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ON SMALL-AMPLITUDE ASYMMETRIC WATER WAVES
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Abstract. We generalize the method used by Mæhlen & Seth [17] used to prove the existence of
small-amplitude asymmetric solutions to the capillary-gravity Whiham equation, so that it can be
applied directly to a class of similar equations. The purpose is to prove or disprove the existence
of asymmetric waves for the water wave problem or other model equations for water waves. Our
main result in this paper is a theorem that gives both necessary and sufficient conditions for the
existence of small-amplitude periodic asymmetry solutions for this class of equations. The result is
then applied to an infinite depth capillary-gravity Whitham equation and an infinite depth capillary-
gravity Babenko equation to show the nonexistence of small-amplitude waves for these equations. This
example also highlights the similarities between these equations suggesting the potential existence of
small-amplitude asymmetric waves for the finite depth capillary-gravity Babenko equation.

1. Introduction

Background. Most of the theory on traveling water waves is developed under the assumption of
symmetry around a vertical axis; see [13] for an overview. This symmetry combined with the trans-
lational invariance of the problem can be turned into an assumption of even waves. The theory of
symmetric traveling waves is rich but also obviously incomplete. It says nothing about what happens
if we drop the symmetry assumption and consider asymmetric (or non-symmetric) waves as well; see
Definition 2.1 below. That is, to complete the picture it is required to either show the existence of all
such asymmetric waves or prove that they cannot exist in various regimes.

A common approach to showing the existence of water waves is through bifurcation. It is well
established that symmetry breaking can occur spontaneously through bifurcation, although the equa-
tions themselves retain the symmetry in question. Examples of this include Hopf bifurcation breaking
temporal symmetry or Bénard convection breaking spatial symmetry [19]. The water wave problem
and many of the derived models (see, e.g. [15]) have the aforementioned symmetry, and so do the
equations we are dealing with in the present paper. However, we show that this symmetry can be
broken through bifurcation under certain conditions.

For pure gravity traveling waves, the question of the existence of asymmetric waves was answered
in the case of solitary waves by Craig & Sternberg [7], who proved that all such waves are necessarily
symmetric. For the periodic case, the investigation starts with Chen & Saffman [4], who found new
families of bifurcating solutions on deep water when attempting to compute asymmetric traveling
gravity waves. However, these turned out to be even solutions that were shifted, i.e. symmetric. The
first result to show any form of the existence of asymmetric periodic gravity waves instead comes
from Zufiria [25], who derived a weakly nonlinear Hamiltonian model and showed the existence of
asymmetric solutions through symmetry-breaking bifurcation. Zufiria also numerically computed
asymmetric water waves using the full Euler equations on infinite depth [23].
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Also in the case of capillary-gravity traveling waves, one of the first results was obtained by Zufiria
[24] showing the existence of asymmetric solutions to a weakly nonlinear Hamiltonian model. This
result has later been amended by additional numerical studies by Shimizu & Shoji [20] and Gao,
Wang & Vanden-Broeck [11, 12].

All these results share the common factor that the symmetry-breaking bifurcation is a secondary
bifurcation, i.e. the asymmetric waves bifurcate from a family of nonzero symmetric waves. In
contrast to this, Mæhlen & Seth [17] showed the existence of a symmetry-breaking bifurcation at the
trivial solution to the capillary-gravity Whitham equation. A shallow water wave model proposed by
Whitham [22] for gravity waves that was later extended to the capillary-gravity case [16]. This can
be seen as the result that completes the picture of an earlier result by Ehrnström, Johnson, Maehlen
& Remonato [10] characterizing all small amplitude symmetric traveling wave solutions. Another
avenue that requires examination is the existence of asymmetric waves in the presence of vorticity;
see, e.g. Constantin & Escher [6] and Ehrnström, Holden & Raynaud [9].

The nonexistence for asymmetric periodic capillary-gravity waves bifurcating from the trivial solu-
tion is proven in [18, Theorem 4.5]. However, the model used there seems to reduce the number of
free parameters more than necessary in the finite depth case. In the present paper, we will generalize
the method used in [17] so that it can be applied directly to a class of similar equations. This allows
us to study the full water wave problem, other model equations for water waves, as well as unrelated
equations of similar form with this method, which will help us find or disprove asymmetric waves. We
present this as a theorem (Theorem 3.4) stating necessary and sufficient conditions for the existence of
small-amplitude periodic asymmetric solutions for this class of equations. The result is then applied
to an infinite depth capillary-gravity Whitham equation to show the nonexistence of small-amplitude
asymmetric waves for this equation. The same is done for the capillary-gravity water-wave problem
in Babenko’s formulation[2]. This reveals the similarities the equations exhibit, which suggests that
one could show the existence of small-amplitude asymmetric waves for the water wave problem with
finite depth.

Method. Since the capillary-gravity Whitham equation served as a blueprint for the class of equa-
tions we consider in this paper, we introduce the equation here.

ut + (MTu+ u2)x = 0, (1)

where MT is a spatial Fourier multiplier

M̂Tu(t, ξ) = mT (ξ)û(ξ, t),

where we use the Fourier transform û(t, ξ) =
∫
R
u(t, x)e−iξxdx and the symbol mT is given by

mT (ξ) =

√
(1 + Tξ2) tanh(ξ)

ξ
.

The asymmetric solutions to eq. (1) in [17] were constructed under the assumption of traveling waves,
that is, the assumption that u(x, t) has a fixed shape traveling with speed c, or u = u(x − ct). The
solution was also assumed to be periodic with period 2π

κ , but rescaled to 2π-periodic by changing
variables. The equation resulting from these assumptions can be integrated, giving a

−cu+MT,κu+ u2 = 0, (2)

where the integration constant is (without loss of generality) set to 0, and MT,κ is a Fourier multiplier
with symbol mT,κ(ξ) = mT (κξ). The paper by Mæhlen & Seth [17] focuses almost exclusively on
eq. (2). The purpose of this paper is to generalize the result to a class of similar equations.

In other words: The main purpose of this paper is to identify necessary and sufficient conditions to
apply the method of finding asymmetric waves used in [17] for a class of equations of a similar form
to the capillary-gravity Whitham equation.

