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MERGING THE N-HYPERIDEALS AND J-HYPERIDEALS IN

ONE FRAME

M. ANBARLOEI

Abstract. The notions ofN-hyperideals and J-hyperideals as two new classes
of hyperideals were recently defined in the context of Krasner (m,n)-hyperrings.
These concepts are created on the basis of the intersection of all n-ary prime hy-
perideals and the intersection of all maximal hyperideals, respectively. Despite
being vastly different in many aspects, they share numerous similar properties.
The aim of this research work is to merge them under one frame called n-ary
δ(0)-hyperideals where the function δ assigns to each hyperideal of a Krasner
(m, n)-hyperring a hyperideal of the same hyperring. We give various proper-
ties of n-ary δ(0)-hyperideals and use them to characterize certain classes of
hyperrings such as hyperintegral domains and local hyperrings. Moreover, we
introduce the notions of (s, n)-absorbing δ(0)-hypereideals and weakly (s, n)-
absorbing δ(0)-hypereideals.

1. Introduction

Although two of the most important structures in commutative algebra, namely
prime and primary ideals, differ significantly in various aspects, they share several
similar properties. The question was whether a unified approach to studying these
two structures is possible. In [14], Dongsheng presented the concept of δ-primary
ideals unifing the prime and primary ideals under one frame in a commutative ring.
Furthermore, Fahid and Dongsheng put two concepts of 2-absorbing ideals and
2-absorbing primary ideals in one frame called 2-absorbing δ-primary ideals in [15].

Hyperstructures are algebraic structures that have at least one multi-valued op-
eration, known as a hyperoperation. The idea of the algebraic hyperstructures goes
back to Marty,s research work on hypergroups presented during the 8th Congress of
the Scandinavian Mathematicians in 1934. Since then, numerous papers and books
concerning this topic have been written. They can be seen in [8, 9, 10, 25, 27, 29]. n-
ary hypergroups as an extension of the notion of a hypergroup in the sense of Marty
were defined in [11]. For more study on n-ary structures refer to [17, 18, 19]. The
notion of (m,n)-hyperrings was presented by Mirvakili and Davvaz in [23]. Krasner
(m,n)-hyperrings as a subclass of (m,n)-hyperrings were given in [22]. Some review
of the hyperrings can be found in [7, 20, 22, 24, 26]. Ameri and Norouzi defined n-
ary prime and n-ary primary hyperideals in Krasner (m,n)-hyperring in [1] and Hila
et al. generalized these concepts and studied (k, n)-absorbing and (k, n)-absorbing
primary hyperideals in [16]. Also, Davvaz et al. defined weakly (k, n)-absorbing
and weakly (k, n)-absorbing primary hyperideals in [13]. As a recent study, the
concept of N -hyperideals was introduced in [5] and some properties of them have
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been investigated analogous with prime hyperideals. Let G be a commutative Kras-
ner (m,n)-hyperring. A hyperideal A of G is called an n-ary N -hyperideal if g(xn1 )
is in A for xn1 ∈ G such that xi is not in the intersection of the all n-ary prime
hyperideals of G for some i ∈ {1, · · · , n}, then g(xi−1

1 , 1G, x
n
i+1) is in A. The notion

of J-hyperideals as an extension of N -hyperideals was defined in [3]. A hyperideal
A of G refers to an n-ary J-hyperideal if g(xn1 ) ∈ A for xn1 ∈ G such that xi is
not in the intersection of the all maximal hyperideals of G for some i ∈ {1, · · · , n},
then g(xi−1

1 , 1G, x
n
i+1) ∈ A. The two structures have been treated differently and

their properties were independently proven in the mentioned references. Despite
their differences in many aspects, they share several similar properties. It is there-
fore essential to explore the possibility of a unified approach to studying these two
structures.

In this paper, we aim to introduce the notion of δ(0)-hyperideals unifying the
N -hyperideals and J-hyperideals under one frame. This method effectively demon-
strates the similarities and relationships between the two structures. The paper
is orgnized as follows. In Section 2, we recall the necessary background, and we
fix notation. In Section 3, we define n-ary δ(0)-hyperideals as a frame containing
the concepts of N -hyperideals and J-hyperideals. However, Example 3.3 shows
that an n-ary δ(0)-hyperideal may not be an n-ary N -hypeideal. We give equiv-
alent characterizations for an n-ary δ(0)-hyperideals in Theorem 3.4. It is shown
that an n-ary δ(0)-hyperideal of a Krasner (m,n)-hyperring is contained in δ(0)
in Theorem 3.10. We conclude that if G admits an n-ary δ(0)-hyperideal, then
there exists an n-ary δ(0)-hyperideal of G such that there is no δ(0)-hyperideal
containing it in Theorem 3.21. Moreover, we examine n-ary δ(0)-hyperideals under
various contexts of constructions such as cartesian products, homomorphic images,
localizations. The penultimate section is dedicated to the notion of (s, n)-absorbing
δ(0)-hyperideals. Some properties concerning it are investigated. The final section
deals with issues surrounding the notion of weakly (s, n)-absorbing δ(0)-hyperideals
as an extension of the (s, n)-absorbing δ(0)-hyperideals. We finish this section with
a copy of Nakayama,s lemma for a kind of weakly (s, n)-absorbing δ(0)-hypereideals.
In this paper, all the hyperrings used are commutative Krasner (m,n)-hyperrings
with scalar identity.

2. Preliminaries

In this section, we give definitions and notations that will be used in this paper.
An n-ary hyperoperation “f” on nonempty set G is a mapping of Gn into the

family of all non-empty subsets of G. If “f” is an n-ary hyperoperation on G, then
(G, f) is called an n-ary hypergroupoid. We can extend the n-ary hyperoperation
on G to non-empty subsets of G as follows. For G1, · · · , Gn ⊆ G, then

f(Gn
1 ) = f(G1, ..., Gn) =

⋃
{f(a1, · · · , an) | ai ∈ Gi, i = 1, ..., n}.

Let us use the notation aji instead of the sequence ai, ai+1, ..., aj . Then we have

f(a1, · · · , ai, bi+1, · · · , bj , cj+1, · · · , cn) = f(ai1, b
j
i+1, c

n
j+1) and f(a1, · · · , ai, b, · · · , b︸ ︷︷ ︸

j−i

,

cj+1, · · · , cn) = f(ai1, b
(j−i), cnj+1) The above notation is the empty symbol where

j < i. Let f be an n-ary hyperoperation. Then r-ary hyperoperation f(l) for
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r = l(n−1)+1 is given by f(l)(a
r
1) = f(f(..., f(f︸ ︷︷ ︸

l

(an1 ), a
2n−1
n+1 ), ...), arr−n+1). An n-ary

hypergroupoid (G, f) is commutative if f(an1 ) = f(a
σ(n)
σ(1) ) for all a

n
1 ∈ G and σ ∈ Sn.

An n-ary semihypergroup is an n-ary hypergroupoid (G, f), which is associative,

that is f(ai−1
1 , f(an+i−1

i ), a2n−1
n+i ) = f(aj−1

1 , f(an+j−1
j ), a2n−1

n+j ) for 1 ≤ i < j ≤ n and

a2n−1
1 ∈ G. If the equation a ∈ f(ai−1

1 , xi, a
n
i+1) in an n-ary hypergroupoid (G, f)

has a solution xi ∈ G for all ai−1
1 , ani+1, a ∈ G and i ∈ {1, · · · , n}, then (G, f) is

called an n-ary quasihypergroup. An n-ary hypergroup is an n-ary semihypergroup
that is an n-ary quasihypergroup. A non-empty subset H of an n-ary hypergroup
G is called an n-ary subhypergroup of G if (H, f) is an n-ary hypergroup [22].

