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Abstract

Coresets are arguably the most popular compression paradigm for center-based clustering
objectives such as k-means. Given a point set P , a coreset Ω is a small, weighted summary
that preserves the cost of all candidate solutions S up to a (1 ± ε) factor. For k-means in
d-dimensional Euclidean space the cost for solution S is

∑
p∈P mins∈S ∥p− s∥2.

A very popular method for coreset construction, both in theory and practice, is Sensitivity
Sampling, where points are sampled in proportion to their importance. We show that Sensitivity
Sampling yields optimal coresets of size Õ(k/ε2 min(

√
k, ε−2)) for worst-case instances. Uniquely

among all known coreset algorithms, for well-clusterable data sets with Ω(1) cost stability,

Sensitivity Sampling gives coresets of size Õ(k/ε2), improving over the worst-case lower bound.
Notably, Sensitivity Sampling does not have to know the cost stability in order to exploit it: It
is appropriately sensitive to the clusterability of the data set while being oblivious to it.

We also show that any coreset for stable instances consisting of only input points must have
size Ω(k/ε2). Our results for Sensitivity Sampling also extend to the k-median problem, and
more general metric spaces.
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1 Introduction

The ability to process and analyze large quantities of data is the driving force for both theoreti-
cal and applied machine learning research. When analyzing large data sets, one typically makes
them more manageable via distributed computation or outright compression using data reduc-
tion/summarization. A natural approach here is using coresets or sparsifiers where the input data
is replaced by a small set of weighted input points that provably approximate the loss function
for a given set of queries. Most coreset constructions are also highly parallelizable, as a union of
coresets for distributed data is also a coreset of the union.

A bit more formally, given a large set of points P and a set of queries S with associated loss
function f : P ×S → R≥0, a coreset Ω for P satisfies

∑
p∈Ωwpf(p, S) ≈

∑
p∈P f(p, S) for all S ∈ S,

where the wp are reweighting factors. The problem of designing small coresets and understanding
the tradeoff between size and error has been extensively studied in various contexts ranging from
graph sparsification [SS11,BSS12], linear regression [DDH+09], subspace approximation [WY23],
computational geometry [AHV04], clustering [HM04], classification [MMR21], learning mixture
models [LFKF17] etc., and has been highly influential in fast algorithm design and machine learning.

A very popular method for coreset construction, both in theory and practice, is sampling points
in proportion to their importance. E.g., by effective resistances in graph sparsification [SS11],
leverage scores in matrix approximation [DMMW12], and so on. More generally, Langberg and
Schulman [LS10] introduced the sensitivity sampling framework for coreset construction which was
subsequently codified by Feldman and Langberg [FL11]. This is highly effective for a wide range
of problems, including several complicated clustering objectives.

In a nutshell, sensitivity sampling picks a sufficient number of points, where each point p ∈ P
is sampled with probability proportional to

σp := sup
S

f({p}, S)
f(P, S)

,

and weighted inversely by its sampling probability. Intuitively, the sensitivity score captures the
importance a point can have in any given solution and how “indispensable” it is to include it in
the sample. In some cases, such as graph sparsification or leverage scores, the sensitivities may be
computed up to arbitrary precision, though obtaining fast approximate algorithms still has seen
significant research. For k-clustering, computing the exact scores is usually infeasbile, but there is
extensive work on efficiently approximating them by various proxies [BLL18,FL11,FSS20].

Euclidean k-means. Arguably, the most widely studied and important clustering objective in
this line of research is the Euclidean k-means problem. Here we are given a data set P consisting
of points in d-dimensional Euclidean space and the task is to find k centers S such that

cost(P, S) :=
∑
p∈P

min
c∈S

∥p− c∥2

is minimized, where ∥x∥ = (
∑d

i=1 x
2
i )

1/2 denotes the length of a vector. A weighted subset Ω is an
ε-coreset of P if for all candidate solutions S, one has the property

|cost(P, S)− costΩ(P, S)| ≤ ε · cost(P, S).

The typical parameter of interest for Ω is the number of distinct points m, the size of the coreset.
For coresets constructed by sampling, the cost estimator is the weighted average

costΩ(P, S) =
1

m

∑
p∈Ω

min
c∈S

∥p− c∥2 · 1

P[p]
. (1)
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Optimal Coreset bounds. There has been a long line of work [Che09, FL11, LS10, FSS20,
BBC+19, HV20] culminating recently [CSS21b, CLS+22] in Õ(kε−2 · min(

√
k, ε−2)) size coreset

bounds.1 We discuss some of the ideas in Section 1.2, see also Table 1, as they will be relevant for
us.

In a surprising recent result, Huang, Li, and Wu [HLW23] showed that this unusual looking
bound is actually the best possible. To do this, they construct an ingenious worst-case instance
and show that any ε-coreset for it must have size Ω̃(kε−2 ·min(

√
k, ε−2)).

Despite this impressive recent progress, two natural questions remain.

Question 1. Can the optimal k-means coreset be obtained by Sensitivity Sampling?

These optimal coreset bounds are not based on sensitivity sampling, but instead use the group
sampling algorithm (GS) introduced by [Che09], and refined further by [CSS21b] to yield its current
analysis. A major drawback of group sampling is that it requires substantial preprocessing of the
input into several groups, and moreover, the algorithm itself is tailored to these groups.

On the other hand, sensitivity sampling is extremely simple to implement (see Algorithm 1
below),

and is significantly preferred to group sampling for several reasons: (i) it is extremely fast and
more accurate in practice,2 (ii) many downstream applications can use sensitivity sampling as a
black box [BFLR19,BHM+21,CWZ23a,WZZ23], and (iii) it can be applied to any problem whereas
group sampling is limited to center-based clustering.

Algorithm 1. Sensitivity Sampling.

Input: A set of n points P ⊂ Rd, integer k.

1. Compute a O(1)-approximate k-means solution A = {a1, a2, . . . , ak} for P . Let Cj ⊂ P
be the cluster centered at aj . For a point p in Cj , let ∆p := cost(Cj , A)/|Cj | denote the
average cost of Cj .

2. Let µ : P → R+ be the following probability distribution. For a point p ∈ Cj ,

µ(p) :=
1

4
·
(

1

k|Cj |
+

cost(p,A)

k cost(Cj , A)
+

cost(p,A)

cost(P,A)
+

∆p

cost(P,A)

)
. (2)

3. For i from 1 to m:

• Sample point qi independently from the distribution µ.

• Add qi to Ω with weight wqi := 1/(m · µ(qi)).

Output: The set of points Ω = {q1, . . . , qm} and the weights {wq1 , . . . , wqm}.

Perhaps the biggest advantage of sensitivity sampling is that the analysis can take a holistic,
unified view of the data. This is especially relevant for clustering as the instances arising in practice
usually have some global structure that makes them well-clusterable (to paraphrase [DLS12], if the
data had no structure, we would not care about clustering it anyways). Identifying and analyzing

1here and throughout the paper Õ(·), Ω̃(·) hides polylogarithmic factors in k, ε−1.
2In the experiments of [SS22] it is consistently 10%-400% faster than group sampling on standard datasets.
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such properties is a part of the beyond-worst-case-analysis framework, which has seen several
successes in recent years [Rou19].

So, it is natural to ask whether sensitivity sampling can exploit data-specific properties.

Question 2. Do compression tasks become provably easier if the data set is well-clusterable?

Despite extensive work on designing good clustering algorithms under beyond-worst-case as-
sumptions [AMM17,BBG13,CS17,KK10,ORSS12], we are not aware of any such work on coresets.
Finally, we remark that group sampling based methods seem inherently incapable of addressing
such questions as they take a very limited and local view of the data.

1.1 Our Results

We answer both of these questions. Our first main result is that sensitivity sampling gives optimal
coresets for k-means in Euclidean spaces.

Theorem 1. Sensitivity Sampling yields a k-means coreset of size Õ(k/ε2 ·min(
√
k, ε−2)) in Eu-

clidean space with constant probability.

As mentioned above, this bound is optimal, matching both the upper bound of group sampling
[CSS21b, CLS+22] and the general lower bound of [HLW23]. Previously, the state-of-the-art k-
means coreset bounds for Sensitivity Sampling were Õ(k · ε−4min(k, ε−2)) [HV20].

Note that in any analysis of sampling-based coresets, one needs to control the error of the
unbiased estimator (1), which depends on (i) loss due to variance and (ii) loss due to the union
bound over all possible clustering S (up to some discretization). The previous analyses for sensitivity
sampling used coarse variance bounds of k or ε−2, and exp(kd) on the number of clusterings.
However, these bounds are tight by themselves and cannot give any further improvements.

Our first technical contribution is a chaining based analysis of sensitivity sampling that carefully
trades off the variance with the size of the clusterings at each distance scale. Previously, all
applications of chaining required group sampling due to its various useful properties. Instead, we
give both tight bounds on the variance and the union bound by leveraging some of group sampling’s
structural properties, without having to compute them.

Coresets for well-clusterable inputs. For beyond-worst-case analysis, we consider the cost-
stable clusterability criterion of Ostrovsky, Rabani, Schulman, and Swamy [ORSS12], which is
arguably the oldest and most well understood stability criterion for clustering. A data set is called
β-stable if the ratio between the cost of an optimal k-clustering OPTk and the cost of an optimal
k− 1 clustering OPTk−1 satisfies OPTk−1/OPTk ≥ 1+β. The most important and widely studied
setting is when β = Ω(1); see the related work in Section 1.4 for more details.

Our main result is as follows.

Theorem 2. For cost-stable data sets in Euclidean space with β = Ω(1), Sensitivity Sampling
yields a k-means coreset of size Õ(k/ε2) with constant probability.

We emphasize that we use the same algorithm in both cases and that stability is only used
in the analysis. Our second (key) technical contribution is to show more refined bounds between
variance and the number of clusterings at various scales by exploiting the stability property. We
also note that achieving similar results for group sampling is significantly more difficult, as the
groups do not satisfy the aforementioned stability criterion, even if the entire data set does. In
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a nutshell, our results show that Sensitivity Sampling is appropriately sensitive to stability while
being oblivious to it.

One may wonder whether the Õ(k/ε2) bound is optimal for stable instances?

We show that this is indeed the case for coresets, which consist only of input points. This
assumption holds for most known coreset algorithms.

Theorem 3. For cost-stable data sets with any β in Euclidean space, any coreset using non-
negatively weighted input points must have size Ω(k/ε2).

In Section 3.1, we also remark that for another popular notion of well-clusterability known as
perturbation resilience, one cannot obtain coresets that beat the worst-case bound.

As sensitivity sampling outputs only the input points, it can also be applied to non-Euclidean
metrics. Indeed, as a simple, straightforward consequence of our work, we also show that Sensitivity
Sampling achieves optimal bounds for k-means in doubling metrics and finite metrics3.

Theorem 4. In doubling metrics with bounded doubling dimension D, Sensitivity Sampling com-
putes a k-means coreset of size Õ(kD/ε2).

This improves over the Õ(k3Dε−2) analysis for Sensitivity Sampling by [HJLW18] and matches
the lower bound by [CLSS22] (which was already attained by Group Sampling). See Appendix H
for the details.

Finally, we remark that these results also carry over to the k-median problem. Specifically,
we achieve a Õ(k/ε2min( 3

√
k, ε−1)) worst case bound for k-median and a Õ(k/ε2) bound for sta-

ble instances (see Appendix G). Given these results, our work confirms the common belief that
Sensitivity Sampling is the right coreset algorithm for clustering.

1.2 Related Work and Technical Overview

We now give a more detailed overview of our ideas and place our work in the proper context. This
requires understanding some previous work, which we now describe at a high level.

Clearly, the analysis of any sampling-based coreset algorithm has two components. Bounding
the variance of estimator (1), and the loss due to union bound over the candidate solutions S.
Consider a fixed solution S, and let X(S) = costΩ(P, S) denote the estimator in (1). The relative
error for S with m samples is about σS/m

1/2, where σ2S = E[X(S)2]/E[X(S)]2 is the (normalized)
variance, and thus setting σS/m

1/2 = ε, it follows that m = ε−2σ2S samples suffice. To control the
error for a set N of solutions S, by standard concentration and union bounds m = ε−2σ2 log |N |
samples suffice, where σ is some upper bound on the variance for different S.

Thus, all previous analyses focus on bounding log |N | and σ2. These analyses fall into two
generations: those that don’t use chaining and those that do (starting from [CLSS22]). See Table 1.

Generation 1. These analyses gave generic upper bounds on N and σ2. The set N consisted of
an ε-net of all possible solutions S, obtained by selecting k points as centers from a sufficiently fine
discretization of the unit Euclidean sphere of size (1/ε)d, as initially proposed by both Chen [Che09]
and Feldman and Langberg [FL11]. Black box applications of dimension reduction techniques
subsequently replaced d with ε−2, ignoring logarithmic factors, see [BBC+19,HV20]. As a result,
we have log |N | ≈ kmin(d, ε−2), which remains the state of the art to this day.

For variance, a simple bound, given initially by [LS10], shows that σ2 ≈ k. A more sophisti-
cated analysis by [FL11] and [CSS21b] showed σ2 ≈ ε−2. These bounds are based on considering

3Finite n-point metrics are a special case of doubling metrics with doubling constant logn.
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Reference Variance Log of Net Size Size Algorithm

Upper Bounds for Euclidean k-means

[Che09] (Sicomp’09) O(1) kd k2dε−2 log n GS*

[LS10] (SODA’10) k kd2 k2d2ε−2 SS

[FL11] (STOC’11) ε−2 kd kdε−4 SS

[FSS20] (Sicomp’20) k k2ε−2 k3ε−4 SS

[BBC+19] (STOC’19) ε−2 kε−4 kε−8 SS

[HV20] (STOC’20) ε−2 kε−2 kε−6 SS

[BJKW21a] (SODA’21) k kε−2 k2ε−4 SS

[CSS21b] (STOC’22)
k O(1), ε > 2−t/2

kε−4 GS
O(1) kε−2, ε < 2−t/2

[CLSS22] (STOC’23)
2−2hk

k22h
k2ε−2

GS
2−2h2t kε−4

[CLS+22] (NeurIPS’23)†
k O(1) (2h ≤ 2t/2)

kε−2min(
√
k, ε−2)

GS
2−2hmin( k

kt·2t , 1) k ·min(kt, 2
t) · 22h

(2h > 2t/2)

(here) Theorem 1 2−2hmin( k
kt·2t , 1)

k · kt · 22h
kε−2min(

√
k, ε−2) SS

k · 2t · 22h

(here) Theorem 2 2−2h/β · kt
k · kt · 22h

kε−2 SS(2t > k, 2h > 2t/2)

(β ∈ Ω(1)) O(2−2hk) O(1) (2t > k, 2h ≤ 2t/2)

Lower Bounds for Euclidean k-means

[CLSS22] (STOC’23) kε−2

[HLW23] (STOC’24) kε−2 ·min(
√
k, ε−2)

(here) Theorem 3 kε−2 for any constant β and assuming Ω ⊆ P

Table 1: Variance/Net size tradeoffs and resulting for previous coreset constructions for Euclidean k-
means. All polylogarithmic factors are suppressed. GS denotes group sampling and SS denotes sensitivity
sampling. Net sizes in terms of t and the corresponding variance can be used in a chaining analysis. ∗:
Chen’s paper [Che09] was an early version of group sampling with k log n groups, rather than the proposed
log2 ε−1 groups by [CSS21b]. †: The optimal analysis for group sampling was later independently reproved
by [HLW23].

how much each cluster in some approximately optimum clustering can cost in a non-trivial can-
didate solution S. However, the bound σ2 = min(k, ε−2) is tight, and thus m = ε−2σ2 log |N | ≈
kε−4min(k, ε−2) is the limit of these methods. So any further improvement needs to come from
more sophisticated ways of doing union bounds.

Generation 2. This is where chaining enters the picture. Chaining is a very powerful approach,
but often technically challenging, to optimally bound the suprema of Gaussian processes (the
suprema over S of the estimator (1) can be written in this form via a standard symmetrization
technique). The idea in chaining is to write the estimator as a telescoping sum of other estimators
at increasingly finer distance scales and bound the variances and nets at each such scale. Some
excellent references are [Ver18a,Tal14].

[CLSS22] were the first to introduce chaining to coreset analyses. Roughly, if we parameterize
the distance scales by h (scale h has precision 2−h), the variance of the estimator σh at scale h
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decays exponentially in h, while the nets N2−h get larger as they get increasingly finer. The overall
error rate then is the normalized sum (or integral) over all distances 2−h ranging from 0 to ε−2,

∑
h≤2 log 1/ε

√
σ2h
m

· log |N2−h |.

Generally speaking, the improvement in chaining comes from carefully trading off the variance with
the logarithm of the net size at each scale. Roughly, the naive union bound in generation 1 results
uses the worst net size and the worst variance bound over all scales, which could be very wasteful.

Combining the older variance bounds of k (times 2−2h at distance scale h) from [FSS20,LS10],
[CLSS22] used the chaining framework to obtain an error rate of

∑
h∈N

√
k2−2h

m
· k22h ≈

√
k2

m
,

leading to m = ε−2k2 coreset size bound.

To obtain the optimal bounds, [CLS+22] gave a significantly more sophisticated trade-off be-
tween variance and net size. We will describe this next as we will need it. Starting with a constant
factor approximation A to the optimal k-means clustering, the algorithm classifies each cluster of
A according to its costs in S ∈ S, and obtains the variance and net size tradeoffs in terms of these
parameters (see Table 1). Here, a cluster of A has type t if it costs ≈ 2t times more in the solution
S.

Let kt denote the number of clusters of type t.

Specifically, they give two different net constructions, one which is better for small kt and other
if kt is large. In particular, they show log |N2−h | = O(kmin(kt, 2

t)22h), and variance bounds of
min(k/(kt2

t), 1) (times 2−2h at distance scale h), which gives an error of√
min(k/(kt2t), 1)2−2h

m
· kmin(kt, 2t)22h ≈

√
k

m
·min

(
k

kt
, kt, 2t

)
≤

√
k

m
·min(

√
k, 2t).

Since, we can assume that 2t ≤ ε−2 this leads to the optimal coreset of sizem = Õ(kε−2 ·min(
√
k, ε−2)).

Our work on Sensitivity Sampling. There are two key difficulties in analyzing sensitivity
sampling. First, to extend the error rate of [CLS+22] for group sampling, without being able to
rely on the carefully chosen structural properties afforded to the analysis by group sampling. Our
main contribution is to show that the existence of these structural properties suffices to obtain the
desired net/variance tradeoffs without requiring an algorithm to compute and enforce them.

Second, and our main novel contribution, is a similar refined variance/net size tradeoff for
stable instances. The key property that stable instances satisfy is that if two clusters interact
in a solution, at least one of them must pay at least β · k times more than their cost in A4.
This property already ensures that for most ranges of 2t, the previous variance/net tradeoffs from
[CSS21b,CLSS22,CLS+22] cannot occur unless 2t is very large. Specifically, two clusters can only
interact if 2t ≥ β · k for at least one of them. This property is crucially not satisfied for the groups
used by group sampling. In particular, those groups can be worst-case instances that would, by
themselves, require a coreset of size k1.5/ε2, even if the entire data set is stable.