The class of equations can be thought of as what we obtain if we let MT,κ in eq. (1) be a general
Fourier multiplier and replace the u2-term by a general nonlinearity, however, both are still subject
to some conditions that we specify below.
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We approach the equations with a method that is similar to the classical Crandall & Rabinowitz
bifurcation theorem [8]. We begin by preforming a Lyapunov–Schmidt reduction, so we can write the
solution u = v+w, where w lies in an infinite-dimensional function space and v in a finite-dimensional
function space (the kernel of the linearization). Moreover, the equation itself is decomposed into a
finite-dimensional and infinite-dimensional part. The infinite-dimensional part is directly solved with
the implicit function theorem giving w = w(v).

For the finite-dimensional part of the problem, the method really diverges from the classical result.
It can be shown that we need v to be asymmetric for the solution to be asymmetric. Since we
consider periodic functions, v lie in a space spanned by a finite number of Fourier modes. Due to the
symmetry of the equation, the modes always come in sine-cosine pairs with the same wavenumber.
The evenness assumption that is common for water waves reduces this to solely cosine functions, but
in this paper we avoid making this assumption. Moreover, one such pair is not sufficient for v to be
asymmetric because any sum of such a sine-cosine pair can always be shifted to only a cosine through
a spatial translation. Thus, we require at least two such pairs, or in other words, that the kernel
of the linearization of the equation be four-dimensional. This higher dimensional kernel makes the
necessary computations more involved in itself, but the main technical issue is that the elements of
the kernel are resonant. Even if v does not contain all the Fourier modes in the kernel, the solution
can still contain all the modes, since the existing modes may combine to create the missing ones. To
handle these resonances, we need to expand w to the order in which these modes appear, which in
general can be arbitrarily high. Fortunately, the structure of the equations allow us to reduce the
finite-dimensional problem from four to three dimensions, which means that we only have to handle
one such resonance instead of two.

Structure of the paper. The class of equations with which we work in this paper is defined in
Section 2. Additionally, there we collect some of the more elementary results we need for the main
result. The main result is contained and proved in Section 3: Theorem 3.4 gives necessary and
sufficient conditions for the existence of asymmetric solutions. In the last part, Section 4, we apply the
result to the infinite depth Whitham equation to show the nonexistence of small-amplitude asymmetric
waves. We also apply the result to the infite depth Babenko equation showing the same type of result,
as well as demonstrating the similarities between the two equations. This gives hope for finding
asymmetric solutions to the Babenko equation on finite depth and thus asymmetric small-amplitude
water waves.

2. Preliminaries

Asymmetry and function spaces. We begin by giving a stricter definition of symmetric and asym-
metric functions than the one given in the introduction. The reason for this definition of symmetry
and asymmetry is the translational invariance of the equation. Any vertical line of symmetry is equiv-
alent to evenness; conversely, for a function to be asymmetric, there cannot be any vertical line of
symmetry.

Definition 2.1 (Symmetric and asymmetric functions). We say that a function u : R → R is
symmetric if there exists an a ∈ R such that x 7→ u(x+ a) is an even function, and if no such a exists
then we say that u is asymmetric.

With this definition in hand, we turn our attention to function spaces. The theory works for a
quite general choice of function spaces, but one can imagine some of the common spaces used in the
study of differential equations such as Hölder spaces, Sobolev spaces, etc. Naturally, we want our
function spaces to be Banach spaces. The other two important properties are that they consist of
functions on the unit circle T = R/2πZ (or equivalently that they consist of 2π-periodic functions on
R) and that we can express the elements as Fourier series. Thus, we make the following definition.

Definition 2.2 (Function spaces). Let Xs(T) denote a scale of Banach spaces that consists of func-
tions defined on the unit circle T such that Xs(T) →֒ L2(T) for all s ∈ S ⊂ R.



ON SMALL-AMPLITUDE ASYMMETRIC WATER WAVES 4

We only concern ourselves with spaces with functions defined on the unit circle because functions
of any other period can always be rescaled to 2π-periodic functions. In fact, this is a crucial step in
[17], since the period is needed as a bifurcation parameter. Moreover, since all functions we consider
can be written as Fourier series, we often define Fourier multipliers through the basis {eikx}k∈Z. For

these functions, defining a multiplier M that acts through M̂u(ξ) = m(ξ)û(ξ) is equivalent to defining
its action through Meikx = m(k)eikx (for all k).

In the applications in Section 4, we use Zygmund spaces as function spaces for the equation. These
are defined as follows. Let ϕ be the Fourier inverse of a real-valued symmetric function ϕ̂ ∈ C∞

c (R)
that satisfies ϕ̂(ξ) = 1 for |ξ| ≤ 1 and ϕ̂(ξ) = 0 for |ξ| ≥ 2. Then set φ0 := ϕ and φj(x) :=
2jϕ(2jx)− 2j−1ϕ(2j−1x) for j ∈ N. The Zygmund space Cs(T) consists of real-valued distributions u
on T such that

‖u‖Cs(T) := sup
j

2js‖u ∗ φj‖L∞(T) < ∞.

For all s′ > s ≥ 0, the space Cs′(T) is compactly embedded in Cs(T). Moreover, the Hölder space
Cs(T) naturally embeds in Cs(T) for all s ≥ 0, while the converse is true for non-integer s; see, e.g.[21,
Section 13.8] for a comprehensive treatment.

Finally, we denote a ball of radius r centered at the point p in the space (or subset of space) X by
BX

r (p). A claim containing a ball with radius ε means that there exists a sufficiently small radius for
the claim to be satisfied.

The class of equations. The equations we consider are of the form

F (µ, u) = L(µ)u+N(µ, u) = 0, (3)

where µ = (µ1, . . . , µn) ∈ M ⊂ Rn is a set of parameters and u is a function in Xs(T), s, t ∈ S. We
also assume that the equation satisfies the following properties.

(i) The linear part of the equation

L(µ) : Xs(T) → Xt(T)

is a Fredholm operator of index 0 for all µ ∈ M . Moreover, the linear part of the equation is
a Fourier multiplier, so the action on a single Fourier mode is

L(µ)eikx = lµ(k)e
ikx,

and the symbol is even, lµ(−k) = lµ(k).

(ii) The nonlinear part of the equation can be written

N(µ, u) =

∞∑

m=2

Nm(µ, (u, . . . , u)),

where Nm(µ, ·) : (Xs(T))m → Xt(T), are m-linear operators that acts through

Nm(µ, (eik1x, . . . , eikmx)) = nm,µ(k1, . . . , km)ei(k1+...+km)x.

