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Abstract

The motivation of this paper is to recognize a geometric shape from a noisy sample in the form
of a point cloud. Inspired by the HDBSCAN clustering algorithm and the multicover bifiltration,
we introduce the core- and the alpha-core bifiltrations. The multicover-, core- and alpha-core
bifiltrations are all interleaved, and they enjoy similar Prohorov stability properties. We have
performed experiments with the core and the alpha-core bifiltrations where we have calculated
their persistent homology along lines in the two-dimensional persistence parameter space.
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1 Introduction

Multiparameter persistent homology has recently emerged as an important part of topological data
analysis [3]. In multiparameter persistent homology, we study the changes in homology of a topological
space equipped with a multiparameter filtration as these parameters vary. In practice, many filtrations
have two parameters, so-called bifiltrations. Examples include the degree-Rips bifiltration [11, 2], the
density-Rips bifiltration [3, 6] and the multicover bifiltration [15]. The study of different bifiltrations
and their relationships with each other is an active research area. In this paper, we introduce the core
bifiltration of a finite set of points in a metric space.

We introduce the core bifiltration together with a variant built on the alpha-complex, the alpha-
core bifiltration, both of which are interleaved with the multicover bifiltration. This interleaving allows
us to transfer stability results from [2], in a weakened form, from the multicover bifiltration to the
alpha-core bifiltration. We also establish stability results for the core bifiltration similarly. Like the
degree-Rips bifiltration, the core bifiltration is computationally more accessible than the multicover
bifiltration. There are ongoing efforts in the research community aiming to improve the feasibility of
computing the multicover bifiltration through techniques such as, for example, sparsification [4] and
exploring related combinatorial bifiltrations [7, 8, 9].

Contributions. Our contributions are as follows.

1. We introduce two bifiltrations of spaces, namely the core bifiltration and the alpha-core bifiltra-
tion. These are inspired by the density-dependent clustering algorithm HDBSCAN [5].

2. In the Theorems 3.7 and 4.5 we describe interleavings between the (alpha-) core and multicover
bifiltrations summarized in the following diagram of inclusions:

αCrr,k(A) ⊆

Cov2r,k(A)

⊆ ⊆
Crr,k(A) αCr4r,k(A)

⊆ ⊆
αCr3r,k(A)

⊆ Cr4r,k(A),
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where Crr,k(A), αCrr,k(A),Covr,k(A) ⊆ Rn denote the core, alpha-core and multicover bifiltra-
tions, of a finite subset A ⊆ Rn in filtration degree (r, k) ∈ R2, respectively. Here the parameter
r corresponds to the radius parameter in the Čech complex, and k is a density parameter. See
Figure 1 for a toy example where the core- and multicover bifiltrations differ.

3. For each filtration value (r, k), the core bifiltration admits a cover consisting of metric balls.
This allows us to apply the standard nerve lemma to get that the core bifiltration is homotopy
equivalent to the geometric realization of the core Čech bifiltration denoted cCr,s(A). A similar
argument is also done for the alpha-core bifiltration.

4. Using an approach similar to Blumberg and Lesnick [2] we get a Prohorov stability result for
the core and alpha-core bifiltrations.

5. We have performed experiments1 on synthetic point clouds. For each point cloud, we compute
the alpha-core persistent homology both for a horizontal line with a fixed k parameter and along
a line with a negative slope. In both cases, we compute the bottleneck distance between the
persistence diagram of a noisy sample to the persistence diagram of a sample without noise.

Figure 1: Let A = {(0, 0), (1,
√
3), (2.1, 0.1)} ⊆ R2. For a fixed k, the multicover filtration Covr,k(A)

admits a covering consisting of k-intersections of balls. The top row shows the filtered nerve of this
covering of Covr,2(A), whereas the bottom row shows the core Čech filtration cC2r,2(A) with the radius
parameter r increasing from left to right.

This manuscript is structured as follows: In Section 2, we review some notions relevant to multi-
parameter persistent homology, including a formal definition of the multicover bifiltration. Section 3
defines the core dissimilarity and its corresponding core bifiltration and shows the interleaving to the
multicover bifiltration. In Section 4, we introduce the alpha-core bifiltration and show how it is related
to the core bifiltration and the multicover bifiltration. Stability results are shown in Section 5. In
Section 6, we showcase properties of the alpha-core bifiltration in some experiments on noisy point
cloud datasets. Finally, we conclude the paper in Section 7.

2 Background

Let P be a partially ordered set, or poset. A filtration (of sets) over P is a collection of sets
C = {Cp}p∈P where Cp ⊆ Cp′ whenever p ≤ p′. For a poset P , we let P op denote the opposite poset
with the same underlying set P but with the order reversed, i.e., p ≤ q in P op if q ≤ p in P . For posets
P and Q, we can form the product poset P ×Q, where (p, q) ≤ (p′, q′) if both p ≤ p′ and q ≤ q′.

