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CONDITIONED STOCHASTIC STABILITY OF EQUILIBRIUM
STATES ON UNIFORMLY EXPANDING REPELLERS

BERNAT BASSOLS-CORNUDELLA', MATHEUS M. CASTRO", AND JEROEN S.W. LAMB"*?

ABSTRACT. We propose a notion of conditioned stochastic stability of invariant mea-
sures on repellers: we consider whether quasi-ergodic measures of absorbing Markov
processes, generated by random perturbations of the deterministic dynamics and con-
ditioned upon survival in a neighbourhood of a repeller, converge to an invariant mea-
sure in the zero-noise limit. Under suitable choices of the random perturbation, we
find that equilibrium states on uniformly expanding repellers are conditioned stochas-
tically stable. In the process, we establish a rigorous foundation for the existence of
“natural measures”, which were proposed by Kantz and Grassberger in 1984 to aid the
understanding of chaotic transients.
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1. INTRODUCTION

Understanding how typical trajectories evolve in a dynamical system and describing
its relevant statistics is a central topic in Dynamical Systems theory. This question
is commonly addressed from an ergodic theoretical point of view, stating that each
(ergodic) invariant measures u provides the distribution of the trajectory starting at
a point x, p-almost surely. Dynamical systems often admit infinitely many ergodic
invariant measures, so it is natural to ask which ones are the most meaningful or relevant
to study. To tackle this, Kolmogorov and Sinai, proposed the notion of stochastic stability
of invariant measures [35, 1].

Stochastic stability concerns the stationary measures of Markov processes generated
by small bounded random perturbations of a deterministic dynamical system and their
limit as the amplitude of the perturbation vanishes [35, 1]. When a stationary measure
converges to an invariant measure of the original deterministic system we say that the
limiting measure is stochastically stable. These measures have been recognised to high-
light the statistics of (Lebesgue) typical trajectories [60]. Note that stochastically stable
invariant measures sit on attractors.

In transient dynamics [39], trajectories that remain for a long time near a repeller
have been observed to have well-defined statistics. While there is also an abundance
of invariant ergodic measures on repellers, so-called natural measures have been heuris-
tically identified as the relevant invariant measures that represent observed long time
behaviour of trajectories near a repeller, and provide important information regarding
the statistics of transient dynamics [34]. Despite the fact that such measures feature
at the heart of the intuitive understanding of transient dynamics, their existence and
mathematical properties remain to be rigorously established.

Like stochastic stability successfully provides relevant measures on attractors, we seek
a strategy to establish persistence of measures on repellers under random perturbations.
The strategy of Kolmogorov and Sinai fails since stationary measures of the Markov
process generated by random perturbations of the original system do not converge to
invariant measures supported on repellers in the deterministic limit.

In this paper, we propose a novel notion of stochastic stability for repellers referring
to quasi-ergodic measures rather than stationary measures. Quasi-ergodic measures
originate from the theory of absorbing Markov processes and capture the typical average
behaviour of trajectories conditioned upon remaining in a certain region of the state space
for asymptotically long times. By conditioning the Markov process generated by random
bounded perturbations of the original map upon survival in a suitable neighbourhood
of the repeller, the associated quasi-ergodic measure provides the conditioned statistics
of (Lebesgue) typical trajectories that stay close to the repeller for asymptotically long
times. When these quasi-ergodic measures converge to an invariant measure of the
deterministic system, we say that the limiting measure is conditioned stochastically stable.
Note that while stochastically stable invariant measures are supported on attractors,
conditioned stochastically stable invariant measures may be supported on repellers.

We show that uniformly expanding repellers admit a unique conditioned stochastically
stable invariant measure, which corresponds to the equilibrium state associated with the
geometric potential [20, Section 1.2.2] in the framework of thermodynamic formalism
[50]. More generally, we establish that any equilibrium state from the thermodynamic
formalism on repellers' is approximated by quasi-ergodic measures of so-called weighted
Markov processes, which originate from the theory of Feynman-Kac path distributions
(see [30, 18, 16, 36] and references therein), and thus show that equilibrium states are
conditioned stochastically stable in a broader sense.

IThis result also applies to attractors.
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1.1. Conditioned stochastic stability. The notion of conditioned stochastic stability
that we propose is based on ideas from the theory of absorbing Markov processes [22]
and conditioned random dynamical systems [62, 31, 14, 12, 13]. As mentioned above,
the statistical behaviour of a Markov process X, on a state space M conditioned upon
remaining outside of a subset & C M is captured by its quasi-ergodic measure v on
M\ 0 [26, 10, 61, 23]. This object describes the limiting distribution of the conditioned
Birkhoff averages of X,,, i.e. given an observable h : M — R it holds that for v-almost
every x € M\ 0,

n—1 n—1
1 . 1 1 n—00
Ew E i:E - ho XZ T > TL] = me [1{T>n}g i:E - ho X’L] e h(l’)V(dx),

where 7 := min{ne N; X,, € 0}.

Given amap T : M — M on a manifold M and a subset @ C M, consider the Markov
process X on M generated by e-bounded random perturbations of 7. Conditioned
stochastic stability concerns the quasi-ergodic measures of X2 on M \ 9, and their limit
as the amplitude of the perturbation € goes to 0. When these quasi-ergodic measures
converge to a T-invariant measure vy (in the weak* topology), we say that the limiting
measure is conditioned stochastically stable on M \ 0. Observe that this notion depends
on the choice of random perturbation generating X:, which is also true for (classical)
stochastic stability. As is common in the study of (classical) stochastic stability, we only
consider random bounded diffusive perturbations [7, 4, 2, 6, 1] (see Section 2 for the
precise details).

In this paper, we first consider the case where T admits a topologically mixing® uni-
formly expanding repeller R and establish the following result (see Theorem 2.10):

Theorem A1l. There exists a unique T-invariant measure vy on R which is conditioned
stochastically stable on every sufficiently small neighbourhood of R.

It turns out that vy is a well-known object in the thermodynamic formalism theory
[20] and corresponds to the unique equilibrium state on R associated with the potential
—log |det dT|, i.e. vg is the unique T-invariant measure satisfying

hyo (T) — /log |detdT|dyy = sup (hH(T) - /log | det dT'| d,u> ,
neZ(T,R)

where h,, is the Kolmogorov-Sinai (or metric) entropy [37, 54] and Z(T, R) is the set
of T-invariant probability measures on R. This result has its parallel in the (classi-
cal) theory of stochastic stability. Indeed, given a uniformly hyperbolic transformation
T : M — M on a compact metric space M, it is well known that stochastically stable
invariant measures on attractors correspond to the equilibrium states from the thermo-
dynamic formalism associated with the potential —log|det dT" |gu |, where E* denotes
the unstable expanding direction of T' [60].

In this paper, we uncover a stronger connection between conditioned stochastic stabil-
ity and the thermodynamic formalism, establishing the approximation of any equilibrium
state by quasi-ergodic measures of weighted Markov processes.

1.2. Thermodynamic formalism and weighted Markov processes. The thermo-
dynamic formalism is a powerful framework for the analysis of statistical properties
of dynamical systems. Pioneered by Sinai, Ruelle and Bowen [55, 8, 9, 49, 50] and
motivated by the field of statistical physics, this theory aims to describe properties of
equilibrium states, such as the measure of maximal entropy and other invariant Gibbs
measures [20, 3].

2This condition is relaxed in the main theorem but assumed here for the sake of simplicity.
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Given a T-invariant set A C M, an equilibrium state on A is defined for each given
potential 1) : A — R as an invariant measure v¥ on A whose metric pressure is equal to
the topological pressure P(T,1,A) of the system on A, i.e. v¥ satisfies

by, (T) —l—/z/}dwp = sup (hM(T) + /wd,u> =: P(T,¢,\). (1)
HEL(T,A)

In particular, observe that when ¢ = 0 the equilibrium states associated with this po-

tential correspond to the measures of maximal entropy [57, Section 10.5]. Moreover, a

classical result of Ruelle (see [51, Lemma 1.4] or Lemma 2.7 below) provides the exis-

tence and uniqueness of equilibrium states for Holder potentials on uniformly expanding

repellers [57, Theorem 11.2.15].

It is natural to ask whether the definition of conditioned stochastic stability can be
extended to approximate other equilibrium states of T. This question appears not to
have been raised in the literature, even for stochastic stability of equilibrium states on
attractors. Here, we show that equilibrium states on uniformly expanding repellers are
approximated by quasi-ergodic measures of weighted Markov processes [30, 18, 16, 36],
providing a general notion of conditioned stochastic stability.

Given a Markov process X,, on M, consider a non-positive weight function® ¢ : M —
R<o and define the new process Xg by

® X411, with probability e?(X»),
Xn+1 = P . . &(Xn) (2)

, with probability 1 —e ,

where 0 is a cemetery state. If X, is already an absorbing Markov process killed at &',
we may (and do) set O = d'. We refer to the new Markov process X? as a ¢-weighted
Markov process. As before, a quasi-ergodic measure v provides the statistical behaviour
of the process when conditioned upon survival, i.e. for any observable h : M — R,

1n71
=0

for v%-almost every z € M \ 0, where ¢ := min{n € N; X2 € 9} and E? is the
expectation with respect to the weighted process X2

The random variable 7 denotes the time at which the process is killed, either by
dynamically entering 0 (hard killing) or due to the weight ¢ (soft killing). When both
are present, the conditioned Birkhoff averages simplify to (see Section 2 for precise
details)

1n71
E? [EZhon

=0

ES

¢ > n] 222 | h(z)v?(da),

1
1) —
TV >n|= E
] Ex[esn¢]l{7>n}] ’

n—1
1
Sn
e ¢1{T>n}EZhOXZ] ( )
=0 3

o, / h(x)v?(dz),

where 7 = min{n; X,, € 9} relates to hard killing and S,,¢ == 37"/ ¢ 0 X; relates to soft
killing. Note that when ¢ = 0, we recover the setting introduced in the previous section.
Observe that the right-hand side of equation (3) is also well-defined as long as ¢ is
measurable and bounded, even if it is occasionally positive. Indeed,
B, (€590 (ronyd D0 ho Xi| Ea €591 (0 L Y150 o X3

Ew[esn¢l{r>n}] E; [eSné]l{T>n}]

3The weight function is sometimes referred to as a “potential” in the literature [30, 61]. Here, we
only use this term when referring to ¢ in equation (1).
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where ¢ = ¢ — sup ¢, with ¢ (z) = max{¢(z),0}. Defining the ¢-weighted process
X? to be equal to Xﬁ , we recover the interpretation from equation (2).
Recall that X¢ is a Markov process on M generated by e-bounded random perturba-

tions of the map T and absorbed on 0 C M and denote by X5 the ¢p-weighted of X7 .

We say that a T-invariant measure I/g) is conditioned ¢-weighted stochastically stable if

the quasi-ergodic measures u;?’ on M \ O of the weighted process X5? converge to I/g) in

the weak™® topology as € goes to 0.
The following theorem generalises Theorem Al when T has a topologically mixing
uniformly expanding repeller R (see Theorem 2.10 for the precise details):

Theorem A2. Given a Hoélder potential ¢, there exists a unique T-invariant measure
v¥ on R which is conditioned ¢-weighted stochastically stable on every sufficiently small
neighbourhood of R. Moreover, v¥ is the unique equilibrium state associated with the
potential 1 = ¢ — log|det dT| on R, i.e. V¥ = I/g.

In general, repellers of a given transformation 7' are not necessarily transitive, let
alone topologically mixing. In the case of uniformly expanding repellers, it is natural to
assume that the repelling set is characterised by

A= (T (M\9), (4)

n>0

where 0 could be, for example, a small open neighbourhood of the attractors of 7" (see
Section 5.1), or the complement of a neighbourhood of the repeller (see Section 5.2). In
this setting, we prove the following result (see Theorem 2.11 for a more precise and more
general result):

Theorem B. Given a C?> map T, a Hélder potential ¢, and a suitable open set O C M,
with A as in equation (4), assume that

(1) T|) : A — A is uniformly expanding,
(2) A C Int(M\ 9), and
(8) T : A — A admits a unique equilibrium state V¥ associated with the potential
v = ¢ —log | det dT'|, which is mizing (see e.g. [57, Section 7.1]).
Then V¥ is conditioned ¢-weighted stochastically stable on M\ 9, i.e. V¥ = ve.

The proof of Theorems Al and A2 are based on classical techniques of hyperbolic
dynamics. In particular, we adapt the arguments presented in the seminal paper of
Pianigiani and Yorke [46] to the context of absorbing Markov processes. To prove The-
orem B, we identify a graph structure representing the dynamical behaviour of X5f
conditioned upon staying on M \ U. This construction resembles the graphs built via
chain recurrence and filtration methods [24, 28, 27] and allows us to recover the setting
of Theorem A2.