Definition 2.1. [22] An algebraic hyperstructure (G, f, g), or simply G, is said to
be a Krasner (m,n)-hyperring if it satisfies the following axioms:

(1) (G, f) is a canonical m-ary hypergroup, that is
(i) there exists a unique e ∈ G, such that for each a ∈ G, f(a, e(m−1)) =

{a};
(ii) for all a ∈ G there exists a unique a−1 ∈ G with e ∈ f(a, a−1, e(m−2));
(iii) if a ∈ f(am1 ), then ai ∈ f(a, a−1, ..., a−1

i−1, x
−1
i+1, ..., a

−1
m ) for all i ∈

{1, · · · ,m}.
(2) (G, g) is a n-ary semigroup;
(3) g(ai−1

1 , f(bm1 ), ani+1) = f(g(ai−1
1 , b1, a

n
i+1), ..., g(a

i−1
1 , bm, a

n
i+1)) for every

ai−1
1 , ani+1, b

m
1 ∈ G, and i ∈ {1, · · · , n};

(4) g(0, an2 ) = g(a2, 0, a
n
3 ) = ... = g(an2 , 0) = 0 for all an2 ∈ G.

We assume throughout this paper that G is a commutative Krasner (m,n)-

hyperring with scalar identity 1G, that is g(a, 1
(n−2)
G ) = a for all a ∈ G.

If (R, f, g) is a Krasner (m,n)-hyperring such that ∅ 6= R ⊆ G, then R is
called a subhyperring of G. If ∅ 6= A ⊆ G such that (A, f) is an m-ary sub-
hypergroup of (G, f) and g(ai−1

1 , A, ani+1) ⊆ I for an1 ∈ R, i ∈ {1, · · · , n}, then
A is said to be a hyperideal of G. Let A be a hyperideal of G. Then the set
G/A = {f(ai−1

1 , A, ani+1) | ai−1
1 , ani+1 ∈ G} is a Krasner (m,n)-hyperring with m-

ary hyperoperation and n-hyperoperation f and g, respectively [1].

Definition 2.2. [1] Let a ∈ G. Then 〈a〉 denotes the hyperideal generated by a

and defined by 〈a〉 = g(G, a, 1(n−2)) = {g(r, a, 1
(n−2)
G ) | r ∈ G}.

Definition 2.3. [1] A hyperideal A of G refers to a maximal hyperideal if A ⊆
B ⊆ G for every hyperideal B of G implies that B = A or B = G.

Max(G) denotes the set of all maximal hyperideal of G. Jacobson radical of G,
being denoted by J(G), is the intersection of all maximal hyperideals of G. If G
does not have any maximal hyperideal, then we define J(G) = G. Moreover, if G
has just one maximal hyperideal, then G is called local.

Definition 2.4. [1] Let a ∈ G. The element is invertible if there exists b ∈ G with

1G = g(a, b, 1
(n−2)
G ).

Definition 2.5. [22] Let (G1, f1, g1) and (G2, f2, g2) be two Krasner (m,n)-hyperrings.
A mapping ψ : G1 −→ G2 is called a homomorphism if for all xm1 ∈ G1 and y

n
1 ∈ G1

we have
(i) ψ(f1(x1, ..., xm)) = f2(ψ(x1), ..., ψ(xm)),



4 M. ANBARLOEI

(ii) ψ(g1(y1, ..., yn)) = g2(ψ(y1), ..., ψ(yn)),
(iii) ψ(1G1) = 1G2 .

Definition 2.6. [6] Assume thatM 6= ∅. Then (M,h, k) is an (m,n)-hypermodule
over G, if

(i) (M,h) is a canonical m-ary hypergroup.
(ii) The map

k : G× ...×G︸ ︷︷ ︸
n−1

×M −→ P ∗(M)

statisfied the following conditions:
(1) k(an−1

1 , h(xm1 )) = h(k(an−1
1 , x1), ..., k(a

n−1
1 , xm))

(2) k(ai−1
1 , f(bm1 ), an−1

i+1 , x) = h(k(ai−1
1 , b1, r

n−1
i+1 , x), ..., k(r

i−1
1 bm, r

n−1
i+1 , x))

(3) k(ai−1
1 , g(ai+n−1

i ), an+m−2
i+m , x) = k(an−1

1 , k(an+m−2
m , x))

(4) 0 = k(ri−1
1 , 0, rn−1

i+1 , x).

3. n-ary δ(0)-hyperideals

A hyperideal expansion δ of G is a fuction which assigns to each hyperideal A of
G a hyperideal δ(A) of G such that A ⊆ δ(A), and B ⊆ C for hyperideals B,C of G
implies δ(B) ⊆ δ(C). For example, the functions δ0, δ1, δG and δM from the set of all
hyperideals of G to the same set, defined by δ0(A) = A, δ1(A) = rad(A), δG(A) = G
and δM (A) = ∩A⊆B∈Max(G)B, are hyperideal expansions of G. In [2], the n-ary
prime and n-ary primary hyperideals were put in a frame called n-ary δ-primary
hyperideals. In this section, we introduce and study the notion of n-ary δ(0)-
hyperideals in a commutative Krasner (m,n)-hyperring G which unify the n-ary
N -hyperideals and n-ary J-hyperideals.

Definition 3.1. Let A be a proper hyperideal of G and δ a hyperideal expansion
of G. A refers to an n-ary δ(0)-hyperideal if whenever xn1 ∈ G with g(xn1 ) ∈ A and
g(xi−1

1 , 1G, x
n
i+1) /∈ δ(0) for some i ∈ {1, · · · , n}, then xi ∈ A.

Example 3.2. Consider the hyperring ([α,∞) ∪ {0},+, ·) where α ≥ 1, “ · ” is the
usual multiplication and “ + ” is defined by

a+ b =





[a,∞) ∪ {0} if a = b 6= 0.

b+ a = {a} if b = 0,

{min{a, b}} if a 6= 0, b 6= 0 and a 6= b.

Note that ([α,∞) ∪ {0},+, ·) is a Krasner (m,n)-hyperring with f(am1 ) = Σm
i=1ai

and g(bn1 ) = Πn
i=1bi for all am1 , b

n
1 ∈ [α,∞) ∪ {0}. The hyperideal 0 is an n-ary

δ1(0)-hyperideal of [α,∞) ∪ {0}.

The next example shows that n-ary δ(0)-hyperideals and n-ary N -hyperideals
are different notions.

Example 3.3. Note that (Z/6Z, f, g) is a commutative Krasner (m,n)-hyperring
in which f and g are usual addition and multiplication, respectively. Consider

δ(I) = {x ∈ Z/6Z | g(x, 3Z/6Z, 1(n−2)
Z/6Z ) ⊆ I}. Let A = 2Z/6Z for every hyperideal

I of G. Then A is an n-ary δ(0Z/6Z)-hyperideal. However, A is not an n-ary
N -hyperideal.

Our first theorem gives a characterization of δ(0)-hyperideals.
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Theorem 3.4. Let A be a proper hyperideal of G. Then we have the following

equivalent statements:

(i) A is an n-ary δ(0)-hyperideal of G;
(ii) A = Ex where Ex = {y ∈ G | g(x, y, 1(n−2)) ∈ A} for each x /∈ δ(0);
(iii) g(An

1 ) ⊆ A for hyperideals An
1 of G such that g(Ai−1

1 , 1G, A
n
i+1)

⋂
(G −

δ(0)) 6= ∅ for some i ∈ {1, · · · , n} implies that Ai ⊆ A

Proof. (i) =⇒ (ii) Let A be an n-ary δ(0)-hyperideal of G. We always have A ⊆ Ex

for each x ∈ G. Suppose that y ∈ Ex for x /∈ δ(0). This means g(x, y, 1(n−2)) ∈ A.
Since A is an n-ary δ(0)-hyperideal of G and x = g(x, 1(n−1)) /∈ δ(0), we get the
result that y ∈ A and so A = Ex.

