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ABSTRACT

This study highlights the importance of conducting com-
prehensive model inspection as part of comparative perfor-
mance analyses. Here, we investigate the effect of modelling
choices on the feature learning characteristics of graph neural
networks applied to a brain shape classification task. Specif-
ically, we analyse the effect of using parameter-efficient,
shared graph convolutional submodels compared to structure-
specific, non-shared submodels. Further, we assess the ef-
fect of mesh registration as part of the data harmonisation
pipeline. We find substantial differences in the feature embed-
dings at different layers of the models. Our results highlight
that test accuracy alone is insufficient to identify important
model characteristics such as encoded biases related to data
source or potentially non-discriminative features learned in
submodels. Our model inspection framework offers a valu-
able tool for practitioners to better understand performance
characteristics of deep learning models in medical imaging.

Index Terms— Shape classification, graph neural net-
works, brain structures, 3D meshes, model inspection

1. INTRODUCTION

Understanding biological sex-based differences in brain
anatomy provides valuable insights into both neurodevelop-
mental processes and cognitive functioning. Recent strides in
the field of geometric deep learning [1], particularly the ad-
vent of Graph Neural Networks (GNNs), have revolutionised
the analysis of complex, non-Euclidean data [2] to make pre-
dictions at a node, edge, or graph-level. This allows us to
treat brain shapes as graphs, leveraging the power of GNNs to
learn from complex structural anatomical data [3]. Discrimi-
native feature embeddings can be withdrawn from these mod-
els, representing brain shapes as a continuous vector of nu-
merical features that capture valuable structural and geomet-
rical information for downstream prediction tasks [4]. Tech-
niques like Principal Component Analysis (PCA) can be used
to reduce the dimensionality of graph embeddings for visuali-
sation, aiding the exploration of subgroup biases in the feature

space beyond the target label. This analysis may help practi-
tioners ensure the reliability of their predictions, and is partic-
ularly important in applications where GNNs feature embed-
dings may be leveraged for new tasks, such as fine-tuning,
domain transfer, or multi-modal approaches.

In this study, we dissect GNN models trained under differ-
ent settings for the task of sex classification using 3D meshes
of segmented brain structures. We inspect the learned fea-
ture embeddings at different layers within a multi-graph neu-
ral network architecture. Through this granular analysis, we
reveal critical insights into the inner workings of our models,
identifying important effects of different modelling choices.
This research demonstrates the utility of conducting a model
inspection framework as part of model development, high-
lighting insights that may guide practitioners in the selection
of models with desired characteristics, avoiding biases, over-
fitting and better understanding the driving forces behind pre-
dictions.

2. METHODS

2.1. Imaging datasets

We used four neuroimaging datasets, including data from
the UK Biobank imaging study (UKBB) 1 [5], the Cambridge
Centre for Ageing and Neuroscience study (CamCAN) [6, 7],
the IXI dataset2, and OASIS3 [8]. Both UKBB and CamCAN
brain MRI data were acquired with Siemens 3T scanners. The
IXI dataset encompassed data collected from three clinical
sites, each employing different scanning systems. CamCAN
and IXI are acquired from healthy volunteers, while UKBB is
an observational population study. The OASIS3 dataset con-
sists of 716 subjects with normal cognitive function and 318
patients exhibiting varying stages of cognitive decline. For
all four datasets, subjects with missing biological sex or age
information were excluded. Data from UKBB was split into
three sets, with 9,900 scans used for training, 1,099 for val-
idation, and 2,750 for testing. CamCAN, IXI and OASIS3

1Accessed under application 12579.
2https://brain-development.org/ixi-dataset/
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were used as external test sets, with sample sizes of 652, 563,
and 1,034, respectively.

The UKBB data is provided with a comprehensive pre-
processing already applied, using FSL FIRST [9] to au-
tomatically segment 15 subcortical brain structures from
T1-weighted brain MRI, including the brain stem, left/right
thalamus, caudate, putamen, pallidum, hippocampus, amyg-
dala, and accumbens-area. We apply our own pre-processing
pipeline to the CamCAN, IXI, and OASIS3 datasets, closely
resembling the UKBB pre-processing. Our pipeline includes
skull stripping using ROBEX 3 [10], bias field correction
using N4ITK [11], and brain segmentation via FSL FIRST.

2.2. Graph representation

The anatomical brain structures are represented by meshes
as an undirected graph composed of nodes, connected by
edges forming triangular faces. The number of nodes for
most structures is 642 and up to 1,068, whereas the number
of edges per structure ranges between 3,840 and 6,396. The
meshes are automatically generated by the FSL FIRST tool.