1.3. Outline. This paper is organised as follows. In Section 2, we introduce the ob-
jects of interest from the theory of conditioned random dynamics. We also lay out the
required technical conditions (Hypotheses H1 and H2), explore their direct implications
and present the two main theorems (Theorems 2.10 and 2.11). In Section 3, we analyse
the local problem (i.e. conditioning the random dynamics on a small neighbourhood of
a repeller) and prove Theorem 2.10. In Section 4, we consider the global picture (i.e.
conditioning upon not escaping from a general neighbourhood of the repeller) and prove
Theorem 2.11. We provide examples in Section 5 where these theorems are applica-
ble. Finally, we devote Appendix A to a general proof for the existence of (weighted)
quasi-ergodic measures, simplifying previous techniques.
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2. ABSTRACT SETUP AND NOTATION

We begin with a brief recollection of the basic concepts in the theory of conditioned
random dynamics as introduced in [14, 13]. Consider a Markov chain X, evolving in a
metric space (E,d) and let Y C E be a compact subset. We are interested in studying
the behaviour of a Markov chain as it evolves in Y, we condition upon remaining in
Y, and kill the process as soon as it leaves this subset. We thus identify F \ Y with
a “cemetery state” O and consider the space Ey := Y LI 0 with the induced topology.
Throughout this paper, we assume that

X = (Q’ {]:n}HENo’ {Xn}HENo’ {Pn}nGNoa {Px}mGEy)
is a Markov chain with state space Ey, in the sense of [48, Definition III.1.1]. Hard
killing, or absorption, on 0 means that P(9,9) = 1. We define the (dynamical) stopping
time 7 :=inf{n € N; X,, € 0}.

Consider an a-Hélder weight function ¢ : Y — R and define the weighted process Xg
as in Section 1.2. For this process, we define the stopping time 7¢ := min{n € N; Xff €
0}, providing the time at which X¢ enters O either dynamically (hard killing) or due to
the weight ¢ (soft killing).

Observe that the weighted process X{ has transition probabilities given by P?(x, dy) =
e?@P(z,dy) for all z € Y, recall that ¢ = ¢ — sup ¢.. Moreover, (2) naturally induces
a filtered space (9, {F¢}nen,) and a family of probability measures {P%},e By which
makes X;, a Markov process (see [48, Section IIL.7] for such a construction). Finally, we
denote by E, and ES the expectation with respect to P, and IP’?, respectively.

Under an irreducibility condition of X,, on Y [14], the process almost surely escapes
this set, implying that the system’s long-term behaviour is characterised by a stationary
delta measure sitting on the cemetery state. To understand the dynamics of the process
before escaping from Y one generalises the notion of stationary measures to that of
quasi-stationary measures [26, 10, 22, 15].

Definition 2.1. Given a bounded and measurable function ¢ : ¥ — R, we say that a
Borel probability measure p on Y is a quasi-stationary measure of the weighted Markov
process Xﬁf if

/Y ?WP(y, dv)u(dz) = Ap(dx)

and A2 = [, e?@P(z,Y)pu(dz) > 0 is the growth rate of p for X{ on Y. Observe that
when ¢ = 0 we recover the classical definition of quasi-stationary measure [21, Definition
2.1].

Remark 2.2. Note that in the usual setting of absorbed Markov processes with no
weight function, i.e. ¢ = 0, and only hard killing, A? < 1 is called the survival rate and
denotes the probability that the process is not killed in the next iterate when distributed
according to pu.

We recall that quasi-stationary measures are not the relevant measures to consider
when studying conditioned Birkhoff averages [26, 10, 17, 14], as these measures do not
perceive how likely it is for a point to remain indefinitely in Y. Instead, this information
is provided by the so-called quasi-ergodic measure.

Definition 2.3. A probability measure v on Y is a quasi-ergodic measure of the ¢-
weighted Markov process X¢ if for any bounded measurable function f : Y — R it holds
that

n—1
1
lim E [— Z fo Xj) %> n] = / fy)v(dy) for v-almost every x € Y.
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If X¢ has both hard and soft killing, then for every n € N

1 n—1 1 1 n—1
E2 (=S hoX?|7¢ = E,|e5?1 N hoX;
x [n Zzg oCXA; T > n] Ex[esn¢1{7>n}] xz | € {T>n}n Zzg oA,

where S, ¢ = Z?:_()l ¢ o X; is the Birkhoff sum.

While showing the existence of quasi-stationary measures relates to solving an eigen-
functional equation and can be approached using fixed point arguments (see [44, The-
orem 4] and [21, Proposition 2.10]), this is not the case for quasi-ergodic measures and
proving their existence and uniqueness is not straightforward. Indeed, this involves
characterising the non-trivial limit of a conditional expectation that requires rigorous
techniques in functional analysis and probability theory [17, 61, 14]. We devote the
Appendix A to address this question in our setup.

From here onwards, let (M, (-,-)) be an orientable Riemannian compact manifold,
possibly with boundary and let U C M be an open subset. Without loss of generality,
we may assume that M is embedded in an orientable boundaryless compact manifold E
of the same dimension and endowed with a Riemannian metric whose restriction to M
coincides with (-,-) (in the case that M is without boundary we assume that £ = M).
Since this will be clear by context, we may also write the Riemannian metric of £ as
(,-). The manifold E should be thought of as an ambient space for M and a mere
theoretical artefact since it does not play a major role in applications, while U may be
interpreted as an open hole in the system.

Notation 2.4. Throughout this paper, we use the following notation:

(i) Given z € F and v € T, E, define ||v]|, := 1/(v,v), as the natural norm on T, M.

(ii) We denote by dist(-, -) the distance on E induced by the Riemannian metric (-, -).

(iii) As usual, we write p for a Borel measure on E induced by a smooth volume form
Vg compatible with (-, -).

(iv) We denote by C*(E) the space of continuous functions with & continuous deriva-
tives on E and use M(E) to denote the space of signed Borel finite measures
on a E. Given a non-negative measure p € M(E), we denote by L¥(E, p) the
space of functions with finite k-th p-moment (although p may be omitted when
it is the reference measure). C%(E), Lk (E) and M, (E) denote the respective
subsets of non-negative functions and measures on F.

(v) Given a C! function G : E — F and = € E, we denote its determinant by

~ Ve(G(2))(dG(z)vy, ... ,dG(2)vdim E)

det dG(z) = Ve(z)(v1, ..., VdimE) ,

for any (and therefore all) orthonormal basis {vy,..., vy} of T, M.
(vi) Given a set A C E we denote its closed neighbourhood of radius ¢ > 0 by
As = Bs(A) .= {x € E; dist(z,a) < § for some a € A}.

2.1. Main results. Let T : E — E be a map such that T\E\U isC?,andlet ¢ : E - R
be a-Holder. The following two hypotheses contain the main assumptions in this paper:

Hypothesis H1. There exists a compact T-invariant set A C E that is uniformly
hyperbolic expanding, i.e. there exist C,r > 0 such that for all x € A,

1
(L+r)
and there ezists a neighbourhood V' of A in E such that T-*(A)NV = A.

|dT™(z) 7Y < C for every n > 1,

Remark 2.5. Observe that the manifold M does not play a role in Hypothesis HI.
Moreover, we use the term wuniformly hyperbolic expanding to refer to a set that is
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eventually uniformly expanding, i.e. the equation above is equivalent to the following
statement: there exist N € N and r > 0 such that for all x € A,

[dT™(z) 7Y < for every n > N.

(1+r)m
Hypothesis H2. We say that T satisfies Hypothesis H2 for the open hole U if
(1) A= {N5o T (M \U) is a uniformly hyperbolic expanding set, and
(2) T admits a unique equilibrium state for the potential ¢ — log|detdT| on A.

In the case that dim(M) > 1, we additionally assume that there exists § > 0 such that
T~Y(As) N Ms C As and Mg\ M has no T-invariant subsets.

Remark 2.6. If M = [0,1], items (1) and (2) of Hypothesis H2 are equivalent to
the Axiom A (see [29, Chapter 3.2.b]). In the case that M is a manifold without
boundary, then Ms = M = E and Ay C M. Moreover, observe that Hypothesis H2
implies Hypothesis H1.

Lemma 2.7. Let T satisfy Hypothesis H1 and R := {p € A; p is a T-periodic point}.
Then, there exists a (finite) partition of R in non-empty compact sets R™, with 1 <i < k
and 1 < j <m(i), such that

(1) R = U?:(Zl)Rivj is a T-invariant set for every i,

(2) T(R") = Rbi+1 (mod m@) for every i, j,

(3) T : R — R is uniformly hyperbolic and topologically transitive, and

(4) each ™) . RY — R s uniformly hyperbolic and topologically exact.
Furthermore, the number k, the numbers m(i) and the sets R% are unique up to renum-
bering.

Proof. This result follows directly for uniformly expanding maps, i.e. C' = 1 in Hy-
pothesis H1 (see e.g. [57, Theorem 11.2.15]), so the proof is concluded by changing the
Riemannian metric on M in a way that T" becomes uniformly expanding on A under
Hypothesis H1 (see [53, Proposition 4.2]). O

When T satisfies Hypothesis H1, given a finite € > 0 we consider the random pertur-
bation of the form F. : [—¢,¢]™ x E — E, where F.(w,-) € C3(E\ U; E) and 9, F.(w, x)
is surjective for all w € [—¢,¢]™. Moreover, we assume that distez(Fz(w,-),T) < C||lw||
for some C' > 0, where diste2 denotes the metric on C?(E \ U, E) which generates the
C2-Whitney topology [45, Chapter 1.2]. In particular, surjectivity of 0, F.(w,z) implies
m > dim E. We note that this type of random perturbation is natural and commonly
considered [7, 4, 2, 6, 1].

Notation 2.8. Let . := ([—¢,£]™) be the space of semi-infinite sequences of elements
in [—¢,e]™ endowed with the probability measure P- := (Leb|_, .m /(2e)™)*N " and
let E. denote the corresponding expectation with respect to P.. For every w € (.,
w = (wows . ..), we define T,,(x) = T, (z) = Fr(wo,z) and T*(z) =T, ,0---0oT,, ()
for every n € N.

For each i € {1,...,k} and every a-Holder function ¢ : Ry — R (see Notation 2.4
item (vi)), we define the annealed Koopman operator

P.: f s @E[f o T, () - Lgi o T, ()],
for f in a suitable domain.

Theorems Al and A2 above apply to suitable d-neighbourhoods of each repeller R?,
1 < i < k, in the dynamical decomposition of Lemma 2.7. In particular, we choose &
and gq such that the following holds true.

Lemma 2.9. Assume Hypothesis H1, for every § > 0 small enough there exists ¢¢ =
€0(6) > 0 such that for every 0 < e < ey we have that:
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(J)R(;:R%LJ...LIRf,and ‘
(2) sup,ep; Pelw € Qs T,y(x) € R}] =0 for every i # j € {1,...,k}.

The main results of this paper are as follows:

Theorem 2.10. Assume Hypothesis H1 and let 6 > 0 be small enough. Given1 <i <k
and an a-Hélder function ¢ : Ry — R, the following properties hold for e > 0 sufficiently
small:

(1) the ¢-weighted Markov process Xﬁ’¢ admits a unique quasi-stationary measure
e on R,
(2) let Ae be the growth rate of X5% on Rf;, then M. is equal to the spectral radius of
P : L®(R%, p) — L>®(RS, p), and log(A:) — P(T, ¢ —log |det dT|, R') as e — 0,
(8) there exists a unique positive eigenfunction g. € LOO(RfS,p) for the operator
P- : L®(R%, p) — L®(RS, p), associated with the eigenvalue A,
(4) let ve(dx) be the unique quasi-ergodic measure of the ¢-weighted process X% on
{9 > 0}. Then, v.(dz) — vo(dx) in the weak™ topology as € — 0, and
(5) vy is the unique T-invariant equilibrium state for the potential ¢ — log|det dT|
on R'.
If the measure vy is mizing for the map T : R® — R', then the measure ve is also a
quasi-ergodic measure of the ¢-weighted Markov process X;, on Rj.