A simplicial complex is a pair (K,V ) where V is a set (called the vertex set) and K is a
set of finite subsets of V (called simplices) such that if σ is a simplex in K and τ ⊆ σ then τ is

1The implementation is available at https://github.com/odinhg/core.
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also a simplex in K. A filtered simplicial complex (over P ) is a collection of simplicial complexes
{(Kp, V )}p∈P such that {Kp}p∈P is a filtration of sets over P . We let (0,∞) denote the set of positive
real numbers with the standard total ordering, and [0,∞] is the extended non-negative real line.

Definition 2.1 (Multicover Bifiltration). Let (M,d) be a metric space, and A ⊆ M a finite subspace.
The multicover bifiltration Cov(A) on A is the filtration over (0,∞)×(0,∞)op whose sets for (real)
parameters r, k > 0 are given as

Covr,k(A) = {x ∈ M | d(a, x) ≤ r for at least k points a ∈ A}. (1)

We use closed balls instead of open balls like they do in [2, Def. 2.7]. However, as pointed out in
[2, Remark 2.9], this does not matter for stability results since the two versions are 0-interleaved.
Note that replacing k by its ceiling ⌈k⌉ in (1) so that it reads “for at least ⌈k⌉ points”, gives an
equivalent definition. When we later discuss interleavings, it is convenient not to restrict k to integer
values.

Definition 2.2 (Dissimilarity). A dissimilarity (over [0,∞]) is a function F : S × T → [0,∞]
where S and T are sets.

An example of a dissimilarity is the (extended) metric d of a metric space (M,d).

Definition 2.3 (Balls). For a dissimilarity F : S × T → [0,∞], the (closed) F -ball around s ∈ S
with radius r ≥ 0 is the set

BF (s, r) = {t ∈ T |F (s, t) ≤ r}.

We can construct a filtered simplicial complex from a dissimilarity as follows:

Definition 2.4 (Dowker Nerve). The Dowker nerve DF = {(DFr, S)}r∈(0,∞) of a dissimilarity
F : S × T → [0,∞] is the filtered simplicial complex where

DFr = {σ ⊆ S finite | there exists t ∈ T such that F (s, t) ≤ r for all s ∈ σ} .

For a topological space X, a cover is a collection of subsets U = {Ui}i∈I of X such that
⋃

i Ui = X.
The cover U is said to be good if the intersection

⋂
j∈J Uj is either empty or contractible for every

finite subset J ⊆ I. The cover is closed it consists of closed sets. If X ⊆ Rn is a Euclidean subspace,
we say that the cover U is convex if it consists of convex sets. Note that every convex cover is good.

Definition 2.5 (Nerve of a Cover). Let U = {Ui}i∈I be a cover of a space X. The nerve of U is the
simplicial complex (NU , I) where NU consists of the finite subsets J of I with the property that the
intersection

⋂
j∈J Uj is nonempty.

Lemma 2.6 (Functorial Nerve Lemma[1, Thm. 5.9 and Thm. 3.9]). Let U = {Ui}i∈I be a finite
closed and convex cover of a Euclidean subspace X ⊆ Rn. There exists a homotopy equivalence
ρX : X → |NU| from X to the geometric realization |NU| of the nerve NU . Furthermore, if Y ⊆ X
is a subspace with a finite closed and convex cover V = {Vi}i∈I such that Vi ⊆ Ui for all i ∈ I, then
the following diagram commutes up to homotopy:

Y |NV|

X |NU|.

ρY

ρX

(2)

We observe that taking homology of the diagram (2) gives a diagram that commutes strictly, where
the two horizontal maps are isomorphisms.
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3 Core Bifiltration

In this section, we introduce the core bifiltration, using a specific family of dissimilarities. We also
examine the Dowker nerves of these dissimilarities. The core bifiltration is a filtered space that is
interleaved with the multicover bifiltration.

Definition 3.1 (Core Distance [5, Def. 5]). Let A ⊆ (M,d) be a finite metric subspace, let k > 0
and let x ∈ M . The k-core distance CoreAk (x) of x to A is the distance from x to one of its ⌈k⌉-th
nearest neighbors in A. We use the convention that, if k > |A|, then the k-core distance is infinite.

