0, the kernel function Gα(x) satisfies the following point-wise estimate

|∇Gαt (x)| ≤ C(t
1
α + |x|)−n−1, x ∈ R

n. (2.13)

The second one is a classical lemma in terms of the Hardy–Littlewood maximal function (cf. [20],

Lemma 7.4).

Lemma 2.13 Let ϕ be a radially decreasing function on R
n and f a locally integrable function. Then

we have

|(ϕ ∗ f)(x)| ≤ ‖ϕ‖L1M(f)(x). (2.14)

Finally, we recall the classical Lp- Lq estimates of the fractional heat kernel Gαt (x) (cf. [23], Lemma

3.1).

Lemma 2.14 For all α > 0, ν > 0, 1 ≤ p ≤ q ≤ ∞. Then for any f ∈ Lp(Rn), we have

‖Gαt ∗ f‖Lq ≤ Ct
−n

α
( 1
p
− 1

q
)‖f‖Lp , (2.15)

‖ΛνGαt ∗ f‖Lq ≤ Ct
− ν

α
−n

α
( 1
p
− 1

q
)‖f‖Lp . (2.16)
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3 Proof of Theorem 1.3

In this section, we shall show Theorem 1.3 by applying the following existence and uniqueness result for

an abstract operator equation in a generic Banach space (cf. [18], Theorem 13.2).

Proposition 3.1 Let X be a Banach space and B : X × X → X a bilinear bounded operator. Assume

that for any u, v ∈ X , we have

‖B(u, v)‖X ≤ C‖u‖X ‖v‖X .

Then for any y ∈ X such that ‖y‖X ≤ η < 1
4C , the equation u = y + B(u, u) has a solution u in

X . Moreover, this solution is the only one such that ‖u‖X ≤ 2η, and depends continuously on y in the

following sense: if ‖ỹ‖X ≤ η, ũ = ỹ + B(ũ, ũ) and ‖ũ‖X ≤ 2η, then

‖u− ũ‖X ≤
1

1− 4ηC
‖y − ỹ‖X .

In order to do so, we need to transform the system (1.1) into an equivalent system. Firstly, notice that

the chemical concentration φ is determined by the Poisson equation, the second equation of (1.1), gives

rise to the coefficient ∇φ in the first equation of (1.1), thus φ can be represented as the volume potential

of u:

φ(t, x) = (−∆)−1u(t, x) =





1

n(n− 2)ωn

∫

Rn

u(t, y)

|x− y|n−2
dy, if n ≥ 3,

−
1

2π

∫

R2

u(t, y) log |x− y|dy, if n = 2,

where ωn denotes the surface area of the unit sphere in R
n. Secondly, observe carefully that the nonlinear

term u∇(−∆)−1u has a nice symmetric structure:

u∇(−∆)−1u = −∇ ·

(
∇(−∆)−1u⊗∇(−∆)−1u−

1

2

∣∣∇(−∆)−1u
∣∣2 I
)
, (3.1)

where ⊗ is a tensor product, and I is a n-th order identity matrix, thus if we denote v := ∇(−∆)−1u,

and taking the operator ∇(−∆)−1 to both sides of the system (1.1), then we can further reduced the

system (1.1) into the following system:

{
∂tv −∆v −R⊗R∇ ·

(
v ⊗ v − 1

2 |v|
2 I
)
= 0,

v(0, x) = v0(x),
(3.2)

where v0 := ∇(−∆)−1u0, R := (R1,R2, · · · ,Rn) and Rj (j = 1, 2, · · · , n) are Riesz transforms.

Finally, based on the framework of the Kato’s analytical semigroup, we can rewrite system (3.2) as an

equivalent integral form:

v(t) = Gαt ∗ v0(x) +

∫ t

0
Gαt−s ∗ R ⊗R∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds. (3.3)

Now, let the assumptions of Theorem 1.3 be in force, we introduce the space X as follows:

X := L
p(·)
n

α−1
(Rn;L∞(0,∞)),

and the norm of the space X is endowed by

‖v‖X = max
{
‖v‖

L
p(·)
x (L∞

t )
, ‖v‖

L
n

α−1
x (L∞

t )

}
.

It can be easily seen that (X , ‖ · ‖X ) is a Banach space.
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In the sequel, we shall establish the linear and nonlinear estimates of the integral equation (3.3) in

the space X , respectively.