Theorem 2.11. Assume Hypothesis H2 and let 6 > 0 be small enough. Given an «-
Hélder function ¢ : Ms\ U — R, the following properties hold for e > 0 sufficiently
small:
(1) the ¢-weighted Markov process X% admits a unique quasi-stationary measure
pe on Ms \ U,
(2) let A\ be growth rate of X5 on M \ U, then \; is equal the spectral radius of
P.: L®(Ms\U) — L>®(Ms \ U), and log(A\:) — P(T,¢ — log|detdT|,A) as
e —0,
(3) there exists a unique positive eigenfunction g. € L*(Ms\ U, p) for the operator
P L®(Ms\ U, p) — L>®(Ms \ U, p), associated with the eigenvalue A,
(4) let v-(dx) be the unique quasi-ergodic measure of the ¢-weighted Markov process
X5 on {g- > 0} Nsupppe. Then, ve(dz) — vo(dz) in the weak® topology as

e — 0, and
(5) vy is the unique T-invariant equilibrium state for the potential ¢ — log |det dT|
on A.

If vy is mizing for the map T : R — R, then the conclusions of the above theorem remain
true when changing the set {g. > 0} Nsupp p by My \ U. Additionally, if vy is mizing
and suppry C Int(M \ U), then (4) is also true on the set M \ U.

2.2. Some direct consequences of Hypothesis H1. This section contains several
dynamical and topological results that follow from Hypothesis H1 rather immediately
and are exploited later in the paper. We also introduce the equilibrium states we shall
approximate and present the transfer operators P, and L. that reappear throughout the
text.

Lemma 2.12. Let T satisfy Hypothesis H1 and ||dT (x)~t|| < 1/(1+7) for every x € A.
Consider 6 > 0 small enough. Then there exists ey = £¢(0) and o1 = 01(0) < 1 such
that for every x,y € As satisfying T(y) = x and for every 0 < & < &g, there exists a C?
function h : [—e,e]™ x Cp — E, where C,, is the connected component of x in N, with
the following properties holding for every w € Q.:

(1) the map z — h(w, z) is a diffeomorphism onto its image,

(2) T, 0 h(w, z) = z for every z € Cy and h(0,z) =y,
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(3) dist(h(w, z1), h(w, z2)) < o1dist(z1,z2) for every x1,x2 € Cy, and
(4) there exists Ko = Ko(8) > 0 uniform on e € (0,e0), x € As andy € T~ (x)NAs,
such that sup{||0uh(w, 2)||; w € Q¢, z € Cy} < K.

All statements in this lemma also hold true replacing As by R:, 1 <14 < k.

Proof. Take dy,e9 > 0 small enough such that
o1 = sup {HdTw(aE)*lH; T € Af;o, w € ng} <1, (5)

and such that the exponential map exp, : Bs,(0) C T,E — E is well defined for every
A A50'

Observe that there exists do > 0 such that for g9 > 0 small enough and for every w €
[—e0,€0]™, if dist(x1,22) < d2 then we obtain that dist(T,(x1),T(z2)) < do. Consider
the map

G =Ggy:|—¢€,e]™ x Bs(z) x Bs,(y) = T, E
(w, 21, 22) — expy ' (21) — expy (T (22)).-

Observe that G(0,z,y) = 0. Since 9,G(0,z,y) is surjective, by means of the implicit
function theorem, there exists a C? function h : [—eo(y),0(y)]™ x By (z) — E such
that T,(h(w,z)) = z for every z € B, (x) and h(0,z) = y. Notice, as well, that
e0(y), 7(y) can be taken uniformly since As is compact and therefore we can C?-extend
h to the domain [—&,&]™ x C,. Finally, from (5) we obtain that the function h satisfies
all the desirable properties. Replacing As by Rfs follows from Lemma 2.9 item (2). O

Lemma 2.13. Assume Hypothesis H1 and ||dT(z)~t|| < 1/(1 + ) for every x € R.
There exists o > 0 small enough satisfying Lemma 2.9 such that
(1) there exists ag == 00(8p) € (0,1) such that T~ (As)NAs C Ayys for all0 < § < &.
Moreover, there exists ey = g¢(9) satisfying Lemma 2.12 such that for every 0 < e < g9
we have that:
(2) there exists o == o (d,¢) € (0,1), such that T, *(As)NAs C Ays, for every w € €,
and
(8) for all z,y lying in the same connected component of A5 and w € Q. we have
T (@) N A5} = #{T (y) N As).
All statements in this lemma also hold true replacing As by Rs, 1 < i < k.

Proof. We prove (1). First of all, take 6y and g small enough such that ||d7,,, (x) ! s, Il <
1 for all wy € [—e0,e0|™ and Ags, C V, where V' is as in Hypothesis H1. Let 0 < ¢ < dg
and 0 < g < &g.

Given z € F and v € T, F such that ||v||; = 1, let 75, : (—0p,d0) — E be a geodesic
on E such that v, ,(0) = = and v, ,(0) = v € T, E. From Hypothesis H1, the fact that
T is a C? function and A is compact, we have that Vy,w(9) is well defined for every y € A
and w € Ty F/, and that there exists ry > 0 such that

dist(T o vy (t), T(y)) > |t|(1 +ro) for every |t| < do. (6)

From the above equation and the fact that d7'(x) is a surjective linear operator, we
obtain that T'(Bs,14r)(y)) D Bs(T(y)). Take y € As, then there exits € A, v € T, E
and h € [—4,0] such that y = v;,(h). Let x1,...,2¢ € A be all pre-images of x. From
(6) there exist hy,...,hy € [=0/(14710),d/(1+70)], and unit vectors v1 € Tp, E, ... vy €
T,,E such that all y; = ~v4,4,(hi),1 < i < ¢, are pre-images of y. Note that y; €
As/(14r9)- We claim that these are precisely the only pre-images of y in As. Suppose
there exists y' € As \ Ag/(14ry) such that T(y') = y. Since 2 € Bs(y), from (6) there is
h' e [=6/(1+1r0),6/(1+19)] and v € T, E such that T (v, (h')) = x. This contradicts
Hypothesis H1 as vy, (k') € Ags \ A C V \ A. Therefore, T~ (As) N As C Agj(14r,)- Set
oo =1/(1+rp).
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We prove (2). For every y € Ags, let {y1,...,y} = T 1(y) N As. Let hy,... hy :
[—¢,e]™ x Cy — E be the inverse branch functions defined in Lemma 2.12, such that
hi(0,y) = y;. Since dist(h;(w,y),y;) = dist(h;(w,y),hi(0,y)) < Ko|lw| < Kope, and
Yi € Nsj(14r0) from item (1), we obtain that hi(w,y) € Askyet1/(14r))- Choosing e
small enough, there exists o € (0, 1) for which h;(w,y) € Ay for all w € Q..

To finish the proof, we show that for ¢ > 0 small enough, #{T 1(z) N As} =
#{T. ;7 (z) N As}, for every = € As and w € Q.. From the construction above, we obtain
that #{T~(z) N As} < #{T,'(x) N As}. Suppose by contradiction that there exist
sequences {, tnen C As and {wp}nen C [—€0,€0]™, such that #{T 1(z,) N As} <
#{T; (z,) N As} and w,, — 0. From the compactness of As and the pigeonhole princi-
ple, the above assumption implies that there exist sequences {y.},en and {y2}nen such
that: (a) yb # y2 and T, (y}) = To,, (y2) for every n € N; and (b) !, 32 2225 o € Ay
From the continuity of (w, ) — T,,(x), we obtain that dist(T(y}), T(y2)) === 0, which
contradicts the fact that d7'(y*) is invertible and completes the proof.

We prove (3). From the last part in the proof of item (2) we obtain that #{7~(x) N
As} = #{T; (x) N As}, for every o € As and w € Q. for ¢ sufficiently small. Therefore,
it is sufficient to show that the map z € As — #{T~1(x) N As} is locally constant. This
is a direct consequence of ||[dT~!(z)|| < 1 for all z € As and the inverse function theorem
(see e.g. the proof of [57, Lemma 11.1.4]).

The last statement follows from replacing As by Rf; in every argument above, and
from item (2) in Lemma 2.9. Note that for (1), we have that R’ is open in T~(R’) (see
the proof of [57, Corollary 11.2.16]). O

As mentioned in the introduction, stochastic stability has been previously studied in
the context of trajectories accumulating on attractors. Instead, in this paper, we are
interested in characterising the stochastic stability of general equilibrium states on uni-
formly hyperbolic expanding repellers, for which no such notion exists in the literature.
The existence and uniqueness of equilibrium states on uniformly hyperbolic expanding
repellers is guaranteed by the following classical result of Ruelle (see [51, Lemma 1.4] or
[50, Chapters 7.26-7.31]).

Theorem 2.14 (Ruelle). Let T satisfy Hypothesis H1. Let'Rl, ..., R* be as in Lemma 2.7
and fiz i € {1,...,k}. For every a-Hélder potential ¢ : R* — R consider the operator

L :C*R") — C°(RY)
fe Y W)
T(y)==
Then, there exist unique m € C(R'), v € My (R') and X > 0 satisfying
e ker(L£ — \) = span(m),
o ker(L* — \) = span(y) and [n, m(z)y(dz) =1, and
e log\ =logr(L) = h, + [ ¢(z)v(dzx), where v(dx) = m(x)u(dz).
In this context, v is the (unique) T-invariant equilibrium state for the potential ¢ on R'.
To approximate these equilibrium states, we propose using quasi-ergodic measures,

which we construct from the principal eigenfunctions of the following annealed transfer
operators.

Notation 2.15. For each i € {1,...,k} and every a-Hoélder function ¢ : Rf; — R, we
define the annealed Ruelle-Perron-Frobenius operator

L : L'(R§, p) — L'(R§, p)

W f(y)Lps (y)

E
foEe (et dTo(y)]

Tw(y)=2
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and the annealed Koopman operator
P : LOO(Rg’p) - LOO( ESHO)
[ €¢(x)Es[f oTy(z) - ]lRf; o Ty (z)],

which are well-posed from Lemmas 2.9, 2.12 and 2.13. Moreover, given x € Rf; andn € N
we refer to the measure P?(z,-) as the unique measure on R} such that Pl (z, A) =
P14 (z) for every measurable subset A of Rj.

Remark 2.16. Note that the Ruelle-Perron-Frobenius operator £ introduced in The-
orem 2.14 differs from the operator L. since the latter is divided by |detdT,|. This
causes the correction — log | det dT'| for the limiting potential in Theorems 2.10 and 2.11.
This choice provides a more interpretable expression for P. and its eigenfunctions as

quasi-stationary measures for the ¢-weighted Markov process X5

The following proposition establishes that X5 is a strong Feller absorbing Markov
process. This is constantly exploited throughout the paper.

Proposition 2.17. For every a-Holder function ¢ : Rf; — R, the operator P; : LOO(RfS, p) —
L>(Rj, p) is strong Feller, i.e. given a bounded measurable function h : M — R we have
P.h € CO(M). In particular, P? is a compact operator.

Proof. Let {@y}nen C RS be a sequence converging to x € Ri. Write [—¢,e]™ = [—¢,£]°x
[—e,e]™ ¢, where e = dim E, and let F := F, : [—¢,¢]® x [—¢,e]" ¢ x R — E. Assume

without 1055 of generality that 0., F(wo,w1, zy) is surjective for every n € N. Let F (wi 2)

denote the inverse of F for fixed (w1, x). Then, for any bounded and measurable function
h : M — R we obtain that

e¢(xn)
(2e)m

e¢(1‘n 1
= / / h(y) |det dF, (wl,x)(y)( p(dy)dwy
e,g]m=e J F([—€,e]® w1 ,zn)NRS

e¢(1‘n)
= / ; [(26)m /[E,E]m_e L (j—e.clewn,an)( ‘detd (wr,am) Y )‘dm] h(y)p(dy).

Defining « as

P-h(xy,) = / (]lRa h) o F(wo, w1, Ty )dwodwy
[—ee]mex[—ec]®

e(b(xn)
K(xnay) = (25)7” /[—6,6]7”6 lF([—a,e}e,wLJ:n)( )

it is clear that s(n,y) —— k(x,y) for p-a.e. y € R%. We obtain from the Lebesgue
dominated convergence theorem that lim,, o P-h(z,) = P-h(x), so P- is strong Feller.
From [47, Chapter 1, Theorem 5.11] (which we recall in Lemma A.2), we have that P>
is a compact operator. O

detdF}, \(y )‘dwl,

(w1,x

Observe that given an a-Hoélder-potential ¢ : Rf; — R, then £ = P.. Indeed, for any
[ € LY(RY) and g € L™(RY),

| r@Pg(a)plas) -

)

/¢ eqb(x)f(x)g o Tw($)lR§ o T, (x)p(dx)

8

e¢(y)f(y)]le (v)
) /Rfs . T(Zy)::m | det dT,,(y)| g(x)p(dz) (7)

— [ £er@gta)pta),

()
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where (if needed) we assume that f : E — R vanishes outside of R}. From Proposi-
tion 2.17 and equation (7), we obtain that £2 : L'(R%) — L'(R%) is also a compact
operator.