2.2.1. Node features

Each graph node can carry additional information, en-
coded as feature vectors. This can include spatial coordinates
or more complex geometric descriptors. While computer vi-
sion has transitioned from hand-crafted features to end-to-end
deep learning, we have previously demonstrated the value of
using geometric feature descriptors in GNN-based shape clas-
sification [12]. We employ Fast Point Feature Histograms
(FPFH) [13], a pose invariant feature descriptor shown to sub-
stantially boost classification performance. To compute FPFH
features on a mesh, a point feature histogram is first gener-
ated, involving the selection of neighboring points within a
defined radius around each query point. The Darboux frame
is subsequently defined, and angular variations are computed.
This process involves several steps, including the estimation
of normals and the calculation of angular variations, resulting
in a vector of 33 features at each node.

2.2.2. Mesh registration

Mesh registration is an optional pre-processing step, with
the goal to remove spatial variability across subjects and
datasets. Here, we investigate the use of rigid registration
aligning all meshes for a specific brain structure to a standard-
ised orientation using the closed-form Umeyama approach
[14]. This method employs a singular value decomposition-
based optimisation to obtain an optimal rigid transformation
between two given meshes. For each of the 15 brain struc-
tures, we select a reference mesh from a random subject
from the UKBB dataset, and align the meshes from all other

3https://www.nitrc.org/projects/robex

Fig. 1: Model architecture consisting of a graph convolu-
tional network (GCN) submodel feeding graph embeddings
into a classification head with two fully connected layers
(FC1 and FC2). Where N is the number of brain substruc-
tures, 15. For our model inspection, we read out the feature
vectors from the GCN submodel, FC1, and FC2.

subjects to this reference. As a result, shape variability
due to orientation and position differences is minimised and
the remaining variability is expected to primarily represent
anatomical differences across subjects.

2.3. Multi-graph neural network architecture

Our general GNN architecture is comprised of two main
components; the GCN submodel which aims to learn graph
embeddings over 3D meshes using multiple graph convolu-
tional layers [12] and an MLP classification head that takes
the graph embeddings as inputs and performs the final classi-
fication using two fully connected layers (cf. Fig. 1).

The input to our models are 15 subgraphs representing
15 brain structures, extracted from T1-weighted brain scans.
We consider two approaches for learning graph embeddings
with GCN submodels. The first approach, referred to as
shared submodel, uses a single GCN submodel that learns
from all 15 subgraphs. Here, the weights of the graph con-
volutional layers are shared across brain structures. The
shared submodel approach is parameter-efficient and aims
to learn generic shape features. For the second approach,
referred to as non-shared submodel, each subgraph is fed
into a structure-specific GCN submodel. The non-shared
submodel approach has more parameters and may capture
structure-specific shape features. In both approaches, the ar-
chitecture of the GCN submodel is identical and consists of
three graph convolutional layers [15] with Rectified Linear
Unit (ReLU) activations. A global average pooling layer is
used as a readout layer, aggregating node representations into
a single graph-level feature embedding. The embeddings
from individual structures are stacked to form a subject-level
feature embedding which is passed to the classification head.

2.4. Model inspection

Our model inspection approach is focused on evaluating
the separability of the target label (biological sex, Male and
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Female) and data source classes (UKBB, CamCAN, IXI or
OASIS3) through feature inspection. Each test set sample is
passed through the complete pipeline and its feature embed-
dings are saved at three different stages: at the output layer of
the GCN submodel and at the first (FC1) and second (FC2)
fully connected layers of the classification head. The dimen-
sions of these embeddings are, respectively, 480 (15 substruc-
tures times the hidden layer size, 32), 32 and 2. To allow for
visual inspection, the feature embeddings from the GCN and
FC1 layers are inputted to a PCA model to reduce their di-
mensionality. The PCA modes capture the directions of the
largest variation in the high-dimensional feature space, allow-
ing us to visualise feature separation in 2D scatter plots. We
randomly sample 500 subjects from each dataset for the visu-
alisations. Given that all the models were trained to classify
biological sex, a clear separation should be expected between
the Male and Female classes in the first PCA modes.

3. EXPERIMENTS & RESULTS

For a thorough evaluation, we trained and tested the four
models - shared and non-shared GCN submodels, and with
and without mesh rigid registration - on identical data splits.
All code was developed using PyTorch Geometric and Py-
Torch Lightning for model implementation and data handling.
We used the Adam optimiser [16] with a learning rate of
0.001, and employed the standard cross entropy loss for clas-
sification. Random node translation was used as a data aug-
mentation strategy with a maximum offset of 0.1mm [17].
This was shown to improve performance in our previous study
[12]. Model selection was done based on the loss of the vali-
dation set. Our code is made publicly available4.