Lemma 3.2 Let the assumptions of Theorem 1.3 be in force. Then for any v0 ∈ L
p(·)

n
α−1

(Rn), there exists

a positive constant C such that

‖Gαt ∗ v0‖XT
≤ C‖v0‖Lp(·)

n
α−1

. (3.4)

Proof. Since the fractional heat kernel Gαt (x) is a radially decreasing function with respect to the space

variable, we can use Lemma 2.13 to get

|Gαt ∗ v0| ≤ ‖Gt(·)‖L1
x
M(v0)(x) = M(v0)(x),

which directly yields that

‖Gαt ∗ v0‖L∞
t

≤ M(v0)(x). (3.5)

Then, by taking the L
p(·)

n
α−1

-norm to both sides of (3.5) with respect to the space variable x, we see that

‖Gαt ∗ v0‖XT
≤ ‖M(v0)‖Lp(·)

n
α−1

≤ max{‖M(v0)‖Lp(·)
x
, ‖M(v0)‖

L
n

α−1
x

}. (3.6)

Recalling that p(·) ∈ P log(Rn) with 1 < p− ≤ p+ < +∞, thus we know from Lemma 2.7 that the

maximal function M is bounded in the variable Lebesgue space Lp(·)(Rn), as well as the usual Lebesgue

space L
n

α−1 (Rn), thus we obtain

‖Gαt ∗ v0‖XT
≤ max{‖M(v0)‖Lp(·)

x
, ‖M(v0)‖

L
n

α−1
x

}

≤ Cmax{‖v0‖Lp(·)
x
, ‖v0‖

L
n

α−1
x

}

= C‖v0‖Lp(·)
n

α−1

.

Thus, we complete the proof of Lemma 3.2. 2

Lemma 3.3 Let the assumptions of Theorem 1.3 be in force. Then there exists a positive constant C

such that ∥∥∥∥
∫ t

0
Gαt−s ∗ R ⊗R∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds

∥∥∥∥
X

≤ C‖v‖2X . (3.7)

Proof. We begin by noticing that, due to the properties of Riesz transforms R, for any 0 < t < +∞, we

can rewrite the second term on the right-hand side of (3.3) as

∫ t

0
Gαt−s ∗ R ⊗R∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds = R⊗R

∫ t

0
Gαt−s ∗ ∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds. (3.8)

By the Minkowski’s integral inequality and the decay properties of the fractional heat kernel, we obtain

∣∣∣∣
∫ t

0
Gαt−s ∗ ∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds

∣∣∣∣ ≤
∫ t

0

∫

Rn

∣∣∇Gαt−s(x− y)
∣∣ |v(s, x)|2 dyds

≤

∫

Rn

∫ t

0
|∇Gαt−s(x− y)| |v(s, x)|2 dsdy,

which considering the L∞-norm with respect to the time variable and using Lemma 2.12, one gets

∣∣∣∣
∫ t

0
Gαt−s ∗ ∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds

∣∣∣∣ ≤
∫

Rn

∫ t

0

1

(|t− s|
1
α + |x− y|)n+1

ds‖v(·, y)‖2L∞
t
dy. (3.9)
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It is easy to calculate that

∫ t

0

1

(|t− s|
1
α + |x− y|)n+1

ds ≤

∫ +∞

0

1

(s
1
α + |x− y|)n+1

ds

=

∫ +∞

0

|x− y|α

((|x− y|ατ)
1
α + |x− y|)n+1

dτ

=
1

|x− y|n+1−α

∫ +∞

0

1

(1 + τ
1
α )n+1

dτ

≤
C

|x− y|n+1−α
. (3.10)

Thus taking (3.10) into (3.9) and using the definition of Riesz potential, we obtain

∣∣∣∣
∫ t

0
Gαt−s ∗ ∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds

∣∣∣∣ ≤ C

∫

Rn

1

|x− y|n+1−α
‖v(·, y)‖2L∞

t
dy

= CIα−1

(
‖v‖2L∞

t

)
(x). (3.11)

Back to (3.8), we know from (3.11) that

R⊗R

∫ t

0
Gαt−s ∗ ∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds ≤ CR⊗R

(
Iα−1

(
‖v‖2L∞

t

)
(x)
)
. (3.12)

By taking L
p(·)

n
α−1

-norm to both sides of (3.12) with respect to the space variable x, then using Lemma

2.11, the fact that Riesz transforms are bounded in the spaces L
p(·)

n
α−1

(Rn), (2.10) and (2.11), we obtain

∥∥∥∥R⊗R

∫ t

0
Gαt−s ∗ ∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds

∥∥∥∥
L
p(·)
x (L∞

t )