In particular, we note that if x ∈ A and 0 < k ≤ 1, then the k-core distance CoreAk (x) is zero.
Furthermore, it can be helpful to keep in mind the following three equivalent conditions related to the
core distance as we will use them in later proofs: Let A ⊆ (M,d) be a finite metric subspace, then for
all x ∈ M and r, k > 0, we have

CoreAk (x) ≤ r ⇐⇒ ∃a1, . . . , a⌈k⌉ ∈ A such that d(ai, x) ≤ r for all ai ⇐⇒ |Bd(x, r) ∩A| ≥ k.

For HDBSCAN, the mutual reachability distance Gk : A×A → [0,∞], where

Gk(a, a
′) = max

{
CoreAk (a),Core

A
k (a

′), d(a, a′)
}
, (3)

is used in one of the main steps in the clustering algorithm [5, Def. 7 and Alg. 1]. We look at
directed versions of this distance.

Definition 3.2 (Core Dissimilarity). Let A ⊆ (M,d) be a finite metric subspace, and let k > 0. The
k-core dissimilarity of A in M is the dissimilarity Λk : A×M → [0,∞] given by

Λk(a, x) = max
{
CoreAk (a), d(a, x)

}
.

Following our convention, we denote balls of radius r centered at a with respect to the core
dissimilarity by

BΛk
(a, r) = {x ∈ M |Λk(a, x) ≤ r}. (4)

Taking the union of such balls over A, we get a bifiltration.

Definition 3.3. Let (M,d) be a metric space, and A ⊆ M a finite subset. The core bifiltration
Cr(A) on A is a filtration over (0,∞) × (0,∞)op whose sets Crr,k(A) for (real) parameters r, k > 0
are given as the union of all Λk-balls of radius r, i.e.,

Crr,k(A) =
⋃
a∈A

BΛk
(a, r).

The ball BΛk
(a, r) is empty if r < CoreAk (a), and it is the metric ball Bd(a, r) if r ≥ CoreAk (a)

(see Figure 2). In the case where M = Rn with the Euclidean metric d = dE , this means that
the intersections of such balls are either empty or contractible. In particular, the collection of balls
Br,k = {BΛk

(a, r)}a∈A forms a closed and convex cover of Crr,k(A).

Definition 3.4. Let A ⊆ (M,d) finite metric subspace. The core Čech bifiltration cC(A) =
{(cCr,k(A), A)}r,k>0 on A is the filtered simplicial complex, filtered over (0,∞) × (0,∞)op, where
cCr,k(A) = D(Λk)r = NBr,k.

Let us record the above discussion in a lemma, using the Nerve Lemma (Lemma 2.6).

Lemma 3.5. Let A ⊆ Rn be a finite Euclidean subspace. For each r, k > 0, the space Crr,k(A) ⊆ Rn

is homotopy equivalent to the geometric realization | cCr,k(A)| of the simplicial complex cCr,k(A).
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Figure 2: The core bifiltration with the union of Λk-balls shown in gray for different radii (increasing
from left to right) and values of k where A = {(0, 0), (0, 1), (2, 0)} ⊆ R2. The top, middle and bottom
rows correspond to k = 3, k = 2 and k = 1, respectively. The point cloud A and the boundaries of
the metric balls are shown for clarity.

Note that the functorial part of the Nerve Lemma 2.6 gives that these degreewise homotopy
equivalences induce isomorphisms between the persistent homology groups of Cr(A) and cC(A).

To connect the core bifiltration with the multicover bifiltration, we consider a second directed
version of the mutual reachability distance (3), namely the dissimilarity Γk : A×M → [0,∞] where

Γk(a, x) = max
{
CoreAk (x), d(a, x)

}
. (5)

This dissimilarity is slightly less well-behaved, compared to Λk, as the balls BΓk
(a, r) no longer have

to be contractible even in the Euclidean case (see Figure 3). However, it is of interest for the following
reason:

Lemma 3.6. Let A ⊆ (M,d) be a finite subset and let r, k > 0. The union of balls
⋃

a∈ABΓk
(a, r) is

exactly the set Covr,k(A) from the multicover bifiltration.

Proof. Observe that asking for x ∈ M to satisfy CoreAk (x) ≤ r is equivalent to the existence of at
least ⌈k⌉ points ai in A satisfying d(ai, x) ≤ r. Now, if x ∈ BΓk

(a, r) for some a ∈ A, we have that
CoreAk (x) ≤ r so it follows from our observation that x ∈ Covr,k(A). Conversely, if x ∈ Covr,k(A) then
again by the above observation we have that CoreAk (x) ≤ r, and d(a, x) ≤ r for at least one a ∈ A
since ⌈k⌉ ≥ 1.

Figure 3: The Γ2-ball BΓ2((0, 0), r) shown in gray as r increases from left to right, with A =
{(0, 0), (1,

√
3), (2.1, 0.1)}.