(ii) =⇒ (iii) Let g(An
1 ) ⊆ A for hyperideals An

1 of G and g(Ai−1
1 , 1G, A

n
i+1)

⋂
(G−

δ(0)) 6= ∅ for some i ∈ {1, · · · , n}. Since g(Ai−1
1 , 1G, A

n
i+1)

⋂
(G − δ(0)) 6= ∅ for

some i ∈ {1, · · · , n}, there exists xj ∈ Aj for all j ∈ {1, · · · , n} and j 6= i such that

g(xi−1
1 , 1G, 1

n
i+1‘) /∈ δ(0). Since g(g(xi−1

1 , 1G, x
n
i+1), Ai, 1

(n−2)) = g(xi−1
1 , Ai, x

n
i+1) ⊆

A, we have Ai ⊆ Eg(xi−1
1 ,1G,xn

i+1)
. Now, by (ii) we get Ai ⊆ A.

(iii) =⇒ (i) Let g(xn1 ) ∈ A for xn1 ∈ G such that g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0). Put

Ai = 〈xi〉 for each i ∈ {1, · · · , n}. Since g(xn1 ) ∈ g(An
1 ) ⊆ A and g(xi−1

1 , 1G, x
n
i+1) ∈

g(Ai−1
1 , 1G, A

n
i+1)

⋂
(G − δ(0)), we get the result that Ai ⊆ A. This means that

xi ∈ A. Hence A is an n-ary δ(0)-hyperideals, as desired. �

Theorem 3.5. Assume that An−1
1 , A and B are some hyperideals of G such that

g(An−1
1 , 1G)

⋂
(G− δ(0)) 6= ∅. Then:

(i) If A and B are n-ary δ(0)-hyperideals of G that g(An−1
1 , A) = g(An−1

1 , B),
then A = B.

(ii) If g(An−1
1 , A) is an n-ary δ(0)-hyperideal of G, then g(An−1

1 , A) = A.

Proof. (i) Suppose that g(An−1
1 , A) = g(An−1

1 , B) for hyperideals An−1
1 , A and B

of G. Then we have g(An−1
1 , B) ⊆ A. Since A is an n-ary δ(0)-hyperideal of G

and g(An−1
1 , 1G)

⋂
(G − δ(0)) 6= ∅, we get the result that B ⊆ A by Theorem 3.4.

Similarly, we obtain A ⊆ B and so A = B.
(ii) Let g(An−1

1 , A) be an n-ary δ(0)-hyperideal of G for hyperideals An−1
1 , A of

G. Since g(An−1
1 , A) ⊆ g(An−1

1 , A) and g(An−1
1 , 1G)

⋂
(G − δ(0)) 6= ∅, we have

A ⊆ g(An−1
1 , A). Since g(An−1

1 , A) ⊆ A, we get g(An−1
1 , A) = A. �

Proposition 3.6. Let δ and γ be two hyperideal expansions of G such that γ(0) ⊆
δ(0). Then every n-ary γ(0)-hyperideal of G is an n-ary δ(0)-hyperideal.

Theorem 3.7. Assume that R is a non-empty subset of G. If A is an n-ary δ(0)-

hyperideal of G such that R * A, then ER = {x ∈ G | g(x,R, 1
(n−2)
G ) ⊆ A} is an

n-ary δ(0)-hyperideal of G.

Proof. It is clear that ER 6= G. Suppose that g(xn1 ) ∈ ER for xn1 ∈ G such
that g(xi−1

1 , 1G, x
n
i+1) /∈ δ(0) for some i ∈ {1, · · · , n}. Then we conclude that

g(g(xi, r, 1
(n−2)
G ), g(xi−1

1 , 1G, x
n
i+1), 1

(n−2)) = g(g(xn1 ), r, 1
(n−2)) ∈ A for each r ∈

R. Since A is an n-ary δ(0)-hyperideal and g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0), we obtain

g(xi, r, 1
(n−2)) ∈ A which implies xi ∈ ER. Thus ER is an n-ary δ(0)-hyperideal of

G. �

Theorem 3.8. If {Aj}j∈J is a non-empty set of n-ary δ(0)-hyperideals of G, then
so is

⋂
j∈J Aj .
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Proof. Assume that g(xn1 ) ∈
⋂

j∈J Aj for xn1 ∈ G such that g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0)

for some i ∈ {1, · · · , n}. Since Aj is an n-ary δ(0)-hyperideal of G and g(xn1 ) ∈ Aj

for all j ∈ J , we obtain xi ∈ Aj which means xi ∈
⋂

j∈J Aj . �

Recall from [3] that a proper hyperideal A of G is an n-ary J-hyperideal if
g(xn1 ) ∈ A for xn1 and xi /∈ J(G) imply that g(xi−1

1 , 1G, x
n
i−1) ∈ A.

Theorem 3.9. Let δ(0) be a maximal hyperideal of G and A be an n-ary J-
hyperideal of G. Then A is an n-ary δ(0)-hyperideal.

Proof. Assume that g(xn1 ) ∈ A for xn1 ∈ G such that xi /∈ A for some i ∈ {1, · · · , n}.

Since g(g(xi−1
1 , 1G, x

n
i+1), xi, 1

(n−2)
G ) ∈ A and g(xi, 1

(n−1)
G ) /∈ A, we conclude that

g(xi−1
1 , 1G, x

n
i+1) ∈ J(G). Since δ(0) is a maximal hyperideal of G, J(G) ⊆ δ(0)

and so g(xi−1
1 , 1G, x

n
i+1) ∈ δ(0). Thus A is an n-ary δ(0)- hyperideal of G. �

Theorem 3.10. Let A be an n-ary δ(0)-hyperideal of G. Then A is contained in

δ(0).

Proof. Suppose that A is an n-ary δ(0)-hyperideal of G such that it is not contained
in δ(0). Let x ∈ A but x /∈ δ(0). Since A is an n-ary δ(0)-hyperideal of G,

g(x, 1
(n−1)
G ) ∈ A and g(x, 1

(n−1)
G ) /∈ δ(0), we get 1 ∈ A which is a contradiction.

Thus A is contained in δ(0). �

Recall from [1] that a proper hyperideal A of G is an n-ary prime hyperideal if
for hyperideals An

1 of G, g(An
1 ) ⊆ A implies that Ai ⊆ A for some i ∈ {1, · · · , n}. In

Lemma 4.5 in [1], it was shown that a proper hyperideal A of G is an n-ary prime
hyperideal if for xn1 ∈ G, g(xn1 ) ∈ A implies that xi ∈ A for some i ∈ {1, · · · , n}.

Remark 3.11. δ(0) is an n-ary prime hyperideal of G if and only if δ(0) is an n-ary
δ(0)-hyperideal of G.

Theorem 3.12. Assume that A is an n-ary prime hyperideal of G with δ(A) = A.
Then A is an n-ary δ(0)-hyperideal of G if and only if A = δ(0).

Proof. (=⇒) Since 0 ∈ A, we have δ(0) ⊆ δ(A) = A. Since A is an n-ary δ(0)-
hyperideal of G, the inclusion A ⊆ δ(0) holds by 3.10. Thus A = δ(0).

(⇐=) Let A = δ(0) and g(xn1 ) ∈ A for xn1 ∈ G such that g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0).

Since A is an n-ary prime hyperideal of G and g(xi−1
1 , 1G, x

n
i+1) /∈ A, we get xi ∈ A.

Consequently, A is an n-ary δ(0)-hyperideal of G. �

Theorem 3.13. Let A be an n-ary δ(0)-hyperideal of G such that δ(A) = A. If

there is no δ(0)-hyperideal containing A properly, then A = δ(0).