Moreover, nm,µ(k1, . . . , km) = nm,µ(−k1, . . . ,−km), which means that N preserves evenness.
That is, if u(−x) = u(x), then N(µ, u(−x)) = N(µ, u(x)).

(iii) The equation is variational. That is, there exists a functional Jµ(u) such that

DuJµ(u)w =

∫

T

(L(µ)u+N(µ, u))w dx = 〈L(µ)u+N(µ, u), w〉.

(iv) The map F : M ×Xs(T) → Xt(T) is analytic in the sense defined in [1].
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Lyapunov–Schmidt reduction. Property (i) implies that for any µ ∈ M there exists a correspond-
ing finite set Kµ of integers such that lµ(k) = 0 for all k ∈ Kµ. We begin by considering µ0 so
that Kµ0 = ∅. Then L(µ0) is a Fredholm operator with kerL(µ0) = {0}, which means that it is
an invertible operator. Thus, F (µ0, 0) = 0 and DuF (µ0, 0) = L(µ0) are invertible. Hence we can

apply the implicit function theorem which gives us the existence of a unique solution in B
Xs(T)
ε (0) to

F (µ, u) = 0 for every µ ∈ BM
ε (µ0). However, we clearly have F (µ, 0) = 0 for all µ ∈ BM

ε (µ0), so the
only solution is the trivial one, which is symmetric. Thus, we have the following result.

Lemma 2.3. If Kµ0 = {0}, then there exists no solution u ∈ Xs(T) to eq. (3) for any µ ∈ BM
ε (µ0)

except u ≡ 0.

The above result is obviously well known, but means that we need µ0 such that Kµ0 is nonempty
to find arbitrarily small asymmetric solutions. Thus, we assume that there is a point µ0 ∈ M such
that Kµ0 is nonempty. This implies

kerL(µ0) = V,

where dimV = |Kµ0 | > 0. In fact, |Kµ0 | is an even number because lµ is even, so |Kµ0 | ≥ 2. In
this case, we can perform a Lyapunov–Schmidt reduction. Since L is invariant on subspaces spanned
by a single Fourier mode, we can decompose Xs(T) = V ⊕W s and Xt(T) = V ⊕W t, where W t is
the image of L(µ0). We also define the corresponding L2-orthogonal projection PV : L2(T) → V and
PW = I − PV . These allow us to write u = PV u+ PWu = v + w and eq. (3) as

L(µ)v + PV N(µ, v + w) = 0, (4)

L(µ)w + PWN(µ, v + w) = 0. (5)

Lemma 2.4. For any v ∈ BV
ε (0) and µ ∈ BM

ε (µ0) there exists a unique function w ∈ W s solving
eq. (5). Moreover, the mapping (µ, v) 7→ w is analytic.

Proof. We apply the implicit function theorem to the operator FW : W s × V ×M → W t defined by
(w, v, µ) 7→ L(µ)w+PWN(µ, v+w). Clearly, DwFW (0, 0, µ0) = L(µ0), which is an isomorphism from
W s to W t. The result follows from the analytic implicit function theorem [3]. �

Now to find a nontrivial solution to eq. (3), it only remains to solve eq. (4) for some nontrivial v.
However, for this to be an asymmetric solution of eq. (3), it is necessary to solve eq. (4) for some
asymmetric v, as shown in the result below.

Lemma 2.5. Let v ∈ BV
ε (0) and µ ∈ BM

ε (µ0), and define u = v + w, where w ∈ W s is the solution
to eq. (5) from Lemma 2.4. Then u is asymmetric if and only if v is asymmetric.

Proof. We begin by assuming that u is symmetric. Because we have translational invariance for the
equation this is equivalent to assuming that that u is even. Then v(−x) +w(−x) = u(−x) = u(x) =
v(x)+w(x) or v(−x)−v(x) = w(−x)−w(x), which means v(−x) = v(x) and w(−x) = w(x) because
V and W s are orthogonal.

On the other hand, since N maps even functions to even functions, we can restrict the problem
to the subspace of Xs(T) consisting solely of even functions. Then we can find an even w such that
eq. (5) is solved for any even v. This means that if v is symmetric, so is u.

Thus, we have proven u is symmetric if and only if v is symmetric, which is equivalent to the
statement of the lemma. �

This result has a direct consequence for the case where Kµ0 = {±k}. Then we find that the kernel
is

V = span{cos(kx), sin(kx)}.
However, for any (t1, t2) there exist ρ and φ such that

v = t1 cos(kx) + t2 sin(kx) = ρ cos(k(x+ φ)).

In other words, if Kµ0 = {±k} then any v ∈ V is symmetric. This gives us the following result.
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Lemma 2.6. If Kµ0 = {±k}, then there exists no arbitrarily small asymmetric solution u ∈ Xs(T)

to eq. (3) for any µ ∈ BM
ε (µ0).

Proof. Assume we have a nontrivial solution u. If u is sufficiently small, then PV u = v ∈ BV
ε (0), so

there exists a unique solution w to eq. (5) according to lemma 2.4. However, by the uniqueness we get
PWu = w. Since Kµ0 = {±k} means that all elements in V are symmetric, we can apply lemma 2.5
to conclude that u is symmetric. �

In general, we expect eq. (4) to be a number of scalar equations equal to |Kµ0 |. However, the above
result shows that when |Kµ0 | = 2 we cannot obtain anything but symmetric solutions, which due to
the translational invariance are equivalent to even solutions. Thus, all essentially different solutions
can be obtained even if we a priori restrict the problem to even solutions, but then the dimension of
V is reduced to one. In particular, this means that eq. (4) is essentially one scalar equation when
|Kµ0 | = 2. A similar reduction of the number of equations in eq. (4) is possible for any |Kµ0 |. Using
the variational structure and translational invariance, we can show that eq. (4) is essentially |Kµ0 |−1
scalar equations.

Lemma 2.7. Let v ∈ BV
ε (0) and µ ∈ BM

ε (µ0) and define u = v + w, where w ∈ W s is the solution
to eq. (5) from Lemma 2.4. Then

〈L(µ)v + PV N(µ, v + w), v′〉 = 0.