4This bound makes several simplifying assumptions that do not hold in general for stable instances, but they
capture the essence of the analysis in a faithful way.
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Consequently, one would hope that this increase in cost by a factor of at least k should decrease
the variance of the estimator by that factor. Unfortunately, this only holds for sufficiently large
choices of h, in particular for h > (log k)/2. To get around this, we use a different bound on the
variance of the coreset estimator for smaller values of h, originally proposed by [CSS21b] for group
sampling and extended here to sensitivity sampling. This gives an error rate of

∑
h≤(log k)/2

2−h

√
1

m
· k +

∑
h>(log k)/2

2−h

√
1

mβ · kt
· k · kt · 22h ≈

√
k

β ·m
,

giving the optimal coreset bound of Õ(kε−2) for Ω(1) stable instances.

To the best of our knowledge, this is the first sensitivity sampling analysis that uses different
variance bounds for the estimator at different precision scales, even when considering non-clustering
objectives. Finally, as mentioned earlier, the improved error rate does not require a change in the
sensitivity sampling algorithm or any advanced knowledge of β. Thus, sensitivity sampling is
appropriately sensitive to the stability of a data set while being oblivious to it.

1.3 Notation and Definitions

We now describe the notation and definitions used in the paper.

For two expressions A,B we use the notation A ≲ B to denote A = O(B). We use S to
denote the set of all possible ordered k-tuples of centers in Rd. For two points p, q ∈ Rd, we let
cost(p, q) := ∥p − q∥22 denote the squared distance between the points. Given a set of k centers
S ∈ S we let cost(p, S) := minc∈S cost(p, c) to be the cost of p to the nearest center in S. For
a set of of points P ′ ⊂ Rd, we denote cost(P ′, S) :=

∑
p∈P ′ cost(p, S) to be the k-means cost

of P ′ wrt S. Similarly for a set of points Ω = {q1, . . . , qm} with weights {wq1 , . . . , wqm}, we let
costΩ(P

′, S) =
∑

qi∈P ′∩Ωwqicost(qi, S).

With the notation in place, we formally define an ε-coreset.

Definition 1.1 (ε-Coreset). Given a set P ⊂ Rd of n points and ε ∈ (0, 1), an ε-coreset is a set
Ω = {q1, . . . , qm} ⊂ Rd of points with weights {wq1 , . . . , wqm}, that for any set of k centers S ∈ S
approximately preserves the k-means objective of P with respect to S, i.e.,

costΩ(P, S) ∈ (1± ε)cost(P, S).

The number of points m in the coreset is called its size.

We now define the notion of well-clusterability that we will use.

Definition 1.2 (β-Stability [ORSS12]). For β > 0, a set P ⊂ Rd is β-stable if its optimal
k-means cost OPTk and optimal (k − 1)-means cost OPTk−1 satisfy OPTk · (1 + β) ≤ OPTk−1.

1.4 Further Related Work

Coresets. Coresets for clustering have received substantial attention over the years. Besides
Euclidean metrics, they have also been studied for many other metrics, such as doubling metrics
[HJLW18,CSS21a] and shortest path metrics in graphs [BBH+20,BJKW21a]. There have also been
several works on extending coresets to constrained clustering objectives including clustering with
cardinality constraints [CL19,HJV19,SSS19,BFS21,BCJ+22].

Further work on corsets considers objects other than points as centers [FMSW10, HSV21,
BJKW21b] or other objectives altogether [BDM13,MMK18,MSSW18,KL19,PT20,TMF20,HSV20,
MMR21]. For further reading, we refer the interested reader to surveys [Fel20,MS18].
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Stability. There has been a lot of work on understanding why clustering algorithms work un-
usually well in practice. Inspired by the elbow method5, [ORSS12] introduced cost stability to
model the well-clusterability of real-life data. Over the years, several works have shown that
popular algorithms such as local search [CS17], k-means++ [JG12,AJP15], and even Lloyd’s algo-
rithm [KK10,AS12] perform better for β-cost stable instances with β = Ω(1). Additionally, [ABS10]
also gave a PTAS for such inputs, which is unlikely to exist for worst-case instances. Clustering
of cost-stable inputs has also been studied in various constrained models such as streaming and
privacy [SSS20]. Notably, better streaming algorithms for stable instances were known [BMO+11]
before they were achievable using coresets [BFLR19,CWZ23b].

Various other models for the beyond-worst-case analysis of clustering, most notably perturbation
resilience6 [BL12], have been proposed. These assumptions allow the recovery of good clusterings
for various objectives [ABS12,BHW20,BL16,MMV14], including k-means [AMM17]. Lastly, there
exist numerous assumptions for recovering mixtures, all of which bear a strong similarity to stability
criteria [Das99,AK01,VW04,DS07,BV08,KSV08,AS12].

Symmetrization: Reduce to
bounding a Gaussian process

Equation (11)

Use chaining to bound
Gaussian Process
Section 2.8.1

Define nets in Section 2.2.4
and Bound Net Size

Section 2.3

Bound the Variance
of the Estimator

Variance Bound
Exploiting Stability

Lemma 2.31

Relating cost of Stable
Inputs to Interaction

Lemma 2.28

Worst Case Variance Bound
Lemma 2.33

Relating cost of Worst-
Case Inputs to Interaction

Lemma 2.32

Figure 1: A roadmap of the key steps of the analysis. The steps in the green boxes are common to the proof
for stable inputs and worst-case inputs. The key difference is in analyzing the variance of the estimator, and
these steps appear in the red and blue boxes, respectively.

5The elbow method is a heuristic used to compute the number of clusters in a data set. This involves plotting the
cost of clustering as a function of the number of clusters and picking the number of clusters to be the elbow of this
curve. Aside from being a popular heuristic in practice, there exists some theoretical justification for this approach,
see [BKK22].

6Bilu-Linial stability, also known as perturbation resilience, is the other important stability notion that has received
the most analysis for various problems. It is comparatively unlikely to hold for real-world instances as it is not robust
to any form of noise, but it allows for solving clustering instances optimally. Unfortunately, assuming this stability
notion does not yield any improvement for coresets, which we demonstrate in Section 3.
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2 The Analysis of Sensitivity Sampling

2.1 Roadmap of the Analysis

We now prove Theorem 1 and Theorem 2, which bound the coreset sizes for worst-case inputs and
stable inputs, respectively. To show that the output Ω of Sensitivity Sampling (Algorithm 1) is an
ε-coreset, we need to show that the maximum relative error of Ω over all possible placements of
centers S ∈ S is at most ε. This is equivalent to showing the following:

E
Ω
sup
S∈S

∣∣∣∣cost(P, S)− costΩ(P, S)

cost(P, S)

∣∣∣∣ ≤ ε. (3)

Theorems 1 and 2 then immediately follow from (3) via Markov’s inequality.

Showing (3) involves several steps which we now sketch (also see Figure 1 for an illustration).

Symmetrization. The first key step is to apply a symmetrization argument (in Section 2.4) to
reduce this task to bounding the supremum of a Gaussian process. Specifically, (3) reduces to
showing the following:

E
Ω
E
g
sup
S∈S

∣∣∣∣
∑

qi∈Ω gi · wqi · cost(qi, S)
cost(P, S)

∣∣∣∣ ≤ ε, (4)

where the gi are m independent standard Gaussian random variables. Symmetrization allows us to
fix Ω and bound the inner expectation in (4), which is only over the randomness of the Gaussians.
A key advantage of fixing Ω is that the nets for the chaining argument can now depend on Ω.

Constructing Nets. The supremum in (4) is over the infinitely many centers in S. To handle
this, the next important step is to construct nets approximating S at various distance scales. This
is done in Section 2.3. At a high level, a net of S has the following property: For any S ∈ S the
net contains an S′ such that for each point q ∈ Ω, we have cost(q, S) ≈ cost(q, S′).

Chaining. Next, we use a chaining argument (in Section 2.5) to bound the Gaussian process (4).
To do this, we decompose it into a sum of multiple Gaussian processes at different distance scales,
using the nets of S at these scales. The main technical challenge then is to bound the variance of
these various Gaussian processes and trade it off with the corresponding net size.

To bound the variance, we crucially exploit that points are sampled roughly proportional to their
sensitivity. To obtain the trade-off, we identify a key parameter called the “interaction number”
(in Section 2.2.5) that quantifies the complexity of interactions between solutions and the points.
The key idea is to show that while centers with high interaction numbers require large nets, they
have a large cost and their (normalized) variance becomes low.

Bounding the variance requires different arguments for worst-case inputs and stable inputs.

The variance bound for worst-case inputs is described in Section 2.8 and the trade-off with
the net sizes is described in Section 2.8.1. For stable inputs, we show stronger guarantees on the
variance in terms of the stability parameter β. This is done in Section 2.7. The trade-off with the
net sizes to obtain the final coreset bound for stable inputs is described in Section 2.7.2.

The above roadmap simplifies some of the details of the analysis. Before performing the key
steps described above, in the next section, we decompose the problem of proving (3) into various
structured cases that help us perform the analysis cleanly.
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2.2 Classifying Clusters and Centers

Consider the O(1)-approximate clustering C1, . . . , Ck, with centers A = {a1, . . . , ak}, computed by
Algorithm 1. To bound the coreset error, we partition these clusters into groups of similar clusters
and separately bound the error of the coreset on each group. We also partition the centers in S
based on how they “interact” with these clusters. Such a classification of clusters and centers is
useful in defining the nets and controlling their sizes. It also helps us control the variance of the
estimator more cleanly.

2.2.1 Partitioning Clusters into Far and Close Clusters

For a given S ∈ S, we first partition the clusters Ci into far and close clusters depending on
the distance of their centroids ai from S. The high-level idea is that one can show via standard
concentration inequalities that the size of each cluster Ci is (approximately) preserved by the
coreset. This is useful because if a cluster Ci is far from S, the coreset automatically preserves the
cost of Ci to S as all points in this cluster have roughly the same cost to S. Thus, far clusters
are easily dealt with. This reduces our task to analyzing close clusters. We formalize these ideas
below.

Let ∆j = cost(Cj , A)/|Cj | denote the average cost of a point in cluster Cj . We say that cluster
Cj is far from S if cost(aj , S) > ∆jε

−2; otherwise we say Cj is close to S. A point p ∈ P that lies
in a far cluster is called a far point (with respect to S); otherwise, it is called a close point. Let
PF (S) and PC(S) denote the set of far and close points with respect to S.

Bounding the costs separately. To prove Theorem 2, we separately bound the contributions
to the error by far and close points. The following lemmas summarize these results.

Lemma 2.1 (Cost Preservation of Close Clusters). If the coreset size is Ω̃(kε−2 ·min(
√
k, ε−2))

for worst-case inputs or Ω̃(kε−2) for β-stable inputs then we have,

E
Ω
sup
S∈S

∣∣∣∣cost(PC(S), S)− costΩ(PC(S), S)

cost(P, S)

∣∣∣∣ ≤ ε/2.

Lemma 2.2 (Cost Preservation of Far Clusters). If the coreset size is Ω̃(kε−2) then we have,

E
Ω
sup
S∈S

∣∣∣∣cost(PF (S), S)− costΩ(PF (S), S)

cost(P, S)

∣∣∣∣ ≤ ε/2.

The proof of Lemma 2.2 will be relatively simple and is presented in Appendix D.1. Most of
the work will be in proving Lemma 2.1, which requires careful use of symmetrization and chaining.
This will be done in the following sections.

2.2.2 Partitioning Close Clusters Based on Cost

We now perform a clean-up step by further classifying close clusters into high-cost and low-cost
clusters. The key idea is that we only need to bound the error for high-cost clusters, as ignoring the
low-cost clusters only has a tiny effect on the total cost. We now formally define this classification.

Definition 2.3 (Low-Cost and High-Cost Close Clusters). Let T := ε3 · cost(P,A)/k. Let
JL(S) denote the set of (low-cost) clusters Cj that are close to S and satisfy cost(Cj , A) < T . Simi-
larly, let JH(S) denote the set of (high-cost) clusters that are close to S and satisfy cost(Cj , A) ≥ T .

Abusing the notation slightly, we also use JL(S) (resp. JH(S)) to denote points in these clusters.
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The following lemmas show that the coreset preserves the cost of low-cost and high-cost clusters,
respectively. Since the low-cost and high-cost clusters partition the set of close clusters, these
lemmas imply Lemma 2.1 after rescaling ε.

Lemma 2.4 (Handling High Cost Clusters). If the coreset size is Ω̃(kε−2 ·min(
√
k, ε−2)) for

worst-case inputs or Ω̃(kε−2) for β-stable inputs then we have,

E
Ω
sup
S∈S

∣∣∣∣cost(JH(S), S)− costΩ(JH(S), S)

cost(P, S)

∣∣∣∣ ≤ ε. (5)

Lemma 2.5 (Handling Low Cost Clusters). If the size of the coreset is Ω̃(kε−2) then

E
Ω
sup
S∈S

∣∣∣∣cost(JL(S), S)− costΩ(JL(S), S)

cost(P, S)

∣∣∣∣ ≤ ε. (6)

The proof of Lemma 2.5 is straightforward and is provided in Appendix D.2. Proving Lemma 2.4
is much more interesting, and we now focus on this.

2.2.3 Further Classifying Clusters Based on Cost: Bands and Types

Let A be the approximate optimal solution computed by the algorithm, and let S be a fixed
solution in S. We now partition the high-cost clusters such that two clusters Ci, Cj in the same
group satisfy cost(Ci, A) ≈ cost(Cj , A) and cost(Ci, S) ≈ cost(Cj , S). Such a grouping allows for
an easier analysis of the variance of the estimator and net sizes and is crucial to trade-off the two
quantities.

We first group clusters with a similar cost with respect to the (approximately optimal) solution
A and call each such a group a band as defined formally below.

Definition 2.6 (Bands). For each integer b satisfying 0 ≤ b ≤ bmax :=
⌊
log2(kε

−3)
⌋
, let Band-b

be the set of clusters Cj with cost(Cj , A) ∈ [2bT, 2b+1T ) where T = ε3k−1 · cost(P,A).

Since each high-cost cluster Cj has a cost in the range [T, kε−3T ], the (bmax + 1) bands defined
above form a partition of high-cost clusters.

While clusters in the same band have similar costs in A, their cost in an arbitrary set of centers
S can be very different. Next, we group clusters into Types based on their cost in S. Note that,
unlike bands, this grouping is a function of the set S.

Definition 2.7 (Types). Let S be a set of centers. For an integer t satisfying 1 ≤ t ≤ tmax :=⌈
log2(ε

−2)
⌉
, a cluster Cj is of Type-t for S if (i) Cj is close to S and (ii) cost(aj , S) ∈ [2t−1∆j , 2

t∆j)
where ∆j = cost(Cj , A)/|Cj | is the average cost of cluster Cj. On the other hand, if Cj is close to
S and cost(aj , S) ∈ [0,∆j), it is of Type-0.

Since any close cluster Cj satisfies cost(aj , S) ≤ ∆jε
−2, the (tmax + 1) types defined above also

partition the close clusters.

We now group clusters with both the same band and the same type. For a set of centers S, let
Bb,t(S) denote the clusters from Band-b with Type-t for S. All clusters in Bb,t(S) contain clusters
with a similar cost in the approximately optimal solution and wrt to S. We shall abuse notation
slightly and use Bb,t(S) to also refer to the points in these clusters. As there are O(log(kε−1))
bands and O(log(ε−1)) types, there are O(log2(kε−1)) sets Bb,t(S).
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As the sets Bb,t(S) partition points in JH(S), Lemma 2.4 follows if we show the following: For
each pair (b, t) ∈ [bmax]× [tmax] we have,

E
Ω
sup
S∈S

∣∣∣∣cost(Bb,t(S), S)− costΩ(Bb,t(S), S)

cost(P, S)

∣∣∣∣ ≲ ε

log2(kε−1)
. (7)

Henceforth, we fix b ∈ [bmax], t ∈ [tmax] and show that (7) holds for this choice of b, t. When clear
from context, we also suppress the subscripts and refer to the set Bb,t(S) as B(S). We use the
notation kB(S) to denote the number of clusters in B(S).

2.2.4 Defining Cost Vectors and Cost Vector Nets

This section defines nets to approximate the infinitely many solutions in S. Instead of directly
discretizing the space of centers in S, we discretize the set of cost vectors induced by S ∈ S. For
a fixed coreset Ω, the cost vector induced by S ∈ S is a vector in Rm whose entries are costs of
points in Ω ∩B(S) with respect to S.

Definition 2.8 (Cost Vectors). Let Ω = {q1, . . . , qm} be the set of m points sampled by Algo-
rithm 1 and S be a set of centers in S. The cost vector of Ω induced by S is a vector uS(Ω) ∈ Rm

defined as follows:

For each i ∈ [m] we have uSi (Ω) = 1[qi ∈ B(S)] · cost(qi, S). (8)

Note that uS(Ω) is a random vector (where the randomness comes from the choice of Ω), and
its coordinates are mutually independent since Algorithm 1 obtains samples each qi independently.

For a fixed Ω and a subset T of S, let M(Ω, T ) = {uS(Ω)|S ∈ T } be the set of cost vectors
induced by centers in T . If T has infinitely many centers, the setM(Ω, T ) may have infinitely many
cost vectors. We now define cost vector nets, which are discretizations of M(Ω, T ). A cost vector
net Mα(Ω, T ) at scale α is a finite set of representative vectors such that any uS(Ω) in M(Ω, T ), is
“α-approximated ” by some vector in Mα(Ω, T ). We formalize this notion below.

Definition 2.9 (Cost Vector Nets). Consider a fixed set Ω and let T be a subset of S (recall
that S denotes the set of all possible k centers in Rd). For a real α ∈ (0, 1/2], an (α, T ) cost vector
net, denoted by Mα(Ω, T ), is a finite subset of Rm with the following properties. For any set of
centers S ∈ T there exists some v ∈ Mα(Ω, T ) which α-approximates the cost vector uS(Ω) in the
following sense: for each i ∈ [m],

1. If qi ∈ B(S) then
|vi − uSi (Ω)| = |vi − cost(qi, S)| ≤ α · err(qi, S),

where for any p ∈ P and S ∈ S,

err(p, S) :=

(√
cost(p, S)cost(p,A) +

√
cost(p, S)∆p + cost(p,A) + ∆p

)
.

2. If qi /∈ B(S) then vi = 0 . Note that uSi (Ω) = 0 by definition (see (8)).

2.2.5 Grouping Centers Based on Interaction

Our next goal is to bound the size of the cost vector nets defined above. To do this, we group
sets of centers similar to each other and construct nets for each group. Specifically, for each set of
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centers S ∈ S, we define a parameter called the interaction number of S that captures how much it
“interacts” (formally defined below) with the set of clusters B(S). This parameter will be crucial in
quantifying the size of the nets that we construct. We then group centers with similar interaction
numbers and then construct cost vector nets for each group.

Roughly, we say that a center x ∈ S interacts with a cluster Cj if it is significantly far away from
its center aj while still being approximately the nearest center in S to it. The precise definition is
the following:

Definition 2.10 (Cluster-Center Interaction). Let S ∈ S be a set of k centers. For a center
x ∈ S, we say that a cluster Cj in B(S) interacts with x if both the following conditions hold:

P1: (Point x is outside average cost ball of Cj). We have cost(aj , x) ≥ 32∆j.