Proof. It is sufficient to show the hyperideal A is prime. Assume that g(xn1 ) ∈ A
for xn1 ∈ G but xi /∈ A for some i ∈ {1, · · · , n}. By Theorem 3.7, Exi

= {x ∈

G | g(x, xi, 1
(n−2)
G ) ⊆ A} is an n-ary δ(0)-hyperideal of G as A is an n-ary δ(0)-

hyperideal and xi /∈ A. Since there is no δ(0)-hyperideal containing A properly, we
get g(xi−1

1 , 1G, x
n
i+1) ∈ Exi

= A. Since A is an n-ary δ(0)-hyperideal of G, we can
continue the process and get xj ∈ A for some j ∈ {1, · · · , n}. Then A is an n-ary
prime hyperideal of G. Now, by Theorem 3.12, we get the result that A = δ(0). �

A commutative Krasner (m,n)-hyperring G is said to be an n-ary hyperintegral
domain if g(xn1 ) = 0 for xn1 ∈ G implies that xi = 0 for some i ∈ {1, · · · , n} [1].
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Remark 3.14. If G is an n-ary hyperintegral domain, then 0 is an n-ary δ(0)-
hyperideal of G.

Proposition 3.15. If G is a commutative Krasner (m,n)-hypering which is not
an n-ary hyperintegral domain and δ(0) = 0, then G has no δ(0)-hyperideal.

Proof. Let δ(0) = 0. Assume that g(xn1 ) ∈ δ(0) for xn1 ∈ G. Since G is not an n-ary
hyperintegral domain, we get xi 6= 0 for all i ∈ {1, · · · , n} which means δ(0) is not
an n-ary prime hyperideal. Therefore δ(0) is not an n-ary δ(0)-hyperideal of G by
Remark 3.11. Now, assume that A 6= 0 is an arbitrary hyperideal of G. If A is
an n-ary δ(0)-hyperideal of G, then A is containd in δ(0) by Theorem 3.10 which
means A = 0, a contradiction. Consequently, G has no δ(0)-hyperideal. �

In view of Remark 3.14 and Proposition 3.15, we have the following result.

Corollary 3.16. Let δ(0) = 0. Then G is an n-ary hyperintegral domain if and
only if 0 is an n-ary δ(0)-hyperideal of G.

Recall from [1] that the radical of the hyperideal A of G, denoted by rad(A),
is the intersection of all prime hyperideals G containing A. If the set of all prime
hyperideals containing A is empty, then we define rad(A) = G. Moreover, a proper
hyperideal A of G is an n-ary primary hyperideal if xn1 ∈ G and g(xn1 ) ∈ A imply
either xi ∈ A or g(xi−1

1 , 1G, x
n
i+1) ∈ rad(A) for some i ∈ {1, · · · , n}.

Theorem 3.17. Let A be an n-ary primary hyperideal of G. If rad(A) is containd
in δ(0), then A is an n-ary δ(0)-hyperideal.

Proof. Assume that A is an n-ary primary hyperideal of G. Let g(xn1 ) ∈ A
for xn1 ∈ G but g(xi−1

1 , 1G, x
n
i+1) /∈ δ(0) for some i ∈ {1, · · · , n}. This means

g(xi−1
1 , 1G, x

n
i+1) /∈ rad(A) and so xi ∈ A as A is an n-ary primary hyperideal of

G. Hence A is an n-ary δ(0)-hyperideal. �

As an immediate consequence of the previous theorem, we have the following
result.

Corollary 3.18. If A is an n-ary prime hyperideal of G such that A is contained
in δ(0), then A is an n-ary δ(0)-hyperideal.

In [1], it was shown that if x ∈ rad(A) then there exists r ∈ N such that

g(x(r), 1
(n−r)
G ) ∈ A for r ≤ n, or g(l)(x

(r)) ∈ A for r = l(n− 1) + 1.

Theorem 3.19. Let 0 be an n-ary δ(0)-hyperideal of G. If rad(δ(0)) = δ(0), then
rad(0) is an n-ary δ(0)-hyperideal of G.

Proof. Let g(xn1 ) ∈ rad(0) for xn1 ∈ G such that g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0) =

rad(δ(0)) for some i ∈ {1, · · · , n}. Then we conclude that there exists r ∈ N
such that g(g(xn1 )

(r), 1
(n−r)
G ) = 0 for r ≤ n, or g(l)(g(x

n
1 )

(r)) = 0 for r = l(n−1)+1.

Let g(g(x
(r)
1 , 1

(n−r)
G ), · · · , g(x

(r)
n , 1

(n−r)
G )) = g(g(xn1 )

(r), 1
(n−r)
G ) = 0 for some r ≤ n.

Since g(xi−1
1 , 1G, x

n
i+1) /∈ rad(δ(0)), we get the result that

g(g(x
(r)
1 , 1

(n−r)
G ), · · · , g(x

(r)
i−1, 1

(n−r)
G ), 1G, g(x

(r)
i+1, 1

(n−r)
G ), · · · , g(x

(r)
n , 1

(n−r)
G )

= g(g(xi−1
1 , 1G, 1

n
i+1)

(r), 1
(n−r)
G )

/∈ δ(0)
for all r ≤ n and g(l)(g(x

i−1
1 , 1G, x

n
i+1)

(r)) /∈ δ(0) for r = l(n − 1) + 1. Since 0
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is an n-ary δ(0)-hyperideal of G, we have g(x
(r)
i , 1

(n−r)
G ) = 0 which means xi ∈

rad(0). By using a similar argument, one can easily complete the proof where
r = l(n− 1) + 1. �

A proper hyperideal A of G is said to be an n-ary δ-primary hyperideal if g(xn1 ) ∈
A for xn1 ∈ G implies that xi ∈ A or g(xi−1

1 , 1G, x
n
i−1) ∈ δ(A) for some i ∈ {1, · · · , n}

[2].

Theorem 3.20. Let A be a proper hyperideal of G.
(i) If A is an n-ary δ(0)-hyperideal of G, then A is an n-ary δ-primary hy-

perideal.

(ii) Let δ2(0) ⊆ δ(0). Then A is an n-ary δ(0)-hyperideal of G if and only if

A is an n-ary δ-primary hyperideal and it is contained in δ(0).

Proof. (i) Let A be an n-ary δ(0)-hyperideal of G. Assume that g(xn1 ) ∈ A for
xn1 ∈ G such that g(xi−1

1 , 1G, x
n
i+1) /∈ δ(A) for some i ∈ {1, · · · , n}. Therefore

g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0) as δ(0) ⊆ δ(A). Since A is an n-ary δ(0)-hyperideal, we get

xi ∈ A. Thus A is an n-ary δ-primary hyperideal.
(ii) (=⇒) Let A be an n-ary δ(0)-hyperideal of G. By (i) and Theorem 3.10, we

are done.
(⇐=) Assume that A is an n-ary δ-primary hyperideal and it is contained in

δ(0). Suppose that g(xn1 ) ∈ A for xn1 ∈ G such that xi /∈ A for some i ∈
{1, · · · , n}. Since A is an n-ary δ-primary hyperideal and A ⊆ δ(0), we conclude

that g(xi−1
1 , 1G, x

n
i+1) ∈ δ(A) ⊆ δ2(0) which means g(xi−1

1 , 1G, x
n
i+1) ∈ δ(0). Con-

sequently, A is an n-ary δ(0)-hyperideal of G. �

Theorem 3.21. If G admits an n-ary δ(0)-hyperideal, then there exists an n-ary
δ(0)-hyperideal of G such that there is no δ(0)-hyperideal containing it. Moreover,

if δ(A) = A for every n-ary δ(0)-hyperideal A that there is no δ(0)-hyperideal
containing it, then δ(0) is an n-ary prime hyperideal of G.