So far, we have introduced the core dissimilarities Λk from which we defined the core bifiltration
Cr(A) (by taking unions of closed balls), and the core Čech bifiltration cC(A) (by taking the Dowker
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nerves). They are degreewise homotopy equivalent in the Euclidean case (Lemma 3.5). We end
the section by presenting an interleaving between the multicover bifiltration Cov(A) and the core
bifiltration Cr(A).

Theorem 3.7. Let (M,d) be a metric space with a finite subspace A ⊆ M . The core bifiltration Cr(A)
and the multicover bifiltration Cov(A) are interleaved as follows:

i) Crr,k(A) ⊆ Cov2r,k(A) and ii) Covr,k(A) ⊆ Cr2r,k(A).

Proof. i) If x is a point in Covr,k(A), then by Lemma 3.6 it is in some Γk-ball BΓk
(a, r). In particular,

d(a, x) ≤ r and CoreAk (x) ≤ r. This means that there are at least ⌈k⌉ points a1, a2, . . . , a⌈k⌉ in A
whose distance to x is less than or equal to r. Now, d(ai, a) ≤ d(ai, x)+d(a, x) ≤ 2r, so the ⌈k⌉ points
a1, . . . , a⌈k⌉ have distance to a less than or equal to 2r. Thus, CoreAk (a) ≤ 2r, and the point x is in
BΛk

(a, 2r) ⊆ Cr2r,k(A).
ii) If x is a point in Crr,k(A), then there exists a in A with CoreAk (a) ≤ r and d(a, x) ≤ r. Again,

we can pick ⌈k⌉ points a1, . . . , a⌈k⌉ in A whose distance to a is less than or equal to r. For these points

we have d(ai, x) ≤ d(ai, a) + d(a, x) ≤ 2r, so the k-core distance CoreAk (x) is less than or equal to 2r
and x is in the ball BΓk

(a, 2r) which by Lemma 3.6 is a subset of Cov2r,k(A).

4 Alpha-Core Bifiltration

We now use the standard approach of intersecting with Voronoi cells, to get a smaller variation of the
core bifiltration.

Definition 4.1. Let A ⊆ Rn be a finite Euclidean subspace. The Voronoi cell VorA(a) of a ∈ A is
the set of all points that are at least as close to a as to any other point in A, namely,

VorA(a) = {x ∈ Rn | dE(a, x) ≤ dE(a
′, x) for all a′ ∈ A}.

Each Voronoi cell is closed and convex, so the collection Vor(A) = {VorA(a)}a∈A forms a closed
and convex cover of Rn. The nerve of Vor(A) is often called the Delaunay complex of A. We recall
that the balls BΛk

(a, r) (from (4)) covering the core bifiltration Crr,k(A) are either empty or closed
metric balls Bd(a, r). Euclidean balls are convex, so the closed Voronoi balls

Wr,k(a) := BΛk
(a, r) ∩VorA(a)

are either empty or convex, and thus they form a closed and convex cover of their union.

Definition 4.2. Let A ⊆ Rn be a finite Euclidean subspace. The alpha-core bifiltration αCr(A) of
A is the bifiltration given by the union of Voronoi balls:

αCrr,k(A) =
⋃
a∈A

Wr,k(a) =
⋃
a∈A

(BΛk
(a, r) ∩VorA(a)) .

The nerve of the cover Wr,k = {Wr,k(a)}a∈A is homotopy equivalent to αCrr,k(A) by the Nerve
Lemma 2.6, and it is contained in the Delaunay complex N(Vor(A)) whose size is O(|A|⌈n/2⌉) [10, 14].
Unlike the standard Alpha complex, which is homotopy equivalent to the Čech complex, the same
is not the case for the alpha-core and the core bifiltrations. However, we now show that they are
interleaved.

Lemma 4.3. Let A ⊆ Rn be a finite Euclidean subspace. The core bifiltration Cr(A) and the alpha-core
bifiltration αCr(A) are interleaved as follows:

αCrr,k(A) ⊆ Crr,k(A) ⊆ αCr3r,k(A).
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Proof. It follows directly from Wr,k(a) ⊆ BΛk
(a, r) that αCrr,k(A) ⊆ Crr,k(A). If x ∈ Crr,k(A), then

there exists a′ ∈ A such that CoreAk (a
′) ≤ r and d(a′, x) ≤ r. Let a ∈ A be such that x ∈ VorA(a).

Choose ⌈k⌉ points a1, . . . , a⌈k⌉ in A with d(a′, ai) ≤ r for i = 1, . . . , ⌈k⌉. Since d(a, x) ≤ d(a′, x) ≤ r,
the triangle inequality implies that

d(a, ai) ≤ d(a, x) + d(x, a′) + d(a′, ai) ≤ r + r + r = 3r,

and CoreAk (a) ≤ 3r (see Figure 4). In particular, the point x is in BΛk
(a, 3r) and thus also in W3r,k(a).