P2: (Point x is an approximate nearest center to aj). We have cost(aj , x) ≤ 16cost(aj , S).

Fix a set of centers S ∈ S and a center x ∈ S. We use I(x) to denote the set of clusters
Cj ∈ B(S) that interact with center x ∈ S. We aggregate the sizes of the sets I(x) for the various
centers in S = {x1, . . . xk} to obtain the signature of S defined as follows:

Sign(S) := (|I(x1)|, . . . , |I(xk)|).

Definition 2.11 (Interaction Number). For each S ∈ S, with S = {x1, . . . , xk}, we define its
interaction number, denoted by N(S), to be N(S) =

∑k
i=1 |I(xi)|.

As each center of S can interact with at most |B(S)| = kB(S) clusters, for any set of centers S,
we have N(S) ≤ k · kB(S) ≤ k2.

We now group centers with similar interaction numbers and call these groups center classes.

Definition 2.12 (Center Classes). For an integer r satisfying 0 ≤ r ≤ rmax :=
⌈
log2(k

2)
⌉
, the

center class r is the collection of all sets of k centers S that satisfy N(S) ∈ [2r, 2r+1). We use S(r)
to denote the center class r.

Remark 2.13. Notice that the interaction number N(S) is defined with respect to a specific set
Bb,t(S) of clusters. As b and t vary, for any S, its interaction number N(S) and thus its center
class can change.

Note that the center classes partition the collection S of all possible sets S. Therefore, we can
bound the supremum over S in (7) by a sum of suprema over each center class; it suffices to prove
the following: for any r ∈ [rmax],

E
Ω

sup
S∈S(r)

∣∣∣∣cost(B(S), S)− costΩ(B(S), S)

cost(P, S)

∣∣∣∣ ≲ ε

log3(kε−1)
. (9)

Equation (7) then follows since rmax = O(log(kε−1)). Henceforth, we also fix a center class r and
prove (9) for this r. As the supremum will always be over S(r) from this point on, we remove it
from the subscript (i.e., we write supS instead of supS∈S(r)).

In the next section, we give a bound on cost vector nets for centers in center class S(r). This
will be a crucial step towards proving (9).
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2.3 Bounding the Cost Vector Net Size.

Recall that we are currently bounding the error of the coreset for the clusters in B(S), namely those
clusters of band b and type t. We now give a bound on the size of the cost vector net (Definition 2.9)
approximating cost vectors of B(S) ∩ Ω induced by the centers in center class S(r).

Lemma 2.14. For any α ∈ (0, 1/2), there is an (α,S(r))-net Mα with cardinality

|Mα| = exp(O(min(2r + kα−2, 2tkα−2) · log(kα−1ε−1))).

Since this lemma is based on ideas from previous work [CSS21a], we move its proof to Appendix E.

2.4 Applying a Symmetrization Argument

We now have bounds on the cost vector nets that will be useful in performing a union bound to
control the expected supremum of the random process given by (9). The next step is to bound
the variance of the estimator. It turns out that if the coreset Ω satisfies some “good” properties,
which we shall soon describe, we can show better bounds on the variance. Therefore, we first apply
a standard symmetrization argument (see, for ex., Section 6.4 of [Ver18b]), which allows us to fix
the randomness of Ω and reduce proving (9) to a Gaussian process.

We first introduce some useful notation. For m independent Gaussians (gi)i∈[m], where gi ∼
N(0, 1), define the random variable

XS(Ω, g) =
∑
i∈[m]

giwqiu
S
i (Ω)

cost(P, S)
. (10)

Applying the symmetrization technique in Fact D.3, by Lemma D.4 we have that,

E
Ω

sup
S∈S(r)

∣∣∣∣cost(B(S), S)− costΩ(B(S), S)

cost(P, S)

∣∣∣∣ ≤ √
2π E

Ω
E
g

sup
S∈S(r)

∣∣XS(Ω, g)
∣∣ . (11)

The remaining section is devoted to showing the following lemma:

Lemma 2.15. If the coreset size is Ω̃(kε−2 ·min(
√
k, ε−2)) for worst-case inputs or Ω̃(kε−2) for

β-stable inputs then we have,

E
Ω
E
g

sup
S∈S(r)

∣∣XS(Ω, g)
∣∣ ≤ ε.

The above lemma implies (9) upon rescaling ε by Θ(log3(kε−1)) factors.

2.4.1 Good Properties of the Coreset: Event E

We now take a slight detour and prove that the output Ω of Algorithm 1 satisfies some nice
properties with high probability. In particular, we show that Ω (approximately) preserves the
number of points in each cluster Ci as well as the cost of Ci (where C1, . . . , Ck is the clustering
computed by Algorithm 1 in the first step). Moreover, Ω does not over-sample high-cost points
from any clusters. These properties are summarized by an event E defined below.

Before we formalize these properties, it will be convenient to first partition points in a cluster
into rings according to their cost from the center. We define the notation ∆j = cost(Cj , A)/|Cj | to
be the average cost of cluster Cj .
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Partitioning Clusters into Rings. We begin by partitioning each cluster Cj into rings centered
around its center aj ; for ℓ satisfying 1 ≤ ℓ ≤ ℓmax = ⌊log2(1/ε)⌋, we define the ring Rj(ℓ) ⊂ Cj

to be the set of points p ∈ Cj with cost(p, aj) ∈ [2ℓ∆j , 2
ℓ+1∆j). We also let Rj(0) be the points

p ∈ Cj with cost(p, aj) < 2∆j and Rj(ℓmax+1) to be the points p satisfying cost(p, aj) ≥ 2lmax+1∆j .
Clearly, the sets Rj(0), . . . , Rj(ℓmax + 1) partition Cj .

We now define the event E .

Definition 2.16 (Event E). The event E occurs iff Ω satisfies the following properties:

P1: (Cluster Size Preservation) For each cluster Cj, we have∑
q∈Ω∩Cj

wq ∈ [(1− ε)|Cj |, (1 + ε)|Cj |].

P2: (Ring Size Preservation) For each j ∈ [k] and 0 ≤ ℓ ≤ ℓmax + 1 the set Rj(ℓ) satisfies,∑
q∈Ω∩Rj(ℓ)

wq ≤ |Cj |/2ℓ−1.

P3: (Cluster Cost Preservation) For each cluster Cj, costΩ(Cj , A) = (1± ε)cost(Cj , A).

Notice crucially that E only depends on the sample Ω (and in particular does not place any
restriction on S). The following lemma shows that E holds with high probability.

Lemma 2.17. If m = Ω(kε−2 log(kε−1)) event E holds with probability at least 1− ε3/k3.

The event E directly implies that the cost of Ω with respect to any set of centers S is bounded
up to a constant factor by the true cost. We record this observation below (and provide a proof in
Appendix B.1).

Lemma 2.18. If event E holds, then for any set of centers S, we have costΩ(P, S) ≲ cost(P, S).

With the good properties of Ω now laid out, in the next section, we show that it suffices to
bound the Gaussian process for a fixed Ω that satisfies event E .

2.4.2 Fixing the randomness of Ω

The randomness of XS(Ω, g) arises from both the choice of Ω, g and the expectation in Lemma 2.15
is over both Ω and g. We proceed as follows to prove Lemma 2.15. First, Lemma 2.19 shows that for
any fixed Ω, the expected supremum Eg supS

∣∣XS(Ω, g)
∣∣ (with expectation only over g) is O(ε−2);

furthermore, Lemma 2.20 shows that if Ω satisfies the nice properties guaranteed by event E , then
for any Ω this expected supremum is O(ε). These facts and the fact that E occurs with high
probability imply Lemma 2.15.

Lemma 2.19 (Worst Case Bound). For any fixed Ω, we have Eg supS∈S(r)
∣∣XS(Ω, g)

∣∣ ≲ ε−2.

The proof of Lemma 2.19 is relatively straightforward and appears in Appendix D.4.

Lemma 2.20 (Bound Conditioned on E). For any fixed Ω satisfying event E (Definition 2.16)
we have Eg supS∈S(r)

∣∣XS(Ω, g)
∣∣ ≲ ε.
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Before proving Lemma 2.20, let us see first how the above lemmas imply Lemma 2.15. By the
law of total expectation and as Pr[E ] ≥ (1− ε3/k3) by Lemma 2.17, we have

E
Ω
E
g

sup
S∈S(r)

∣∣XS
∣∣ ≲ εPr[E ] + ε−2 Pr[E ] ≲ ε · 1 + ε−2 · ε3/k3 ≲ ε,

as desired.

The next several sections will be devoted to proving Lemma 2.20. Henceforth, we fix a set
Ω = {q1, . . . , qm} satisfying E ; thus uS(Ω) is deterministic and the randomness of XS(Ω, g) is only
due to g. To avoid notational clutter, when clear from context, we will write uS to mean uS(Ω)
and XS to mean XS(Ω, g).

2.5 The Chaining Argument

We now use a chaining argument to prove Lemma 2.20.

First, we express each cost vector uS ∈ M as a telescoping sum of differences of net vectors
that approximate it. To do this, we will need the following notation.

For an integer h ≥ 1 and S ∈ S(r), we define uS,h ∈ Rm to be the net vector from a (2−h,S(r))-
net (as defined in Definition 2.9) that approximates uS . We also define uS,0 ∈ Rm as follows: for
each i ∈ [m], if qi is from a cluster Cj ∈ B(S) then uS,0i = cost(aj , S); else u

S,0
i = 0.

With the above notation, we now write:

uS = uS,0 +

hmax∑
h=1

(uS,h − uS,h−1) + (uS − uS,hmax), (12)

where hmax =
⌈
2 log2(ε

−1)
⌉
. The vector uS,0 is an “extremely coarse” approximation of uS . The

next hmax summands are differences of net vectors at finer scales. The last summand takes the final
step to reach uS . Using (12), we decompose the random variable XS (defined in (10)) as follows:

XS(Ω, g) = XS,Init(Ω, g) +

hmax∑
h=1

XS,h(Ω, g) +XS,Fin(Ω, g), (13)

where we define the random variables

XS,Init(Ω, g) :=

∑
i∈[m] giwqiu

S,0
i

cost(P, S)
and XS,Fin(Ω, g) :=

∑
i∈[m] giwqi(u

S
i − uS,hmaxi )

cost(P, S)
, (14)

For 1 ≤ h ≤ hmax, XS,h(Ω, g) :=

∑
i∈[m] giwqi(u

S,h
i − uS,h−1

i )

cost(P, S)
. (15)

It follows from (13) and the triangle inequality that,

E
g

sup
S∈S(r)

|XS(Ω, g)| ≤ E
g

sup
S∈S(r)

|XS,Init(Ω, g)|+
hmax∑
h=1

E
g

sup
S∈S(r)

|XS,h(Ω, g)|+ E
g

sup
S∈S(r)

|XS,Fin(Ω, g)|.

Thus, it suffices to bound each term on the right-hand side of the equation above.

Remark 2.21. We emphasize that the random variables XS , XS,Init, XS,h, and XS,Fin are func-
tions all functions of Ω and g. But since we have fixed an Ω (that satisfies E), their randomness
is entirely due to g. Henceforth, we suppress the arguments Ω and g while writing these random
variables.
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The following lemmas bound the suprema of the Gaussian processes XS,Init and XS,Fin.

Lemma 2.22. For any coreset Ω that satisfies event E with size at least Ω(kε−2 log k) we have

Eg supS∈S(r) |XS,Init| ≤ ε/6.

Lemma 2.23. For any coreset Ω that satisfies event E we have Eg supS∈S(r) |XS,Fin| ≤ ε/6.

The proofs of these lemmas use basic arguments and are given in Appendix F.1 and Ap-
pendix F.2, respectively. Handling the summand corresponding to XS,h requires much more work.
This is accomplished by the following two lemmas, one for the case when the input is β-stable and
the other for worst-case inputs. The proofs of these lemmas are given in Section 2.6, Section 2.7
and Section 2.8.

Lemma 2.24 (Bound for Stable Inputs). Let P be a Ω(1)-stable input and h be an integer in
[hmax]. If the coreset size is at least Ω̃(kε−2) then we have, Eg supS∈S(r) |XS,h| ≤ ε/(6hmax).

Lemma 2.25 (Worst Case Bound). Let P be any input and h be an integer in [hmax]. If the
coreset size is at least Ω̃(kε−2 ·min(

√
k, ε−2)) then we have, Eg supS∈S(r) |XS,h| ≤ ε/(6hmax).

Together with (11), the above lemmas imply Lemma 2.1.

The following section shows how a bound on the variance of XS,h can be traded off with the
net size to bound the suprema of XS,h.

2.6 Bounding the Supremum of the Gaussian Process XS,h

In this section, we give a generic upper bound on Eg supS |XS,h| in terms of the variance of XS,h

and the size of the net at scale 2−h.

First, observe that, for any h satisfying 1 ≤ h ≤ hmax we have,

sup
S∈S(r)

|XS,h| = sup
S∈S(r)

∣∣∣∑i∈[m] giwqi(u
S,h
i − uS,h−1

i )
∣∣∣

cost(P, S)
≤ sup

(vh−1,vh)∈
M

2−(h−1)×M
2−h

∣∣∣∑i∈[m] giwqi(v
h
i − vh−1

i )
∣∣∣

cost(P, S)
,

whereM2−(h−1) andM2−h are cost vectors nets at scales 2−(h−1) and 2−h respectively. While the first
supremum was over infinitely many S, the final supremum is only over |M2−(h−1) | · |M2−h | ≤ |M2−h |2
pairs of vectors. Thus, we have that supS |XS,h| is the maximum of (the absolute value of) |M2−h |2
Gaussians. If σ2h is an upper bound on Var[XS,h] for S ∈ S(r), then we can bound the supremum
of Gaussians using Fact A.4 to obtain:

E
g

sup
S∈S(r)

|XS,h| ≲ σh
√

log |M2−h |. (16)

Therefore, our task reduces to finding an upper bound σ2h on the variances of the Gaussians
XS,h and combining them with the bounds on the net sizes given in Lemma 2.14. We do this for
the stable inputs and worst-case inputs in Section 2.7 and Section 2.8, respectively.

2.7 Bounding the Variance for Stable Inputs

In the following lemma, we bound the variance of the random variable XS,h.

Lemma 2.26 (Variance Bound in Terms of the Cost). Let S be any set of centers and h ≥ 1
be an integer. The random variable XS,h is a mean zero Gaussian with the following upper bound
on its variance: Var[XS,h] ≲ (2−2hcost(P,A))/(mcost(P, S)).
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Proof. Recall that XS,h is given by the following expression:

XS,h :=

∑
i∈[m] giwqi(u

S,h
i − uS,h−1

i )

cost(P, S)
.

Since XS,h is a sum of independent centered Gaussians (using Fact A.3), it is also a centered
Gaussian with variance:

Var[XS,h] = (1/cost(P, S))2 ·
∑
i∈[m]

w2
qi(u

S,h
i − uS,h−1

i )2. (17)

Recall that the net vector uS,h is an m-dimensional vector whose entries approximate the cost of
points in B(S) ∩Ω with respect to S (see Definition 2.9) where B(S) is the set of clusters in band
b and type t. It follows from the definition of uS,h that,

(i) If qi ∈ B(S) then,

|uS,hi −uS,h−1
i | ≤ |uS,hi −uSi |+ |uS,h−1

i −uSi | ≤ 2−herr(qi, S)+2−(h−1)err(qi, S) ≲ 2−herr(qi, S).

(ii) If qi /∈ B(S) then uS,hi = uS,h−1
i = 0.

Using this in (17), we get,

Var[XS,h] ≲ (1/cost(P, S))2 · 2−2h ·
∑

q∈B(S)∩Ω

w2
qerr(q, S)

2. (18)

We now show that
∑

q∈B(S)∩Ωw
2
qerr(q, S)

2 ≲ (cost(P,A) · cost(P, S))/m. This, together with
(18), will then complete the proof of the lemma. By the definition of err(q, S) (Definition 2.9)
we have err(q, S)2 ≲ cost(q, S)(cost(q, A) + ∆q) + cost(q, A)2 + ∆2

q . By Fact B.1, we also have
wqcost(q, A) ≲ cost(P,A)/m and wq∆q ≲ cost(P,A)/m. These equations imply that∑

q∈B(S)∩Ω

w2
qerr(q, S)

2 ≲ (cost(P,A)/m) ·
∑

q∈B(S)∩Ω

wq(cost(q, S) + cost(q, A) + ∆q)

≲(cost(P,A)/m) ·
∑
q∈Ω

wq(cost(q, S) + cost(q,A) + ∆q) (Summing over more points)

≲(cost(P,A)/m) · cost(P, S). (Lemma 2.18, A is a O(1)-approx)

This completes the proof of the lemma.

Since A is a O(1)-approximate solution we have the following immediate corollary.

Corollary 2.27. For any set of centers S, Var[XS,h] ≲ 2−2h/m.

2.7.1 Exploiting Stability: Relating Cost to Interaction

For β-stable instances, we can get a tighter handle on the variance of XS,h. Specifically, we will
show that the cost with respect to a set of centers S is proportional to the interaction number
N(S) (see Definition 2.10) and β; this together with Corollary 2.27 gives tighter guarantees on the
variance (when N(S) and β are large).

First, we show that if a center x ∈ S interacts with a lot of clusters in B(S) (according to
Definition 2.10), then P has a high cost to S. The intuition is that if P is stable, its clusters are
well separated; thus, if a center interacts with many clusters, most of these clusters pay a significant
cost.
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Lemma 2.28. Let P be a β-stable instance and S ∈ S(r) be a set of centers. For a center x ∈ S,
let I(x) denote the set of clusters that interact with x; then cost(P, S) ≥ 1

768(|I(x)| − 1)βOPTk .

Proof. Fix a center x and let r := |I(x)|. Without loss of generality, we can assume that r ≥ 2
(otherwise, the bound holds trivially). For convenience, we re-index the clusters so that the set of
clusters that interact with x is I(x) = {C1, . . . , Cr}, and such that the clusters are indexed in the
increasing order of the distance of their centers from x. We show that all clusters except possibly
C1 have cost Ω(βOPTk) with respect to S. This then implies the desired bound.

Using the guarantee of Lemma C.1 on the distance between centers ai, aj of stable instances
and the triangle inequality, we get

(βOPTk)/2|Cj | ≤ cost(a1, aj) ≤ 2(cost(a1, x) + cost(aj , x)) ≤ 4cost(aj , x) ≤ 64cost(aj , S). (19)

The last inequality above uses the fact that x is an approximate nearest center to aj (see Defini-
tion 2.10). Rearranging we get cost(aj , S) ≥ (βOPTk)/(128|Cj |). Since the cost of the center of Cj

is high, we can argue that the cost of Cj is lower bounded by Ω(|Cj |cost(aj , S)). This is formalized
by the following claim whose proof is in Appendix A.

Claim 2.29. Let S be a set of k centers. Suppose that Cj is a cluster whose center aj satisfies
cost(aj , S) ≥ 32∆j; then cost(Cj , S) ≥ 1

6 |Cj |cost(aj , S).

By Definition 2.10 we have cost(aj , x) ≥ 32∆j . This together with (19) and Claim 2.29 gives
cost(Cj , S) ≥ 1

6 |Cj |cost(aj , S) ≥ 1
768βOPTk.