Proof. Let A be an n-ary δ(0)-hyperideal of G. Assume that Σ is the set of all
n-ary δ(0)-hyperideals of G. From A ∈ Σ it follows that Σ 6= ∅. Σ is a parially
ordered set with respect to set inclusion relation. Assume that A1 ⊆ A2 ⊆ · · · is
some chain in Σ. Clearly, ∪∞

i=1Ai is a hyperideal of G. Assume that g(xn1 ) ∈ ∪∞
i=1Ai

for xn1 ∈ G such that g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0) for some i ∈ {1, · · · , n}. This means

that there exists t ∈ N such that g(xn1 ) ∈ At. Since At is an n-ary δ(0)-hyperideal
of G and g(xi−1

1 , 1G, x
n
i+1) /∈ δ(0), we have xi ∈ At ⊆ ∪∞

i=1Ai. Therefore ∪∞
i=1Ai

is an upper bound of the mentioned chain. By Zorn,s lemma, there is an n-ary
δ(0)-hyperideal A which is maximal in Σ. Hence we conclude that A = δ(0) by
Theorem 3.13. Thus δ(0) is an n-ary prime hyperideal of G by Remark 3.11. �

The concept of Krasner (m,n)-hyperring of fractions was defined in [4]. Let S
a non-empty subset of G. S refers to an n-ary multiplicative subset of G, if 1 ∈ S
and g(xn1 ) ∈ S for x1, · · · , xn ∈ S. Suppose that δ is a hyperideal expansion of a
G, S is an n-ary multiplicative subset of G and A a hyperideal of G. Then δS is

a hyperideal expansion of S−1G with δS(S
−1A) = S−1

(
δ(A)

)
[5]. S is said to be

an n-ary δ(0)-multiplicative subset of G if G− δ(0) ⊆ S and g(xn−1
1 , x) ∈ S for all

x ∈ S and g(xn−1
1 , 1G) ∈ G− δ(0).



MERGING THE N-HYPERIDEALS AND J-HYPERIDEALS IN ONE FRAME 9

Theorem 3.22. Let A be an n-ary δ(0G)-hyperideal of (G, f, g) and S an n-ary
multiplicative subset of G such that S∩A = ∅. Then S−1A is an n-ary δS(0S−1G)-
hyperideals of (S−1G,H,K).

Proof. Suppose that K(x1

s1
, · · · , xn

sn
) ∈ S−1A for x1

s1
, · · · , xn

sn
∈ S−1G such that

K(x1

s1
, · · · , xi−1

si−1
, 1G1G ,

xi+1

si+1
, · · · , xn

sn
) /∈ δS(0S−1G) for some i ∈ {1, · · · , n}. Therefore

g(xn

1 )
g(sn1 )

∈ S−1A which implies g(xi−1
1 , g(s, xi, 1

(n−2)
G ), xni+1) = g(s, g(xn1 ), 1

(n−2)
G ) ∈ A

for some s ∈ S. Since A is an n-ary δ(0G)-hyperideal of G and g(xi−1
1 , 1G, x

n
i+1) /∈

δ(0G), we get the result that g(s, xi, 1
(n−2)
G ) ∈ A. Hence we have xi

si
=

g(xi,s,1
(n−2)
G

)

g(si,s,1
(n−2)
G

)
=

K(xi

si
, ss ,

1G
1G

(n−2)
) ∈ S−1A. Thus we conclude that S−1A is an n-ary δS(0S−1G)-

hyperideals of (S−1G,H,K). �

Theorem 3.23. Let A be a hyperideal of G. Then A is an n-ary δ(0)-hyperideal
of G if and only if G−A is an n-ary δ(0)-multiplicative subset of G.

Proof. (=⇒)Let A be an n-ary δ(0)-hyperideal of G. Therefore A is contained in
δ(0) by Theorem 3.10. Then we have G − δ(0) ⊆ G − A. Let x ∈ G − A and
g(xn−1

1 , 1G) ∈ G − δ(0). Suppose that g(xn−1
1 , x) ∈ A. Hence we get x ∈ A as A

is an n-ary δ(0)-hyperideal of G and g(xn−1
1 , 1G) /∈ δ(0). This is a contradiction.

Therefore g(xn−1
1 , x) ∈ G − A which means G − A is an n-ary δ(0)-multiplicative

subset of G.
(⇐=) Let G−A be an n-ary δ(0)-multiplicative subset of G for some hyperideal

A of G. Assume that g(xn1 ) ∈ A for xn1 ∈ G such that g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0) for

some i ∈ {1, · · · , n}. If xi /∈ A, then we get g(xi−1
1 , xi, x

n
i+1) /∈ A as G − A is an

n-ary δ(0)-multiplicative subset of G and g(xi−1
1 , 1G, x

n
i+1) ∈ G − δ(0). This is a

contradiction. Thus xi ∈ A. Consequently, A is an n-ary δ(0)-hyperideal of G. �

Theorem 3.24. Let A be a hyperideal of G and S an n-ary δ(0)-multiplicative

subset of G such that S ∩ A = ∅. Then there exists an n-ary δ(0)-hyperideal B
such that A ⊆ B and B ∩ S = ∅.

Proof. Let Φ be the set of all hyperideals of G that any hyperideal has an empty
intersection with S. By the hypothesis, A ∈ Φ and so Φ 6= ∅. Φ is a partially
ordered set with respect to set inclusion relation. Then there exists a maxi-
mal element B in Φ by Zorn,s Lemma. We assume that B is not an n-ary
δ(0)-hyperideal of G and look for a contradiction. The assumption means that
g(xn1 ) ∈ B for xn1 ∈ G and neither xi ∈ B nor g(xi−1

1 , 1G, x
n
i+1) ∈ δ(0) for all i ∈

{1, · · · , n}. Put Eg(xi−1
1 ,1G,xn

i+1)
= {x ∈ G | g(x, g(xi−1

1 , 1G, x
n
i−1), 1

(n−2)
G ) ∈ B} for

i ∈ {1, · · · , n}. Since B ( Eg(xi−1
1 ,1G,xn

i+1)
, we conclude that Eg(xi−1

1 ,1G,xn

i+1)
∩S 6= ∅

by the maximality B. Let t ∈ Eg(xi−1
1 ,1G,xn

i+1)
∩ S. Then g(xi−1

1 , t, xni+1) =

g(t, g(xi−1
1 , 1G, x

n
i+1), 1

(n−2)
G ) ∈ B. On the other hand, since S is an n-ary δ(0)-

multiplicative subsete of G, t ∈ S and g(xi−1
1 , 1G, x

n
i+1) ∈ G − δ(0), we get the

result g(xi−1
1 , t, xni+1‘) = g(t, g(xi−1

1 , 1G, x
n
i+1), 1

(n−1)
G ) ∈ S . This implies that

g(xi−1
1 , t, xni−1) ∈ B ∩ S and so B ∩ S 6= ∅. This is a contradiction because B ∈ Φ.

Consequently, B is an n-ary δ(0)-hyperideal of G. �

In following theorem, we discuss hyperrings of which every proper hyperideal is
an n-ary δ(0)-hyperideal.
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Theorem 3.25. We have the following equivalent statements:

(i) G is a local Krasner (m,n)-hyperring with maximal hyperideal δ(0).
(ii) Every proper principal hyperideal of G is an n-ary δ(0)-hyperideal.
(iii) Every proper hyperideal of G is an n-ary δ(0)-hyperideal.

Proof. (i) =⇒ (ii) Let 〈x〉 be a proper hyperideal of G for x ∈ G. Assume that
g(xn1 ) ∈ 〈x〉 for xn1 ∈ G such that g(xi−1

1 , 1G, x
n
i+1) /∈ δ(0) for some i ∈ {1, · · · , n}.