We get that Crr,k(A) ⊆ αCr3r,k(A).

a1 = a′

a2

a3 ax

VorA(a)

Figure 4: A diagram illustrating the proof of the second inclusion in Lemma 4.3 when A ⊆ R2 and
k = 3. Observe that the distance d(a, a3) can get arbitrarily close to 3r meaning that the multiplicative
interleaving factor of 3 is the best we can hope for.

Combining theorems 3.7 and 4.3 gives us an interleaving between the multicover and alpha-core
bifiltrations. However, by considering the alpha-version of the Γk-balls (Γk defined in (5)) we can
make this interleaving even stricter.

Lemma 4.4. Let A ⊆ Rn be a finite Euclidean subspace. The multicover bifiltration Cov(A) can be
written as a union of Γk-Voronoi balls, i.e.,

Covr,k(A) =
⋃
a∈A

(BΓk
(a, r) ∩VorA(a)) .

Proof. The Γk-Voronoi balls are contained in the Γk-balls, so their union is contained in Covr,k(A).
Conversely, if x ∈ Covr,k(A), then, by Lemma 3.6, CoreAk (x) ≤ r and d(a′, x) ≤ r for some a′ ∈ A.
Now, if x ∈ VorA(a), then d(a, x) ≤ d(a′, x) ≤ r and so x ∈ BΓk

(a, r) ∩VorA(a).

Theorem 4.5. Let A ⊆ Rn be a finite Euclidean subspace. The alpha-core bifiltration αCr(A) and
the multicover bifiltration Cov(A) are interleaved as follows:

i) αCrr,k(A) ⊆ Cov2r,k(A), ii) Covr,k(A) ⊆ αCr2r,k(A).

Proof. i) Using Theorem 3.7, we get the inclusion αCrr,k(A) ⊆ Crr,k(A) ⊆ Cov2r,k(A).
ii) Let x ∈ Covr,k(A) =

⋃
a∈A (BΓk

(a, r) ∩VorA(a)). This means that CoreAk (x) ≤ r, so we can
pick a1, . . . , a⌈k⌉ in A with d(ai, x) ≤ r for all i = 1, . . . , ⌈k⌉, and that there exists an a ∈ A such
that x ∈ VorA(a) and d(a, x) ≤ r. In particular, we have d(a, ai) ≤ d(a, x) + d(ai, x) ≤ 2r, and so
CoreAk (a) ≤ 2r. Since d(a, x) ≤ r ≤ 2r we get x ∈ BΛk

(a, 2r), and since x ∈ VorA(a) we get that x is
in αCr2r,k(A).

In this section, we have derived interleaving results for the alpha-core bifiltration, enabling us to
further derive alpha-core stability as a corollary of multicover stability in the subsequent section.
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5 Stability for Core Bifiltration

Blumberg and Lesnick [2] give a stability result for the multicover bifiltration with respect to the
Prohorov distance. In this section, we establish similar results for the core and alpha-core bifiltrations.
For a finite metric subset S ⊆ (M,d) and δ ≥ 0, we let Sδ denote the δ-thickening of S, namely the
set

Sδ = {x ∈ M | ∃s ∈ S such that d(s, x) ≤ δ} =
⋃
s∈S

Bd(s, δ).

Now, for finite metric subspaces A,B ⊆ M , the (counting) Prohorov distance between them is

dP (A,B) = sup
S⊆M closed

inf
{
δ ≥ 0

∣∣∣ |S ∩A| ≤ |Sδ ∩B|+ δ and |S ∩B| ≤ |Sδ ∩A|+ δ
}
.

By the triangle inequality, the δ-thickening of a metric ball of radius r is included in the metric
ball of radius r + δ, i.e., Bd(x, r)

δ ⊆ Bd(x, r + δ) for all x ∈ M .

Theorem 5.1 (Multicover Stability [2, Rmk 3.2 for Thm 1.6]). Let A,B ⊆ (M,d) be finite metric
subspaces and let δ > dP (A,B). For all r > 0 and all k > δ we have inclusions

Covr,k(A) ⊆ Covr+δ,k−δ(B) and Covr,k(B) ⊆ Covr+δ,k−δ(A).

Proof. We show the first inclusion, the second is symmetric. Let x ∈ Covr,k(A). This is true if and
only if k ≤ |Bd(x, r) ∩A|. Using our assumption and the fact that Bd(x, r)

δ ⊆ Bd(x, r + δ) we have

k ≤ |Bd(x, r) ∩A| ≤ |Bd(x, r)
δ ∩B|+ δ ≤ |Bd(x, r + δ) ∩B|+ δ.