Proof. By the translational invariance we have

0 = ∂aJµ(u(· + a))|a=0 = 〈L(µ)u+N(µ, v + w), w′〉+ 〈L(µ)u+N(µ, v + w), v′〉,
where v′ ∈ V and w′ ∈ W s, so

〈L(µ)u+N(µ, v + w), w′〉 = 〈L(µ)w + PWN(µ, v + w), w′〉
and

〈L(µ)u+N(µ, v + w), v′〉 = 〈L(µ)v + PV N(µ, v + w), v′〉.
Because w is a solution to eq. (5), we get 〈L(µ)w+PWN(µ, v+w), w′〉 = 0 that proves the result. �

This lemma shows that one of the equations in eq. (4) is always satisfied. Thus, naively we need

µ ∈ R|Kµ0 |−1 to be able to solve eq. (4). We will consider this problem for |Kµ0 | = 4 in the following
section, the lowest size of Kµ0 for which we can find asymmetric waves.

3. Sufficient and necessary conditions

Taylor-Fourier expansions. In this section, we focus mainly on the case where µ0 is such that
Kµ0 = {±k1,±k2}. Then the kernel of the linearization is given by

V = span{cos(k1x), sin(k1x), cos(k2x), sin(k2x)}.
However, following [17], we shall write a general element v ∈ V as

v = r1 cos(k1(x+ θ1)) + r2 cos(k1(x+ θ2)),

determined by the parameters r = (r1, r2) and θ = (θ1, θ2). We denote multi-indices by α, γ ∈ N2
0.

Let

E =
(
eik1(x+θ1), eik2(x+θ2)

)
,

kα,γ = (α1 − γ1)k1 + (α2 − γ2)k2,

and recall the convention that rα = rα1
1 rα2

2 . We also define the operator L = L−1(µ)PW , which has
symbol

ℓ(k) =

{
l−1
µ (k) if k /∈ Kµ0 ,

0 if k ∈ Kµ0 .

With this notation in hand, we can show a Taylor-Fourier expansion of the solution.
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Lemma 3.1. Let v ∈ BV
ε (0) and µ ∈ BM

ε (µ0) and define u = v + w, where w ∈ W s is the solution
to eq. (5) from Lemma 2.4. Then there exist coefficients ûα,γ = ûα,γ(µ) such that

u =
∑

|α|+|γ|≥1

ûα,γr
α+γEα−γ

and n̂α,γ = n̂α,γ(µ) such that

N(µ, u) =
∑

|α|+|γ|≥2

n̂α,γr
α+γEα−γ .

Moreover, ûα,γ = ûγ,α and n̂α,γ = n̂γ,α.

Proof. We set û(0,0),(0,0) = 0 and

û(1,0),(0,0) = û(0,1),(0,0) = û(0,0),(1,0) = û(0,0),(0,1) =
1

2
.

Then we use the fact that w = LN(µ, v +w) and equate orders of r and Fourier coefficients at every
order yielding

ûα,γ = ℓ(kα,γ)

|α|+|γ|∑

m=2

∑
∑n

i=1 α
(i)=α

∑n
i=1 γ

(i)=γ

nm,µ(kα(1),γ(1) , . . . , kα(m) ,γ(m))

m∏

i=1

ûα(i),γ(i) . (6)

Similarly we get

n̂α,γ =

|α|+|γ|∑

m=2

∑
∑n

i=1 α
(i)=α

∑n
i=1 γ

(i)=γ

nm,µ(kα(1),γ(1) , . . . , kα(m),γ(m))
m∏

i=1

ûα(i),γ(i) . (7)

The α, γ symmetry follows from the fact that ℓ and nm,µ are even. �

Factorization. Using this expansion, we can prove the following factorization of eq. (4).

Lemma 3.2. Let v ∈ BV
ε (0) and µ ∈ BM

ε (µ0) and define u = v + w, where w ∈ W s is the solution
to eq. (5) from Lemma 2.4, and Let 2 ≤ k1 < k2 be coprime. Then there exist analytic functions
Ψ1(r, θ, µ), Ψ2(r, θ, µ), Ψ3(r, θ, µ) and Ψ4(r, θ, µ) such that

〈L(µ)u+N(µ, u), cos(k1(x+ θ))〉 = r1Ψ1, (8)

〈L(µ)u+N(µ, u), cos(k2(x+ θ))〉 = r2Ψ2, (9)

〈L(µ)u+N(µ, u), sin(k1(x+ θ))〉 = rk2−1
1 rk12 sin(k1k2(θ2 − θ1))Ψ3, (10)

〈L(µ)u+N(µ, u), sin(k2(x+ θ))〉 = rk21 rk1−1
2 sin(k1k2(θ1 − θ2))Ψ4, (11)

and

Ψ1(0, θ, µ) = lµ(k1),

Ψ2(0, θ, µ) = lµ(k2),

Ψ3(0, θ, µ) = n̂(0,k1),(k2−1,0),

Ψ4(0, θ, µ) = n̂(k2,0),(0,k1−1).

Moreover, k1Ψ3 = k2Ψ4.

Proof. We can write

〈L(µ)u+N(µ, u), cos(k1(x+ θ))〉 = Re〈L(µ)u+N(µ, u), ei(k1(x+θ))〉
= lµ(k1)r1 +

∑

|α|+|γ|≥2

rα+γn̂α,γRe〈Eα−γ−(1,0), 1〉,
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where Re〈Eα−γ−(1,0), 1〉 = 0 for all α and γ such that α1 + γ1 = 0. Similarly,

〈L(µ)u+N(µ, u), sin(k1(x+ θ))〉 = Im〈L(µ)u+N(µ, u), ei(k1(x+θ))〉
=

∑

|α|+|γ|≥2

rα+γn̂α,γIm〈Eα−γ−(1,0), 1〉,

where Im〈Eα−γ−(1,0), 1〉 = 0 unless

α1 − γ1 − 1 = −pk2, α2 − γ2 = pk1 and pk1k2(θ2 − θ1) 6= 0.

This means α1 + γ1 ≥ k2 − 1 and α2 + γ2 ≥ k1 with equality precisely for p = 1, α = (0, k1)

and γ = (k2 − 1, 0). Moreover, when nonzero, we have Im〈Eα−γ−(1,0), 1〉 = sin(pk2k1(θ2 − θ1)) =
gp(θ) sin(k2k1(θ2 − θ1)).

The relation between Ψ3 and Ψ4 follows from

0 = 〈L(µ)u+N(µ, u), v′〉
= −r1k1〈L(µ)u+N(µ, u), sin(k1(x+ θ1))〉 − r2k2〈L(µ)u+N(µ, u), sin(k2(x+ θ2))〉
= rk21 rk12 sin(k1k2(θ1 − θ2))(k1Ψ3 − k2Ψ4).