≤ C
∥∥∥Iα−1

(
‖v‖2L∞

t

)∥∥∥
L
p(·)
x

≤ C‖‖v‖2L∞
t
‖
L

p(·)
2
n

2(α−1)

≤ C‖v‖2
L
p(·)

n
α−1

(L∞
t )

; (3.13)

∥∥∥∥R⊗R

∫ t

0
Gαt−s ∗ ∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds

∥∥∥∥
L

n
α−1
x (L∞

t )

≤ C
∥∥∥Iα−1

(
‖v‖2L∞

t

)∥∥∥
L

n
α−1
x

≤ C‖‖v‖2L∞
t
‖
L

n
2(α−1)

≤ C‖v‖2
L

n
α−1 (L∞

t )
. (3.14)

Putting the above estimates (3.13) and (3.14) together, we get (3.7). Thus, we complete the proof of

Lemma 3.3. 2

Based on the desired linear and nonlinear estimates obtained in Lemmas 3.2 and 3.3, we know that

there exist two positive constants C1 and C2 such that

‖v0‖X ≤ C1‖v0‖Lp(·)
n

α−1

+ C2‖v‖
2
X . (3.15)
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Thus if the initial data v0 satisfies the condition

‖v0‖Lp(·)
n

α−1

≤
1

4C1C2
,

we can apply Proposition 3.1 to get global existence of solution v ∈ X to the system (3.2). This yields a

unique global solution u of the system (1.1) such that ∇(−∆)−1u ∈ X . Thus, we complete the proof of

Theorem 1.3.

4 Proof of Theorem 1.4

In this section we present the proof of Theorem 1.4. In this case, under the assumptions of Theorem 1.4,

we choose the solution space as

YT := Lq(·)(0, T ;Lp(Rn)),

where T > 0 is a constant to be determined later. We endow the norm of the space YT with the

Luxemburg norm as

‖f‖YT
= inf

{
λ > 0 :

∫ T

0

∣∣∣∣
‖f(t, ·)‖Lp

λ

∣∣∣∣
q(t)

dt ≤ 1

}
.

Similarly, we need to establish the linear and nonlinear estimates of the integral equation (3.3) in the

space YT .

Lemma 4.1 Let the assumptions of Theorem 1.4 be in force. Then for any θ0 ∈ Lp̄(·)(Rn), there exists a

positive constant C such that

‖Gαt ∗ v0‖YT
≤ Cmax{T

1
q− , T

1
q+ }‖v0‖Lp̄(·)

x
. (4.1)

Proof. We infer from Lemma 2.14 that

‖Gαt ∗ v0‖Lp
x
≤ ‖Gαt (x)‖L1

x
‖v0‖Lp

x
= ‖v0‖Lp

x
. (4.2)

To continue, we need to use a simple result in the context of variable Lebesgue spaces:

‖1‖
L
q(·)
t

≤ 2max{T
1

q− , T
1

q+ }. (4.3)

Thus, by taking the Lq(·)-norm to both sides of (4.2) with respect to the time variable t, and using the

Hölder’s inequality (2.1) yields that

‖Gαt ∗ v0‖Lq(·)
t (Lp

x)
≤ C‖1‖

L
q(·)
t

‖v0‖Lp
x
≤ Cmax{T

1
q− , T

1
q+ }‖v0‖Lp

x
, (4.4)

By Lemma 2.6, we finally conclude that

‖Gαt ∗ v0‖Lq(·)
t (Lp

x)
≤ Cmax{T

1
q− , T

1
q+ }‖v0‖Lp̄(·)

x
. (4.5)

Thus, we complete the proof of Lemma 4.1. 2

Lemma 4.2 Let the assumptions of Theorem 1.4 be in force. Then for any T > 0, there exists a positive

constant C such that
∥∥∥∥
∫ t

0
Gαt−s ∗ R ⊗R∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds

∥∥∥∥
YT

≤ C(1 + T )‖θ‖2YT
. (4.6)
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Proof. For any 0 < t ≤ T , taking Lp-norm to the second term on the right-hand side of (3.3) with

respect to the space variable x, and using Lemma 2.14 and the fact that the Riesz transforms are bounded

in the space Lp, we obtain

∥∥∥∥
∫ t

0
Gαt−s ∗ R ⊗R∇ ·

(
v ⊗ v −

1

2
|v|2 I

)
ds

∥∥∥∥
L
p
x

≤

∫ t

0
‖∇Gαt−s ∗ (v ⊗ v +

1

2
|v|2I)(s, ·)‖Lp

x
ds

≤

∫ t

0

1

(t− s)
1
α
+ n

αp

‖v(s, ·)‖2
L
p
x
ds. (4.7)