In particular, we get that k − δ ≤ |Bd(x, r + δ) ∩B|, so x ∈ Covr+δ,k−δ(B).

Using a similar approach, we get stability for the core bifiltration:

Theorem 5.2 (Core Stability). Let A,B ⊆ (M,d) be finite metric subspaces and let δ > dP (A,B).
For all r > 0 and all k > δ we have inclusions

Crr,k(A) ⊆ Cr2r+2δ,k−δ(B) and Crr,k(B) ⊆ Cr2r+2δ,k−δ(A).

Proof. Let x ∈ Crr,k(A). This is true if and only if there exists an a ∈ A such that d(a, x) ≥ r and
k ≤ |Bd(a, r) ∩A|. If a ∈ A is such a point, then

k ≤ |Bd(a, r) ∩A| ≤ |Bd(a, r)
δ ∩B|+ δ ≤ |Bd(a, r + δ) ∩B|+ δ. (6)

In particular, we have 0 < k − δ ≤ |Bd(a, r + δ) ∩ B|, so let b be an element in the intersection
Bd(a, r+δ)∩B. By the triangle inequality, we have Bd(a, r+δ) ⊆ Bd(b, 2r+2δ) and d(b, x) ≤ d(b, a)+
d(a, x) ≤ 2(r+ δ). So, k− δ ≤ |Bd(b, 2r+2δ)∩B| and d(b, x) ≤ 2r+2δ. Thus x ∈ Cr2r+2δ,k−δ(B).

Combining Theorem 5.1 with Theorem 4.5, we get the following stability result for the alpha-core
bifiltration.

Corollary 5.3 (Alpha-Core Stability). Let A,B ⊆ Rn be finite Euclidean subspaces and let δ >
dP (A,B). For all r > 0 and k > δ, we have inclusions

αCrr,k(A) ⊆ αCr4r+2δ,k−δ(B) and αCrr,k(B) ⊆ αCr4r+2δ,k−δ(A).

Blumberg and Lesnick [2, Def. 2.13] also consider a normalized version of the multicover bifil-
tration. We can define normalized versions of all our filtrations by letting

CovNr,s(A) =Covr,s|A|(A),

CrNr,s(A) =Crr,s|A|(A), and

αCrNr,s(A) =αCrr,s|A|(A).
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In practice, we are often in a situation where |A| ̸= |B|. Then, it makes more sense to consider
the normalized versions listed above so that the second parameters in the corresponding bifiltrations
are comparable. The normalized Prohorov distance between finite metric subspaces A,B ⊆ M is
defined as

dNP (A,B) = sup
S⊆M closed

inf

{
δ ≥ 0

∣∣∣∣ |S ∩A|
|A|

≤ |Sδ ∩B|
|B|

+ δ and
|S ∩B|
|B|

≤ |Sδ ∩A|
|A|

+ δ

}
.

As with the unnormalized case, the stability for normalized multicover bifiltration in [2, Thm. 1.6]
also extends to a stability for the normalized core- and alpha-core bifiltrations.

Theorem 5.4 (Normalized Stability). Let A,B ⊆ Rn be finite Euclidean subspaces and let δ >
dNP (A,B). For all r > 0 and s > δ, we have inclusions

CovNr,s(A) ⊆ CovNr+δ,s−δ(B), CovNr,s(B) ⊆ CovNr+δ,s−δ(A);

CrNr,s(A) ⊆ CrN2r+2δ,s−δ(B), CrNr,s(B) ⊆ CrN2r+2δ,s−δ(A);

αCrNr,s(A) ⊆ αCrN4r+2δ,s−δ(B), αCrNr,s(B) ⊆ αCrN4r+2δ,s−δ(A).

6 Experiments

We have implemented code to compute the persistent homology of the core and alpha-core bifiltrations
along a line in parameter space. The implementation, available at https://github.com/odinhg/

core, includes code demonstrating its use, and code to reproduce the experiments reported in this
section. The implementation uses the GUDHI library [16, 12, 13], which allows for easy computation
of the corresponding persistent homology modules and the bottleneck distances between them.

We compute the persistent homology of the core and alpha-core bifiltration along the line k =
g(r) = −kmax

rmax
r+kmax where kmax and rmax are positive real numbers. Note that for non-integer values

of k, we round up to the nearest integer, i.e., we compute persistence along the piece-wise constant
function k = ⌈g(r)⌉. Of course, we can also compute the core and alpha-core bifiltrations for k fixed
(rmax = +∞).