Lemma 2.30. Let P be a β-stable instance and S be any set of centers; then we have cost(P, S) ≥
OPTk ·max(1, 1

768(
N(S)
k − 1)β).

Proof. The first bound follows from the fact that we trivially have bound cost(P, S) ≥ OPTk.

The second bound is a corollary of Lemma 2.28. Let x∗ ∈ S be the center which satisfies
x∗ = argmaxx∈S |I(x)|. We then have |I(x∗)| ≥ 1

k ·
∑

x∈S |I(x)| ≥ N(b)/k. The bound follows by
applying Lemma 2.28 to x∗.

Combining Lemma 2.26 and Lemma 2.30 yields the following variance bound.

Lemma 2.31 (Variance Bounds for Stable Instances). Let P be a β-stable instance and S
be a set of centers with N(S) ≥ 2k then Var[XS,h] ≲ (2−2hk)/(mN(S)β).

2.7.2 Trading the Net and Variance Bounds for Stable Inputs

We have now proved the required net and variance bounds to upper bound Eg supS∈S(r) |XS,h|.
We consider two separate cases depending on the value of 2r(recall that 2r is approximately the
interaction number of centers considered).

Case 1 (2r ≥ 2k). Lemma 2.14 shows that there exists a (2−h,S(r)) cost vector net M2−h

of size |M2−h | = exp(O
(
(2r + k22h) · log(kε−12h)

)
). Since 2r ≥ 2k and h = O(log ε−1), we have

|M2−h | = exp(O(22h+r log(kε−1)). By Lemma 2.31, for any S ∈ S(r), since N(S) lies in the interval
[2r, 2r+1], we have that Var[XS,h] ≲ (k · 2−r−2h)/(mβ). Combining the variance, net bounds using
(16) we obtain:

E
g

sup
S∈S(r)

|XS,h| ≲
√
log |M2−h | ·

√
Var[XS,h]

19



≲
√

2r+2h · log(kε−1) ·
√
(k · 2−r−2h)/(mβ)

≲
√
k log(kε−1)/(mβ).

Case 2 (2r < 2k). In this case, we use the following alternate bound on the variance given by
Corollary 2.27: Var[XS,h] ≲ 2−2h/m. Using the net bounds given by Lemma 2.14 and simplifying
we also have |M2−h | ≤ exp(O(k22h · log(kε−1))). By Equation (16), we have

E
g

sup
S∈S(r)

|XS,h| ≲
√
k · 22h log(kε−1) ·

√
2−2h/m ≲

√
k log(kε−1)/m.

It follows that ifm = Ω̃(kε−2max(1, β−1) log(kε−1)) then Eg supS∈S(r) |XS,h| ≤ ε for any r. Rescal-

ing ε by hmax = O(log(ε−1)) completes the proof of Lemma 2.24.

2.8 Bounding the Variance for Worst Case Inputs

We can also show another lower bound on the cost(P, S), which we will use to get a new upper
bound on the variance. Since all clusters in the set B(S) = Bb,t(S) are of type t and band b, we
can show that their cost wrt S is approximately 2b+tT ; thus the cost(P, S) is at least kB(S) · 2b+t.
We formalize these calculations in the lemma below.

Lemma 2.32. Let S be a set of centers. Recall that B(S) contains kB(S) clusters, all of which are

from band b and are of type t for S. If t ≥ 6 then cost(P, S) ≳ kB(S) · 2b+tT .

Proof. We trivially have that cost(P, S) ≥ cost(B(S), S) =
∑

Cj∈B(S) cost(Cj , S). We show a lower

bound on the cost of any cluster in B(S).

Fix a cluster Cj ∈ B(S). Since Cj is of type t ≥ 6, we have cost(aj , S) ≥ 2t−1∆j ≥ 32∆j .
Applying Claim 2.29, we get cost(Cj , S) ≥ 1

6 |Cj |2t−1∆j ≳ 2tcost(Cj , aj) ≳ 2b+tT . Summing over
all clusters in B(S) yields the desired lower bound on cost(P, S).

Plugging this cost lower bound into the variance bound given by Lemma 2.26, we get

Var[XS,h] ≲ 2−2hcost(P,A)/(m · kB(S) · 2b+tT ).

However, in the lemma below, we see that this bound is sub-optimal when the clusters in B(S)
have cost less than cost(P,A)/k.

Lemma 2.33. Let S be any set of centers. We have Var[XS,h] ≲ (2−2h−tk)/(m · kB(S)).

Proof. If t < 6 then the bound follows trivially from Corollary 2.27 as Var[XS,h] ≲ (2−2h)/m ≲
(2−2hk)/(mkB(S)2

t) where we used that k ≥ kB(S) and 2t is a constant.

Suppose instead that t ≥ 6. We proceed similarly as in Corollary 2.27 to obtain,

Var[XS,h] ≲ (1/cost(P, S))2 · 2−2h ·
∑

q∈B(S)∩Ω

w2
qerr(q, S)

2. (20)

Using the definition of err(q, S) (see Definition 2.9) we now obtain:∑
q∈B(S)∩Ω

w2
q · err(q, S)2 ≲

∑
q∈B(S)∩Ω

w2
q(cost(q, S)cost(q, A) + cost(q, S)∆q + cost(q, A)2 +∆2

q).
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Next observe that by Fact B.1, the weights satisfy wqcost(q, A) ≲ kcost(Cj , A)/m and also wq∆q ≲
k∆j |Cj |/m) ≲ kcost(Cj , A)/m) given by Fact B.1. Since each cluster Cj ∈ B(S) is in band b, we
have cost(Cj , A) ≲ 2bT . Thus we get,

Γ :=
∑

q∈B(S)∩Ω

w2
qerr(q, S)

2 ≲ (k2bT )/m ·
∑

q∈B(S)∩Ω

wq(cost(q, S) + cost(q,A) + ∆q).

For any point q ∈ B(S)∩Ω, we have cost(q, S) ≤ 2(cost(q, A)+ 2t∆q) ≲ 2t(cost(q, A)+∆q), where
the last inequality holds since we focus on types with t ≥ 6. Using this, we get,

Γ ≲ (k2b+tT )/m ·
∑

q∈B(S)∩Ω

wq(cost(q, A) + ∆q).

By property P3 of Definition 2.16 we have∑
q∈B(S)∩Ω

wqcost(q, A) ≲
∑

Cj∈B(S)

∑
q∈Cj

wqcost(q, aj) ≲ kB(S) · 2bT.

Similarly using property P1 of Definition 2.16,∑
q∈B(S)∩Ω

wq∆q ≲
∑

Cj∈B(S)

∑
q∈Cj

wq∆q ≲
∑

Cj∈B(S)

cost(Cj , S) ≲ kB(S) · 2bT.

Using the three previous equations, we get Γ ≲ (k · 22b+t · T 2 · kB(S))/m. The above inequality
together with Equation (20) and Lemma 2.32 gives:

Var[XS,h] ≲ 2−2hΓ/cost(P, S)2 ≲ 2−2hΓ/(kB(S) · 2b+tT )2 ≲ (2−2h−tk)/(m · kB(S)),

which completes the proof.

Using the bound N(S) ≤ k · kB(S) and the previous lemma we obtain the following corollary.

Corollary 2.34. Let S be any set of centers; then Var[XS,h] ≲ (2−2h−tk2)/(m ·N(S)).

2.8.1 Trading off the Net Size and Variance to obtain the Worst Case Bound

We shall now use the net and variance bounds shown thus far to bound E supS∈S(r) |XS,h| for worst-
case inputs thus completing the proof of Lemma 2.25. We consider two different cases depending
on the interaction number 2r.

Case 1 (2r ≥ 2k) By the variance bounds due to Corollary 2.27 and Corollary 2.34 we have that
for any set of centers S ∈ S(r),

Var[XS,h] ≲ min(1, k22−(t+r)) · 2−2hm−1.

Using the net bounds from Lemma 2.14, the fact that 2r +k22h ≲ 2r+2h, we know that there exists
a (2−h,S(r)) net M2−h which satisfies:

log |M2−h | ≲ min(k2t, 2r) · 22h log(kε−1).

Using Equation (16) to combine the corresponding net and variance bounds in the two previous
inequalities, we get,

Γ := E
g

sup
S∈S(r)

|XS,h| ≲
√
min(k2t, k22−t) · log(kε−1)m−1 (21)
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≲
√
k1.5 · log(kε−1)m−1.

where we used the fact that min(k2t, k22−t) ≤ k1.5 for any t. Therefore if m = Ω(k1.5ε−2 log(kε−1))
then we have Γ ≤ ε. Moreover, as 2t ≤ 2tmax ≲ ε−2, the first bound in Equation (21) gives Γ ≲√
kε−2 log(kε−1)m−1; so if m = Ω(kε−4 log(kε−1)) then Γ ≤ ε. Rescaling ε by hmax = O(log(ε−1))

completes the proof of Lemma 2.25 for this case.

Case 2 (2r < 2k). The calculations in this case are identical to those described for the case of
stable inputs (see Section 2.7.2). The variance bound Var[XS,h] ≲ 2−2h/m due to Corollary 2.27:
can be combined with the net bound of |M2−h | ≤ exp(O(k22h ·log(kε−1))) by Lemma 2.14 to obtain:

E
g

sup
S∈S(r)

|XS,h| ≲
√
k · 22h log(kε−1) ·

√
2−2h/m ≲

√
k log(kε−1)/m.

It follows that, in this case, if m = Ω̃(kε−2 log(kε−1)) then Eg supS∈S(r) |XS,h| ≤ ε. Rescaling ε by

hmax = O(log(ε−1)) factors completes the proof.

3 Lower Bounds

We start by proving that any coreset consisting of input points must have size Ω(k/ε2), even if the
data is very separable.

Theorem 5. For any β > 0, there exists a β-stable instance A such that any k-means corset S ⊆ A
must satisfy |S| ≥ c · k · ε−2 for some absolute constant c.

Proof. We will argue that for the 1-mean problem, any coreset must have Ω(ε−2) points. The claim
then follows by adding multiple copies of the 1-mean instance with an arbitrarily large separation.

Our instance is the n-dimensional simplex, where n = ε−2. More concretely, the points in A
correspond to the standard unit basis of Rn. Note that µ(A) = 1

n1 and
∑

p∈A ∥p−µ(A)∥2 = n− 1.

Let Ω be the designated coreset with non-negative weight function w : Ω → R≥0. We must have
w(Ω) :=

∑
p∈Ωwp ≥ (1−ε)·n, as otherwise the cost of far away center cannot be well approximated.

Consider the point s := (
∑

p∈Ω p)/∥
∑

p∈Ω p∥. Notice that We have

∥p− s∥2 = 2− 2/
√
|Ω|for any p ∈ Ω, and ∥q − s∥2 = 2 for every q ∈ A \ Ω,

and thus cost(A, s) = 2(n−
√
|Ω|). At the same time, we know that

cost(Ω, s) = w(Ω) ·
(
2− 2|Ω|−1/2

)
≤ 2(1 + ε) ·

(
n−

√
|Ω|+

√
|Ω| − n|Ω|−1/2

)
,

and thus

cost(A, s)− cost(Ω, s) ≥ −ε · 2(n− |Ω|1/2) + 2(1 + ε) · (n|Ω|−1/2 − |Ω|1/2).

With some straightforward, but tedious calculation, this term is greater than ε · 2(n − |Ω|1/2)
whenever |Ω| <

(
−ε−1/2 +

√
ε−2/4 + (1 + ε) · ε−2

)2
≈ 0.61 · ε−2.

Therefore, any 1-mean coreset on A must have size at least 0.61ε−2. Let A′ be a set of k copies
of A, placed arbitrarily far away from each other. We argue that a coreset for k-means on A′ must
be a coreset for 1-mean on most of the copies.

First, the weight of each copy of A is preserved, up to (1± ε): consider a set of centers S where
each copy of A but one gets one center at the origin, and the last copy gets a center far away (say,
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distance kn2). This copy will dictate the entire cost of the instance, and therefore its weight must
be well approximated.

Preserving the weight implies that, for each simplex, the cost of clustering it to its origin is

preserved. Suppose now that |Ω| ≤ k(10ε)−2

100 . Then, at least 9k/10 copies get fewer than 0.61·(10ε)−2

points: let A1, ..., Ak′ be those copies. In Ai, the cost of center si (defined previously as the average
of coreset points in Ai) will be underestimated by 10ε · 2(n−

√
|Ω ∩ Si|) ≥ 10ε(2n− 2

√
n) ≥ 10εn.

For each other copy, the cost of clustering to the origin is overestimated by at most εn, since the
weight is preserved.

Consider therefore the set of centers consisting the origins and the si. Its cost is k/10n+9k/10 ·
2n−

∑k′

i=1

√
|Ω ∩Ai| ≤ k/10n+ 9kn/5 ≤ 2kn. The previous discussion shows that the estimation

error from Ω is at least 9k/10 · 10εn− k/10 · εn. This is at least 8kεn, which is strictly more than
an ε fraction of the cost of the full instance. Hence, such a small Ω cannot be a coreset, which
concludes the proof.

Allowing non-input coreset points. We further complement these lower bounds by showing
that using non-input points, it is possible to compute significantly smaller coresets for certain
ranges of ε, k, and β. Therefore, the restriction to using input points is necessary. We did not
attempt to optimize the dependency on the ranges of parameters and believe that significantly
better parameters are possible.

We will use a slightly different coreset notion known as a coreset with offset originally proposed
by [FSS20]. It requires that for some ∆ ≥ 0, it holds that

|cost(Ω, S) + ∆− cost(P, S)| ≤ ε · cost(P, S).

In the following, we will show that there exists a coreset with offset of size k if β is sufficiently
large. It is possible to set the offset to 0 by adding two points per center and increasing β slightly,
but we forgo this to simplify the presentation.

Proposition 3.1. For any cost-stable instance P with β > 512ε−2, there exists a coreset with offset
of size k.

Proof. Let C = {µ1, µ2, . . . , µk} be an optimal solution with induced clusters {C1, . . . , Ck} and let
∆ = cost(P,C). We claim that C, where µi is weighted by |Ci| is the desired coreset.

Consider some solution S. We first observe that if the points in Ci are served by a single center
in si ∈ S, then cost(Ci, si) = cost(Ci, µi) + |Ci|cost(µi, si) due to Lemma A.5. Therefore, for any
solution S where each cluster is served by a single center, the cost is exactly preserved.

Next, suppose that some cluster Ci is served by at least two centers s, s′ ∈ S. Then there must
exist two clusters Ca and Cb that are served by the same center s′′. For any cluster Ci, we have

|cost(Ci, S)− (|Ci|cost(µi, S) + cost(Ci, µi))| =
∣∣∣∣ ∑
p∈Ci

cost(p, S)− (cost(µi, S) + cost(p, µi))

∣∣∣∣
≤

∑
p∈Ci

ε/2 · cost(p, S) + (8/ε) · cost(p, µi) = ε/2 · cost(Ci, S) + (8/ε) · cost(Ci, C).

Summed over all clusters, this ensures

|cost(P, S)− (
∑
i

|Ci|cost(µi, S) + cost(P,C))| ≤ ε/2 · cost(P, S) + (8/ε) · OPTk. (22)
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We use the stability property to bound OPTk. Without loss of generality, assume that ∥µa −
s′′∥ ≤ ∥µb − s′′∥. Combined with the properties of β-stable instances ( Lemma C.1), this ensures
cost(µb, S) > cost(µb, µa)/4 ≥ β ·OPTk/(8|Cb|). Therefore, we get:

OPTk ≤ 8|Cb|cost(µb, S)/β ≤ (ε2/64) · (
∑
i

|Ci|cost(µi, S) + cost(P,C))

≤ (ε2/64)
(
cost(P, S) +

∣∣cost(P, S)− (∑
i

|Ci|cost(µi, S) + cost(P,C)
)∣∣).

Plugging this into (22) and rearranging gives the result.

3.1 A Brief Remark on Perturbation Resilient Instances

Finally, we briefly remark on the second most popular stability notion for clustering termed per-
turbation resilience. Unlike cost stability, perturbation resilience does not help with coreset con-
struction. We first define the condition and then argue why it cannot help.

Definition 3.2. Let (X, d) be a metric. We say that (X, d′) is an α-perturbation of (X, d) if for
any pair of points p, q ∈ X

d(p, q) ≤ d′(p, q) ≤ α · d(p, q).

We note that the function d′ is not necessarily a distance function, that is (X, d′) might not be
a metric.

Definition 3.3. Let (X, d) be a metric. For any set of points P ⊆ X, let Copt = {C1, . . . Ck} be
the optimal k-means clustering of P . We say that P is α-perturbation resilient, if for any (X, d′),
Copt is an optimal k-means clustering of P .

Proposition 3.4. For any α-perturbation resilient instance P , any k-means coreset must have size
Ω(k · ε−2min(

√
k, ε−2) · α−8).

Proof. The argument is very reliant on the worst-case lower bound construction by [HLW23]. We
will only describe the properties that are necessary to ensure that their lower bound applies to
a perturbation-resilient instance and encourage the reader to refer to their proof for details. The
simplest variant of their lower bound assumes that ε−1 = k1/4. The points P are split into k/2
groups with the following properties.

1. The groups have equal size Θ(k),

2. Two points in the same group have pairwise distance Θ(1),

3. Two points in different groups have pairwise distance Θ(ε−1).

Notice that this instance would be perturbation-resilient for α ∈ Θ(k1/4), if we had k groups,
each inducing a cluster. To create a perturbation-resilient point set, we introduce a modified copy
P ′ of P located at an arbitrary distance with the following properties:

1. The groups have equal size Θ(k),

2. Two points in the same group have pairwise distance Θ(1),

3. Two points in different groups have pairwise distance Θ(α).
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Observe that now the groups of P ∪ P ′ are the clusters of an optimal solution and that the
instance is Ω(α)-perturbation stable. We further observe that if we serve all the points of P ′

with one center, the cost increases by roughly a factor Θ(α2). However, there are now k/2 unused
centers with which P becomes a worst-case instance for coresets with ε′ = Θ(ε/α2). Thus, a coreset
lower bound of Ω(k · ε−2min(

√
k, ε−2) ·α−8) for α-perturbation resilient instances follows from the

Ω(k · ε−2min(
√
k, ε−2)) worst case lower bound of [HLW23].
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A Useful Facts

Here, we collect some standard facts that we have used repeatedly.

Fact A.1 (Bernstein’s Inequality). Let Y1, . . . , Yℓ be independent mean-zero bounded random
variables satisfying |Yi| ≤M , and let S =

∑ℓ
i=1 Yi and σ

2 =
∑ℓ

i=1 E[Y 2
i ]. Then, for all t > 0,

Pr (|S| ≥ t) ≤ 2 exp
(
−t2/(2σ2 + 2Mt/3)

)
.

Fact A.2 (Approximate Triangle Inequality). Let p1, p2, p3, p4 be points in Rd. We then have,

(i) For any ε > 0, ∥p1 − p3∥2 ≤ (1 + ε)∥p1 − p2∥2 +
(
1 + 1

ε

)
∥p2 − p3∥2

(ii)
∣∣∥p1 − p3∥2 − ∥p1 − p2∥2

∣∣ ≤ 2 · ∥p1 − p2∥ · ∥p2 − p3∥+ ∥p2 − p3∥2.