Then taking Lq(·)-norm on the right-hand side of (4.7) with respect to the time variable t and using the

norm conjugate formula (2.3) by 1
q(·) +

1
q′(·) = 1, we see that

∥∥∥∥∥

∫ t

0

1

(t− s)
1
α
+ 2

αp

‖v(s, ·)‖2
L
p
x
ds

∥∥∥∥∥
L
q(·)
t

≤ 2 sup
‖ψ‖

L
q′(·)
t

≤1

∫ T

0

∫ t

0

|ψ(t)|

|t− s|
1
α
+ n

αp

‖v(s, ·)‖2
L
p
x
dsdt

= 2 sup
‖ψ‖

L
q′(·)
t

≤1

∫ T

0

∫ T

0

χ{0<s<t}|ψ(t)|

|t− s|
1
α
+ n

αp

dt‖v(s, ·)‖2
L
p
x
ds. (4.8)

In order to use the 1D Riesz potential formula (2.8), we extend the function ψ(t) by zero on R \ [0, T ],
and the right-hand side of (4.8) can be represented as

sup
‖ψ‖

L
q′(·)
t

≤1

∫ T

0

∫ T

0

χ{0<s<t}|ψ(t)|

|t− s|
1
α
+ n

αp

dt‖v(s, ·)‖2
L
p
x
ds

= sup
‖ψ‖

L
q′(·)
t

≤1

∫ T

0

(∫ +∞

−∞

|ψ(t)|

|t− s|
1
α
+ n

αp

dt

)
‖v(s, ·)‖2

L
p
x
ds

= sup
‖ψ‖

L
q′(·)
t

≤1

∫ T

0
Iβ(|ψ|)‖v(s, ·)‖

2
L
p
x
ds, (4.9)

where β = 1− 1
α
− n

αp
. Furthermore, for the right-hand side of (4.9), by using Hölder’s inequality (2.1)

with 2
q(x) +

1
q̃(x) = 1 yields that

sup
‖ψ‖

L
q′(·)
t

≤1

∫ T

0
Iβ(|ψ|)‖v‖

2
L
p
x
ds ≤ C sup

‖ψ‖
L
q′(·)
t

≤1
‖Iβ(|ψ|)‖Lq̃(·)

t

‖v‖2
L
q(·)
t (Lp

x)

≤ C sup
‖ψ‖

L
q′(·)
t

≤1
‖ψ‖

L
r(·)
t

‖v‖2
L
q(·)
t (Lp

x)
, (4.10)

where the above indices satisfy the relationship

1

q̃(·)
=

1

r(·)
− (1−

1

α
−

n

αp
).

Since 1
q̃(x) = 1 − 2

q(x) and 1
q′(x) = 1 − 1

q(x) , we can deduce that r(·) < q′(·) under the condition
α
q(·) +

n
p
< α− 1. By using Lemma 2.3 with r(·) < q′(·) and Ω = [0, T ], we deduce from (4.10) that

sup
‖ψ‖

L
q′(·)
t

≤1
‖ψ‖

L
r(·)
t

‖v‖2
L
q(·)
t (Lp

x)
≤ sup

‖ψ‖
L
q′(·)
t

≤1
‖ψ‖

L
q′(·)
t

‖v‖2
L
q(·)
t (Lp

x)
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≤ C(1 + T )‖v‖2
L
q(·)
t (Lp

x)
. (4.11)

Finally, taking all above estimates (4.8)–(4.11) into (4.7), we get (4.6). Thus, we complete the proof of

Lemma 4.2. 2

Based on the desired linear and nonlinear estimates obtained in Lemmas 4.1 and 4.2, we know that,

for any 0 < T <∞, there exist two positive constants C1 and C2 such that

‖v‖YT
≤ C1max{T

1
q− , T

1
q+ }‖v0‖Lp̄(·)

x
+ C2(1 + T )‖v‖2YT

. (4.12)

Hence, if we choose T small enough such that

‖v0‖Lp̄(·)
x

≤
1

4C1C2(1 + T )max{T
1

q− , T
1

q+ }
,

we know from Proposition 3.1 that the equation (3.2) admits a unique solution v ∈ YT , which yields that

there exists a unique solution u of the system (1.1) such that ∇(−∆)−1u ∈ YT . Thus, we complete the

proof of Theorem 1.4.
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