In our experiments, we choose rmax to be the diameter of the input point cloud and set the
parameter kmax = max {1, ⌊smax|X|⌋ } with smax ∈ {0, 0.001, 0.01, 0.1} so that kmax scales with the
number of points in the input point cloud. Similarly, in the fixed-k case, we let k = max {1, ⌈s|X|⌉}.

We consider five point cloud datasets in our experiments: Torus 1, Torus 2, Sphere, Circle
and Circles. See Figure 5 for a visualization of four of these datasets. We construct our point
cloud datasets as follows: For an underlying manifold M ⊆ Rd (see Table 1 for an overview of the
manifolds used for the different datasets), we first uniformly sample a point cloud of size n from the
manifold M . We then perturb the points according to a normal distribution having mean µ = 0 and
standard deviation σ = 0.07 to obtain a perturbed sample Z. In the last step, we uniformly sample m
points Y from the smallest axis parallel hyperbox containing Z, and obtain our point cloud dataset
X = X(M,m,n, σ) = Z ∪ Y . We think of Z as a noisy signal and Y as backgroud noise. Figure 6
shows persistence diagrams for the alpha-core bifiltration for various values of kmax for the Torus 2
dataset.

Dataset name Manifold M

Torus 1 The 2-torus embedded in R3.
Torus 2 The Clifford torus S1 × S1 in R4.
Sphere The 2-sphere S2 ⊆ R3.
Circle The 1-sphere S1 ⊆ R2.
Circles The union of two circles with radii 0.5 and 1 in R2.

Table 1: The underlying manifolds used to generate the five datasets.

As a ground truth for a sample X = X(M,m,n, σ), we use the Čech persistent homology of a
uniform sample Xt = X(M, 0,m + n, 0) from M of size n + m without any perturbation or added
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noise. In practice, we compute the Čech persistence using alpha-core with k = 1. To compare the
alpha-core persistence of the noisy sample against the ground truth Čech persistence, we compute
the bottleneck distance between their corresponding persistence diagrams. The computed bottleneck
distances for k = g(r) and k fixed are listed in Table 2 and Table 3 in Appendix A, respectively. In
addition, we report runtimes for computing alpha-core persistence on the Torus 1 dataset in Table 4
for different choices of k and point cloud sizes.

Based on our experiments, we see that choosing s > 0, corresponding to k > 1, in most cases gives
persistence diagrams closer to the ground truth in terms of the bottleneck distance than for k = 1.
Moreover, in most cases, the persistence along a sloped line yields slightly smaller bottleneck distance
than persistence along lines with constant s. However, the difference between the bottleneck distances
in these two cases is small in all of our experiments. We also note that the optimal choice of s depends
both on the on the homological dimension and on the shape of the point clouds.

(a) Torus 1 (b) Sphere (c) Circle (d) Circles

Figure 5: Four of the point cloud datasets used in our experiments with σ = 0.07 (perturbation
strength), n = 20000 (signal) and m = 10000 (noise).
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(a) kmax = 1 (b) kmax = 10

(c) kmax = 100 (d) kmax = 1000

Figure 6: Persistence diagrams for the alpha-core bifiltration of the Torus 2 (Clifford torus) dataset
with rmax = diam(X) ≈ 4.10. In this example, we have a 1 : 1 signal-to-noise ratio with n =
m = 10000, and observe that increasing kmax strengthens the separation between noise and those
persistence pairs we expect to see for a torus. The different colours correspond to the different
homological dimensions.
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7 Conclusions

We have introduced the core and alpha-core bifiltrations and shown how they relate to the multicover
bifiltration via interleavings. In addition, we have shown how the stability results for the multicover
bifiltration directly extends to stability for the core and alpha-core bifiltrations. For the core bifiltra-
tion, we have established a stability result stronger than the transferred multicover stability by giving
a direct proof. We have also presented experimental results showing how alpha-core persistence can
be useful for analyzing relatively large point clouds in cases where robustness to noise is desired.

In future work, it would be interesting to see if these stability results can be strengthened further.
It would also be interesting to consider stability with respect to metrics besides the Prohorov distance,
and conditions on the point cloud giving stability for a fixed density parameter k.