�

Remark 3.3. Note that the assumption that k1 and k2 are coprime is only required for eqs. (8)
and (9). If k1 = 1 we can still find Ψ3 and Ψ4 such that eqs. (10) and (11) holds. Thus, the necessary
conditions below are still applicable in the latter case, while the sufficient conditions require k1 and
k2 to be coprime.

Main result. We are now ready to prove the main result of this paper.

Theorem 3.4 (Necessary and sufficient conditions). Consider eq. (3) satisfying properties (i) to (iv).
Then we have the following:

(a) If |Kµ0 | = 0, |Kµ0 | = 2, or Kµ0 = {±k1,±k2} and n̂(0,k1),(k2−1,0)(µ0) 6= 0, then there exists

no asymmetric solutions u ∈ Xs(T) to eq. (3) for any µ ∈ BM
ε (µ0).

(b) If Kµ0 = {±k1,±k2} for some coprime k1 and k2, n̂(0,k1),(k2−1,0)(µ0) = 0, µ = (µ1, µ2, µ3, . . .),
and

∂(lµ(k1), lµ(k2), n̂(0,k1),(k2−1,0)(µ))

∂(µ1, µ2, µ3)

∣∣∣∣
µ=µ0

=
∂(Ψ1,Ψ2,Ψ3)

∂(µ1, µ2, µ3)

∣∣∣∣
r=0,µ=µ0

6= 0, (12)

then there exists a manifold of solutions (u, µ) ∈ Xs(T)×M to eq. (3) parameterized by (r, θ).
Moreover, u is asymmetric if and only if (θ1 − θ2)k1k2 /∈ πZ, the mapping (r, θ) 7→ (u, µ) is
analytic and

u = r1 cos(k1(x+ θ1)) + r2 cos(k2(x+ θ2)) +O(r2), µ = µ0 +O(r2).

Proof. We begin by proving the necessary conditions (a). The first condition is due to the fact that
if |Kµ0 | = 0, then there are no nonzero solutions for eq. (3) in a neighborhood of µ0, by Lemma 2.3.
The second condition, if |Kµ0 | = 2, means that every solution (u, µ) ∈ Xs(T)×M in a neighborhood
of (0, µ0) is symmetric due to lemma 2.6. Now, if Kµ0 = {±k1,±k2} then for every asymmetric

v ∈ BV
ε (0) and µ ∈ BM

ε (µ0) we construct u = v+w with w ∈ W s from Lemma 2.4 else eq. (5) is not
satisfied. However, if n̂(0,k1),(k2−1,0)(µ0) 6= 0 then we have 〈L(µ)u + N(µ, u), sin(k1(x + θ))〉 6= 0 so
eq. (4) is not satisfied, whence neither is eq. (3).

We proceed by proving the sufficient conditions (b). By lemma 2.4 we obtain a solution w ∈ W s

to eq. (5) for any v ∈ BV
ε (0) and µ ∈ BM

ε (µ0). Then, by our assumptions, we can apply the analytic
implicit function theorem to find µ ∈ BM

ε (µ0) such that (Ψ1,Ψ2,Ψ3) = 0 and thus, by Lemma 3.2,



ON SMALL-AMPLITUDE ASYMMETRIC WATER WAVES 9

eq. (4) is satisfied for any v ∈ BV
ε (0). Now, parametrizing V with (r, θ) and using lemma 2.5 to

determine when u is asymmetric gives the desired result. �

Remark 3.5. What was done in [17] falls somewhere between these two results. The necessary
conditions are satisfied, but a weaker condition than eq. (12) is used to prove the existence. However,
the numerical results suggest that eq. (12) is true. It should be noted that actually checking eq. (12)
is in general very technical. In fact, even finding µ0 such that n̂(0,k1),(k2−1,0)(µ0) = 0 can be very
technical.

Remark 3.6. It is possible to imagine a similar result with somewhat different assumptions on the
equation, in particular, properties (iii) and (iv). The main use of Property (iii) is to show that
Ψ4 = 0 if and only if Ψ3 = 0. If this equivalence does not hold, it would be possible to solve
(Ψ1,Ψ2,Ψ3,Ψ4) = 0 instead, analogously to how we solve (Ψ1,Ψ2,Ψ3) = 0 in the theorem. At least
if the equation contains another parameter with the correct properties. This would give another, but
similar, result for sufficient conditions without assuming property (iii).

Moreover, we can also imagine a simple modification that allows us to lower the regularity in
property (iv). If we know that we are interested in some particular wavenumbers k1 and k2 a priori,
then we can work with F ∈ Ck1+k2(M × Xs;Xt). The expansions in lemma 3.1 simply have to be
truncated. If we also restrict ourselves to r so that

r1 . r2 . r1.

then the remainder immediately gets the necessary asymptotic behavior as r → 0. It may be possi-
ble without this restriction, but then some estimates for the remainder are necessary to obtain the
factorizations in lemma 3.2. In the end, we also only end up with solutions (u, µ), which are C1 with
respect to (r, θ).

4. Application to the infinite depth water wave problem

An infinite depth Whitham equation. Before considering the water wave problem, we begin by
studying a modified version of the capillary-gravity Whitham equation obtained by introducing a
depth parameter, d, which we let tend to infinity. This allows us to contrast the result in [17] with
an infinite depth result. The purpose of this is to observe the same relation between finite depth and
infinite depth for the water wave problem.

This depth dependent capillary-gravity Whitham equation is given by

ut + (MT,du+ u2)x = 0. (13)

As in eq. (1), MT,d is a spatial Fourier multiplier

M̂T,du(t, ξ) = mT,d(ξ)û(t, ξ),

but here the symbol mT,d is given by

mT,d(ξ) =

√
(1 + Tξ2) tanh(ξd)

ξ

We assume periodic solutions with period 2π/κ and rescale the period to 2π by changing variables.
Moreover, we introduce the traveling wave assumption and integrate the equation that yields

−cu+Mκ,T,du+ u2 = 0, (14)

where

Mκ,T,de
ikx = mT,d(κk)e

ikx =

√
(1 + Tκ2k2) tanh(κkd)

κk
eikx.