3. THE LOCAL PROBLEM

In this section, we focus on a single repeller R’ of T from the dynamical decomposition
of Lemma 2.7 and establish the stochastic stability of equilibrium states associated with
the restricted transformation T'|,:. To achieve this, we condition the process X, upon
remaining within a d-neighbourhood of the repeller R’. For a given a-Holder potential
¢, we begin by showing that there exists a unique quasi-stationary measure p. for the
¢-weighted Markov process X5 on Rf; absorbed in 0 = Ms \ Rf;. To do so, we adapt
the analysis of conditionally invariant probability measures provided by Pianigiani and
Yorke [46] as fixed points of the (normalised) Ruelle-Perron-Frobenius operator, L.. We
continue with a detailed study of the operator P, to obtain the (unique) eigenfunction
ge of maximal eigenvalue A.. Finally, we prove the existence and uniqueness of a quasi-
ergodic measure of the ¢-weighted Markov process X conditioned upon not escaping
the support of g, and characterise its limiting behaviour as the noise strength e vanishes.
This measure follows from the pointwise product of u. and g.. As previously mentioned,
we show that the limiting object as € — 0 corresponds to an ergodic invariant measure
sitting on the repelling set R’ that corresponds to the unique equilibrium state for the
potential ¢ — log | det dT'|.

Throughout this section, we assume Hypothesis H1 holds true and employ the notation
introduced in Section 2. In particular, we use “c small enough” and “§ small enough”
to refer to € and ¢ as in Lemmas 2.9, 2.12 and 2.13. All arguments in this section hold
for each 1 < i < k and every a-Holder potential ¢ : R — R, which we fix once and for
all. To improve readability we drop the super-index ¢ of the weighted Markov process
X5 and simply write X,.

3.1. Quasi-stationary measures on Rf;. Denote by Z; the L'-normalised operator
L., ie.
— L
Lof= 6f .
1L f 11

Notation 3.1. Given a compact metric space (NN, d) and 0 < a < 1 we denote by C*(N)
the set of a-Holder functions f: N — R and consider the a-Hélder norm

|f(z) = f(y)]
d(z,y)>

To obtain a quasi-stationary density for the conditioned process on each component
Rj we apply the Schauder-Tychonoff fixed point theorem (see, e.g. [57, Theorem 2.2.3])

Ifllce = sup [f ()] + sup
zeN rH#y

to the operator L. acting on a suitable space C3.

Theorem 3.2. Consider an «-Hélder potential ¢ : Rf; — R and suppose that T satisfies
Hypothesis H1 and ||[dT(z)7'|| < 1/(1 +7r). Let 6 > 0 be small enough. Then, for every
€ > 0 small enough there exists a measure p. on Ry such that:

(1) pe is the unique quasi-stationary measure of the ¢-weighted Markov process X¢
on R,

(2) pe is absolutely continuous with respect to p, and

(3) defining me = p-(dx)/p(dzx), there exists C > 0 such that ||mellce < C and
me(z) > 0 for every x € RE.
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Proof. Given 8 > 0 consider the set

Jgdp=1, g >0, and % < Pz f 1y }

C = € Ll Ria ‘
p {g (. p) lie in the same connected component of Rj

We divide the proof into 3 steps.

Step 1. There exists 5 > 0 such that Z;(Cﬁ) C Cg.

First of all, observe that if 6 > 0 is small enough f > 0, f € Cg, implies L. f > 0 for
every € > 0. Define ¢ : Rt — R as ¢ := ¢ — log|det dT'| and let
D p B =V _
TH#Y d(.%', y)

Recall from Lemma 2.13 (3) that if € > 0 is small enough, then given z,y in the same
connected component C' of R§ we have

#{T™" (@) N As} = #{T " (y) N As}
for every w € Q.. Suppose that #{T~*(x) N As} = L. Let hy,... he: [—€,]™ x C — R:
be the pre-image functions (inverse branches) defined in Lemma 2.12. Given f € Cg, we
have that

e/ f(2) f
) -k Yoh; (w,x) .
Lf@=Fe| D moaano| =B |2e f o hi(w,)
| T (2)=2 i=1
A
_ Yohy(wye)—pohy(wy) f O hi(w,T) o ohy(w,y)
EE Zzle fohz(w’y)fo hl(w7 y)e

§< sup e(ﬁ—l—D)dist(hi(w,m),hi(w,y))a) ﬁef(y)
ie{l,....0}

< (T BHDME) £ p ()

Therefore, if f € Cg then Z;f € Coo(p4p)- Taking 8 > Do¢/(1 —of) > 0 we conclude
Step 1.

Step 2. For every e > 0 small, there exists m. € Cg such that sze = M.

Observe that Cjg is pre-compact and convex in Ll(Rf;, p). From the Schauder fixed-
point theorem, there exists m. lying in the closure of Cz such that Z;me = m,, which
implies that L.me = Acm. for A. = ||Lome|| > 0. We claim that m. € Cg. Suppose by
contradiction that mg € Cgt' %5 \ Cj. Then, there exists # € Rk such that m.(z) = 0.
Therefore, m.(y) = 0 for every y in the same connected component C,, of z in Rf;. Hence,
for every y € C,,

| S 1 (2)me (2

0=m. (y) = _nEs n )
AL T (Dey |det AT, (z)]
where S,,¢(w,2) = Y1) po T (2).
This implies that m. vanishes in the connected components of points in 7" (y) N R},
for every y € C,. Since there exists z € R’ such that {T™(2)},en is dense in RY, it
follows that m, = 0, which is a contradiction.

Step 3. We conclude the proof of the theorem.

Item (1) follows from the same arguments in the proof of [46, Theorem 2]. Items (2)
and (3) are readily verified since m. € Cg for a uniform f. O
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For the remainder of this section, let m. € Cz denote the unique function such that
L-m. = A.m. and let p. be the unique quasi-stationary measure, i.e. be such that
me = pe(dx)/p(dz), as of Theorem 3.2.

3.2. Analysis of the operator P. : L*(R}) — L°°(R}). We now study the adjoint
operator of £, to obtain the eigenfunction g., associated with the maximal eigenvalue A,
from the previous result, and its properties. We also construct the unique quasi-ergodic
measure of the ¢-weighted Markov process X on {g. > 0}.

Lemma 3.3. Assume Hypothesis HI1, let §,¢ > 0 be small enough and let Ae be the
eigenvalue associated with m. from Theorem 5.2. Let g. € ker(Pe — ) N CL(RY), then
R' C {g- > 0}.

Proof. We divide the proof into two steps. First, we check that g. is positive on dense
orbits of T and, second, construct a neighbourhood of R’ where g, is positive. It is clear
that a dense orbit exists since T : R* — R’ is topologically transitive by Lemma 2.7. Let
Ko = min, cpi e?@ > 0.

Step 1. If {T%(wo)}ien is dense in RY, then g-(z¢) > 0.

Recall that g. € C{(R%). Assume that g.(zg) = 0, then for every n € N,

1 K
0= ge(wo) = F,ngs(xo) > )\—SEEL% o T} (o) - lRfS o T3 (20)]-
€ (>
Combining this with the submersion theorem applied to 0,7;, (see [41, Theorem 4.12])
and the fact that Rj is compact, we obtain that there exists 79 > 0 such that g.| Bry (T (20)) =
0 for every n € N. Since {T%(x¢) }ien is dense in R, there exists a neighbourhood U O R?
such that g.|; = 0.
Let Tng(U) = T(U N Rj). Recall that, from (6), there exists N € N such that

TriVRi(U) O Ri. Take y € R%. Then, there exists 2 € U such that TV (2) = y and
Ry
T'(z) € U for every i € {1,...,N}. Since
= )\_N,Pz-: gE(Z) 2 AN Ea[gt? o7, (Z) ’ ]lRfs o7, (Z)]v
&

£

0=g:(2)

continuity of g. and the submersion theorem applied to 0,7, yields ¢g-.(y) = 0. This
contradicts g. # 0.

Step 2. There exists an open set B D R, such that g.(x) > 0 for every x € B.

Set B := {z € R; 3wy € (—&/2,6/2)™ s.t. T,o(x) € R'}. From the submersion
theorem, we have that given x € B and wy € (—¢/2,¢/2) such that T, (z) € R* we
obtain that there exists r; > 0 such that

U T.,(x) D By, (T}, (x)) for some 1 > 0.
weN,

Let z9 € R’ be such that {T%(z)}ien is dense in R, then there exists Ny such that
TNo(xq) € By, (T, (x)). From Step 1, g.(T™No(z)) > 0. Continuity of g. then implies

K 1

0 < =2Ec[ge 0 To() - L i 0 Ty ()] < —Pege() = ge(2).
Ae s Ae

This concludes Step 2 and proves the lemma. O

Theorem 3.4. Consider the operator P : L>®(R) — L>®(R%). Then, ker(P. — \;) =

span(g.) for some g. € CI(R}).
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Proof. Let g. € ker(P- — \.). Since P, is strong Feller, then g. € CO(R%,C). Moreover,
since P(CY(R%)) C CO(RY), it is clear that Re(g:),Im(g.) € ker(P- — A.). Given g. €
ker(P. — A\:) N CO(RE), we claim that g= € ker(P — \.). Indeed, observe that (see [40,
Propositions 3.1.1 and 3.1.3])

where g = max{0, +g.}. Therefore,

-/ | (5P (@) = g8 @) etato) + [ | (5770 @) 92 @) et

From Theorem 3.2, supp pe = Rf;, therefore P.g¥ = AcgZ.

Take g1,92 € ker(P: — A:) N CY(RY). From Lemma 3.3, we have g1,g92 > 0 on R’
Choose ty > 0 such that tq = inf{t; gi(x) — tga(z) < 0 for some = € R'}.

Since g1 — tog2 € ker(P- — A.), then (g1 — tog2)" € ker(P- — A.). However, from the
choice of to and Lemma 3.3 we obtain that (g1 —tog2)* = 0. From the minimality of o,
it follows that g1 (z) = toge(x) for every x € R’. Observe that (g1 —toge)™ = 0 yields that
toga > g1. Therefore togs — g1 € ker(P. — A\.) NCY(R}) and (tog2 — g1)|p: = 0, implying
that togg — g1 = 0. U

0= [ (Pl ~ o)) et

For the remainder of this section, let g. € C'_?_(Rf;) denote the unique function such
that P.ge = A\-ge and normalised so that [ g.du. = 1, as of Theorem 3.4. We summarise
some relevant properties of P. : L*°(Rj§) — L>(Rj) that have been shown above:

(1) P-: L®(R}, p) — L>®(RS, p) is a strong Feller operator,

(2) dimker(P: — A;) = 1, where A\ = r(P:) is the spectral radius,

(3) there exists p. € My (RY) and g. € CL(RY), such that Pfu. = Acpe and Pg. =
Aege. and |

(4) pe < p and supp pe = Rj.

In particular, this implies that P, satisfies Hypothesis HA in Appendix A. The lemma
below is a consequence of the properties just listed and Theorems A.13 and A.14, whose
proof is deferred to the appendix in order not to break the flow of the text.

Lemma 3.5. The measure ve(dz) == g.(z)pe(dz) is the unique quasi-ergodic measure of
the ¢-weighted Markov process Xy, on {ge > 0}. If we further assume that T': R* — R’
is topologically mizing, then v. is a ¢-weighted quasi-ergodic measure on Rj.

Proof. 1t is clear from the properties of P. listed above that it satisfies Hypothesis HA
(see Appendix A). Hence, Theorem A.13 implies that v, is the unique ¢-weighted quasi-
ergodic measure for X¢ on {g. > 0}.

To finish the proof of the theorem, it remains to be shown that if T is topologically
mixing, then v, is a ¢-weighted quasi-ergodic measure for X; on Rf;. Since T' is topo-
logically mixing, then X¢ is aperiodic in R} and {g. > 0}. Let ke := #(0per(3P:) N SY).
From Lemma A.3, k. < co. Moreover, from Proposition A.6 and Lemma A.7 we obtain
that there exist sets C; C {g- > 0}, 7€ {0,1,...,k-.—1} such that CouC1U...UCk.—1 =
{ge > 0}, and {P-1¢, > 0} C Ci_1 (mod k.), for every i € {0,1,... k. — 1}. Since T'is
assumed to be topologically mixing on R?, X¢ is aperiodic, thus k. = 1. Finally, from
Theorem A.14 we obtain that v, is a quasi-ergodic measure of the ¢-weighted Markov
process X on R U
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3.3. Proof of the main (local) result. We conclude this section with the main results
concerning the stochastic stability of equilibrium states on each repeller R§ and their
limiting behaviour as € — 0.