In the applied direction, we believe it would be worthwhile to look into how we can best choose
the line to compute persistence along, and also explore how alpha-core persistence can be applied to
real-world datasets.
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A Supporting Tables for Experimental Results

n,m 10000,10000 10000,1000 10000,100

smax 0 0.001 0.01 0.1 0 0.001 0.01 0.1 0 0.001 0.01 0.1
Torus 1
Dim 0 0.109 0.161 0.614 1.475 0.187 0.114 0.518 1.381 0.273 0.118 0.509 1.420
Dim 1 0.977 0.977 0.977 0.977 0.968 0.968 0.554 0.968 0.967 0.662 0.546 0.967
Dim 2 0.425 0.425 0.425 0.425 0.270 0.183 0.388 0.388 0.136 0.125 0.390 0.391
Torus 2
Dim 0 0.086 0.131 0.404 0.958 0.147 0.089 0.324 0.973 0.178 0.092 0.308 0.986
Dim 1 0.487 0.487 0.414 0.487 0.482 0.482 0.338 0.482 0.478 0.405 0.387 0.482
Dim 2 0.445 0.445 0.372 0.445 0.441 0.411 0.303 0.441 0.330 0.227 0.291 0.439
Dim 3 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.154 0.207 0.207 0.207 0.207
Sphere
Dim 0 0.042 0.073 0.227 0.635 0.091 0.055 0.190 0.589 0.146 0.049 0.177 0.590
Dim 1 0.029 0.016 0.016 0.016 0.044 0.020 0.020 0.020 0.020 0.022 0.022 0.022
Dim 2 0.475 0.475 0.475 0.475 0.470 0.470 0.302 0.470 0.465 0.423 0.278 0.465
Circle
Dim 0 0.012 0.014 0.074 0.371 0.034 0.020 0.053 0.312 0.106 0.010 0.052 0.301
Dim 1 0.499 0.499 0.499 0.393 0.499 0.499 0.499 0.357 0.499 0.499 0.263 0.338
Circles
Dim 0 0.125 0.125 0.092 0.377 0.125 0.114 0.088 0.356 0.064 0.125 0.098 0.356
Dim 1 0.249 0.249 0.249 0.249 0.248 0.248 0.159 0.248 0.248 0.248 0.219 0.248

Table 2: Bottleneck distances between the ground truth persistence diagrams and the alpha-core
persistence diagrams along the line g(r) determined by smax, n + m and the diameter of the input
point cloud.

n,m 10000,10000 10000,1000 10000,100

s 0 0.001 0.01 0.1 0 0.001 0.01 0.1 0 0.001 0.01 0.1
Torus 1
Dim 0 0.109 0.161 0.603 1.392 0.187 0.114 0.505 1.302 0.273 0.118 0.501 1.355
Dim 1 0.977 0.977 0.977 0.977 0.968 0.968 0.545 0.968 0.967 0.684 0.549 0.967
Dim 2 0.425 0.425 0.425 0.425 0.270 0.183 0.387 0.388 0.136 0.125 0.391 0.391
Torus 2
Dim 0 0.086 0.131 0.388 0.901 0.147 0.089 0.315 0.895 0.178 0.092 0.300 0.879
Dim 1 0.487 0.487 0.421 0.487 0.482 0.482 0.343 0.482 0.478 0.409 0.387 0.482
Dim 2 0.445 0.445 0.390 0.445 0.441 0.420 0.288 0.441 0.330 0.227 0.277 0.439
Dim 3 0.207 0.207 0.207 0.207 0.207 0.207 0.207 0.178 0.207 0.207 0.207 0.207
Sphere
Dim 0 0.042 0.073 0.220 0.595 0.091 0.055 0.186 0.548 0.146 0.049 0.175 0.544
Dim 1 0.029 0.016 0.016 0.016 0.044 0.020 0.020 0.020 0.020 0.022 0.022 0.022
Dim 2 0.475 0.475 0.475 0.475 0.470 0.470 0.340 0.470 0.465 0.423 0.283 0.465
Circle
Dim 0 0.012 0.014 0.073 0.342 0.034 0.020 0.053 0.288 0.106 0.010 0.051 0.275
Dim 1 0.499 0.499 0.499 0.432 0.499 0.499 0.499 0.328 0.499 0.499 0.270 0.308
Circles
Dim 0 0.125 0.125 0.096 0.357 0.125 0.114 0.092 0.340 0.064 0.125 0.099 0.341
Dim 1 0.249 0.249 0.249 0.249 0.248 0.248 0.162 0.248 0.248 0.248 0.223 0.248

Table 3: Bottleneck distances between the ground truth persistence diagrams and the alpha-core
persistence diagrams for a fixed s (and k).
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Fixed k

n+m 10 100 1000 10000

10000 1.11 1.14 1.72 7.86
20000 2.32 2.42 3.59 16.90
30000 3.57 3.75 5.58 26.71
40000 4.85 5.08 7.50 35.15
50000 6.17 6.53 9.76 47.29
60000 7.51 7.91 11.70 56.64

Table 4: Runtimes (in seconds) for computing alpha-core persistence on the Torus 1 dataset with
n = m = |X|/2 and σ = 0.07. The computations were conducted on an Intel Core i5-6300U (at 2.40
GHz) CPU with 16 GB RAM. The minimum runtime out of 10 runs is reported in the table.
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