For this equation we use the Zygmund spaces, so Xs(T) = Cs(T) for some s > 1. We begin by noting
that for an arbitrary but finite depth this equation can be transformed back into the original equation
by the change of variables

u 7→ ũ = u/d1/2, c 7→ c̃ = c/d1/2, κ 7→ κ̃ = κd, and T 7→ T̃ = T/d2.
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This turns eq. (14) into

d(−c̃ũ+Mκ̃,T̃,1ũ+ ũ2) = 0, (15)

which is equivalent to the equation considered in [17]. Whence for a general finite depth we get a
solution if and only if we have a solution to the equation with normalized depth. Assuming that
we have a sequence of asymmetric solutions with depth tending to infinity but with bounded surface
tension, we arrive at a contradiction; through the change of variables above, we would obtain a
sequence of solutions with normalized depth and surface tension tending to zero. This is not expected,
as in [17] it is shown that limT→0 n̂(0,k1),(k2−1,0) = ±∞.

The argument above shows that we cannot reach an asymmetric infinite depth solution to eq. (14)
as the limit of finite depth solutions. However, asymmetric infinite depth solutions could exist without
being the limit of finite depth solutions. To rule out this possibility, we also return to eq. (14), but
now the plan is to take the limit d → ∞ before solving the equation. However, to do so, we change
the equation to one in the Zygmund space of functions of zero mean

◦

Cs(T) =

{
u ∈ Cs(T) :

1

|T|

∫

T

u dx = 0

}

obtaining

−cu+Mκ,T,du+
◦

Pu2 = 0,

where u ∈
◦

Cs(T) and
◦

P denotes the projection from Cs(T) onto
◦

Cs(T). It is possible to show that
this equation is equivalent to eq. (14) by a Galilean transformation and redefining the constant of
integration. The reason for rewriting the equation this way is that mT,d(0) is defined through a limit,
which does not commute with the limit d → ∞. Thus, with zero mean, we can, without ambiguity,
take the limit d → ∞ and obtain

−cu+Mκ,T,∞u+
◦

Pu2 = 0 (16)

where the Fourier multiplier Mκ,T,∞ now is given by

Mκ,T,∞eikx = mT,∞(κk)eikx =

√
1

κ|k| + Tκ|k|eikx.

We begin by checking that this equation belongs to the class of equations considered in this paper.

Lemma 4.1. The properties (i) to (iv) are satisfied for eq. (16) with Xs(T) =
◦

Cs(T), Xt(T) =
◦

Cs−1/2(T), s > 1, where µ = (c, κ, T ), L(µ)u = −cu+Mκ,T,∞u, and N(µ, u) =
◦

Pu2.

Proof. For property (i) we begin by noting that the linear part is obviously a Fourier multiplier with
even symbol. Moreover, we have

|k|1/2 . mT,∞(κk) . |k|1/2,

which means that Mκ,T,∞ :
◦

Cs(T) →
◦

Cs−1/2(T) is invertible. It follows that the mapping u 7→
u − cM−1

κ,T,∞u as an operator on
◦

Cs(T) is the identity mapping plus a compact map due to the

compact embedding
◦

Cs+1/2(T) ⊂⊂
◦

Cs(T), so the map is Fredholm and so is

L(µ) = Mκ,T,∞ ◦ (I − cM−1
κ,T,∞).

For property (ii) we note that
◦

Pu2 = N2(u, u),

where N2(e
ik1x, eik2x) = n2(k1, k2)e

i(k1+k2)x for

n2(k1, k2) =

{
0 if k1 + k2 = 0,

1 if k2 + k2 6= 0.
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Property (iii) follows because we can define the functional Jµ :
◦

Cs → R by

Jµ(u) =

∫

T

1

2
u(Mκ,T,∞ − c)u+

1

3
u3 dx.

For property (iv) we use the fact that the map u 7→ F (µ, u) is quadratic and only the linear part
depends on µ. Moreover, (κ, T ) → mT,∞(κk) is analytic around any point (κ0, T0) ∈ R2

+, with a
radius of convergence that is uniformly bounded below for all |k| ≥ 1, so (c, κ, T ) 7→ −c+Mκ,T,∞ ∈
L(

◦

Cs(T),
◦

Cs−1/2(T)) is analytic. That is, we can write

−cu+Mκ,T,∞u+
◦

Pu2 = −c0u− (c− c0)u+
◦

Pu2 +
∑

p,q≥0

(κ− κ0)
p(T − T0)

qMp,qu,

where Mp,q is a Fourier multiplier acting on
◦

Cs through eikx 7→ ∂p
κ∂

q
T
mT0,∞

(κ0k)

p!q! eikx. �

With this result in hand, we can prove the following result.

Proposition 4.2. For any T ∈ R+ and integers 1 ≤ k1 < k2 there exists a unique pair (c0, κ0) ∈ R2
+

such that

mT,∞(κ0k1) = c0 = mT,∞(κ0k2).

We further have m′
T,∞(κ0k1) < 0 < m′

T,∞(κ0k2), and c0 = c0(T ; k1, k2) and κ0 = κ0(T ; k1, k2) are
explicitly given by

c0 = T 1/4

√√
k1
k2

+

√
k2
k1

and κ0 =
1√

k1k2T
.

Proof. We begin by solving mT,∞(κk1) = mT,∞(κk2), which is equivalent to

1

k1κ
+ Tk1κ =

1

k2κ
+ Tk2κ.

This equation has a unique positive solution

κ0 =
1√

k1k2T

Evaluating mT,∞(κk1) or mT,∞(κk2) gives

c0 = T 1/4

√√
k1
k2

+

√
k2
k1

.

for ξ > 0 we have

m′
T,∞(ξ) =

− 1
ξ2

+ T

2mT,∞(ξ)
.

Evaluating at κ0k1 and κ0k2, we obtain m′
T,∞(κ0k1) < 0 < m′

T,∞(κ0k2). �

Here we have explicit expressions for c0 and κ0, which means that we can prove stronger results
about n̂(0,k1),(k2−1,0) than done for d = 1 in [17].

Proposition 4.3. For any (c0, κ0, T0) such that dimker (−c0 +Mκ0,T0,∞) = 4 there exists a constant
C = C(k1, k2) such that

n̂(0,k1),(k2−1,0)(c0, κ0, T0) = CT
− k1+k2−3

4
0 .