Since δ(0) is the only maximal hyperideal of G and g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0),

we conclude that g(xi−1
1 , 1G, x

n
i+1) is invertible. Then there exists y ∈ R such

that 1G = g(y, g(xi−1
1 , 1G, x

n
i+1), 1

(n−2)
G ). Hence we have xi = g(xi, 1

(n−1)
G ) =

g(xi, g(y, g(x
i−1
1 , 1G, x

n
i+1), 1

(n−2)
G ), 1

(n−2)
G ) = g(y, g(xn1 ), 1

(n−2)
G ) ∈ 〈x〉. This shows

that 〈x〉 is an n-ary δ(0)-hyperideal.
(ii) =⇒ (iii) Assume that A is a hyperideal of G. Let g(xn1 ) ∈ A for xn1 ∈ G

such that g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0). By (ii), 〈g(xn1 )〉 is an n-ary δ(0)-hyperideal of

G. From g(xn1 ) ∈ 〈g(xn1 )〉 it follows that xi ∈ 〈g(xn1 )〉 as g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0).

Since 〈g(xn1 )〉 ⊆ A, we obtain xi ∈ A which implies A is an n-ary δ(0)-hyperideal
of G.

(iii) =⇒ (i) Assume that A is an arbitrary hyperideal of G. Hence A is an n-ary
δ(0)-hyperideal of G by (iii). Therefore we conclude that A is contained in δ(0) by
Theorem 3.10. Thus δ(0) is the only maximal hyperideal of G and so G is local. �

Suppose that (G1, f1, g1) and (G2, f2, g2) are two Krasner (m,n)-hyperrings. Let
δ and γ be hyperideal expansions of G1 and G2, respectively. Then the hyperring
homomorphism ψ : G1 −→ G2 is said to be a δγ-homomorphism if δ(ψ−1(A2)) =
ψ−1(γ(A2)) for the hyperideal A2 of G2. It is remarkable that γ(ψ(A1) = ψ(δ(A1))
for δγ-epimorphism ψ and for hyperideal A1 of G1 with Ker(ψ) ⊆ A1 [2]. Every
homomorphism ψ : G1 −→ G2 is a δ1γ1-homomorphism.

Theorem 3.26. Assume that G1 and G2 are two Krasner (m,n)-hyperrings and δ
and γ are hyperideal expansions of G1 and G1, respectively, such that ψ : G1 −→ G2

is a δγ-homomorphism.

(i) If ψ is a monomorphism and A2 is an n-ary γ(0G2)-hyperideal of G2, then

ψ−1(A2) is an n-ary δ(0G1)-hyperideal of G1.

(ii) If ψ is an epimorphism and A1 is an n-ary δ(0G1)-hyperideal of G1 such

that Ker(ψ) ⊆ A1, then ψ(A1) is an n-ary γ(0G2)-hyperideal of G2.

Proof. (i) Let g1(x
n
1 ) ∈ ψ−1(A2) for x

n
1 ∈ G1 such that g1(x

i−1
1 , 1G1, x

n
i+1) /∈ δ(0G1)

for some i ∈ {1, · · · , n}. This means that ψ(g1(x
n
1 )) = g2(ψ(x1), · · · , ψ(xn)) ∈ A2.

Since ψ is a monomorphism and g1(x
i−1
1 , 1G1 , x

n
i+1) /∈ δ(0G1), we conclude that

g2(ψ(x1), · · · , ψ(xi−1), 1G2 , ψ(xi+1), · · · , ψ(xn)) = ψ(g1(x
i−1
1 , 1G1 , x

n
i+1)) /∈ γ(0G2).

Since A2 is an n-ary γ(0G2)-hyperideal of G2, we get ψ(xi) ∈ A2 which means
xi ∈ ψ−1(A2). Thus ψ

−1(A2) is an n-ary δ(0G1)-hyperideal of G1.
(ii) Let g2(y

n
1 ) ∈ ψ(A1) for yn1 ∈ G2 such that g2(y

i−1
1 , 1G2, y

n
i+1) /∈ γ(0G2) for

some i ∈ {1, · · · , n}. Since ψ is an epimorphism, then there exist xn1 ∈ G1 such
that ψ(x1) = y1, ..., ψ(xn) = yn. Thus ψ(g1(x

n
1 )) = g2(ψ(x1), ..., ψ(xn)) = g2(y

n
1 ) ∈

ψ(A1). Since Ker(ψ) is contained in A1, we have g1(x
n
1 ) ∈ A1. Since A1 is an

n-ary δ(0G1)-hyperideal of G1 and g1(x
i−1
1 , 1G1 , x

n
i+1) /∈ δ(0G1), we get the result

that xi ∈ A1 which implies yi = ψ(xi) ∈ ψ(A1). This shows that ψ(A1) is an n-ary
γ(0G2)-hyperideal of G2. �
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Let A be a hyperideal of G. The projection map π : G −→ G/A, defined by
a 7→ f(a,A, 0(m−2)) is a homomorphism by Theorem 3.2 in [1].

Corollary 3.27. Let A and B be hyperideals of G such that A ⊆ B. If B is an
n-ary δ(0)-hyperideal of G, then B/A is an n-ary δq(0)-hyperideal of G/A.

Proof. Follows by applying Theorem 3.26 (ii) to the epimorphism π : G −→ G/A.
�

Corollary 3.28. Assume that B/A is an n-ary δq(0)-hyperideal of G/A where A
and B are hyperideals of G with A ⊆ B.

(i) If A ⊆ δ(0), then B is an n-ary δ(0)-hyperideal of G.
(ii) If A is an n-ary δ(0)-hyperideal of G, then so is B.

Proof. (i) Let g(xn1 ) ∈ B for xn1 ∈ G such that g(xi−1
1 , 1G, x

n
i+1) /∈ δ(0) for some i ∈

{1, · · · , n}. So g(f(x1, A, 0
(m−2)), · · · , f(xn, A, 0

(m−2))) = f(g(xn1 ), A, 0
(m−2)) ∈

B/A. Since B/A is an n-ary δq(0)-hyperideal of G/A and

g(f(x1, A, 0
(m−2)), · · · , f(xi−1, A, 0

(m−2)), f(1G, A, 0
(m−2)), f(xi+1, A, 0

(m−2)),
· · · , f(xn, A, 0

(m−2)))
= f(g(xi−1

1 , 1G, x
n
i+1), A, 0

(m−2))
/∈ δq(0),

we get the result that f(xi, A, 0
(m−2)) ∈ B/A which means xi ∈ B. This implies

that B is an n-ary δ(0)-hyperideal of G.
(ii) Since A is an n-ary δ(0)-hyperideal of G, we conclude that A is contained in

δ(0) by Theorem 3.10. Therefore the claim is clear by (i). �

Assume that (G1, f1, g1) and (G2, f2, g2) are two commutative Krasner (m,n)-
hyperrings such that 1G1 and 1G2 are scalar identities of G1 and G2, respectively.
Then (G1 ×G2, f1 × f2, g1 × g2) endowed with the following m-ary hyperoperation
f1 × f2 and n-ary operation g1 × g2 is a Krasner (m,n)-hyperring.

f1 × f2

(
(a1, b1), · · · , (am, bm)

)
=

{
(a, b) | a ∈ f1(a

m
1 ), b ∈ f2(b

m
1 )

}

g1 × g2

(
(x1, y1), · · · , (xn, yn)

)
=

(
g1(x

n
1 ), g2(y

n
1 )
)
,

for all an1 , x
m
1 ∈ G1 and bn1 , y

m
1 ∈ G2 [12].

Theorem 3.29. Let δ1 and δ2 be hyperideal expansions of the Krasner (m,n)-
hyperring G1 and G2, respectively, such that δ(0G1×G2) = δ1(0G1) × δ2(0G2) and

A1 a proper hyperideal of G1. If A1 × G2 is an n-ary δ(0G1×G2)-hyperideal of

G1 ×G2, then A1 is an n-ary δ1(0G1)-hyperideal of G1.

Proof. Assume that g1(x
n
1 ) ∈ A1 for xn1 ∈ G1. This means that

g1 × g2

(
(x1, 1G2), · · · , (xn, 1G2)

)
=

(
g1(x

n
1 ), 1G2

)
∈ A1 ×G2.