Notation 3.6. Recall that given a suitable function f we denote the action of the
(deterministic) Ruelle-Perron-Frobenius operator £ for the potential ¢ — log|det dT|
[57, Chapter 12] by

W) f(y) g (y)
£l D —Jqear)

T(y)==

when this is well-posed (see Theorem 2.14). In particular, this is the case for any function
supported on Rj.

Lemma 3.7. Consider a sequence {m.}.~o C C*(R}), with |me||ca < C for everye > 0.

Then, ||Leme — Lmg|| 1o =% 0.

Proof. Using the usual bounds, we have that

e?Wm, e?Wm,
[Leme(x) — Lme(z)| = [E | Y PWime(y) > W, (y)

det dT,, det dT

(2 TaerdTL )] 2 Tdetdl(y)
6¢Ohi(w7$)m€ o hl (W, 'I) - 6¢0hi(07$)m€ o hl(oa CC)

: |det dT,, o h;(w, z)| | det dT" o h;(0,x)|

ePohi(w, J:)me(hl,(w’ ,I)) _ e¢°hi(07$)mg(hi(0, x)
| det AT, (hi(w, 2))]

<ZE

1 1
¢oh; (w,x) h:(0 -
+le me o hi(0, )| |det AT}, (hi(w,x))] |detdT(h;(0,x))] H

< Nmax K;C(sup |D,h;|e)® + CK|sup |Dyhile — 0, ase — 0,
7

where N' = sup(, ,)cpi xq. #(T;'({x} N R}) < oo, the K; provide a bound for the term
| det T, (h;(w, )Y, Csup |Dy,hi|% are a Hélder-like bound for the difference

|e?°hi @m0 hy(w, x) — MO m_ o (0, )],
and so is Kjsup |D,h|e for (] det dTw(hi(ww))!*l — | det dT(hi(O’x))rl‘)ill -

Proposition 3.8. Let m, : Rf; — R be the functions given by Theorem 5.2. There exist

Ao > 0 and mg € CO(RfS) such that A\, )\0 and me|pi 20, mg in CO(RY), with
Emo == )\Qmo.

Proof. Since ||me||ca < C, there exists {&, }nen, such that e, — 0 and mg € C°(R}%), such
that [|me, — m0||CO( Ri) 0. We can assume without loss of generality, by restricting to
a subsequence if necessarily, that A, — Ag > 0.

From Lemma 3.7 we obtain that

Aomg = hm Ae, Me, = nh_)m L, me, = nh_)rrgo Lme, = Lmyg.

In the following, we show that Ao > 0. Since [p; me, ()p(dz) = 1 for every n € N,
é
then by the Lebesgue-dominated convergence theorem [ps mo(z)p(dz) = 1. Therefore,

there exists zg € R} such that mg(z) > 0. Let Cp, C R% be the connect component
of 2y in R§. From the proof of Theorem 3.2 (Step 2), we obtain that for every n € N,
e P m_ (10) < me, (y), for every y € Cy,. Therefore, taking n — oo we obtain that
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0 < mo(y), for every y € Cyy. In particular mg|z # 0. Assume by contradiction that
Ao = 0. Then, for every x € R’

e?Wmg(y)
S O L =0
Tiges | det dT'(y)]

Since R* C T~!(R') the above equation implies that mg|z: = 0, which is a contradiction.
Therefore Ao > 0.

Since there exists a unique mg € C°(R?) such that Lmg(z) = A\gmo(z) for every z € R
and A\g > 0 [57, Chapter 12|, the proposition follows. O

Proposition 3.9. Let g. € Cg_(R%) be the functions given by Theorem 3.4 and consider
Xo > 0 as in Proposition 3.8. There exists a probability measure v on Rf; such that

ge(x)dx 20, v(dz) in the weak® topology of M(RS). Moreover, ~y is the unique confor-
mal measure forT' on R? for the potential ¢—log |det dT|, i.e. y is the unique probability
measure on R' such that L*y = X\yy.

Proof. Let v be an accumulation point of {g: (z)dz}.>0 in the weak* topology of M(R%),

i.e. there exists a sequence {ge, (#)dz }nen such that e, ~—= 0 and g, (z)dx 2% y(dx)
in the weak* topology. We first check that 7 is a conformal measure on Rj§. Indeed, for
a test function f € C*(Rj) we have:

- / Lidy=lim [ Lf(2)ge,(2)dz

(Lem. 3.7) = lim Le, f(z)ge, (z)dx = h_)m f(z)Pe, g, (x)dx

n—oo Rz

n—oo

R
~ lim A, / @)ge, (@)dz =N | f@)y(dz) = 2r(f)-
R} Ry

We claim that suppy C R’. From Lemma 2.9 item (2), we obtain that

1 W) lRi (y)

=(Rj) = o o ﬁ]le(x)’Y(dx) = )\1 /1 Z W’Y(dw)

W) 1 y)
%), Py e = - [ Ly (w20as) = (R
7, ‘ det dT ’ TdetdT(y)] | )\5 Rz R‘Z705 K K 700/
Repeating this argument n times we obtain that W(Rf,g 5) = 1 and the claim follows by
taking n — oo. Since there exists a unique measure v in R’ such that £*y = Aoy (see

e—0 . *
) ) = .
[57, Chapter 12]), we conclude that g.(z)dz —— 7(dx) in the weak* topology. O

Proposition 3.10. Assume Hypothesis H1 and that ||dT(z)~|| < 1/(1 + ) for every
x € R. Let v, be the unique quasi-ergodic measure of the ¢p-weighted Markov process X;,

on {g: > 0}. Then, v, SmalN vo(z) = mo(z)y(dz), in the weak® topology. Moreover, v
is the unique T-invariant equilibrium state for the potential ¢ — log|det dT| in R".

Proof. From Lemma 3.5, we have that v (dz) = g.(z)ue(dz) is the unique quasi-ergodic
measure of the ¢-weighted Markov process X on {g. > 0} such that R* C supp g.. Since

me =% mg in CO(R%) and g.(z)dx =0 v(dz) in the weak* topology then, v, =0 0
in the weak™ topology. The final part of the proposition follows from well-known results
in the thermodynamic formalism for expanding maps (see [57, Chapter 12]). O

We close this section proving Theorem 2.10.
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Proof of Theorem 2.10. Let ng € N be large enough such that 7™° has the same dynam-
ical decomposition as T and |(T™°)’(x)| > 14 for every x € R. Then, Proposition 3.10
holds for T7!. It is clear that:

(1) Oper (F5P20) = oper (£ ) and oper (5h5£20) = oper (S£2),
2) Tper (Ao%ocno . CO(RY) — cO(m‘)) = Cper (%c L CO(RY) — cO(Ri)), and
(3) Tper (Ao%o(ﬁ*)"o : M(RY) — M(Ri)) = Cper (%Oc* . M(R') — M(Ri)),

where oper denotes the point peripheral spectrum, ie. oper(P:) = {a € C; |a| =
r(P:) and ker(P. — «) # 0}.

Therefore v.(dz) = g-(z)pe(dz) is the unique quasi-ergodic measure of the ¢-weighted
Markov process XZ on {g. > 0} such that R’ C suppv.. Since 1y is a equilibrium state
of T™0 for the potential S,,¢ — log|det d7™| on R’ and an equilibrium state of T for
the potential ¢ — log | det dT'| on R, the proof is finished.

If 1 is mixing for the map T : R* — R, then T : R® — R’ is topologically mixing since
supp g = R'. From Lemma 3.5 we obtain that v, is a quasi-ergodic measure ¢-weighted
Markov process XS on Rj and the result follows. (|

Corollary 3.11. Assume Hypothesis H1 and that T|p: is topologically mizing. Let
0 > 0 be small enough. For every e > 0 sufficiently small, let yg(dx) be the unique quasi-
ergodic measure of the ¢-weighted Markov process X, on Rj§ such that R' C suppv,.

Then, v.(dx) 20, vo(dx) in the weak™ topology. Finally, vy is the unique T-invariant
equilibrium state for the potential ¢ — log|detdT| on R".

Proof. From Lemma 3.5 we have that g.(z)us(dz) is a quasi-ergodic measure of the ¢-
weighted Markov process X on R§. Combining this observation with Theorem 2.10 we
obtain the result. O

4. THE GLOBAL PROBLEM

In this section, we prove conditioned stochastic stability of equilibrium states on
the global repeller A by studying the quasi-ergodic measure of the ¢-weighted Markov
process X2 on As and absorbed in 9 .= U U (E \ Mj). As in Section 3, let us fix once
and for all an a-Holder potential ¢ : Ms\ U — R. Moreover, we assume that 7" satisfies
Hypothesis H2.

We start by arguing that restricting the study of quasi-ergodic measures on Ay is
sufficient to characterise those on Ms \ U. Then, we decompose As into transient and
recurrent subsets, the latter being those that contain the original repellers R'. In par-
ticular, we show that all the relevant information for the global dynamics follows from
the recurrent subset containing the repeller RY of maximal growth rate. The stochas-
tic stability of global equilibrium states is then inferred via the stochastic stability of
equilibrium states around RP.

Proposition 4.1. Assume that T satisfies Hypothesis H2. Let § > 0 be sufficiently small
and e be a quasi-stationary measure of the ¢-weighted Markov process X on Ms\ U.
Then, for sufficiently small € > 0,

(1) He < P

(2) supp pe N As # 0, and

(3) pel As after normalisation, is a quasi-stationary measure of the p-weighted Markov
process X; on As.

Proof. Observe that (1) follows directly from the fact that P-(z,dy) < p(dy) for every
x € Mg \ U.

To show item (2), arguing by contradiction, suppose that supp p. N As = (). We claim
that there exists N € N and £ > 0 small enough such that for every x € Ms \ As there
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exists i € {0,1,...,N} such that T (x) € UU (E \ M;) for every w € ., or in other
words, 7(z,w) < N for every w € .. This is sufficient to prove (2) since, if true, any
measurable set A C Ms \ U would be assigned measure zero:

1

pe(4) = 3 /MM P (&, A)pe (de)

1 /
assumed N
su =0) — P (x, A Le(dz
( PP peMNAs @) )\é\f My\Ag € ( ) 6( )

1 N=1 4 i
— )\_/ E. [eZi:o ¢0Tw($)]lA o Tév(x)]l{’r(w,a:)>N} Ma(dx) =0,
Ms\As

€

which is a contradiction. To verify the claim, choose y € Ms\ As. Then, there exists
n(y) € N such that T"(y) € U U (E \ M;). Since this is an open set, by continuity of
T and C? closeness of the perturbation, there exists r(y) > 0 and £(y) > 0 such that

Tff(y)(Br(y) (y)) CUU(E\ M) for all w € ). Consider a finite open cover of Ms\ As
with such balls around n points y1, . . . , y, with respective radius r(y1), ..., 7(y,). Setting
N = max{n(y1),...,n(yn)}, and ¢ = min{e(y1),...,e(yn)} the claim follows.

Finally we show (3). Since T-'(A) N M = A, from the same proof of Lemma 2.13
items (2) and (3) we obtain that T, '(As) N Ms C As for every w € Q.. Let A be a
measurable subset of Ag, then

P, Ape(n) = [

e?@E[14 0 Ty, (2)]pe(da) = / e?@E (14 0 Ty ()] pe (dz)
As

Ag M5\U

[ Pl Apeldn) = rene(),
Ms\U
SO fie] A, Dormalised is a quasi-stationary measure of the ¢-weighted Markov process X
on Ag. O

Proposition 4.2. Assume that T satisfies Hypothesis H2. Consider the operator Pe :
L(Ms\U) — L>(Ms\U). If g € LT (M5 \ U) is such that Peg = Ag, then g|p\a, = 0.