Proof. From Proposition 4.2 we have c0 = T
1/4
0

√√
k1
k2

+
√

k2
k1

and κ0 =
1√

k1k2T0
. It follows that

ℓ(kα,γ) =
1

−c0 +mT,∞(κ0kα,γ)
=

1

T
1/4
0

(
−
√√

k1
k2

+
√

k2
k1

+
√√

k1k2
|kα,γ | +

|κα,γ |√
k1k2

) .
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This allows us to show that there exist constants Cα,γ = Cα,γ(k1, k2) such that

ûα,γ = Cα,γT
− |α|+|γ|−1

4
0 .

We do this by induction over |α|+ |γ|. Clearly it is true for |α|+ |γ| = 1 and assuming that it is true
for all |α|+ |γ| < m we obtain, by eq. (6), for any |α| + |γ| = m such that α 6= γ

ûα,γ = ℓ(kα,γ)
∑

α′+α′′=α
γ′+γ′′=γ

Cα′,γ′Cα′′,γ′′T
− |α′|+|α′′|+|γ′|+|γ′′|−2

4
0

= T
− |α|+|γ|−1

4
0

∑
α′+α′′=α
γ′+γ′′=γ

Cα′,γ′Cα′′,γ′′

(
−
√√

k1
k2

+
√

k2
k1

+
√√

k1k2
|kα,γ | +

|κα,γ |√
k1k2

) ,

and if α = γ we obtain Cα,γ = 0. Similarly, with T0 dependence for ûα,γ proved, eq. (7) gives us

n̂(0,k1),(k2−1,0) = T− k1+k2−3
4

∑

α′+α′′=(0,k1)
γ′+γ′′=(k2−1,0)

Cα′,γ′Cα′′,γ′′

proving the result. �

With propositions 4.2 and 4.3 we can apply theorem 3.4 and find that there are no arbitrarily small
asymmetric solutions to eq. (16).

Theorem 4.4. Let C(k1, k2) be the constant from proposition 4.3. If C(k1, k2) 6= 0 for all integers

1 ≤ k1 < k2, then there exist no arbitrarily small asymmetric solutions to eq. (16) in
◦

Cs, s > 1.

Proof. Note that m′
T,∞(ξ) = 0 for exactly one ξ ∈ R+ so it is clear that dimker (−c0 +Mκ0,T0,∞) ≤ 4.

Thus, for any wavenumber pair (k1, k2) such that the constant from Proposition 4.3 is nonzero, we
can apply theorem 3.4 to show that there are no asymmetric solutions for that wavenumber pair. If
this is true for all wavenumber pairs, then there are no asymmetric solutions. �

Remark 4.5. We have calculated C numerically for all (k1, k2) such that k1 < k2 ≤ 100 and found
no examples where C = 0 among these, and we also believe it is highly unlikely that C = 0 for any
of the remaining (k1, k2). Moreover, the condition C = 0 is not sufficient to show the existence of
small-amplitude asymmetric waves, rather, even if C happens to be zero for some wavenumber pair,
it is still very unlikely that asymmetric solutions exist.

Another way to view this is that one independent parameter is fixed by taking the limit d → ∞.
In eq. (14) we seemingly have four parameters (c, κ, T, d), but because we can transform the equation
into eq. (15) we only have three independent parameters. However, taking the limit fixes one of these
parameters. By changing the variables

u 7→ ũ = κ1/2u, c 7→ c̃ = κ1/2c, and T 7→ T̃ = κ2T,

we turn eq. (16) into

1

κ
(−c̃ũ+M1,T̃ ,∞ũ+

◦

Pu2) = 0,

where it is obvious that c̃ and T̃ are the only free parameters left. Using this equation instead, we
would have to fix c̃0 and T̃0 to solve

mT̃0,∞(k1) = c̃0 = mT̃0,∞(k2)

and thus n̂(0,k1),(k2−1,0) becomes a constant which plays a role equivalent to C from proposition 4.3.
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The Babenko equation. The full water wave problem can be expressed as a single equation known
as the Babenko equation [14]. Since its inception as an equation only for gravity waves it has evolved
and been derived in other regimes. Here we will consider the finite depth version with surface tension
[1, 5] and the infinite depth version with surface tension [2]. We show that they share a relation similar
to the infinite and finite depth Whitham equations considered above and in [17], respectively. This
will allow us to conclude that there are no arbitrarily small asymmetric solutions to the water wave
problem on infinite depth, and give hope to the possibility of finding arbitrarily small asymmetric
solutions to the finite depth water wave problem.

We begin by introducing the finite depth Babenko equation with surface tension [1, 5], normalized
for zero mean and rescaled to the Zygmund spaces on the unit circle in the same way as the Whitham
equation

0 = −c2Hκ,dũ+ g{ũ+
◦

PũHκ,dũ+
◦

PHκ,d(ũ
2/2)}

−
◦

PTDκ

{
Dκũ√

(Dκũ)2 + (1 +Hκ,dũ)2

}
+

◦

PTHκ,d

{
1 +Hκ,dũ√

(Dκũ)2 + (1 +Hκ,dũ)2

}
,

(17)

where, c is the wave speed, g is the gravitational acceleration, T is the surface tension strength.
Moreover, the operators in the equation are given by

Hκ,d(e
ikx) = κk coth(κkd)eikx,

Dκ(e
ikx) = iκkeikx,

where d is the depth. We take the limit d → ∞ and introduce the new variables

ũ 7→ u = κũ, c 7→ ν =
cκ1/2

g1/2
, and T 7→ β =

Tκ2

g
.

This gives us the equation

0 =
g

κ

(
− ν2H1,∞u+ u+

◦

PuH1,∞u+
◦

PH1,∞(u2/2)

−
◦

PβD1

{
D1u√

(D1u)2 + (1 +H1,∞u)2

}
+

◦

PβH1,∞

{
1 +H1,∞u√

(D1u)2 + (1 +H1,∞u)2

})
,

(18)

where

H1,∞(eikx) = |k|eikx.
Equation (18) is of the form of eq. (3) with

µ = (ν, β) ∈ R2
+, (19)

L(µ)u = −ν2H1,∞u+ u− βD2
1u, (20)

N(µ, u) =
◦

P

(
uH1,∞u+H1,∞(u2/2) + βD2

1u

− βD1

{
D1u√

(D1u)2 + (1 +H1,∞u)2

}
+ βH1,∞

{
1 +H1,∞u√

(D1u)2 + (1 +H1,∞u)2

})
(21)

We begin by showing that this equation belongs to the class of equations treated in this paper.