Since A1×G2 is an n-ary δ(0G1×G2)-hyperideal of G1×G2, we conclude that either
(xi, 1G2) ∈ A1 ×G2 or

g1 × g2

(
(x1, 1G2), · · · , (xi−1, 1G2), (1G1 , 1G2)(xi+1, 1G2), · · · , (xn, 1G2)

)

=
(
g1(x

i−1
1 , 1G1, x

n
i+1), 1G2

)

∈ δ(0G1×G2)
for some i ∈ {1, · · · , n}. This implies that xi ∈ A1 or g(xi−1

1 , 1G1, x
n
i+1) ∈ δ1(0G1).

Consequently, A1 is an n-ary δ1(0G1)-hyperideal of G1. �
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4. (s, n)-absorbing δ(0)-hyperideals

In this section, we present the concept of (s, n)-absorbing δ(0)-hyperideals as a
generalization of the n-ary δ(0)-hyperideals and a subclass of the (s, n)-absorbing
δ-primary hyperideals.

Definition 4.1. Suppose that δ is a hyperideal expansion of G and s ∈ Z+.
A proper hyperideal A of G is said to be an (s, n)-absorbing δ(0)-hyperideal if

g(xsn−s+1
1 ) ∈ A for xsn−s+1

1 ∈ G, then either g(x
(s−1)n−s+2
1 ) ∈ A or a g-product of

(s− 1)n− s+ 2 of x,is, other than g(x
(s−1)n−s+2
1 ), is in δ(0).

Obviously, every n-ary δ(0)-hyperideal is an (s, n)-absorbing δ(0)-hyperideal and
every (s, n)-absorbing δ(0)-hyperideal is an (s, n)-absorbing δ-primary hyperideal.
However, these are different notions.

Example 4.2. Let us consider the hyperring (G = [0, a],+, ·) where 0 < a ≤ 1,
“ + ” is defined by

p+ q =

{
[0,p], if p = q

{max{p, q}} if p 6= q
.

and “ · ” is the usual multiplication on real numbers. Then ([0, a], f, g) is a Krasner
(m,n)-hyperrin such that f(pm1 ) = p1 + · · · + pm and g(qn1 ) = q1 · · · qn for all
pm1 , q

n
1 ∈ [0, a]. In the hyperring 0 is an (s, n)-absorbing δ1-hyperideal. Now, let

a = 1. Then A = [0, 0.5] is a (2, 2)-absorbing δ1-primary hyperideal. However, it is
not (2, 2)-absorbing δ1(0)-hyperideals. Take 0.6, 0.9 ∈ G. We have g(0.6, 0.9, 0.9) ∈
A, but neither g(0.9(2), 1G) and g(0.6, 0.9, 1, 1G) are in A nor in δ1(0).

Theorem 4.3. Let A be an n-ary δ(0)-hyperideal of G. Then A is a (2, n)-absorbing
δ(0)-hyperideal of G.

Proof. Let g(x2n−1
1 ) ∈ A for x2n−1

1 ∈ G. Since A is an n-ary δ(0)-hyperideal of

G, we conclude that g(xn1 ) ∈ A or g(x2n−1
n+1 ) ∈ δ(0). In the second case, we get

g(xi, x
2n−1
n+1 ) ∈ δ(0), for i ∈ {1, · · · , n} because δ(0) is a hyperideal of G. Thus A is

(2, n)-absorbing δ(0)-hyperideal of G. �

Theorem 4.4. Let A be an (s, n)-absorbing δ(0)-hyperideal of G. Then A is a

(k, n)-absorbing δ(0)-hyperideal for k > n.

Proof. Let g(x
(s+1)n−(s+1)+1
1 ) ∈ A for x

(s+1)n−(s+1)+1
1 ∈ G. Let us consider

g(xn+2
1 ) = x. Since A is (s, n)-absorbing δ(0)-hyperideal, we get the result that

g(x, · · · , x(s+1)n−(s+1)+1) ∈ A or a g-product of sn − s + 1 of the x,is except

g(x, · · · , x(s+1)n−(s+1)+1) is in δ(0). This means that g(xi, x
(s+1)n−(s+1)+1
n+3 ) ∈ δ(0)

for i ∈ {1, · · ·n+2} which means A is an (s+1, n)-absorbing δ(0)-hyperideal. This
shows that A is a (k, n)-absorbing δ(0)-hyperideal for k > n. �

5. weakly (s, n)-absorbing δ(0)-hyperideals

In this section, we aim to discuss some of the fundamental results concerning
weakly (s, n)-absorbing δ(0)-hyperideals as an expansion of the (s, n)-absorbing
δ(0)-hyperideals.

Definition 5.1. Assume that δ is a hyperideal expansion of G and s ∈ Z+. A
proper hyperideal A of G is called a weakly (s, n)-absorbing δ(0)-hyperideal if
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xsn−t+1
1 ∈ G and 0 6= g(xsn−s+1

1 ) ∈ A imply either g(x
(s−1)n−s+2
1 ) ∈ A or a g-

product of (s− 1)n− s+ 2 of x,is, other than g(x
(s−1)n−s+2
1 ), is in δ(0).

Example 5.2. Cosider Krasner (m,n)-hyperring (G/B, f, g) whereG = Z3[X,Y, Z],
B = 〈X3Y 3Z3〉 and f, g are ordinary addition and ordinary multiplication, respec-
tively. In the hyperring, A = rad(B/B) is not a weakly (1, 3)-absorbing δ1(0G/B)-
hyperideal of G/B because 0 6= 2XY Z + B = (2X + B)(Y + B)(Z + B) ∈ A but
none of the elements (2X + B), (Y +B) and (Z +B) are not in δ1(0G/B).

Proposition 5.3. Assume that δ and γ are hyperideal expansions of G and A
is an (s, n)-absorbing γ(0)-hyperideal of G. Then A is a weakly (s, n)-absorbing
γoδ(0)-hyperideal if and only if A is an (s, n)-absorbing γoδ(0)-hyperideal.

Proof. (=⇒) Let A be a weakly (s, n)-absorbing γoδ(0)-hyperideal of G. Suppose

that g(xsn−s+1
1 ) ∈ A for xsn−s+1

1 ∈ G. If g(xsn−s+1
1 ) 6= 0, we have g(x

(s−1)n−s+2
1 ) ∈

A or a g-product of (s− 1)n− s+ 2 of x,is, other than g(x
(s−1)n−s+2
1 ), is in γoδ(0)

as A is a weakly (s, n)-absorbing γ ◦ δ(0)-hyperideal of G. Let us assume that

g(xsn−s+1
1 ) = 0 ∈ A such that g(x

(s−1)n−s+2
1 ) /∈ A. Since A is an (s, n)-absorbing

γ(0)-hyperideal of G, we get the result that a g-product of (s− 1)n− s+ 2 of x,is,

other than g(x
(s−1)n−s+2
1 ), is in γ(0). Since γ(0) ⊆ γoδ(0), we conclude that the

g-product of (s − 1)n − s + 2 of x,is is in γoδ(0). Thus A is an (s, n)-absorbing
γoδ(0)-hyperideal.

(⇐=) It is straightforward. �

We say that a proper hyperideal A of G is called a strongly weakly (s, n)-
absorbing δ(0)-hyperideal if 0 6= g(Asn−s+1

1 ) ⊆ A for any hyperideal Asn−n+1
1

of G implies g(A
(s−1)n−s+2
1 ) ⊆ A or a g-product of (s − 1)n − s + 2 of A,

is, other

than g(A
(s−1)n−s+2
1 ), is a subset of δ(0). Moreover, we say that (x

s(n−1)+1
1 ) is an

(s, n)-δ(0)-zero of a weakly (s, n)-absorbing δ(0)-hyperideal A if g(x
s(n−1)+1
1 ) = 0,

g(x
(s−1)n−s+2
1 ) /∈ A and all g-products of (s−1)n−s+2 of x,is, except g(x

(s−1)n−s+2
1 )

are not in δ(0). Note that the notation x1, · · · , x̂i, · · · , xsn−s+1 indicates that i-th
term is excluded from the sequence xsn−s+1

1 .