Proof. The proof of Proposition 4.1 yields that for € > 0 small enough there exists N
such that TN (x) € U for every x € M;\ As and w € .. Therefore,

PEN(JU,M(; NU) =0 for every = € My \ As.
It follows that for every x € My \ Ay,

Ogg(x)—L

= Prg(e) < e (0 a0y = 0

verifying the claim. O
As a result of Propositions 4.1 and 4.2, it is natural to redefine the operator P, as
P L%(As) — L= (Ay)
f e®BofoT, - 1a, 0T,
and denote by \; = r(P;) its spectral radius. Moreover, observe that

,CE : Ll(A(g) — Ll (A(;)

e?W) f(y)1a,(y)
N D D P O]
Tw(y):$

is well defined and that £ = P..
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4.1. Recurrent and transient regions. In this section, we represent the relevant
dynamical behaviour of the absorbing Markov process X; for every ¢ > 0 via a graph
whose vertices are the connected components of As. This approach resembles the graphs
constructed via chain recurrence and filtration methods for classical dynamical systems
(see [24, 28, 27]). Later, we use this construction to characterise the support of the
relevant quasi-stationary measure of the ¢-weighted Markov process X .

Given € > 0, we define an equivalence relation ~. on the set of connected components

I's :={C C As; C is a connected component of As}

as follows: for any C1,C5y € I's, we say that Cy ~. Cy if
e (1 =0C5, or

e both sets are reachable from each other, i.e. for every i,j € {1,2}, there exist
Wo, Wi, ..., Wy, Wpy1 € TI's such that minge{07___7n} SUP,ew, Po(x,Wyi1) > 0,
with W() == Cz and WnJrl == C]’.

Proposition 4.3. Assume that T satisfies Hypothesis H2. The set of equivalence classes
s/ ~c stabilises as € — 0, i.e. there exist C1,...,C, € I's such that for every e small
enough we have that

F5/ Ne= {[Cl]’ ceey [Cn]},
where [C;] represents the equivalence class of the element C;.
Proof. Observe that if 0 < €1 < €2, then C) ~¢, Cs implies C; ~, Ca. Since

The amount of elements of I is finite, and observe that if 0 < g1 < €2, then C ~., Co
implies C} ~¢, Cy. This ensures that I's/ ~. stabilises as ¢ — 0. U

Definition 4.4. Given § > 0 small enough, let C1,...,C, € I's be the sets given in
Proposition 4.3. Define
Mi = U C,

CelC;]
i.e. M; is the (disconnected) region spanned by all elements in the class [C;]. Then:

e If there exists j € {1,...,k} such that Rg C M;, we say that M; is a recurrent
TeGLON. ‘
e If there are no sets R} intersecting M;, we say that M; is a transient region.

Lemma 4.5. All regions M; can be classified as either recurrent or transient.

Proof. Assume that M; is not a transient region so that there exists Rg such that such
that Rg N M; # (. Then, there exists a connected component C' @ Rg such that C C M;.
Since T is topologically transitive on R’ we obtain that Rg C M, and therefore M; is
recurrent. g

Proposition 4.6. Let M; be a transient region, then there exists N € N such that for
all x € My, P*(x, M) =0 for alln > N.
Proof. We begin by showing that there exists N € N such that for every x € My, either:

o T"(x) € Int (U M,) for some n < N, where |J M, is the union of all recurrent
regions, or
o T"(z) ¢ As for some n < N.

Let z € AN M, where
A := {x € Mj; there exists n € N such that T"(z) € R}.

There exists an open neighbourhood U, of z, such that T"*(U,) C Int(|JM,), the
union of recurrent regions. Since A N M; is compact, there exist points x1,...,zs with
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respective open neighbourhoods Uy,,...,U,, such that

AnM, c | U,
j=1

Set N = max{ng,,...,Ng, }.

On the other hand, observe that for every y € M; \ A C M \ A, it follows from
T satisfying Hypothesis H2 and [57, Theorem 11.2.14] that there exists n, such that
T"(y) ¢ As. From continuity there exists an open neighbourhood Vj of y such that
T (Vy) N As = 0. Since M; \ B is compact, there exist yi,. .., ym with respective open
neighbourhoods V,,,,...,V, such that

m
M\ B c |V,

i=1
Set N = max{ny,,...,ny,, }. From continuity of (x,w) — T,,(x) we obtain that for every
x € My, either T} (z) € |J M,, for every w € Q. and some n < N; or T} (z) ¢ A;s, for
every w € ). and some n < N. In the first case, allowing return to M; would join
the equivalence classes [C;] of M; with [C,] for some recurrent region M,, contradicting
transience. In the second case, once the process escapes As it is killed. Thus, P2 (x, M;) =
0 for every n > N. O

Proposition 4.6 naturally motivates the following definition.

Definition 4.7. Fix ¢ > 0 such that the conclusions of Proposition 4.3 hold. Let
M, ..., M, be the sets introduced in Definition 4.4. We define the directed graph
95 = (Vs, F) in the following way:

e the set of vertices Vjy is given by Vy:= {My,..., M,},

e given M;, M; € Vs we say that the edge M; — M; is in E, if M; # M; and there

exists € M; such that P.(z, M;) > 0.
Observe that using the same argument as in Proposition 4.3, the set of edges F does

not depend on ¢ as long as this parameter is small enough.

Proposition 4.8. Given a transient region My € Vs there exists a path in 95 connecting
M; to a recurrent region M,. Moreover, the graph ¥s is acyclic.

Proof. To see the first part of the proposition, observe that there exists © € M;N(A\ R).
In this way, there exists n € N, such that 7" (z) € R. Defining M, as the unique recurrent
region such that 7" (z) € M,, we obtain that there exists a path from M; to M, in the
graph %s.

Finally, observe that if ¢5 had a cycle then this would contradict the maximality of
the equivalence classes [C1],..., [Cy]. O

4.2. Proof of the main (global) result. Recall from Lemma 2.7 that R = UF_| R’
For every i € {1,...,k}, consider the (deterministic) operator

L;: C°(RY) — CO(RY)

e¢(y)f(y)
fre 2 [det dT(y)|
T(y)=z

and set \; = r(L;).

Notation 4.9. Assume Hypothesis H2. Given a closed set A C As we write:

o Pac:LX(A,p) = L>(A,p), Pacf =P(la- f),
o L, Ll(A,p) — Ll(A,p), Laef=2L(La-f), and
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e for each vertex M, of the graph ¥5 we define
L, : C°(M,) — C°(M,)

fo Y e f(y)Ta, (y)

Tios | det dT'(x)]

Note from Lemma 2.13 that this linear operator is well-defined.

Lemma 4.10. Given a recurrent region M, we have that

7 (Phty.e) =20, A, = max{\; i € Iy, },

where Ty, = {i € {1,...,k}; R' C M,}.
Proof. We divide the proof into two steps.
Step 1. Ay, <liminf. o7 (P, .c)-

Observe that for every i € Zys, and every f € L*°(M,), ]lePE(]le “f) < Pumyef
From Theorem 2.10 and the above equation we obtain

A = il_)ﬂ’é T(PRfsva) < 1igl_)iglf7"(7)MU7g)7

for every ¢ € Iy, .
Step 2. limsup,_,. "(Pum,.c) < Au, -

Repeating the same argumentation of Section 3, we obtain that:

(1) there exists g. € ker(Pay, - — (P, ) for some g.(z) € CL(M,) and [ g.dp =1,
(2) ker(Lar, e — r(Pm,c)) = span(me) for some m. € C*(M,) and me(z) > 0 for
every € M, and
(3) there exists a sequence {e, }nen satisfying e, — 0, such that:
o 7(Parycn) =% Ao = limsup._,o7(Pas, o),
e g, (z)dx nee, 7v(dz) in the weak® topology and L}, v = Ao, and
o m., — m in CO(M,) and Ly, m = )\om.
It is clear that y(M, N A) = 1. Since A = “™(R), there exists N € N such that
v(M, "T~N(R)) > 0. This implies that

nGN

_ 1
0 <3N TN = g [ et @)
1 eSNOW) 1, o TN
_ _N/ R - (y)’)/(d.%')
N Jon g TdetdTN ()]
1 eSNOW ], o TN
B )\_N/ d tdI;N (y)V(dx)’
0 MUHRTN( ) ‘ € (y)’

where Syo(z) = Zﬁ\igl ¢ o T%(z), therefore v(M, N R) > 0. In this way, there exists
R/ C M, such that v(R?) > 0. Define ;(dz) := v(RNdx). Given f € C°(R’), we obtain
that

o(y)
LD =ueih = [ 25 e )

— [ £t 1e) = 22 (L) = o) < L300
Since r(L;) = Aj, this implies that

Ao = limsupr(Par,.c) < Aj < A s
e—0

and conclude the proof. O
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Remark 4.11. Observe that from Theorem 2.14, item (3) of Hypothesis H2 is equivalent
to the existence of i € {1,...,k} such that A\; > max;; A;.

Notation 4.12. If T satisfies Hypothesis H2, we define \g := max{)\;; i € {1,... ,k}}.
Let ig € {1,...,k} be the unique natural number such that \;, = A\o. We denote by M)
the unique recurrent region such that R? := R C M,.

Proposition 4.13. Assume Hypothesis H2 and let € be small enough. If g € ker(P-—\¢),
then Pury.e(1nrpg) = Aela,g. Moreover, for every vertex M, of 95 such that there exists
a path from My to M,, we have that gl = 0. Also, if g|y, = 0, then g(z) = 0 for
every © € As.

Proof. First of all, observe that such a g exists from the Krein-Rutman Theorem (see
e.g. [42, Theorem 4.1.4]).
Let
Vy = {M;; M; is a vertex of 95 and M; N {g # 0} # 0}
and define ¥, := (V,, E;) C 95 as the maximal subgraph which contains the vertices Vj.
Since ¥, is acyclic, there exists a terminal vertex My € V, i.e. no edge in ¥, exits from
M. We claim that My = M.

Observe that if + € My and T,,(z) € {g # 0} for some w € ), then T,,(z) € My.
Indeed, if there exists M, € Vj such that T, (z) € M,, then My — M, € E, but My is
a terminal vertex. This shows the second part of the proposition for My. It remains to
verify that My = M.

We claim that Pvae(]leg) = Ac1a,g. Indeed, for every x € My we obtain that

Pty e(Lag,9)() = e¢<l‘>E6[an o Ty (x) - g o Ty ()]
= e¢(x)Ee[]leﬁ{g7£O} o Tw(x) "go Tw(x)]

= e¢(x)Ee[]l{g;£0} oTy(z)-go Tw(w)] = ng(x) = Aeg(x).
Taking e — 0, from Lemma 4.10 and item (3) of Hypothesis H2 we obtain that M; =
M. O

Proposition 4.14. Assume Hypothesis H2 and let € be small enough. We have that, if
m € ker(L. — \.) N LY (As), then Lagy(Lagm) = AeLagm. Moreover, for every vertex
M, of 95 such that there exists a path from M, to My, we have that m\Mv =0.

Proof. Again, such an m exists from the Krein-Rutman Theorem [42, Theorem 4.1.4].
Analogous to the previous proof, let

Vi = {M;; M; is a vertex of 95 and M; N {m > 0} # 0}

and define ¥,,, C % as the maximal subgraph which contains the vertices V,,,. Since ¥,
is acyclic, there exists an initial vertex Mg € Vi, i.e. no edge in %, ends in M;. We
claim that M, = M.

Observe that for every x € M, and w € 2.,

TH M) N {m > 0} = T4 (M,) 0 M, N {m > 0}.

w

This shows the second part of the proposition for M. It remains to show that My = Mj.
We claim that Ly, o(1a,m) = A 1a,m. In fact, observe that for every « € M,

_ Wy, (y)mly) |
Lt,e(Ia,m)(z) = Ee Tw%m Aedo)| | Al (x)m(z).

Hence, from the choice of € we obtain that My = My and the result follows. O

Proposition 4.15. Assume Hypothesis H2 and let € > 0 be small enough. There exists
g € CY(As) and m. € LY (As) such that:

(1) ker(P-. — \e) = span(g.),
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(2) ker(L. — A\;) = span(m,),
(3) ge(x) >0 for every x € R°, and
(4) Lpyme € C*(My) and me(xz) > 0 for every x € M.

Proof. From the same method provided in Theorem 3.2, there exists m. € C*(Mp) such
that Ly, .cme = Aeme and My = {m. > 0}.

Given g. € ker(P-—)\.), from Proposition 4.13, we have that Pagy o(1a1,9:) = AeLasy Ge-
Since My = {m. > 0}, repeating the same argument as in Theorem 3.4, we obtain that

1ar,95 € ker(Pagy - — Ae). (8)
We divide what is left of the proof into three steps.

Step 1. For every e > 0 sufficiently small, if g. € ker(Paryc — Ae), then g € C°(As)
and g-(x) > 0 for every x € R°.

Using the fact that Py, . is strong Feller and equation (8), assume by contradiction
that there exists a sequence of positive numbers {&, }nen such that e, — 0, and for
every n € N, there exists a non-negative function g., € ker(Pag e, — Ac,) such that
G, () = 0 for some z,, € RO.