(iii) ∥p1 − p3∥2 ≤ 2(∥p1 − p2∥2 + ∥p2 − p3∥2).

(iv) ∥p1 − p4∥2 ≤ 3(∥p1 − p2∥2 + ∥p2 − p3∥2 + ∥p3 − p4∥2)

Proof. The first inequality follows by squaring ∥p1 − p3∥ ≤ ∥p1 − p2∥ + ∥p2 − p3∥ and using that
2ab ≤ εa2 + ε−1b2, for any a, b. The second and third inequality follows from the first by setting
ε = ∥p2−p3∥/∥p1−p2∥ and ε = 1 respectively. The fourth inequality follows by squaring ∥p1−p4∥ ≤
(∥p1 − p2∥+ ∥p2 − p3∥+ ∥p3 − p4∥) and as (a+ b+ c)2 ≤ 3(a2 + b2 + c2) by Cauchy-Schwarz.

Fact A.3. Let a1, . . . , at be reals and g1, . . . , gt be independent N(0, 1) random variables; then∑t
i=1 aigi has the same distribution as N(0,

∑t
i=1 a

2
i ).

Fact A.4 (See for example [Kam15]). For n ≥ 2 and i = 1, . . . , n, let gi ∼ N (0, σ2i ) be
Gaussians such that maxi σi ≤ σ; then Emaxi∈[n] |gi| ≤ σ

√
2 ln 2n.

We have the following standard property of the centroid.

Fact A.5. Let P ⊂ Rd be a set of n points and ∆(P ) = 1
n

∑
p∈P p be the centroid. For any x ∈ Rd

we have,
∑

p∈P ∥x− p∥2 = n∥x−∆(P )∥2 +
∑

p∈P ∥∆(P )− p∥2.

Claim A.6. Let S be a set of k centers. Suppose that Cj is a cluster whose center aj satisfies
cost(aj , S) ≥ 32∆j; then cost(Cj , S) ≥ 1

6 |Cj |cost(aj , S)

Proof. We show that since the centers in S are significantly far away from S, at least half the points
in cluster Cj pay a cost of Ω(cost(aj , S)) to S.

Let p be a point of Cj that satisfies cost(aj , p) ≤ 2∆j . For any such point, we have,

|cost(p, S)− cost(aj , S)| ≤ 2
√

cost(aj , S)cost(aj , p) + cost(aj , p) (By Item (ii) of Fact A.2)

≤ 2cost(aj , S)/3 (as cost(aj , p) ≤ 2∆j ≤ cost(aj , S)/16)

Rearranging terms we get cost(p, S) ≥ cost(aj , S)/3. By Markov’s inequality the number of
points p with cost(aj , p) ≤ 2∆j is at least |Cj |/2. It therefore follows that cost(Cj , S) ≥ |Cj |/2 ·
cost(aj , S)/3 ≥ 1

6 |Cj |cost(aj , S).
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B Basic Properties of the Algorithm

B.1 Properties of the Sample

We state some properties of Algorithm 1 which are useful in the analysis. Firstly, since the weight
of a point is the inverse of its probability of being sampled, it is easily verified from (2) that the
weights satisfy the following bound.

Fact B.1. For a point q ∈ Ω from cluster Cj, its weight satisfies

wq ≤ 4min

(
k |Cj |
m

,
k cost(Cj , A)

m cost(p,A)
,
cost(P,A)

m cost(q,A)
,
cost(P,A)

m∆q

)
.

These bounds will be extremely useful to bound the variance of various quantities.

Secondly, we show that with high probability, the coreset preserves the number of points in
each cluster as well as its cost. Moreover, it ensures that the cluster does not over-sample high-cost
points. These properties are summarized by an event E defined below.

Before we do this, it will be convenient to first partition points in a cluster into rings according
to their cost from the center. We define the notation ∆j = cost(Cj , A)/|Cj | to be the average cost
of cluster Cj .

Partitioning Clusters into Rings. We begin by partitioning each cluster Cj into rings centered
around its center aj ; for ℓ satisfying 1 ≤ ℓ ≤ ℓmax = ⌊log2(1/ε)⌋, we define the ring Rj(ℓ) ⊂ Cj

to be the set of points p ∈ Cj with cost(p, aj) ∈ [2ℓ∆j , 2
ℓ+1∆j). We also let Rj(0) be the points

p ∈ Cj with cost(p, aj) < 2∆j and Rj(ℓmax+1) to be the points p satisfying cost(p, aj) ≥ 2lmax+1∆j .
Clearly, the sets Rj(0), . . . , Rj(ℓmax + 1) partition Cj .

We now define the event E .

Definition B.2 (Event E). The event E occurs iff Ω satisfies the following properties:

P1: (Cluster Size Preservation) For each cluster Cj, we have∑
q∈Ω∩Cj

wq ∈ [(1− ε)|Cj |, (1 + ε)|Cj |].

P2: (Ring Size Preservation) For each j ∈ [k] and 0 ≤ ℓ ≤ ℓmax + 1 the set Rj(ℓ) satisfies,∑
q∈Ω∩Rj(ℓ)

wq ≤ |Cj |/2ℓ−1.

P3: (Cluster Cost Preservation) For each cluster Cj, costΩ(Cj , A) = (1± ε)cost(Cj , A).

Notice crucially that E only depends on the sample Ω (and in particular does not place any
restriction on S). The following lemma shows that E holds with high probability.

Lemma B.3. If m = Ω(kε−2 log(kε−1)) event E holds with probability at least 1− ε3/k3.

We now show that each of the three properties holds with high probability. The above lemma then
follows by a union bound. We first consider the properties P1 and P2.

Lemma B.4. If m ≥ 48kε−2 log(10kε−1), then Pr[P1] ≥ 1− ε4/5k3.
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Proof. This follows from a standard application of probabilistic tail bounds. Fix a cluster Cj , and
consider the random variable W =

∑
q∈Cj∩Ωwq. We will show that

Pr[|W − |Cj || > ε|Cj |] ≤ ε4/5k4.

For 1 ≤ i ≤ m, define the random variable Xi to be the weight wqi of the i-th sample qi if qi ∈ Cj

and 0 otherwise. Note that the Xi are independent,
∑m

i=1Xi =W and as wqµ(q) = 1/m, we have

E[Xi] =
∑
q∈Cj

µ(q)wq = |Cj |/m,

and therefore E[W ] = |Cj |.
Next, by Fact B.1, wq ≤ 4k|Cj |/m for each q ∈ Cj and thus Xi ∈ [0, 4k|Cj |/m], so that

E[X2
i ] ≤

∑
q∈Cj

µ(q)w2
q =

∑
q∈Cj

wq/m ≤
∑
q∈Cj

4k|Cj |/m2 ≤ 4k|Cj |2/m2.

Let Yi = Xi − E[Xi]. Then
∑m

i=1 Yi =W − |Cj | and thus by Bernstein’s inequality,

Pr(|W − |Cj || ≥ ε|Cj |) ≤ 2 exp

(
−(ε|Cj |)2/2

4k|Cj |2/m+ 4kε|Cj |2/3m

)
= 2 exp

(
−ε

2m

12k

)
= 2 (ε/10k)4 ≤ ε4/5k4.

where we use that
∑m

i=1 E[Y 2
i ] =

∑m
i=1Var[Xi] ≤

∑m
i=1 E[X2

i ] ≤ 4kC2
j /m. The bound on Pr[P1]

follows by a union bound over the k clusters.

The same proof shows that P2 occurs with high probability:

Lemma B.5. If m ≥ 48kε−2 log(10kε−1), then Pr[P2] ≥ 1− ε3/5k3.

Proof. Following the exact same steps as in the proof of property P1, one can show that with
probability at least 1 − ε4/5k3, for all cluster Cj and ring Rj(ℓ), it holds that

∑
q∈Ω∩Rj(ℓ)

wq =

(1±ε)|Rj(ℓ)|. The only differences with the proof of property P1 are that the variable Xi is 0 when
qi /∈ Rj(ℓ), instead of qi /∈ Cj ; and the last union-bound should be over all the k log2(1/ε) many
rings, instead of the k clusters.

We can conclude from this: Markov’s inequality ensures that |Rj(ℓ)| ≤ |Cj |/2ℓ, as otherwise the
cost of points in Rj(ℓ) would exceed cost(Cj , A). Therefore, taking ε = 1, we get

∑
q∈Ω∩Rj(ℓ)

wq ≤
|Cj |/2ℓ−1.

Next, we show that property P3 of Definition 2.16 also occurs with high probability.

Lemma B.6. If m ≥ 48kε−2 log(10kε−1), then Pr[P3] ≥ 1− ε4/5k3.

Proof. The proof is almost the same as the previous properties, and we repeat it for completeness.

Fix a cluster Cj , for 1 ≤ i ≤ m, define the random variable Xi to be the cost wqicost(qi, A)
of the i-th sample qi if qi ∈ Cj and 0 otherwise. Note that the Xi are independent, that

∑
Xi =

costΩ(Cj , A), and as wqµ(q) = 1/m, we have

E[Xi] =
∑
q∈Cj

µ(q)wqcost(q, A) = cost(Cj , A)/m.
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Next, by Fact B.1, wq ≤ 4kcost(Cj ,A)
mcost(q,A) for each q ∈ Cj and therefore |Xi| ≤ 4kcost(Cj , A)/m. We

also have:

E[X2
i ] ≤

∑
q∈Cj

µ(q)w2
qcost(q, A)

2 =
∑
q∈Cj

wqcost(q, A)
2

≤
∑
q∈Cj

4kcost(Cj , A)cost(q, A)/m
2 ≤ 4kcost(Cj , A)

2/m2.

Let Yi = Xi−E[Xi]. Then
∑m

i=1 Yi = costΩ(Cj , A)−cost(Cj , A) and thus by Bernstein’s inequality,

Pr (|costΩ(Cj , A)− cost(Cj , A)| ≥ εcost(Cj , A)) ≤ 2 exp

(
−(εcost(Cj , A))

2/2

4kcost(Cj , A)2/m+ 4kεcost(Cj , A)2/3m

)
= 2 exp

(
−ε

2m

12k

)
≤ ε4/5k4.

where we use that
∑m

i=1 E[Y 2
i ] =

∑m
i=1Var[Xi] ≤

∑m
i=1 E[X2

i ] ≤ 4kcost(Cj , A)
2/m. The bound on

Pr[P3] follows by a union bound over the k clusters.

This completes the proof of Lemma 2.17. We now show that the event E directly implies that
the cost of Ω with respect to any set of centers S is bounded above by a constant factor times the
true cost.

Lemma B.7. If event E holds, then for any set of centers S, we have costΩ(P, S) ≲ cost(P, S).

Proof. Suppose event E holds. For any point q in cluster Cj , by the triangle inequality cost(q, S) ≤
2(cost(q, aj) + cost(aj , S)). As costΩ(P, S) =

∑k
j=1

∑
q∈Cj∩Ωwqcost(q, S), this gives

costΩ(P, S) ≤
k∑

j=1

∑
q∈Cj∩Ω

2wq cost(q, aj) +
k∑

j=1

∑
q∈Cj∩Ω

2wq cost(aj , S) (23)

The first term can be bounded using property P3,

k∑
j=1

∑
q∈Cj∩Ω

wq cost(q, aj) =

k∑
j=1

costΩ(Cj , A) ≤ (1 + ε)cost(Cj , A). (24)

The second term of Equation (23) can be bounded since property P1 holds (i.e., for each cluster Cj

we have (
∑

q∈Cj∩Ωwq) ≤ (1 + ε)|Cj |).

k∑
j=1

∑
q∈Cj∩Ω

wq cost(aj , S) =
k∑

j=1

cost(aj , S)(
∑

q∈Cj∩Ω
wq) ≤

k∑
j=1

cost(aj , S)((1 + ε)|Cj |)

≤
k∑

j=1

2(1 + ε)(cost(Cj , S) + cost(Cj , A)) = 2(1 + ε)(cost(P, S) + cost(P,A)), (25)

where the last inequality uses that for any set of centers S and a cluster Cj , we have that

cost(aj , S)|Cj | ≤ 2(cost(Cj , S) + cost(Cj , A)),
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which follows noting that for any point q ∈ Cj , cost(aj , S) ≤ 2(cost(q, S) + cost(q, aj)) by the
triangle inequality, and summing up over all points q ∈ Cj .

Plugging the bounds (24) and (25) in (23), and using that ε ≤ 1/2, gives the claimed bound

costΩ(P, S) ≤ 9 cost(P,A) + 6 cost(P, S).

Since A is a O(1) approximation the claim then follows.

Next, we give a worst-case bound on the cost estimated by Ω when the event E does not occur.

Lemma B.8. For any set of centers S, costΩ(P, S) ≲ k cost(P, S).

Proof. The proof shares similarity with the one of Lemma 2.18, and we re-use several parts of it.
We start with the bound in (23) on costΩ(P, S). By (24), the first term is always bounded by
6cost(P,A). To bound the second term, we first note that for any q ∈ Cj ,

wq cost(aj , S) ≤
3k|Cj |
m

cost(aj , S) ≤
3k

m
(2 cost(Cj , S) + 2 cost(Cj , aj))

where we use that wq ≤ 3k|Cj |/m by Fact B.1, and that |Cj |cost(aj , S) ≤
∑

p∈Cj
(2cost(p, S) +

2cost(p, aj)) by the triangle inequality.

As |Cj ∩ Ω| ≤ |Ω| = m for each j, we can bound the second term in (23) using the equation
above as

k∑
j=1

∑
q∈Cj∩Ω

2wqcost(aj , S) ≤ m
k∑

j=1

6k

m
(2cost(Cj , S) + 2cost(Cj , aj))

= O(k(cost(P, S) + cost(P,A)).

Since A is a O(1) approximation the claim then follows.
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C Stability of an Approximate Clustering

Given a β-stable instance and an optimal k-means solution {a1, . . . , ak}, we can show that the
centers ai are pairwise well separated. Moreover, this property holds even for sufficiently good
approximate k-means solutions.

Lemma C.1. Let P ⊆ Rd be a β-stable instance with respect to the k-means objective. Let OPTk

be the value of the optimal solution with k centers. For 1 ≤ γ ≤ 1 + β/2, let {C1, . . . Ck} be a
γ-approximation to the optimal solution and a1, . . . , ak be the respective centroids of the clusters.
Then for any i, j ∈ [k] with i ̸= j, it holds that

cost(ai, aj) ≥
βOPTk

2min (|Ci|, |Cj |)
.

Proof. Fix two distinct clusters Ci and Cj and assume without loss of generality assume that |Ci| ≤
|Cj |. Since the solution is γ-approximate with γ ≤ 1 + β/2, we have cost(P,A) ≤ (1 + β/2)OPTk.
By the β-stability of the instance, OPTk−1 ≥ (1 + β)OPTk. Therefore, if A′ = A \ {ai}, we have
cost(P,A′) ≥ (1 + β)OPTk. It follows that:

βOPTk

2
≤ cost(P,A′)− cost(P,A)

= cost(Ci, A
′)− cost(Ci, ai) (For j ̸= i, cost(Cj , A) = cost(Cj , A

′) = cost(Cj , aj))

≤ cost(Ci, aj)− cost(Ci, ai) (cost(p, aj) ≥ cost(p,A′) since aj ∈ A′)

= |Ci| · cost(ai, aj). (Using Fact A.5 and that ai is the centroid of Ci)

Rearranging terms proves the inequality.

Fortunately, even for small values of β, it is possible to compute the desired γ-approximation in
time nO(1/γ), see [ABS10]. This dependency on n can be reduced to poly(k/ε) via an initial coreset
computation. Moreover, a polynomial dependency on 1/γ is not possible as Euclidean k-means is
APX hard [CKL21]. For large (constant) values of β, more conventional (and fast) approximation
algorithms are sufficient. The fastest known true approximation algorithms for Euclidean k-means
are local search based, see [CGPR20,KMN+04,LS19]. Moreover, local search is also an algorithm
that can be used to solve stable k-means [CS17], so one can always seed the coreset construction
with the computed solution of local search.

Thus, for constant β, which is the regime of interest, the algorithm always runs in polynomial
time, and in fact, for sufficiently large β > 18, there is effectively no drop-off in performance.
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D Missing Details from Section 2

D.1 Analysis of Far Points

We now prove Lemma 2.2, which says that for any set of centers, S the cost of coreset points from
far clusters approximates the cost of far clusters to within an error of ±ε cost(P, S). More formally,
our goal is to show that when m = Ω(kε−2 · log(kε−1)), then

E
Ω

sup
S∈S(r)

∣∣∣∣cost(PF (S), S)− costΩ(PF (S), S)

cost(P, S)

∣∣∣∣ ≤ ε/2,

where PF (S) is the set of clusters Cj such that cost(aj , S) > ∆jε
−2.

The idea is that when Cj is a far cluster, then aj is so far away from S that the cost of any point
of Cj will essentially be cost(aj , S). This might not be true for all q ∈ Cj , as some q may be far away
from aj as well, but it holds for most of the points, which is enough for us. More precisely, we show
in Lemma D.1 below that cost(Cj , S) ≈ |Cj |cost(aj , S) and costΩ(Cj , S) ≈

∑
q∈Ω∩Cj

wq ·cost(aj , S).
When the coreset Ω satisfies event E , those two quantities are (almost) equal, and the cost difference
for any far cluster is at most εcost(Cj , S). Note that this holds deterministically for any S, as long
as Ω satisfies event E : therefore,

E
Ω

[
sup

S∈S(r)

∣∣∣∣cost(PF (S), S)− costΩ(PF (S), S)

cost(P, S)

∣∣∣∣ E
]
≤ ε/2.

When Ω does not satisfy event E , then we bound |cost(PF (S), S)− costΩ(PF (S), S)| ≤ cost(P, S)+
costΩ(P, S) ≤ O(k cost(P, S)) (from Lemma B.8). This holds simultaneously for all solution S.

Since Ω satisfies event E with probability at least 1 − ε/k (Lemma 2.17), the Law of Total
Expectation ensures that

E
Ω

sup
S∈S(r)

∣∣∣∣cost(PF (S), S)− costΩ(PF (S), S)

cost(P, S)

∣∣∣∣ ≲ ε,

which concludes the proof of Lemma 2.2.

What remains to show is the following:

Lemma D.1. If the coreset Ω satisfies the event E (Definition 2.16), then for any set of centers
S, any cluster Cj that is far from S (deterministically) satisfies |cost(Cj , S) − costΩ(Cj , S)| ≲
ε cost(Cj , S).

Proof. Adding and subtracting |Cj | · cost(aj , S) and applying the triangle inequality we have,

|cost(Cj , S)− costΩ(Cj , S)| ≤ |cost(Cj , S)− |Cj | · cost(aj , S)|︸ ︷︷ ︸
Term 1

+ |costΩ(Cj , S)− |Cj | · cost(aj , S)|︸ ︷︷ ︸
Term 2

The lemma follows if bound both terms are O(ε cost(Cj , S). We show this next.