3.1. Classification performance

Figure 2 summarises the classification performance of the
four models, showing the ROC curves together with the area
under the curve (AUC) metric, reported separately for each of
the four test datasets. There are two main observations: (i)
There are very little differences in the absolute performance
across the four models. Comparing the shared vs non-shared
submodel, the AUC performance is comparable. When com-
paring models with and without mesh registration, we find
the generalisation gap decreases between in-distribution test
(UKBB) and the external test data (CamCAN, IXI, OASIS3).
However, we also observe a small drop in performance on the
in-distribution test data when using mesh registration, com-
pared to not using registration. A practitioner using inter-
nal test results for final model selection may opt for using
a shared submodel, due to its parameter efficiency, without
mesh registration, due to convenience. As we will see next,
this choice may be suboptimal as test accuracy alone is insuf-
ficient to identify important model characteristics.

4https://github.com/biomedia-mira/medmesh

3.2. Effect of using structure-specific submodels

For the models that use a shared submodel, we observe
that the GCN feature embeddings are non-discriminative with
respect to the target label. Separation seems completely miss-
ing in the shared model without registration (see Fig. 3a),
with only weak separation in the shared model with registra-
tion (see Fig. 3c). For these models, the classification heads
will primarily contribute to the model performance. For the
models with a non-shared submodel, we find a much better
separability for the GCN features with and without mesh reg-
istration (cf. Figs. 3b, d). Here, the GCN features will mean-
ingfully contribute to the models’ classification performance.

3.3. Effect of mesh registration

When studying the effect of mesh registration, we can
clearly observe that without registration, the GCN feature
embeddings from the submodel strongly encode data source,
showing separate clusters for UKBB and external test data
(cf. Figs. 3a,b). When introducing mesh registration as a
pre-processing step, we note a significant improvement, with
an almost entirely removed separation of datasets in the GCN
layer independent of whether a shared and non-shared sub-
model is used (Figs. 3c, d). The separability of the target
label in the GCN layer is well defined for the non-shared
submodel (Fig. 3d), while remaining weak for the shared
submodel (Fig. 3c). Rigid registration as a pre-processing
step seems to not only improve the learning efficiency of the
GCN submodel, but also its ability to generalise across data
distributions.

4. CONCLUSION

Our findings underscore the limitations of relying solely
on test accuracy for model selection, particularly when focus-
ing on in-distribution test accuracy. We demonstrate that this
may lead practitioners to select models with undesired char-
acteristics where GCN features are non-discriminative for the
prediction task and/or strongly encode biases such as data
source. Using a comprehensive model inspection, we were
able to identify variations in the model characteristics and
better understand what drives the final prediction (GCN sub-
model vs classification head). The importance of this be-
comes evident when considering applications such as fine-
tuning, domain transfer, or multi-modal approaches, where
GCN feature embeddings may be leveraged for new tasks.

Our model inspection framework can be easily applied to
other models, tasks, and purposes. It was previously used
to detect biases in chest radiography disease detection mod-
els [18]. Here, we strongly advocate for the wider use of
model inspection as an integral part of comparative perfor-
mance analyses. We hope that our work can contribute to im-
proving the reliability of model selection in all areas of deep
learning for biomedical image analysis.

https://github.com/biomedia-mira/medmesh


(a) (b) (c) (d)

Fig. 2: Sex classification performance for four models; (a) shared and (b) non-shared submodel without mesh registration, (c)
shared and (d) non-shared submodel with mesh registration. We observe that the generalisation gap between the in-distribution
test data (UKBB) and the external test data (CamCAN, IXI, OASIS3) closes with mesh registration. Overall, there are only small
differences in performance, illustrating that test accuracy alone is insufficient to identify variations in model characteristics.

(a) Shared submodel, without mesh registration (b) Non-shared submodel, without mesh registration

(c) Shared submodel, with mesh registration (d) Non-shared submodel, with mesh registration

Fig. 3: Effect of modelling choices on feature separability for four different models at their the GCN layer (left), first fully
connected layer FC1 (middle), and output layer FC2 (right). Models: (a,c) shared and (b,d) non-shared GCN submodel, and
(a,b) without and (c,d) with mesh registration. For each model, we show the separation by target label in the top row, and the
separation by dataset in the bottom row. Effect of submodel: The models in (a,c) with a shared submodel are unable to learn
discriminative GCN features for the prediction task, while the models in (b,d) with a non-shared submodel show much better
task-related separability in the GCN features. Effect of registration: The models models in (a,b) without registration strongly
encode information about the data source in the GCN layer. This is much reduced for the models in (c,d) with mesh registration.
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