Lemma 4.6. The properties (i) to (iv) are satisfied for eq. (18) where the parameters, linear part and

nonlinear part are given by eqs. (19) to (21) with Xs(T) =
◦

Cs(T), Xt(T) =
◦

Cs−2(T), s > 5/2.

Proof. To show property (i) is very similar to how it was done for the Whitham equation. Immediately
we get that L(µ) is a Fourier multiplier with symbol

lµ(k) = −ν2|k|+ 1 + βk2.
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Moreover, I − βD2
1 is invertible as an operator from

◦

Cs to
◦

Cs−2 and H1,∞ maps
◦

Cs to
◦

Cs−1. This

means the operator −ν2(I−βD2
1)

−1H1,∞ is compact on
◦

Cs, whence I−ν2(I−βD2
1)

−1H1,∞ and thus
so is

L(µ) = (I − βD2
1)(I − ν2(I − βD2

1)
−1H1,∞).

Verification of property (ii) is certainly a bit more involved in this case than in the Whitham case.

However, if u ∈ B
◦
Cs

ε (0) we have

1√
1 + (2H1,∞u+ (H1,∞u)2 + (D1u)2)

= 1 +

∞∑

m=1

am(2H1,∞u+ (H1,∞u)2 + (D1u)
2)m

for some am ∈ R. Expanding the powers and using a1 = −1
2 we can rearrange this into

1√
1 + (2H1,∞u+ (H1,∞u)2 + (D1u)2)

= 1−H1,∞u+
∑

j,k:j+2k≥2

bj,k(H1,∞u)j(D1u)
2k, (22)

for some bj,k ∈ R, which allows us to find

N2(µ, (u1, u2)) = u1H1,∞u2 +H1,∞(u1u2/2) + βD1(D1u1H1,∞u2)− βH1,∞(D1u1D1u2/2)

and

Nm(µ, (u1, . . . , un)) =
∑

j,k:j+2k+1=m

β [(bj+1,k + bj,k)H1,∞(H1,∞u1 . . .H1,∞uj+1D1uj+2 . . .D1um)

−bj,kD1(H1,∞u1 . . .H1,∞ujD1uj+1 . . .D1um)]

for m ≥ 3. This means that

N2(µ, (e
ik1x, eik2x)) = (|k2|+ |k1 + k2|/2− (k1 + k2)k1|k2|+ β|k1 + k2|k1k2/2)ei(k1+k2)x

and

Nm(µ, (eik1x, . . . , eiknx)) =
∑

j,k:j+2k+1=m

β(−1)k


(bj+1,k + bj,k)

∣∣∣∣∣
m∑

l=1

kl

∣∣∣∣∣

(
j+1∏

l=1

|kl|
)


m∏

l=j+2

kl




+bj,k

(
m∑

l=1

kl

)(
j∏

l=1

|kl|
)


m∏

l=j+1

kl




 ei(

∑m
l=1 kl)x,

for n ≥ 3. These expressions define nm,µ(k1, . . . , kn) (unless
∑m

l=1 kl = 0, then nm,µ(k1, . . . , kn) = 0)
with the desired symmetry properties.

For property (iii) we have the functional [2] on
◦

Cs(T)

Jµ(u) =

∫

T

1

2

[
u2(1 +H1,∞u)− ν2uH1,∞u

]
+ β

√
(D1u)2 + (1 +H1,∞u)2 dx.

For property (iv), we can use the expansion in eq. (22) to see that we have a series expansion for
sufficiently small u. Then the joint analyticity in u and the parameters follows from the fact that the
equation is simply linear in β and quadratic in ν. �

The linear part of this equation is qualitatively the same as for the Whitham equation, but for
completeness we include the following result.

Proposition 4.7. For any integers 1 ≤ k1 < k2 there exists a unique pair (ν0, β0) ∈ R2
+ such that

lµ0(k1) = lµ0(k2) = 0.

We further have lµ0(k) 6= 0 for all k /∈ {±k1,±k2} and ν0 = ν0(k1, k2) and β0 = β0(k1, k2) are
explicitly given by

ν0 =

√
1

k2
+

1

k1
and β0 =

1

k1k2
.
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Proof. The result comes from solving the system of equations

−ν2k1 + 1 + βk21 = 0,

−ν2k2 + 1 + βk22 = 0,

except the part that lµ0(k) 6= 0 for all k /∈ {±k1,±k2}. However, if lµ0(k) = 0 for such a k we would
have a quadratic equation with three roots. �

This allows us to prove the following result about the infinite depth Babenko equation.

Theorem 4.8. If the constants n̂(0,k1),(k2−1,0)(µ0(k1, k2)) 6= 0 for all integers 1 ≤ k1 < k2, then there

exists no arbitrarily small asymmetric solutions to eq. (18) in
◦

Cs(T), s > 5/2.

Proof. By Proposition 4.7 we have dimker(L(µ)) ≤ 4. Thus, we only have to deal with the dimker(L(µ)) =
4 case to show the nonexistence of solutions. For any (k1, k2) we can apply theorem 3.4 to find

that there are no small-amplitude solutions to eq. (18) in
◦

Cs(T) for that specific pair (k1, k2) if
n̂(0,k1),(k2−1,0)(µ0(k1, k2)) 6= 0. If n̂(0,k1),(k2−1,0)(µ0(k1, k2)) 6= 0 for all (k1, k2), then there are no

small-amplitude solutions at all to eq. (18) in
◦

Cs(T). �

Remark 4.9. Just as in the case for the Whitham equation we expect n̂(0,k1),(k2−1,0)(µ0(k1, k2)) 6= 0
to hold for all (k1, k2). Moreover, n̂(0,k1),(k2−1,0)(µ0(k1, k2)) = 0 for some (k1, k2) does not imply the
existence of arbitrarily small asymmetric solutions.

By [2] we know that eq. (18) is equivalent to the infinite depth water wave problem, so we obtain the
result that the infinite depth water wave problem does not have arbitrarily small asymmetric solutions.
This result in itself is not new; see [18, Theorem 4.5]. However, in the context it is presented here
we see the parallel with the finite and infinite depth Whitham equation. That we reduce the number
of available parameters by taking the limit d → ∞. Thus, in the finite depth case, eq. (17), there
is effectively one more parameter in the formulation of the water wave problem than in the model
considered in [18]. This could allow for a similar existence result to the one in [17] for the water wave
problem.
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