From the same arguments presented in Steps 1 and 2 of Lemma 3.3 we have that if
Ge, (z) = 0 for some = € R® then §€n|Rg = 0. Again, as in the proof of Lemma 4.10, up
to taking a subsequence of {&, }nen We can assume that

n—oo

(&) 7(Pro,en) —— Ao,
(b) e, (z)dz 222 ~(dx) in the weak* topology and L3,y = Aoy, and
(¢) e, 25 mg in C°(Mp) and Lyz,mo = Agmo.

Observe that 'y(Rg) = 0 by construction. Repeating the same computations in Step 2
of Lemma 4.10 (now with A instead of M) we obtain that there exists R/ C My such
that v(R’) > 0 and Liv(R Ndx) = Agy(R/ N dz), contradicting Hypothesis H2 since
r(L;) < Ao. Therefore, g.,(z) > 0 for every x € R® and n € N.

Step 2. We show that dimker(P. — A\.) = 1.

Let g1,92 € ker(P. — A¢). Observe that from the same proof of Theorem 3.4, we
obtain that there exists to such that (g1 —tog2)|zo = 0. Since g1 — tog2 € ker(P: — Ac),
we have from Step 1 that 1, (g1 — tog2) = 0. Finally, from Proposition 4.13 we obtain
that g1 — togg =0.

Step 3. We conclude the proof of the proposition.

From the Krein-Rutman theorem (see [42, Theorem 4.1.4]) and the fact that \. > 0,
we obtain that there exists g. € L3°(As) such that P.g. = A.g., and since P; is strong
Feller we obtain that g. € CJOr (As). Combining Steps 1 and 2, the fact that £ = P, and
choosing m. € L'(As) such that 1,,m. = m,. the result follows. O

Theorem 4.16. Assume Hypothesis H2 and let ¢ > 0 be small enough. Let g. €
ker(P. — Ae) and mg € ker(L. — \.) be non-negative functions. Then,
) = (@) ol
Ja, me(¥)ge(y)p(dy)

is the unique quasi-ergodic measure of the ¢-weighted Markov process X5 on {m. >
0} N {ge > 0}.

Moreover v, 20, vy in the week™ topology, where vy is the unique equilibrium state
for T for the potential ¢ — log|det dT| supported on A.
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Proof. For every € > 0 small enough, choose g. € C(A;) and m. € L1 (As) satisfying
the conclusions of Proposition 4.15. Following the same strategy as in the proof of
Lemma 3.5 we obtain that

ge (@) me (x)p(dx)
sy 92 (@)me (z)p(d)”

is a quasi-ergodic measure of the ¢-weighted Markov process X¢ on {gem. > 0}. From
Propositions 4.13 and 4.14 we obtain that R® C {g-m. > 0} C My, Pty eIngge = Aege
and Ly eLag,eme = Aelpme. Repeating the proof of Proposition 3.10 and Theo-
rem 2.10 changing Rf; to My we obtain the last part of the result. O

ve(dz) =

We close this section proving Theorem 2.11.

Proof of Theorem 2.11. Ttems (1) to (5) follow directly from Propositions 4.1 and 4.15
and Theorem 4.16.

We divide the remaining of the proof into six steps.

Step 1. If vy is topologically mizing, then for every € > 0 small enough, the operator
Po:CO(Ms\U) = C°(M5 \ U)
fr @WEL[f o T(2) a0 T ()]
satisfies the following properties:

(1) ﬁe_z's a strong Feller operator, therefore fi s a compact operator,

(2) r(P2) = r(P2) = A, B

(8) there exists a probability measure fi, on Ms\U such that span{fi.} = ker(P.— ;)
and Tl p, /1e(As) = pe, with pie(dz) == me(z)dz given by Proposition .15, and

(4) span{g.} = ker(P. — \.) where g, = lp,g. € CO(Ms \ U), with g. given by
Proposition 4.15 and [ g.dm. = 1.

Observe that the strong Feller property of P, follows by the same computations pro-
vided in Theorem 2.17, showing (1). Item (2) follows since P. is strong Feller, then
r(Pe: CO(Ms \ U) = C* (M5 \ U)) = r(P= : L®(As,p) = L®(As,p)) = Ac.
Finally, (3) and (4) are direct consequences of Propositions 4.1, 4.2 and 4.15.

Step 2. The operator )\%ﬁg is power-bounded, i.e. suppey |4 P2 || < occ.

Repeating the same argumentation of the proof Proposition 4.1 (2). There exists
N > 0 such that PN f(z) = 0 for every x € Ms \ As and f € C°(M;s \ U). In this way,
for every n > 0, we obtain that for every

1 2R I )\n+N7?” <1A552Vf> .

n+N P€
13
Since =P is power-bounded we obtain the result.

Step 3. Given a function f € C°(M;s\U,C) let us define |f| € CO(M(;\U) as the function
z e ||f()||c. Let >0 and f. € C°(Ms\ U,C) be such that ngg = e f.. Then for

every © € suppfi,, we have that |f:|(z) = g.(x) [ |fe|dn. and f |f€|d,u€ > 0.
It follows that

|fel = |emf€| = ‘)\_ efe

therefore, for every n € N we obtain

1= 1 -2
‘fe’ < )\_Ipa‘fzs’ < ppe‘fzs‘ <...=< )\nP ‘fzs‘
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Since f is a compact operator and fa is power-bounded from Step 2, the above
sequence is monotone and bounded. Hence there exists g € C°(M; \ U) such that

HPLfe| “=5 g in CO(M;s \ U). It follows that g € ker(P. — A.) = span{g.}. From
0 § |fe] # 0, we obtain that there exists a > 0 such that g = ag.. Finally, since |f.| < g,
both functions are continuous, and their integrals with respect to z, coincide, i.e.

/ rfa\dm:/ gdm:/ ag. di.,
M M M

it follows that |f.|(x) = g.(x) [, |fe|dfi. for every & € supp[i..

Step 4. The operator P, has the spectral gap property, i.e. there exist a P.-invariant

closed space W C C°(Ms\ U) such that C°(Ms\ U) = span{g.} ® W and r Pg‘w ) < Ae.

Since fs is a compact operator and %,ﬁ? is power-bounded, it is enough to show that

Oper(P=) NAST = {A:} (see details in the proof of Lemma A.5). Choose a € [0, 27) such
that e’*)\. € o(P.). Then, there exists f. € C°(M;s \ U, C) such that )\%fgfe = el f,.
From Step 3, we can assume without loss of generality that [ |f.|df, = 1. Using again

Step 3 and Propositions 4.13 and 4.14 we 'have that, there exists a continuous function
0 :{g. >0} — R such that f.(z) = g.(2)e?® = g.(x)e?® for every 2 € My and

1 A
)\_PMO,a(]lMofa) = em]lMofe-
€

In this way, for every n € N and = € My
6i(«9(m)+na)g€ (CC) _ / 6i@(y) ( )
Mp

which implies that

i —0(x)—no 1 n *
gela) = [ OO0 g () (PR, ) B2 ).
M() £

: 2 (Pio)" (@) )

>/

Since

@) = [ 0055 (P )" (02) ),

we obtain that /0 —0=)—na) — 1 for every y € supp {(Pjy, )" (0z)} N {g: > 0}. By
hypothesis, the measure v is mixing for the map 7 : R® — R°, so T : R® — RY is
topologically mixing and therefore topologically exact. Hence, there exists ng € N such
that

R C supp { (P )" (0z)} N {ge > 0}, for every n > ny.

This implies that ¢®@)—0W)—na) — 1 for every n > ng and z,y € R, so a = 0.

Step 5. We show that v.(dz) = g.(z)pe(dz) = g.(z)u.(dz)/ [ 9.(v)E.(dy) is a quasi-
ergodic measure of the ¢-weighted Markov process X5 on Ms\ U.

From Step 1 and Propositions 4.1, 4.2 and 4.15 it is clear that v.(dx) = g-(z)p(dz) =
7.(x)i.(dz)/ [ 9.(y)B.(dy). From Steps 3 and 4 we obtain that for every bounded and
measurable function h: Ms\ U — R,

1 ~n n—,oo. _ — .
P EE [ b)) i (M \ V),
Ms\U

since P.h € CO(Ms \ U). B
Recall that 7% = min{n; XZ € (E\ M;s)UU} and by construction of the operator P,
for every x € {g. > 0} Nsupp p. = {ge > O} N suppﬁ5 and for every n € N

n—1
%Zhon - _ZN ( _7’5 ]1M5\U>()

i=0 P ]lMa\U

% >n




28 BERNAT BASSOLS-CORNUDELLA, MATHEUS M. CASTRO, AND JEROEN S.W. LAMB

Since )\%fg]lMé\U(x) 22 G.(x), it is enough to show that

AL

n—1
1 1 —1 1 —=n—i n—oo _ — —
O Ib v (h Pe lMé\U> (2) = g.(x) / h(y)3.(y)ie(dy).
i=0 "¢
This holds true since

n—1 n—1
- E —P (h—nﬂ) 1 > (x) =— —P <h <—<7D 1 -9 >> x
n par )\Z; € i\ € Ms\U n & N € Aan e Ms\U € ( )

£ i=0 £
le=1—
- — hg
+ o 237 (2 ),

and
1 —

P08 (1) 25 0.00) [ W),

€

Step 6. We conclude the proof of the theorem.

To conclude, we need to show that if suppry = R® C Int(M \ U), then v, is a quasi-
ergodic measure of the ¢-weighted Markov process X: on M \ U. Redefine the operator
P. as

P-:CO(M\U) = C*(M\U)
[ €¢(x)Ee[f oTy(x) - Lynv o T,(z)).

Observe that since RY C Int(M \ U), we can choose § > 0 small enough such that
My € M\ U. Repeating Steps 1, 2, 3 and 4 we obtain that

(1) P- is a strong Feller operator,
(2) r(Pe) =71(Pe) = A,
(3) there exists a probability measure 7. on Ms\U such that span{fi.} = ker(P.—\.)
and ﬂ€|MO /ﬁe(]\@) = :u6|M0 /ME(MO)'
(4) span{g.} = ker(P. — A;) and 1,1,9. = 1as, 9=, with g given by Proposition 4.15
and [g.dgm, = 1.
(5) P-:CO(M \U) — C°(M \ U) has the spectral gap property.
As in Step 5, we obtain that v.(dz) = g.(z)pe(dz) = g.(z)f.(dx) is a quasi-ergodic
measure of the ¢-weighted Markov process X on M \ U. U

5. EXAMPLES

5.1. The logistic map. Consider the Markov process X; ;| = T'(X,) +wp, n € N, with
T(z) = ax(l—2z) and w,, ~ Unif(—¢,¢). Fix a = 3.83 so that the deterministic dynamical
system (with ¢ = 0) has an almost sure global three-periodic attractor [25, 52|, i.e.
Lebesgue almost every initial condition in [0, 1] is attracted to the unique three-periodic
hyperbolic attractor A = {p, T(p), T?(p)}, with p ~ 0.1456149 (see Remark 2.6).

The dynamical decomposition of Lemma 2.7 yields two invariant sets: the origin
R! = {0}, and a hyperbolic Cantor set R? consisting of the closure of all periodic points
in (0,1) that are not in the basin of attraction B(T') of A [56]. Let A := [0,1] \ B(T)
and U D A be a small enough neighbourhood of the attractor such that U N A = ). We
consider the family of a-Holder potentials ¢; : [0,1] — R,z — (=t + 1)log |T"(x)| for
t > 0. Recall that an equilibrium state v; associated with the potential ¢; —log|a(1—2z)|
for T on R is a measure maximising

o (0 + [ (60— 10g|2" Vg = (1) — ¢ [ 1og |2l

where h,, is the metric entropy and p € Z(7, RY), the set of T-invariant measures on R,
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It is well known that A is a hyperbolic (uniformly expanding) invariant set [29] and
T admits a unique equilibrium state associated with the potential ¢;(x) — log |T"(x)| on
A (see e.g. [57, Chapters 11 and 12]). Therefore, Hypothesis H2 is satisfied and we
can apply the theory developed above. For R!, it is clear that vy = dg and P(T, ¢; —
log |T'|, RY) = —tlog |a|. For R?,

P(T, ¢ — log |T'|,R2) = hy,(T) — t/log la(1 — 2x)|va(dz) > —tlog |al,

since — log |a(1 —2x)| reaches its minimum at 0 and h,,, = (14+/5)/2 (see [56] for precise
details). Therefore,

log \e = logr(P.) <=5 P(T, ¢, — log [T'|,A) = P(T, ¢, — log [T"|, R?) = log \a,
with P. : L*°([0,1] \ U) — L*>(]0,1] \ U) the global annealed Koopman operator. It
follows from Theorem 2.11 that the unique equilibrium state sits on the invariant Cantor
set repeller R? and can be approximated by quasi-ergodic measure v, of the ¢;-weighted
Markov process XZ on a neighbourhood of R, as ¢ — 0.