Bounding Term 1. As the rings Rj(0), . . . , Rj(lmax + 1) partition Cj , we have

Term 1 ≤
ℓmax+1∑
ℓ=0

|cost(Rj(ℓ), S)− |Rj(ℓ)| · cost(aj , S)| ≤
ℓmax+1∑
ℓ=0

∑
p∈Rj(ℓ)

|cost(p, S)− cost(aj , S)|.
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We start by bounding the term corresponding to points in Rj(lmax + 1). These points are at most
ε|Cj | in number and therefore are easily dealt with.

Let p be a point in Rj(lmax + 1). By triangle inequality (Item (iii) of Fact A.2), we have
cost(p, S) ≤ 2(cost(p, aj)+cost(aj , S)). Therefore, |cost(p, S)−cost(aj , S)| ≲ cost(p, aj)+cost(aj , S).
Noting that there are at most ε|Cj | points in Rj(lmax + 1) we get,∑

p∈Rj(lmax+1)

|cost(p, S)− cost(aj , S)| ≲ cost(Cj , aj) + ε|Cj |cost(aj , S).

Here, note that |Cj |cost(aj , S) ≤ cost(Cj , aj) + cost(Cj , S). Furthermore, since Cj is a far cluster,
we have that cost(Cj , aj) ≤ ε2|Cj |cost(aj , S) ≲ ε2(cost(Cj , S) + cost(Cj , aj). Rearranging, we get
cost(Cj , aj) ≲ ε2cost(Cj , S). Therefore,∑

p∈Rj(lmax+1)

|cost(p, S)− cost(aj , S)| ≲ ε2cost(Cj , S) + εcost(Cj , S) ≲ εcost(Cj , S).

Let p be a point in ring ℓ where 0 ≤ ℓ ≤ lmax. By an application of the approximate triangle
inequality (Item (ii) of Fact A.2) and the fact that cost(p, aj) ≪ cost(aj , S),

|cost(p, S)− cost(aj , S)| ≤ 2
√

cost(p, aj)cost(aj , S) + cost(p, aj) ≲
√

cost(p, aj)cost(aj , S). (26)

Since p is in Rj(ℓ) and Cj is far from S we obtain cost(p, aj) ≤ 2ℓ+1∆j ≤ 2ℓ+1ε2cost(aj , S). Plugging
this into Equation (26) gives

|cost(p, S)− cost(aj , S)| ≲ 2ℓ/2εcost(aj , S). (27)

Using this inequality and the fact that |Rj(ℓ)| is at most |Cj |/2ℓ (by Markov’s inequality), we get

lmax∑
ℓ=0

∑
p∈Rj(ℓ)

|cost(p, S)− cost(aj , S)| ≲
lmax∑
ℓ=0

|Cj |
2ℓ

· 2ℓ/2εcost(aj , S) ≲ ε|Cj |cost(aj , S).

Combined with the bound on Rj(lmax + 1), we get:

Term 1 = |cost(Cj , S)− |Cj | · cost(aj , S)| ≲ εcost(Cj , S) + ε|Cj |cost(aj , S)
≤ εcost(Cj , S) + ε(cost(Cj , S) + |cost(Cj , S)− |Cj | · cost(aj , S)|). (28)

Rearranging, this implies Term 1 ≲ ε cost(Cj , S), as desired.

Bounding term 2. This proof will be very similar to the previous one, relying on properties for
event E to show the weight of each cluster is preserved in Ω.

For ℓ in range 0 ≤ ℓ ≤ ℓmax + 1, let Wℓ =
∑

q∈Ω∩Rj(ℓ)
wq denote the sum of weights of coreset

points in the Rj(ℓ) and let W =
∑ℓmax+1

ℓ=0 Wℓ be the total weight of coreset points from Cj . Since

costΩ(Cj , S) =
∑ℓmax+1

ℓ=0 costΩ(Rj(ℓ), S) we have,

|costΩ(Cj , S)− |Cj |cost(aj , S)| ≤ |costΩ(Cj , S)−W cost(aj , S)|+ |(W − |Cj |) · cost(aj , S)| (29)

If event E holds, it follows that |W − |Cj || ≤ ε|Cj | and by the same reasoning as Equation (28)
that the second term of Equation (29) is O(ε cost(Cj , S) + ε(Term 1)). It now remains to bound
the first term.

|costΩ(Cj , S)−W cost(aj , S)| ≤
ℓmax+1∑
ℓ=0

|costΩ(Rj(ℓ), S)−Wℓcost(aj , S)|.
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For 0 ≤ ℓ ≤ ℓmax, the event E and Markov’s inequality ensure that Wℓ ≲ |Cj |/2ℓ. Therefore, a
similar calculation as in (27) shows that

|costΩ(Rj(ℓ), S)−Wℓ cost(aj , S)| = O(Wℓ · ε2ℓ/2 cost(aj , S))
= O(|Cj |/2ℓ · ε2ℓ/2 cost(aj , S)) = O(ε2−ℓ/2|Cj | cost(aj , S)) = O(ε2−ℓ/2 cost(Cj , S)). (30)

Finally, we also get, for ℓ = ℓmax + 1

|costΩ(Rj(ℓmax + 1), S)−Wℓmax+1 · cost(aj , S)| ≤
∑

q∈Ω∩Rj(ℓmax+1)

|wq cost(q, S)− wq cost(aj , S)|

≤
∑

q∈Ω∩Rj(ℓmax+1)

wq cost(q, S) + wq cost(aj , S)
(i)

≤
∑

q∈Ω∩Rj(ℓmax+1)

(2wq cost(q, aj) + 3wq cost(aj , S))

(ii)

≤ 2costΩ(Cj , A) + 6ε|Cj | cost(aj , S)
(iii)

≤ O(cost(Cj , A)) +O(ε cost(Cj , S)) = O(ε cost(Cj , S)),

(31)

where step (i) uses Fact A.2, step (ii) uses the bound Wℓmax+1 ≤ 2ε|Cj | which holds whenever
event E occurs. Step (iii) also follows by the third property of event E .

Summing (30) and (31) gives that Term 2 ≲ ε cost(Cj , S), which concludes the proof.

D.2 Handling Clusters with Low Cost

Proof of Lemma 2.5. Let us denote ψT (Ω, S) =
∣∣∣∑j∈JS (cost(Cj , S)− costΩ(Cj , S))

∣∣∣. Our goal is

to show that

E
Ω
sup
S
ψT (Ω, S) ≲ εcost(P,A).

This will follow directly from the following simple bounds.

Claim D.2. Fix a set Ω and a set of centers S. For any cluster Cj with j ∈ JS, it always holds
that (i) cost(Cj , S) ≲ ε

kcost(P,A) and (ii) costΩ(Cj , S) ≲ cost(P,A).

Moreover if Ω satisfies event E, we have the stronger bound (iii) costΩ(Cj , S) ≲ ε
kcost(P,A).

Let us first see how this claim directly implies the result.

For any S, we trivially have

ψT (Ω, S) ≤
∑
j∈JS

(cost(Cj , S) + costΩ(Cj , S)).

If Ω satisfies the event E , then plugging the bounds (i) and (iii) in Claim D.2 for each j ∈ JS ,
we get that ψT (Ω, S) ≲ εcost(P,A).

If Ω does not satisfy E , the worst case bound (ii) in Claim D.2 gives costΩ(Cj , S) ≲ cost(P,A)
and hence ψT (Ω, S) ≲ kcost(P,A).

Using these bounds on ψT (Ω, S), and as Pr[E ] ≥ (1 − ε/k) by Lemma 2.17, the Law of total
Expectation gives that

E
Ω
sup
S
ψT (Ω, S) = E

Ω
sup
S

[ψT (Ω, S)|E ] · Pr[E ] + E
Ω
sup
S

[ψT (Ω, S)|E ] · Pr[E ]
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≤ εcost(P,A) · 1 + kcost(P,A) · ε
k ≲ εcost(P,A),

as desired.

We now prove Claim D.2.

Proof of Claim D.2. For any point p ∈ Cj , using the triangle inequality (Fact A.2) and that Cj is
close to S (so that cost(aj , S) ≤ ∆jε

−2) gives

cost(p, S) ≤ 2(cost(p, aj) + cost(aj , S)) ≤ 2(cost(p, aj) + ∆jε
−2). (32)

Summing this over points p in Cj and using that cost(Cj , A) ≤ T = ε3

k cost(P,A), we get

cost(Cj , S) ≤ 2(cost(Cj , A) + cost(Cj , A)ε
−2) ≤ 4ε−2cost(Cj , A) ≲ ε

kcost(P,A).

This proves the bound (i).

To prove the bound (ii), summing Equation (32) over points in Cj ∩ Ω gives,

costΩ(Cj , S) ≤ 2
∑

p∈Cj∩Ω
(wpcost(p, aj)) + 2∆jε

−2
∑

p∈Cj∩Ω
wp

(i)

≤ 2
∑

p∈Cj∩Ω
( 3cost(P,A)
m·cost(p,aj) · cost(p, aj)) + 2∆jε

−2
∑

p∈Cj∩Ω

4k|Cj |
m (By Fact B.1)

≤ 6cost(P,A) + 8kε−2cost(Cj , A) ≲ cost(P,A). (As cost(Cj , A) ≤ ε3

k cost(P,A))

If the event E holds, then step (i) above can be tightened using the inequalities:
∑

p∈Cj∩Ωwpcost(p, aj) =

costΩ(Cj , A) ≤ (1 + ε)cost(Cj , A) which holds by property P3 (see Definition 2.16 of event E) and∑
p∈Cj∩Ωwp ≤ (1 + ε)|Cj | which holds by property P1. This gives,

costΩ(Cj , S) ≤ 2(1 + ε)cost(Cj , A) + 2∆jε
−2(1 + ε)|Cj |

≲ ε−2cost(Cj , A) ≲
ε

k
cost(P,A).

D.3 Symmetrization

A random process is a collection of random variables (X(t))t∈T on the same probability space and
is indexed by elements t of some set T . Consider m random processes X1(t), . . . Xm(t) with the
same index set T and defined on the same probability space. We say these random processes are
independent if for any t′ ∈ T , the random variables X1(t

′), . . . , Xm(t′) are mutually independent.
We state the following useful symmetrization lemma for independent random processes.

Fact D.3 (Symmetrization for Random Processes). Let X1(t), . . . , Xm(t) be independent
random processes indexed by t ∈ T . Let g1, . . . , gm ∼ N (0, 1) be independent Gaussians. Then

E sup
t∈T

∣∣∣∣∣
n∑

i=1

(Xi(t)− EXi(t))

∣∣∣∣∣ ≤ √
2π E sup

t∈T

∣∣∣∣∣
n∑

i=1

giXi(t)

∣∣∣∣∣ .
We now use the above result to prove Equation (11).

40



Lemma D.4. Let g1, g2, · · · , gm be independent Gaussians sampled from N (0, 1) where m is the
number of samples in Ω, then

E
Ω

sup
S∈S(r)

∣∣∣∣cost(B(S), S)− costΩ(B(S), S)

cost(P, S)

∣∣∣∣ ≤ √
2π E

Ω
E
g

sup
S∈S(r)

∣∣XS(Ω, g)
∣∣ .

Proof. Consider a fixed S ∈ S(r). Recall that uS(Ω) is a vector in Rm whose i-th entry given
by uSi (Ω) = 1[qi ∈ B(S)]cost(qi, S). For each i ∈ [m], define the random variable Y S

i (Ω) =
(wqiu

S
i (Ω))/cost(P, S) where the randomness of Y S

i (Ω) is in the choice of the i-th sample qi of Ω.
Firstly, we have

∑
i∈[m] Y

S
i (Ω) = costΩ(B(S), S)/cost(P, S). Moreover, we have,

E
Ω
Y S
i (Ω)

(i)
=

1

cost(P, S)

∑
p∈P

µ(p) · 1/(mµ(p)) · 1[p ∈ B(S)] · cost(p, S)

=
1

cost(P, S)

∑
p∈B(S)

1/m · cost(p, S) = cost(B(S), S)

m · cost(P, S)

where step (i) uses that Algorithm 1 assigns weight 1/(mµ(p)) if the i-th sample is p. By the
linearity of expectation, EΩ

∑
i∈[m] Y

S
i (Ω) = cost(B(S), S)/cost(P, S). Since the coordinates of

uS(Ω) are mutually independent, the random processes Y S
1 (Ω), . . . , Y S

m(Ω) indexed by S ∈ S(r) are
also independent. Applying Fact D.3 gives,

E
Ω

sup
S∈S(r)

∣∣∣∣cost(B(S), S)− costΩ(B(S), S))

cost(P, S)

∣∣∣∣
= E

Ω
sup

S∈S(r)

∣∣∣∣∣∣
∑
i∈[m]

(
Y S
i (Ω)− E

Ω
Y S
i (Ω)

)∣∣∣∣∣∣ ≤ √
2π E

Ω
E
g

sup
S∈S(r)

∣∣∣∣∣∣
∑
i∈[m]

giY
S
i (Ω)

∣∣∣∣∣∣ .
which concludes the proof since XS(Ω, g) =

∑
i∈[m] giY

S
i (Ω).

D.4 Worst Case Bound on Gaussian Process: Proof of Lemma 2.19

Proof. Define the vector zS ∈ Rm such that for q ∈ Ω, the q-th coordinate zSq = (wqu
S
q )/cost(P, S).

This allows us to write XS = ⟨g, zS⟩ ≤ ∥g∥ · ∥zS∥ where the last step uses the Cauchy-Schwarz
inequality.

We begin by bounding the norm of zS . For a point q ∈ Cj ∩B(S), we have cost(q, S) ≲ cost(q, A)+

cost(aj , S) ≲ cost(q, A) + ∆j/ε
2. Using fact B.1 wq ≤ min

(
cost(P,A)
mcost(q,A) ,

cost(P,A)
m∆j

)
, we therefore get

cost(q, S) ≲ cost(P,A)
ε2m

, and so:

∥zS∥2 =
∑

q∈B(S)∩Ω

(wqcost(q, S))
2

cost(P, S)2
≲

∑
q∈B(S)∩Ω

(cost(P,A)2/(ε4m2))

cost(P, S)2
≲

1

ε4m
, (33)

where the last step uses cost(P,A) ≤ γcost(P, S) ≲ cost(P, S).

Therefore using Equation (33) and the fact that Eg ∥g∥ ≲
√
m we get,

Eg sup
S∈S(r)

|XS | ≲ Eg sup
S∈S(r)

∥g∥ · ∥zS∥ ≲ Eg sup
S∈S(r)

∥g∥ · 1/(ε2
√
m) ≲ 1/ε2
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E Existence of Cost Vector Nets of Small Size

Consider a fixed signature (N1, . . . , Nk) (as defined in Section 2.2.3) and let N =
∑k

i=1Nj . Also,
let T be the set of all centers with this signature. We show the following:

Lemma E.1. There is an (α, T )-net Mα of size exp(O(min(k2tα−2, N + kα−2) · log(kε−1α−1))).

The interaction number N(S) for any S ∈ S(r) is, by definition, in range [2r, 2r+1). Moreover, the
total number of signatures is at most (k + 1)k = exp(O(k log k)). These two facts together with
Lemma E.1 imply the net bound guaranteed by Lemma 2.14.

Definition E.2 (Single Center Nets). Let α ∈ (0, 1/2], j ∈ [k] and T be the set of centers with
signature (N1, . . . , Nk). An (α, T , j)-net is a set of vectors Mα,j which for each S ∈ T contains a
vector y that approximates the costs of points in Ω to the j-th center xj of S as follows. For each
qi ∈ B(S) ∩ Ω,

(a) yi ≥ cost(qi, S)− α · err(qi, S) where err(·, ·) is as defined in Definition 2.9.

(b) If cost(qi, S) = cost(qi, xj) then we further have yi ≤ cost(qi, S) + α · err(qi, S)

In words, the net Mα,j contains vectors approximating the cost of points in Ω with respect to
out of the k centers in S (specifically the j-th center xj). Moreover, if a point q ∈ Ω, has xj as the
nearest center among all centers in S, then its cost is α approximated. For other points, we only
guarantee that their cost wrt xj is not underestimated by the vector.

We give the following bound on the size of single center nets.

Lemma E.3 (Single Center Net Bound). For any α ∈ (0, 1/2] and j ∈ [k] there exists a
(α, T , j) single center net of size exp(O(min(2tα−2, Nj + α−2) · log(kε−1α−1))).

Before giving a proof of Lemma E.3, we show that constructing single center nets suffices. Specifi-
cally, the above bounds on the sizes of single center nets imply the existence of cost vector nets of
the size guaranteed by Lemma E.1.

Proof of Lemma E.1. For each i ∈ [k], let Mα,i be the set of vectors given by Lemma E.3. We
define

M ′
α = {min(v(1), . . . , v(k))|(v(1), . . . , v(k)) ∈Mα,1 × · · · ×Mα,k}

where min denotes the coordinate-wise minimum of vectors.

Next, we will ensure that the only non-zero coordinates correspond to points from B(S) (clusters
with band b and type t). We achieve this by “guessing” which clusters are in B(S) and zero out
the coordinates of points in the remaining clusters. Formally, for each vector v in M ′

α and each
subset C0 of clusters {C1, . . . , Ck}, define v(C0) ∈ Rm as follows: for qi ∈ Ω if qi lies in a cluster in
C0, set (v(C0))i = vi; otherwise set (v(C0))i = 0. Let Mα be the set of all vectors v(C0) obtained by
varying v over points in M ′

α and C0 over all subsets of {C1, . . . , Ck}. It follows that:

|Mα| = 2k · |M ′
α| = 2k ·Πi∈[k]|Mα,i| = exp(O(min(k2tα−2, N + kα−2) · log(kε−1α−1))).

We conclude by proving that Mα satisfies the properties required by Definition 2.9. Consider a set
S = {x1, . . . , xk} of centers from T . Let v(j) be the vector in Mα,j corresponding to S and define
umin = min(v(1), . . . , v(k)). Finally, let u be the vector obtained by setting the i-th coordinate of
umin to zero if qi is not in B(S). By the construction above, u is contained in Mα. We claim that
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u approximates the cost of points in Ω as required. First, if qi /∈ B(S) then ui = 0. On the other
hand, if qi ∈ B(S), then by Lemma E.3, ui ≥ cost(qi, S)− α · err(qi, S). Moreover if xj ∈ S is the

nearest center to qi, then ui = minj′ v
(j′)
i ≤ v

(j)
i ≤ cost(qi, S) + α · err(qi, S) completing the proof

of the lemma.

Our main goal thus reduces to proving Lemma E.3.

E.1 A Warm-up

As a first step towards proving Lemma E.3, we give a prove a warm-up lemma which shows the
existence of single center nets whose size depends exponentially on the dimension d. In the next
section, we will show that we can use dimensionality reduction ideas to avoid such a dependence
on d. We begin by recalling some facts about the net size of a Euclidean ball in d-dimensions.

Let Bd
2(R) denote the d-dimensional Euclidean ℓ2-ball of radius R. A set Dη ⊂ Rd is called

an η-net of Bd
2(R) if for any point x ∈ Bd

2(R) there exists y ∈ Dη such that ∥x − y∥2 ≤ η. The
following is a standard result that bounds the size of the η-net of Bd

2(R).

Fact E.4 (Lemma 5.2 of [Ver10]). The ball Bd
2(R) has an η-net of size at most (2R/η + 1)d.

We use the above fact, to prove the following useful lemma.