Theorem 5.4. Let (x
s(n−1)+1
1 ) be an (s, n)-δ(0)-zero of a strongly weakly (s, n)-

absorbing δ(0)-hyperideal A. Then for u ∈ {1, · · · , (s−1)n−s+2} and i1, · · · , iu ∈
{1, · · · , s(n− 1) + 1}, g(x1, · · · , x̂i1 , · · · , x̂i2 , · · · , x̂iu , · · · , xs(n−1)+1, A

(u)) = 0

Proof. We use the induction on u. Suppose that u = 1. Now we show that
g(x1, · · · , x̂i1 · · · , xs(n−1)+1, A) = 0. Let g(x1, · · · , x̂i1 · · · , xs(n−1)+1, A) 6= 0. With-

out loss of generality, we may assume that g(x
s(n−1)+1
2 , A) 6= 0. Then we obtain

g(x
s(n−1)+1
2 , a) 6= 0 for some a ∈ A. Since 0 6= g(xsn−s+1

2 , f(x1, a, 0
(m−2))) =

f(g(x
s(n−1)+1
1 ), g(x

s(n−1)+1
2 , a), 0(m−2)) ⊆ A and A is a strongly weakly (s, n)-

absorbing δ(0)-hyperideal of G, we get the result that δ(0) contains a g-product
containing a of the terms (s − 1)n − s + 2 of x,is. Then we may assume that

f(g(x1, x
s(n−1)+1
3 ), g(a, x

s(n−1)+1
3 ), 0(m−2)) = g(x

s(n−1)+1
3 , f(x1, a, 0

(m−2))) ⊆ δ(0).

Thus g(x1, x
s(n−1)+1
3 ) ∈ δ(0) as g(a, x

s(n−1)+1
3 ) ∈ A ⊆ δ(0). This is a contradiction.

Therefore, g(x1, · · · , x̂i1 · · · , xs(n−1)+1, A) = 0. We suppose that the claim holds for
all positive integers which are less than u > 1 and show that it holds for u. Suppose
that g(x1, · · · , x̂i1 , · · · , x̂i2 , · · · , x̂iu , · · · , xs(n−1)+1, A

(u)) 6= 0. Let us assume that
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g(x
s(n−1)+1
u+1 , A(u)) 6= 0, namely, we omit xu1 . Hence we get 0 6= g(x

s(n−1)+1
u+1 , au1 ) ∈ A

for some xu1 ∈ A. Then 0 6= g(x
s(n−1)+1
u+1 , f(x1, a1, 0

(m−2)), · · · , f(xu, au, 0
(m−2))) ⊆

A, by induction hypothesis. Thus we obtain

g(x
s(n−1)+1
u+1 , f(x1, a1, 0

(m−2)), · · · , ̂f(x1, a1, 0(m−2))i1 , · · · ,
̂f(x2, a2, 0(m−2))i2 ,

· · · , ̂f(xn−1, an−1, 0(m−2))in−1 , · · · ,
̂f(xu, au, 0(m−2))) ⊆ δ(0)

or
g(xu+1, · · · , x̂iu+1 , · · · , x̂iu+2 , · · · , ̂xiu+(n−1)

, · · · , xs(n−1)+1, f(x1, a1, 0
(m−2)),

· · · , f(xu, au, 0
(m−2)) ⊆ δ(0)

for some i ∈ {1, · · · , u}. Therefore we get the result that for some i ∈ {1, · · · , u},

g(x
s(n−1)+1
u+1 , · · · , xtn) ∈ δ(0) or g(x

s(n−1)+1
u+n , · · · , xu1 ) ∈ δ(0) or

g(xu+1, · · · , x̂iu+1 , · · · , x̂iu+2 , · · · , x̂iu+s
, · · · , xs(n−1)+1, f(x1, a1, 0

(m−2)),

· · · , ̂f(x1, a1, 0(m−2))iu+(s+1)
, ̂f(xn−1−s, an−1−s, 0(m−2))iu+(n−1−s)

,

· · · , f(xu, au, 0
(m−2))) ⊆ δ(0),

a contradiction because (x
s(n−1)+1
1 ) is an (s, n)-δ(0)-zero of A. Consequently,

g(x1, · · · , x̂i1 , · · · , x̂i2 , · · · , x̂iu , · · · , xs(n−1)+1, A
(u)) = 0. �

Now, we give a copy of Nakayama,s lemma for strongly weakly (s, n)-absorbing
δ(0)-hyperideals.

Theorem 5.5. Assume that A is a strongly weakly (s, n)-absorbing δ(0)-hyperideal
but is not (s, n)-absorbing δ(0)-hyperideal. Then the following hold:

(i) g(A(s(n−1)+1)) = 0

(ii) If M = k(A, 1
(n−2)
G ,M) for some (m,n)-hypermodule M over G , then

M = 0.

Proof. (i) Since A is not (s, n)-absorbing δ(0)-hyperideal, we obtain an (s, n)-δ(0)-

zero (x
s(n−1)+1
1 ) of A. Let us assume that g(A(s(n−1)+1)) 6= 0. Hence we have

g(a
s(n−1)+1
1 ) 6= 0 for some a

s(n−1)+1
1 ∈ A. Therefore we get the result that

0 6= g(f(x1, a1, 0
(m−2)), · · · , f(xs(n−1)+1, as(n−1)+1, 0

(m−2))) ⊆ A

by Theorem 5.4. By the hypothesis, we conclude that g(f(x1, a1, 0
(m−2))(s−1)n−s+2) ⊆

A or δ(0) contains a g-product of (s − 1)n − s + 2 of f(xi, ai, 0
(m−2)),s other

that g(f(x1, a1, 0
(m−2))(s−1)n−s+2). In the first possibilty, we conclude that A

contains f(g(x
(s−1)n−s+2
1 ), g(xu1

1 , au2
1 ), g(a

(s−1)n−s+2
1 )︸ ︷︷ ︸

u

, 0(m−u)) such that u1 + u2 =

(s−1)n−s+2. It follows that g(x
(s−1)n−s+2
1 ) ∈ A. But this is a contradiction since

(x
s(n−1)+1
1 ) is an (s, n)-δ(0)-zero of A. In the second possibility, we may assume that

g(f(x2, a2, 0
(m−2)), · · · , f(x(s−1)n−s+3, a(s−1)n−s+3, 0

(m−2))) is contained in δ(0).

Thus we get the result that f(g(x
(s−1)n−s+3
2 ), g(xu1

1 , au2
2 ), g(a

(s−1)n−s+2
1 )︸ ︷︷ ︸

u

, 0(m−u))

is contained in δ(0) such that u1+u2 = (s−1)n−s+2 which implies g(x
(s−1)n−s+3
2 ) ∈

δ(0). It contradicts the fact that (x
s(n−1)+1
1 ) is an (s, n)-δ(0)-zero of A. Conse-

quently, g(A(s(n−1)+1)) = 0.

(ii) Let M be a (m,n)-hypermodule over G such that M = k(A, 1
(n−1)
G ,M). By

(i), we have k(g(A(s(n−1)+1)), 1
(n−1)
G ,M) = 0. This implies that

0 = k(g(A(s(n−1)+1)), 1
(n−1)
G ,M)
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= k(g(A(s(n−1)), 1G), A, 1
(n−2)
G ,M)

= k(g(A(s(n−1)), 1G), 1
(n−1)
G , k(A, 1

(n−1)
G ,M))

= k(g(A(s(n−1)), 1G), 1
(n−1)
G ,M)

= · · ·
= k(A, 1

(n−1)
G , k(A, 1

(n−1)
G ,M))

= k(A, 1
(n−1)
G ,M)

=M �
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