Lemma E.5 (Warm Up). Let Ω = {q1, . . . , qm} ⊂ Rd and suppose that each point q in Ω has an
associated threshold distance Rq. For α ∈ (0, 1/2], there is a set Nα ⊂ Rm of size at most m(3/α)d

with the following property. For any point x ∈ Rd there is a vector y ∈ Nα that approximates costs
of the points qi with respect to x as follows: for i ∈ [m],

(a) If cost(qi, x) ≤ R2
qi then |yi − cost(qi, x)| ≤ αR2

qi

(b) If cost(qi, x) > R2
qi then yi ≥ R2

qi − αR2
qi.

Proof. For each q ∈ Ω, consider the d-dimensional ball of radius Rq centered at this point. Let D(q)
be an (αRq)-net of this ball (as defined in Fact E.4). By Fact E.4, we have that |D(q)| ≤ (3/α)d

and that the set D(Ω) =
⋃

q′∈ΩD(q′) has at most m(3/α)d points.

For x′ ∈ D(Ω), define the cost vector y(x′) ∈ Rm as follows: for i ∈ [m] set yi(x
′) = cost(qi, x

′).
Let Nα be the set of all such vectors. Note that Nα is of the claimed size.

Let x be a point in Rd and x′ be the point in D(Ω) nearest to x. We show that y(x′) ∈ Nα

satisfies both Item (a) and Item (b) for the point x.

Proof of Item (a). If qi ∈ Ω is a point satisfying cost(qi, x) ≤ R2
qi then we have by our choice

of x′ that ∥x− x′∥ ≤ αRqi . By triangle inequality (Fact A.2),

|cost(qi, x)− yi(x
′)| = |cost(qi, x)− cost(qi, x

′)| ≤ 2
√

cost(qi, x)cost(x, x′) + cost(x, x′)

≤ 2
√
R2

qi · α2R2
qi + α2R2

qi ≤ 3αR2
qi .

Proof of Item (b). Suppose that qi ∈ Ω is a point with cost(qi, x) > R2
qi . We now want to

show that yi(x
′) does not underestimate the cost of qi by too much. Consider the ball of radius

Rqi centered at qi and let p be the point in this ball nearest to x. Clearly, D(Ω) contains a point
within distance (αRqi) of p. Therefore, we have ∥x− x′∥ ≤ ∥p− x∥+ αRqi . By triangle inequality,

∥qi − x′∥ ≥ ∥qi − x∥ − ∥x− x′∥ ≥ ∥qi − x∥ − ∥p− x∥ − αRqi = Rqi − αRqi (34)
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where the last line uses that qi, p, x are collinear. Therefore, yi(x
′) = cost(qi, x

′) ≥ (Rqi −αRqi)
2 ≥

R2
qi − 2αR2

qi . The result follows by rescaling α.

We now show that the above lemma implies a bound on the size of (α, T , j)-single center
nets. The idea is that since q ∈ B(S) is a close point, by the triangle inequality, it satisfies
cost(q, S) ≤ 2(cost(q, A) + ∆qε

−2). Therefore, if xj is the nearest center to q then it is within this
cost radius of q. Therefore, plugging R2

q = 2(cost(q, A)+∆qε
−2) in the above lemma and rescaling

α by an O(ϵ−2) factor, yields a single center of poly(k/ε) · (1/αε)d.
The size of the net constructed above is not ideal (we want net sizes independent of d). To

eliminate this dependence on the dimension, we show that we can use the above lemma after first
projecting the points in Ω onto a suitably chosen low-dimensional subspace. This then yields the
final bound on the net size.

E.2 Dimensionality Reduction Lemma

We now present the dimensionality reduction lemma that we shall use in our net construction.

The lemma below shows that for any set of points Ω and a point x, there is a low dimensional
subspace U(x) with the following two properties: (i) U(x) is spanned by a subset of points in Ω,
(ii) If Π is the orthogonal projection matrix of U(x), then ⟨q, x⟩ ≈ ⟨Πq, x⟩. Furthermore, one can
augment any set U0 ⊂ Rd with a small subset of points from Ω to obtain a subspace with such a
property.

Lemma E.6. Let Ω ⊂ Rd be an arbitrary set of points, x be a point in Rd and α ∈ (0, 1). Any set
U0 ⊂ Rd can be extended to obtain a set U(x) = U0 ∪R(x) such that the following properties hold:

1. The set R(x) is a subset of Ω with cardinality |R(x)| = O(1/α2).

2. R(x) contains the point in Ω nearest to x.

3. Let Π denote the orthogonal projection on to the span of U(x). For any point q ∈ Ω we have,

|⟨q, x⟩ − ⟨Πq, x⟩| ≤ α · ∥q −Πq∥ ·min
q′∈Ω

∥q′ − x∥. (35)

We call the set of points U(x) with the above properties an α-good set for x.

Proof. If |Ω| = O(1/α2) then we are trivially done by taking R(x) = Ω. If this is not the case, we
will construct R(x) iteratively in several rounds. Let Ri denote the set R(x) in the i-th round and
Πi denote the orthogonal projection onto the span of U0 ∪Ri.

Begin by setting R1 = {q′} where the q′ is the point in Ω nearest to x. If in the i-th round
(where i ≥ 1) there exists a point q violating Equation (35), then add it to Ri to obtain Ri+1. If
no such q exists, then terminate. We show that the algorithm above terminates in O(1/α2) rounds.
Observe first that by the Pythagorean theorem,

∥Π1x∥2 = ∥x∥2 − ∥(I −Π1)x∥2 ≥ ∥x∥2 − ∥q′ − x∥2 (36)

where the last inequality used the fact that q′ is in the subspace R1.

Suppose that point q ∈ Ω violates condition 3 in round i; we show that augmenting q to the
subspace significantly increases the projection of x onto it. We have:

|⟨q −Πiq, x⟩| = |⟨q, x⟩ − ⟨Πiq, x⟩| > α · ∥q −Πiq∥ · ∥q′ − x∥. (37)
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For v = q−Πiq
∥q−Πiq∥ , rearranging Equation (37) we get |⟨v, x⟩| > α∥q′ − x∥. Moreover, we have

∥Πi+1x∥2 = ∥Πix∥2 + ⟨v, x⟩2 > ∥Πix∥2 + α2∥q′ − x∥2. (38)

Therefore, after each round, the norm of the projection of x increases by α2∥q′ − x∥2. But by
Equation (36) and the fact that ∥x∥2 ≥ ∥Πix∥2, this can happen for at most O(1/α2) rounds.

E.3 Bound 1: exp(Õ(2tα−2))

We now combine Lemma E.6 together with Lemma E.5 to construct the single center nets of size
guaranteed by Lemma E.3.

In this subsection, we prove the first bound on the size of nets, which depends on the type
t of the points in B(S) ∩ Ω. (we recall that B(S) is defined as the set of points in type t and
band b; see Section 2.2.3 for the precise definitions). In particular, we construct an (α, T , 1) net
Mα,1 ⊂ Rm of size exp(Õ(2tα−2)). We will describe the construction of Mα,1 by fixing S ∈ T with
first center x1 and showing how to construct a net vector for x1. It will be clear from the procedure
used to construct the net vector that the number of possible vectors obtainable is bounded by
exp(Õ(2tα−2)).

We begin by applying Lemma E.6 with U0 = ∅ to obtain an (α2−t/2)-good subset U(x1) for x1.
Let U denote the subspace spanned by the points in U(x1) and Π be its orthogonal projection ma-
trix. By the guarantees of the lemma dim(U) = O(α−22t). The first step is to use the Pythagorean
theorem to write the cost of any point qi ∈ Ω to x1 as follows:

cost(q, x1) = ∥Π(q − x1)∥2︸ ︷︷ ︸
Term 1

+ ∥(I −Π)q∥2︸ ︷︷ ︸
Term 2

+ ∥(I −Π)x1∥2︸ ︷︷ ︸
Term 3

− 2
(
⟨q, x1⟩ − ⟨Πq, x1⟩

)︸ ︷︷ ︸
Term 4

.
(39)

To obtain a single center net, we shall construct small “nets” to approximate each of the first three
terms and then use Lemma E.6 to argue that the Term 4 is small and need not be approximated.
We then combine these nets to obtain the single center net.

The following claim gives bounds on Term 4 and is an immediate consequence of Lemma E.6. It
states that if x1 is an approximate nearest neighbor of q, then term 4 is bounded by O(αerr(q, S));
if not, we have a guarantee which is weaker but sufficient for our analysis.

Claim E.7. Term 4 is at most O(α2−t/2cost(q, x1)).

Proof. Since Π is an orthogonal projection onto the subspace spanned by an (α2−t/2)-good subset,
by Lemma E.6, for any q ∈ Ω we have,

|⟨q, x1⟩ − ⟨q,Πx1⟩| ≤ (α2−t/2) · ∥q −Πq∥ ·min
q′∈Ω

∥q′ − x1∥ ≤ (α2−t/2) · ∥q −Πq∥ · ∥q − x1∥. (40)

Let q∗ denote the nearest point to x1 in Ω. Since q∗ is guaranteed to lie in the good subset (by
Lemma E.6), by an application of triangle inequality we have ∥q − Πq∥ ≤ ∥q − q∗∥ ≤ ∥q − x1∥ +
∥q∗ − x1∥ ≤ 2∥q − x1∥. Plugging this into Equation (40) proves the claim.

Corollary E.8 (Bound on Term 4). Let q be a point in B(S) ∩ Ω. (i)Term 4 for point q is at
most cost(q, x1)/4. (ii) If we further have cost(q, x1) ≤ 4cost(q, S) then Term 4 is O(αerr(q, S)).
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Proof. Bound (i) follows from Claim E.7 by picking a sufficiently small α and noting that t ≥ 0.
Now we prove bound (ii), which is more interesting. Suppose that cost(q, x1) ≤ 4cost(q, S), i.e., x1
is an approximate nearest center. Since q is in a type t cluster, by the triangle inequality, we have,

cost(q, S) ≤ 2(cost(q, A) + 2t∆q) ≤ 2t+1(cost(q, A) + ∆q). (41)

This implies that

2−t/2cost(q, x1) ≲ 2−t/2 · cost(q, S) (x1 is an approximate nearest center)

≲ 2−t/2
√

cost(q, S) · 2t(cost(q, A) + ∆q) (Point q is of type t)

≲
√

cost(q, S)(cost(q, A) + ∆q)

≲ err(q, S).

completing the proof of (ii).

If x1 is not an approximate nearest center to q then by the previous lemma term 4 is at most
cost(q, x1)/4. Therefore, the sum of the Terms 1-3 is at least 3/4 · cost(q, x1) ≥ 3cost(q, S); hence
at least one of them is greater than or equal to cost(q, S). This observation ensures that our net
construction satisfies Item (a). In particular, our nets for terms 1-3 ensure that if the value of the
term is larger than cost(q, S), then the coordinate of the net vector corresponding to q is at least
cost(q, S)− αerr(q, S); thus ensuring that we never underestimate the cost of q by too much.

We construct nets V1(U), V2(U) and V3(U) which approximate terms 1, 2 and 3 respectively. We
guarantee that if x1 is an approximate nearest center to q, then the net vector’s entry approximates
cost(q, x1) to within error α ± err(q, S). The i-th net also guarantees that if term i is larger than
cost(q, S), then the corresponding entry of the net vector is at least cost(q, S)− αerr(q, S).

The final net M1,α that approximates the costs is obtained by their combination,

M1,α =
⋃
U

(V1(U)⊕ V2(U)⊕ V3(U)) (42)

where ⊕ denotes the Minkowski sum between sets and the union in the above equation is over
all subspaces that are spanned by a subset of Ω of size O(2tα−2). The final net size is then
|Mα,1| =

(
m

O(2tα−2)

)
· |V1(U)| · |V2(U)| · |V3(U)|.

Below, we show how each Vi(U) is constructed and also give a bound on its cardinality. We
begin by constructing a net that approximates Term 1.

Claim E.9 (Approximating Term 1). There is a set V1(U) ⊂ Rm with |V1(U)| = exp(O(2tα−2 ·
log(kε−1α−1))) with the property that for any S ∈ T with first center x1, it contains a vector y
satisfying the following. For each qi ∈ B(S) ∩ Ω:

1. If cost(qi, x1) ≤ 4cost(qi, S) then
∣∣yi − ∥Π(qi − x1)∥2

∣∣ ≤ α · err(qi, S).

2. If ∥Π(qi − x1)∥2 ≥ cost(qi, S) then yi ≥ cost(qi, S)− αerr(qi, S).

Proof. Let Ω′ denote the set of points Πqi for qi ∈ Ω. We apply Lemma E.5 to Ω′ with R2
Πqi

=

O(cost(qi, A) + ∆qiε
−2) and the “α” in the lemma set to O(αε2). We pick V1(U) to be the set of

vectors returned by the lemma. Next, we show that this set indeed satisfies our requirements.
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Let y ∈ V1(U) be the vector corresponding to the point x1 (as given by Lemma E.5). We show
that y has the claimed properties.

Proof of Item 1. Suppose that qi is a point such that cost(qi, x1) ≤ 4cost(qi, S) ≤ 8(cost(qi, A)+
∆qiε

−2) = R2
Πqi

. In this case, the squared distance between their projections onto the subspace U is

also at most R2
Πqi

, i.e., ∥Πqi−Πxi∥2 ≤ R2
Πqi

. Hence by Lemma E.5 we obtain |yi−∥Π(qi−x1)∥2| ≤
αε2R2

Πqi
≲ αerr(qi, S).

Proof of Item 2. If R2
Πqi

≥ ∥Π(qi − x1)∥2 ≥ cost(qi, S) then by the first condition of Lemma E.5

we have that yi ≥ ∥Π(qi − x1)∥2 − αε2R2
Πqi

≥ cos(q, S) − αerr(qi, S). On the other hand, if

∥Π(qi − x1)∥2 ≥ R2
Πqi

, then the second condition of Lemma E.5 leads to the same conclusion.

Bounding the Net Size. Since U is a O(2tα−2) dimensional subspace, by Lemma E.5 we have
|V1(U)| = m exp(O(2tα−2 log(ε−1α−1))) = exp(O(2tα−2 log(kε−1α−1))) where we used the fact
that |Ω| = m = poly(k/ε) above.

Term 2 is independent of x and the vector z ∈ Rm with zi = ∥(I −Π)qi∥2 approximates it with
zero error. Therefore, picking V2(U) = {z} suffices.

Claim E.10 (Approximating Term 3). There is a set V3(Π) ⊂ Rm of size |V3(Π)| = O(α−1ε−2m)
which for any S ∈ T with center x1, contains a vector y satisfying the following. For each
qi ∈ B(S) ∩ Ω:

1. If cost(qi, x1) ≤ 4cost(qi, S) then we have ∥(I −Π)x1∥2 ≤ yi ≤ ∥(I −Π)x1∥2 + αerr(qi, S).

2. If ∥(I −Π)x1∥2 ≥ cost(qi, S) then yi ≥ cost(qi, S).

Proof. The third term ∥(Π−I)x1∥2 is the squared distance of x1 to the subspace and is independent
of the point qi. We show that there exists a λ ∈ R such that ∥(Π − I)x1∥2 ≤ λ ≤ ∥(Π − I)x1∥2 +
αerr(qi, S) for any qi for which we have cost(qi, x1) ≤ 4cost(qi, S). The m-dimensional vector, all
of whose entries are λ, then satisfies our requirements.

For each qi ∈ B(S) for which cost(qi, x1) ≤ 4cost(qi, S), Term 3 lies in the interval [0, 4R2
qi ]

where R2
qi = 2(cost(qi, A) + ∆qiε

−2). Therefore one can find i ∈ [m] and j ∈ [⌈α−1ε−2⌉] such that
picking λ = jαε2R2

qi works.

Multiplying the cardinalities of the nets obtained above, we get that the final net size is |M1,α| =(
m

O(2tα−2)

)
· |V1(U)| · |V2(U)| · |V3(U)| = exp(O(2tα−2 log(kε−1α−1))).

E.4 Bound 2: exp(Õ(N1 + α−2))

We now obtain the second guarantee of Lemma E.3, which upper bounds the single center net size in
terms of the number of clustersN1 with which x1 interacts (see Definition 2.10 for a precise definition
of interaction). Our goal is to show that the size of the net is at most exp(Õ(N1+α

−2)). To obtain
nets of this size, we will choose the low dimensional subspace on which Ω is projected more carefully
by using the information about the clusters with which the first center interacts. In particular, we
enumerate over all possible choices of I(x1) which are at most

(
k
N1

)
= exp(O(N1 log k)) in number.

Suppose that I(x1) = {C1, . . . , CN1}; then we pick U0 = {a1, a2, . . . , aN1} to be the centers
corresponding to the clusters of these clusters. Then we apply Lemma E.6 to U0 and x1 to obtain
an α-good set of size O(1/α2) such that the set U(x1) = U0 ∪ R(x1) satisfies the guarantees of
the lemma. If U denotes the subspace spanned by the points in U(x1), we now have dim(U) =
O(N1 + α−2). We again use Equation (39) to express the cost as a sum of four terms.
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The idea will again be to show that if cost(q, x1) ≤ 4cost(q, S), then the cost of the point q
is approximated by the net up to an error of O(αerr(q, S)). On the other hand, if cost(q, x1) >
4cost(q, S) then show that the net does not underestimate the cost by more than αerr(q, S).

The way in which nets are constructed to approximate for Terms 1-3 to obtain Bound 2 are
identical to the previous case and will not be repeated. However, since the subspace U we picked
has dimension O(N1+α

−2), the size of net approximating term 1 is exp((N1+α
−2) · log(kϵ−1α−1)).

The only other main difference in the proofs of Bound 1 and 2 is the argument used to show that
the magnitude of term 4 is small. This is what we present next.

Claim E.11. Let q be a point in B(S) ∩ Ω. (i)Term 4 for point q is at most cost(q, x1)/4. (ii) If
we further have cost(q, x1) ≤ 4cost(q, S) then Term 4 is O(αerr(q, S)).

Proof. The proof of (i) is identical to the proof of Corollary E.8. So, we focus on proving the second
part of the lemma, which now requires a new argument.

We consider the cluster Ci containing q and consider two different cases depending on whether
Ci and x1 interact.

Cluster Ci and center x1 interact. We use the fact that the subspace contains the center
ai of the cluster Ci to argue that Term 4 is small.

By Lemma E.6 the constructed subspace U(x1) with projection matrix Π satisfies,

|⟨q, x1⟩ − ⟨q,Πx1⟩| ≤ α · ∥q −Πq∥ ·min
q′∈Ω

∥q′ − x1∥ ≤ α · ∥q −Πq∥ · ∥q − x1∥. (43)

Since the center of ai of the cluster Ci is in the subspace,

∥q −Πq∥ ≤ dist(q, A). (44)

Moreover, since x1 is an approximate nearest neighbor center to ai (by the Definition 2.10 of
interaction), i.e. it satisfies cost(ai, x1) ≤ 16cost(ai, S) , we can also bound ∥q − x1∥:

∥q − x1∥ ≤ dist(q, ai) + dist(ai, x1)

≤ dist(q, ai) + 4dist(ai, S)

≤ dist(q, ai) + 4(dist(q, ai) + dist(q, S))

≤ 5dist(q, ai) + 4dist(q, S). (45)

Using Equation (44), Equation (45) we can upper bound the RHS of Equation (43) by

O(α · dist(q, ai) · (dist(q, ai) + dist(q, S))) = O(αerr(q, S)).

Cluster Ci and center x1 do not interact.

Consider the center ai of the cluster Ci containing q. If cost(ai, x1) ≤ 100(cost(q, ai) + ∆q)
then by the triangle inequality we also have cost(q, x1) = O(cost(q, ai) + ∆q) and hence Term 4 is
O(α(cost(q, ai) + ∆q)) by part (i) of the lemma. We are done in this case as cost(q, ai) + ∆q ≤
err(q, S).

Therefore, suppose otherwise that cost(ai, x1) > 100(cost(q, ai) + ∆q). We show that in this
case, we must have cost(q, x1) > 4cost(q, S), thus completing the proof of the lemma.

Since Ci and x1 do not interact and cost(ai, x1) > 100(cost(q, ai) + ∆q) ≥ 100∆q, it must be
the case that cost(ai, x1) ≥ 16cost(ai, S), i.e., dist(ai, x1) ≥ 4dist(ai, S). We now use this to show
that dist(q, x1) > 2dist(q, S).

dist(q, x1) ≥ dist(ai, x1)− dist(ai, q)
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> dist(ai, x1)/2 + 4dist(ai, q) (dist(ai, x1) > 10dist(ai, q))

≥ 2dist(ai, S) + 4dist(ai, q)

≥ 2(dist(q, S)− dist(ai, q)) + 4dist(ai, q)

≥ 2dist(q, S).

Therefore, cost(q, x1) > 4cost(q, S) and we are done.

Bounding the Net Size. The final net bound is
(

k
N1

)
·
(

m
O(α−2)

)
· |V1(U)| · |V2(U)| · |V3(U)| =

exp(O((N1 + α−2) log(kε−1α−1))). The first factor in the product above comes from having to
enumerate over all possible subsets of clusters with which x1 could interact, the second factor
comes from enumerating over all possible α-good sets for x1 (which are determined by a subset of
Ω of size O(α−2)), the bound on the size of V1(U) is from the above discussion and the bounds on
|V2(U)| and |V3(U)| are from Appendix E.3.
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F Missing Proofs from Chaining Analysis

F.1 Bounding the supremum of the Gaussian process XS,Init

In this section, we prove Lemma 2.22. We wish to upper bound Eg supS∈S(r) |XS,Init|, where recall
that XS,Init is defined (in (14)) as,

XS,Init =

∑
i∈[m] giwqiu

S,0
i

cost(P, S)
.

We begin by bounding the numerator and denominator of |XS,Init| separately. The numerator is
upper-bounded as follows:∣∣∣∣∣∣

∑
i∈[m]

giwqiu
S,0
i

∣∣∣∣∣∣ ≲
∑
j∈[k]

∣∣∣∣∣∣
∑

qi∈Cj∩Ω
giwqiu

S,0
i

∣∣∣∣∣∣ (Triangle inequality)

≲
∑

Cj∈B(S)

∣∣∣∣∣∣
∑

qi∈Cj∩Ω
giwqicost(aj , S)

∣∣∣∣∣∣ . (By the definition of uS,0)

We lower bound the denominator as,

cost(P, S) ≳ cost(P, S) + cost(P,A) (as cost(P,A) ≲ cost(P, S))

≳
∑

Cj∈B(S)

cost(Cj , S) + cost(Cj , A) ≳
∑

Cj∈B(S)

|Cj |cost(aj , S).

where the last inequality uses that for any set of centers S and a cluster Cj ,

cost(aj , S)|Cj | ≤ 2(cost(Cj , S) + cost(Cj , A)).

Combining these bounds we obtain,

|XS,Init| ≲

∑
Cj∈B(S)

∣∣∣∑qi∈Cj∩Ω giwqicost(aj , S)
∣∣∣∑

Cj∈B(S) |Cj |cost(aj , S)

≲ max
Cj∈B(S)

∣∣∣∑qi∈Cj∩Ω giwqi

∣∣∣
|Cj |

. (By averaging over clusters in B(S))

This expression is independent of S and is the maximum of kB(S) Gaussians, one for each cluster

in B(S). To bound Eg supS |XS,Init| it suffices to bound the maximum of these Gaussians. We
bound their variance below.

Lemma F.1. For any cluster Cj we have: Varg[
∑

qi∈Ω∩Cj
giwqi ] ≲ (k|Cj |2)/m.

Proof. Using Fact A.3 for the sum of independent Gaussians, and Fact B.1 which gives that wq ≲
(k|Cj |)/m for q ∈ Cj , and property P1 of E which gives that

∑
q∈Cj∩Ωwq ≲ |Cj |, we have

Var
g
[

∑
qi∈Ω∩Cj

giwqi ] =
∑

q∈Cj∩Ω
w2
q ≲ k|Cj |/m

∑
q∈Cj∩Ω

wq ≲ k|Cj |2/m.

The variance bound due to Lemma F.1 together with Fact A.4 completes the proof of Lemma 2.22:

E
g
sup
S

|XS,Init| ≲
√
k/m ·

√
log k ≲

√
(k log k)/m.
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F.2 Bounding the supremum of the Gaussian process XS,Fin

In this section, we prove Lemma 2.23. We wish to bound Eg supS∈S(r) |XS,Fin|, where XS,Fin is

defined in (14). Define the vector zS ∈ Rm where zSi = (wqi(u
S
i − uS,hmaxi ))/cost(P, S). This allows

us to write XS,Fin = ⟨g, zS⟩. Since uS,hmax is a “fine” (in fact an ε2) approximation of uS we can
show that for any S ∈ S, the vector zS has a small norm. A bound on EΩ,g supS |XS,Fin| then
follows from the Cauchy-Schwarz inequality.

Bounding the norm of zS. To show zS has a small norm, we first bound the quantity below.
For qi ∈ Ω ∩B(S) we have by the definition of uS,hmaxi that

Γ := (uSi − uS,hmaxi )2 ≤ 2−2herr(qi, S)

≲ 2−2hmax(cost(qi, S) · (cost(qi, A) + ∆qi) + cost(qi, A)
2 +∆2

qi).

Since qi is a close point, cost(qi, S) ≤ 2(cost(qi, A) + ∆qiε
−2) ≤ 2ε−2(cost(qi, A) + ∆qi). Also,

since hmax =
⌈
2 log2(ε

−1))
⌉
we have 2−2hmax ≤ ε4. Plugging these into the right-hand side, expanding

and keeping only higher order terms gives,

Γ ≲ 2−2hmax · ε−2 · (∆2
qi + cost(qi, A)

2) ≲ ε2 · (∆2
qi + cost(qi, A)

2).

By this equation, for any S ∈ S we have the following bound:

∥zS∥2 =
∑
i∈[m]

w2
qi(u

S
i − uS,hmaxi )2

cost(P, S)2
≲ ε2

∑
qi∈B(S)∩Ω

w2
qi · (∆

2
qi + cost(qi, A)

2)

cost(P, S)2

(i)

≲ ε2
∑

qi∈B(S)∩Ω

cost(P,A)2

m2cost(P, S)2

(ii)

≲ ε2m−1.

Step (i) follows from the bound wq ≤ 4m−1min( cost(P,A)
cost(q,A) ,

cost(P,A)
∆q

) given by Fact B.1, and step (ii)
from the fact that the solution A is a constant-factor approximation.

Finally, applying Cauchy-Schwarz inequality gives,

E
g

sup
S∈S(r)

|XS,Fin| = E
g

sup
S∈S(r)

|⟨g, zS⟩| ≤ E
g

sup
S∈S(r)

∥g∥ ∥zS∥ ≲ εm−1/2 · E
g
∥g∥ ≲ ε

where the last inequality uses that Eg ∥g∥ ≲ m1/2 for a standard Gaussian vector g ∈ Rm.
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G Sensitivity Sampling for k-Median Coresets

Consider Algorithm 1 with the only difference that the costs are now distances (and not squared
distances as in the case of k-means). One can show that this algorithm yields a k-median coreset
with the following guarantees.

Theorem 6 (k-Median Coreset for Stable Inputs). Let P ⊂ Rd be a set of n points which,
for some β > 0, forms a β-stable instance for the k-median objective. Let Ω be a weighted set of
m = Θ̃(kε−2max(1, β−1)) points obtained using Sensitivity Sampling; then Ω is an ε-coreset of P
with probability at least 2/3.

Theorem 7 (Worst case bound on k-Median Coreset). Let P ⊂ Rd be a set of n points. Let
Ω be a weighted set of m = Θ̃(min(k4/3ε−2, kε−3)) points obtained using Sensitivity Sampling; then
Ω is an ε-coreset of P with probability at least 2/3.

The worst case bounds match the lower bound by [HLW23] and improve over the previously
best known upper bound of Õ(k · ε−4) by [HV20] for Sensitivity Sampling.

The analysis of Sensitivity Sampling for k-median is almost identical to the one described in
complete detail for k-means. The high-level reason why we get better (worst-case) coreset bounds
for k-median is that if a candidate center s serves points of a cluster at distances [x, x + 1], there
are x+1

x·ε different distance-based costs we need to consider. In contrast, squared distances induce

up to
(
x+1
x·ε

)2
different costs.

The arguments are analogous compared to those used for k-means, save that whenever we apply
the inequality

|d2(a, c)− d2(b, c)| ≤ ε · d2(a, c) +
(
1 +

1

ε

)
· d2(a, b),

we now apply a standard triangle inequality. Both the triangle inequality and the approximate
triangle inequality are tight whenever a, b, and c are collinear. It turns out that following the k-
means analysis while using the triangle inequality (in place of the approximate triangle inequality)
leads to the claimed coreset bounds for k-median.

Below, we sketch the changes that need to be made to the analysis presented in the paper’s
main section to obtain the coreset bounds claimed for k-median.

Estimator and Reduction to a Gaussian Process: As before, we wish to show the concen-
tration of the cost estimator

1

|Ω|
∑
q∈Ω

wq · cost(q, S).

Following normalization, a grouping of clusters, centers, and symmetrization, we wish to bound the
quantity

E
Ω
E
g
sup
S
XS(Ω, g) = E

Ω
E
g
sup
S

∑
i∈[m]

giwqiu
S
i (Ω)

cost(P, S)
.

As before uS(Ω) is the cost vector of coreset points from the group B(S) (defined analogously).
We show the following lemma.

Lemma G.1. For any fixed Ω satisfying the bounds theorem 6 for β-stable instances and theorem 7
for worst-case instances, we have Eg supS

∣∣XS(Ω, g)
∣∣ ≲ ε.

52



Proving this implies that Ω is a coreset.

The overall proof strategy is still the same. We will give additional details for these steps in
the following.

• We analyze the contribution of points that are far and of points that are close separately.

• For the close points, we characterize the contribution by analogous notions of bands, types,
and center classes.

• We give refined variance bounds and net sizes for each regime.

With these notions in place, we complete the proof by integrating it into a chaining analysis.

Far and Close Points. Given a set of centers S, we say that cluster Cj with center aj is far
from S if cost(aj , S) ≥ ∆jε

−1; otherwise we say the cluster is close. All points in far clusters(resp.
far) are called far (resp. close) points. One can show by an analog of Lemma 2.2 that the coreset
preserves the cost of far points. This holds, regardless of stability assumptions.

For the more involved case of bounding the contribution of close points, we follow the analysis
in Section 2 described as follows.

High and Low Cost Clusters. One can handle close clusters whose cost in A is T := O(ε2k−1 ·
cost(P,A)) easily as their total cost is at most O(εcost(P,A)) and so they do not introduce signif-
icant error in the coreset’s estimate of the cost.

The analysis of clusters with cost larger than T (i.e., Ω(ε2k−1cost(P,A))) again requires more
care. In particular, we again classify the clusters into bands and types depending on their costs to
A and to S.

Bands, Types, and Center Classes. One now defines bands, types, and center classes as in
Section 2.2.3. To recall, we say that cluster Cj is in Band-b if cost(Cj , A) ≈ 2bT and cost(aj , S) ≈
2t∆j (which if t is large essentially means cost(Cj , S) = Ω(2tcost(Cj , A))). Also, define Bb,t(S) to
be the set of all clusters that are from band b and of type t.

The classification of centers into center classes is identical to that described in Section 2.2.3.
We define center cluster interaction, signature and interaction numbers in exactly the same way.
We then define the center class S(r) to be the set of centers with interaction number roughly 2r.

Chaining and Cost Vector Nets.

There are two components. First, we require bounds on the variance of the estimator used for
the k-median objective. Second, we require bounds on the net sizes. Adapting the variances bounds
is straightforward, after adjusting for using distances, rather than squared Euclidean distances.

The nets for the cost vectors uS have a slightly different error guarantee defined in the following.
However, their construction is essentially identical to that of the cost vector nets used in the analysis
of k-means coresets.

Definition G.2 (Cost Vector Nets). Consider a fixed set Ω. For a real α ∈ (0, 1/2], an α-net
Mα(Ω) ⊂ Rm is a finite set of vectors with the following properties. For any set of centers S ∈ S(r)
there exists some v ∈Mα(Ω) which α-approximates the vector uS(Ω) as follows. For each i ∈ [m]:

1. If qi ∈ B(S) then |vi−uSi (Ω)| ≤ α·err(qi) where for p ∈ P we define err(p) := (cost(p,A)+∆p).

2. If qi /∈ B(S) then vi = 0 . Note that we also have uSi (Ω) = 0 in this case by definition.
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To highlight the main difference, note that the coordinates of uS represent distances and that
the net vector v approximates the distance of p to S with error α(dist(p,A) + ∆p). We claim that
we can use the nets constructed for the k-means problem in almost a black-box fashion to obtain
such nets for k-median. In particular, we get a net with the size given in the below lemma. We
remark that the net size is essentially identical with the only difference that the second net size
is larger by a factor of 2t (than Lemma 2.14) because types are defined with respect to distances
rather than squared distances.

Lemma G.3. For any α ∈ (0, 1/2), there is an (α,S(r))-net Mα with cardinality

|Mα| = exp(O(min(2r + kα−2, 22tkα−2) · log(kα−1ε−1))).

Proof. The proof is identical to that of Lemma E.1. The only moral difference is that, having
approximated squared distances between point p to a candidate center s with an approximating
candidate center s′ up to an error

|d2(p, s)− d2(p, s′)| ≤ ε ·
√
d2(p, S) · d2(p,A) (46)

we then obtain for the distances

|d(p, s)− d(p, s′)| ≤ O(ε) · d(p, s).

Up to obtaining the bound for Equation (46), the proof is identical.

The final variance bounds are almost identical to their counterparts for k-means. The only
difference is that, due to the finer net guarantee, the variance for worst-case inputs decreases
inversely proportionate to the squared cost increase, rather than inversely proportionate to the
cost increase, see Lemma G.7 below. This is due to the error bounds given by the k-median nets
in Equation (46) being smaller than that of k-means. Indeed, this difference is why the worst-case
bounds for k-median are slightly better than those of k-means. The proofs are otherwise completely
identical.

We have the following analog of Corollary 2.27.

Lemma G.4 (Variance Bound in Terms of the Type). Let Var[XS,h] ≲ 2−2h/(m2t).

Proof sketch. The proof of this bound is similar to Corollary 2.27 with the only difference that we
need to account for the finer nets. We have,

Var[XS,h] ≲ (1/cost(P, S))22−2h
∑

q∈B(S)∩Ω

w2
qcost(q, A)

2. (47)

Using the fact that wqcost(q, A) ≲ cost(P,A)/m ≲ cost(P, S)/m (due to the bounds on the
weight) together with 2t

∑
q∈B(S)∩Ωwqcost(q, A) ≲ cost(P, S) in Equation (47) leads to the claimed

bound.

If the k-median instance P is β-stable, then for any set of centers S, one can give a lower bound
the cost of P to S in terms of the interaction number of S and the stability parameter β (analogous
to Lemma 2.28).

Lemma G.5. Let P be a β-stable instance for the k-median objective and S be any set of centers;
then we have

cost(P, S) ≳ OPTk ·max(1, (N(S)
k − 1)β).
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The above cost lower bound then leads to the following bound on the variance of XS,h.

Lemma G.6 (Variance Bounds for Stable Instances). Let P be a β stable instance for the
k-median objective and S be a set of centers with N(S) ≥ 2k then Var[XS,h] ≲ (2−2hk)/(mN(S)β).

One can use the structure of B(S) to derive the following variance bounds. Again, the finer
nets yield the a bound on the variance of XS,h that is tighter than Corollary 2.34 by a factor of 2t.

Lemma G.7 (Variance Bounds for worst Case Instances). Let S be any set of centers; then
Var[XS,h] ≲ (2−2hk2)/(m ·N(S) · 22t).

G.1 Completing the Proof

Let Γ := Eg supS |XS,h|; we bound Γ using Equation (16), the net and variance bounds given above.

Stable Inputs. Note that the variance and net bounds for stable k-median instances (Lemma G.6
and Lemma G.3) are identical to those for k-means (Lemma 2.14 and Lemma 2.31). Therefore
performing similar calculations as in Section 2.8.1, we get that picking m = Ω(kε−2max(1, β−1))
ensures that Γ ≲ ε.

Worst-Case Inputs. As in the analysis for k-means, the most interesting case is when the
interaction number is Ω(k). Suppose that this is the case, i.e., 2r ≳ k. By Lemma G.7 and
Lemma G.4 we have that for any S ∈ S(r),

Var[XS,h] ≲ min(2−t, k22−(2t+r)) · 2−2hm−1. (48)

Using Lemma G.3 and the fact that 2r + k22h ≲ 2r+2h, we also have

log |M2−h | ≲ min(k22t, 2r) · 22h log(kε−1). (49)

Combining the corresponding net and variance bounds in Equation (49), Equation (48), we get,

Γ ≲
√

min(k2t, k22−2t) · log(kε−1)m−1 (50)

≲
√
k4/3 · log(kε−1)m−1. (51)

Therefore if m = Ω̃(k4/3ε−2) then we have that Γ ≲ ε. Moreover, since 2t ≤ 2tmax ≲ ε1, using only
the first bound from Equation (50), we get that Γ ≲

√
kε−1 log(kε−1)m−1; therefore ifm = Ω̃(kε−3)

then Γ ≲ ε. This completes the proof of the worst-case bound.
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H Analysis for Doubling Metrics

We also briefly show how to analyze Sensitivity Sampling for doubling metrics. Given the improved
variance bounds of Sensitivity Sampling, the only thing left to do is bound the size of cost vector
nets. Doing so is a straightforward adaptation of the earlier analysis in this paper and of [CSS21b].
Replacing the bounds on the size of clustering nets in Section 2 then yields Theorem 4.

Definition H.1. The doubling dimension of a metric (X,dist) is the smallest integer D such that
any ball of radius 2r can be covered by 2D balls of radius r.

A γ-net of V ⊂ X is a set of points U ⊆ V such that for all v ∈ V there is an u ∈ U such that
dist(v, u) ≤ γ.

Lemma H.2 (from [GKL03]). Let (V,dist) be a metric space with doubling dimension D and
diameter ∆, and let X be a γ-net of V . Then |X| ≤ 2D·⌈log2(∆/γ)⌉.
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