For the particular choice of t = 1, i.e. ¢,=1 = 0, the systems is no longer spatially
weighted and we recover the so-called “natural measure” of the repeller [34]. We note
that the relationship between limiting quasi-ergodic measures and natural measures in
the case of the zero weighting was previously discussed in [5] for this example.

Finally, consider the potential ¢o(z) = log|T”|. The topological pressure of the deter-
ministic system on A is given by P(T,0,A) = h,(T'), where v is the unique equilibrium
state. Since this measure maximises P(T, 0, A), it coincides with the measure of maximal
entropy of the system.

5.2. The complex quadratic map. Similarly to the previous example, let us consider
random perturbations of iterates of the complex quadratic map p.(z) = 22 +¢, ¢ € C,
acting on the Riemann sphere C=Cu {o0}. As before, we study the Markov process
X5 o1 = pe(X},) + wp, where {wy}, are i.i.d. random variables uniformly distributed on
{a +ib € C; (a,b) € [—¢,¢]*}, with € > 0 small enough.

Consider the Julia set J C C associated with the polynomial p.. Recall that J is the
closure of the set of repelling periodic points [43, Theorem 11.1]. The set J is non-empty,
compact, and totally invariant, meaning that J = p.(J) = p; }(J) (see [43, Lemma 3.1]).
Now, let ¢ be a hyperbolic complex number within the Mandelbrot set, which ensures
that J is hyperbolic, i.e., J is connected and satisfies ||pL.(z)|| = ||2z]| > 1 for every z € J.

In this context, it is readily verified that p. admits a finite attractor A C C. Moreover,
for any a-Hdélder potential ¢ : C — R, p, satisfies Hypothesis H2 with T = p., A = J
and E = M = C. Furthermore, notice that the unique equilibrium state of p. for the
potential ¢ — log | det dp,| on J is mixing.

Finally, from Theorem 2.11, for any a-Hdélder function v : C — R, the unique p.-
invariant equilibrium state for the potential ¢ on .J, can be approximated in the weak*
topology by quasi-ergodic measures of the (¢ + log | det dp.|)-weighted Markov process
X on C \ U, where U is a neighbourhood of A such that U N J = 0.
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APPENDIX A. QUASI-ERGODIC MEASURES FOR A CLASS OF STRONG FELLER
MARKOV CHAINS

In this appendix, we provide sufficient conditions for the existence and uniqueness of
quasi-ergodic measures of ¢-weighted Markov processes. We prove Theorems A.13 and
A.14, which are essential for the proof Lemma 3.5. The results below employ techniques
of absorbing Markov processes theory [14, 19, 13] and Banach Lattice theory [42].

Let M be a compact metric space, and consider an absorbing Markov process X,, on
E = M U0 absorbed at 0. For every x € M and function f € L'(M, i), we denote by
E.[f o X;] the expected value of the observable f after one iterate of the process starting
at Xg = z. Define the annealed Koopman operator as

P L®(M,p) — L=(M, )
f — 6¢($)Ex[f o X1 . ]]-M o Xl]
Throughout this section, we assume that w is a probability measure on M and ¢ : M — R
is a continuous function. The assumptions on P exploited in this appendix are:

Hypothesis HA.
(1) P is strong Feller, i.e. given f € L>(M,p) then Pf € CO(M),
(2) dimker(P — \) = 1, where A = r(P),
(3) there exists p € My (M) and g € CO.(M), such that P*u = A and Pg = A\g and
Jgdp=p({g>0}), and
(4) suppp = M.

Notation A.1. Given n € N and =z € E we write P"(x,dy) for the unique measure
on M such that P"(x, A) = P"1a(z) for every measurable set A C M. Observe that
P"(z,dy) is well defined since P(L> (M, u)) C CO(M).

A.1. Spectral properties of P. We begin by recalling a classical lemma in the theory
of Markov processes and prove a series of results which characterises the spectrum of P.

Lemma A.2 ([47, Chapter 1, Lemma 5.11]). The operator P™ : L>°(M, ) — L (M, p)
is compact for every n > 1.

Lemma A.3. Let A = r(P) denote the spectral radius of P. Then, there exists k € N such
oy k=1

that oper(P) = {Aezm]/k}jzo where oper(P) == {a € C; ||af|c = 7(P) and ker(P — a) #

{0}} denotes the point peripheral spectrum of P.

Proof. We divide the proof into three steps:

Step 1. If f € ker(P — A\e'?) for some B > 0 then |f| € span{g}, where |f|: M — R,
If|(z) = ||f(x)|lc and || - ||c denotes the complex norm.

Since P is a positive operator |f| = | f| = $|Pf| < +P|f|. Moreover,

1
o< [ SPUI-1fldn= [ 1A= [ ifidn=o0.
M M M
Since supp u = M and |f| is continuous, then |f| € ker(P — \) = span{g}.

Step 2. If e, eiP2 ¢ Uper(%P) for some for some 1, Ba > 0 then ¢!Pr1P2) ¢ Uper(%P).

Given j € {0,1}, let f; € ker(P — Ae?¥). From Step 1 and rescaling f;, if necessary,
there exists a measurable function 6; : M — R such that f(z) = e?@g(z).
Hence, for every x € M

¢ f(x) = ¢ (W g(a)) = 1P (V) (0) = 5 /M "V g(y)P(e,dy),
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implying that
g(x) = /M =03 D=00) (y)P(x, dy).

Since g(z) > 0 and g(z) = [,,; 9(y)P(z,dy), we obtain that e!®%®=0:(®)=5) = 1 for
P(z,-)-almost every y € {g > 0}.
Finally, observe that by defining h(x) = €' (?1(®)+02(2)) () we obtain that

Phia) = [ O 0g(y)P(a,ay)
_ /M (O @O HBI+B2) (VP (3, dyy) = P (),

which implies that e/®1752) € g . (P).
Step 3. We conclude the proof of the lemma.

From Step 2, it is enough to show that ope(P) is finite. Theorem A.2 implies that P>
is a compact operator and therefore oper(P?) is finite. Finally, since {A%; X € oper(P)} C
oper(P?), we obtain that oper(P) is also finite. O

Let k € N, be fixed as in Lemma A.3.

Lemma A.4. The sequence {5=P" : CO(M) — CO(M)}nen is power bounded, i.e.
Py | 5P| < 00,

Proof. We dive the proof into three steps.
Step 1. We show that oper(3P) = oper (e PF).

Let us consider 3 € (0,2n) such that e ¢ Uper(ﬁpk“) \ Oper(3P). Since PFF1
is a compact operator, there exists f € ker(PF+1 — M+1e#). Observe that for every
j€40,1,... k}, we obtain that

k 'L,B(kfl)+27rij(kff)
1 ) 1 W8 2mij e k+1 PE]
0= <)\k+1pk+1 — e’5> f= (XP - ek+1+ﬁ+1> > 37 Pf.

=0
B 2mij 4
From Step 2 of Lemma A.3, we have v = Rl T ET 4 O-per(%l])) for every j €
{0,1,...,k}, as otherwise we would have y**1 = ¢ ¢ aper(ﬁp). Hence, we obtain
that the sum above must be zero or, multiplying by the appropriate phase, that
R
Bk _ 2mijk e e

0=e Bl mi1 Y X Pr=> Tﬂf’ (A.9)

=0 =0

for every j € {0,1,...,k}. Finally,

k k k k
1 1 —2mijl e k+1 /)
= — = — k+1
e DI e NDAD DI DL
7=0 7=0 (=1 \ 7=0
k k 77,',[%_,’_72772']'@
1 e k+1 k+1 ‘
=—>33 —0
kE+1 == A P

where the last equality follows form (A.9). This yields a contradiction, so such a f
cannot exist.

Step 2. We show that ker(P*+1 — \k+1) = ker(P — \) = span{g}.



34 BERNAT BASSOLS-CORNUDELLA, MATHEUS M. CASTRO, AND JEROEN S.W. LAMB

It is clear that ker(P — ) C ker(P¥*!1 — A\*+1) In the following, we show the reverse
inclusion. Let f € ker(P*+1 — A+1). For every j € {1,...,k}, consider the functions

Since PFH1f = Me+1f we obtain that Ph; = A\e?™/(+Dh; for every j € {1,...,k}.
From Lemma A.3, we have that \e2™/(+1) ¢ Oper(P), therefore h; = 0 for every
j€{1,...,k}. Thus,

1 1 1 &
(xp‘l)f:<x7"1>k—+1j§%f
k k k
1 1 —2migl 1 )
() e [T (S
7=0 /=1 7=0
k k —2mijl k
_(lp_ ¢ pep_ (Lp 1 e
_<A7> Q;ZZ; = Pf—(AP Q(ZJ;M:)JC

which implies that f € ker(P — \).

Step 3. There exists a decomposition CO(M) = @f;& ker (PFH1 — )\kHeQ”j/k) @ W,
where Wy is P*-invariant subspace of C°(M) and r(P*+! ) < N+ In particular,
{&P" " nen is power bounded.

Recall from Lemma A.2 that, P**! is a compact linear operator. Moreover, from Step
1 we obtain that ope ($P) = Uper(ﬁpkﬂ). From [38, Theorems 8.4-3 and 8.4-5] and

Lemma A.3 we obtain that there exist non-zero rg,71,...,7.—1 € N such that
k—1
CO(M) _ @ker(rkarl _ )\k+le27m]/k)rj ® Wo,
§=0

where r; = inf{m; ker(PFF1 - \2Tii/kymin — Lep(Phtl _\2mii/kym 4]l 5 € N}, and Wy is
Pr+Linvariant satisfying r(P*+! [y, ) < A¥F1. We show that ro =71 = ... = 1,1 = 1.
Using once again that P*T! is a compact operator, we obtain from the Krein-Rutman
theorem [33, Theorem 4.1] that the spectral radius A*** = r(P**+1) is a pole of maximal

order in the spectral circle, i.e. rg > max{ry,...,rg_1}. Suppose that ro > 1, then there
exists f € CO(M) such that g = (P*T! — M+1) f. Therefore,

0< [gdu= [Prir-Ntpan= [ ra@rya- [N a0,

implying that ro = 1 and therefore ro =r1 =... =7r,_1 = 1. O

Lemma A.5. There exists a decomposition CO(M) = @?;3 ker(P — )\e%) @ W, where
W is a P-invariant space v (P|y,) < A, and dimker(P — )\627’;”) = 1 for every j €
(0,1... k—1}.

Proof. From Lemmas A.2 and A.4 we obtain that P? is a compact linear operator and
sup,>o |5 P"|| < oco. Then, from [59, An extension of Frechet-Kryloff-Bogoliouboff’s
theorem| (see also [11, Théorém above Définition 1.5] and [58, Equation (8) in the proof
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of Theorem 4]), there exists a P-invariant space W C C°(M) such that r (P|;,) < A and

@ker<73 Ao F )@W

Finally, we show that dimker(P — )\e%) =1 for every j € {0,1...,k — 1}. Since
Sup,>0 || 2= P"|| < o0, [32, Theorem 5.1] implies that

dim ker(P — Ae?™/*) < dimker (P — Xe?™2/F) <
< dimker(P — Ae?™F=V/Fy < dimker(P — \) = 1,
which concludes the proof. O

A.2. Cyclic properties of P. Consider P acting only on continuous functions P :
CO(M) — C°(M). From Lemma A.5, we know that CO(M) = ker(P*¥ — \*) @ W, where
W is a P*-invariant Banach space such that r (Pk‘w) < A\¥ and dim ker(P* — \F) = k.

Proposition A.6. There exist k non-negative linearly independent eigenfunctions g,

<., Ge—1 € CL(M)Nker(PF — AF) such that spanc({g:}=)) = ker(P* = \¥) and [ gidp =
w({g > 0}) for every i € {0,1,...,k — 1}. Moreover, these can be chosen such that the
sets C; == {g; > 0} are pairwise disjoint.

Proof. Observe that since \¥ > 0 and P(C%(M)) C C°(M), it follows that if f € CO(M,C)
satisfies P¥f = A¥ f, then P*Re(f) = \*Re(f) and P*Im(f) = AFIm(f).

Recall that p is a measure on M Satisfying Pu = )\,u and supp pu = M. Note that
the operator P* satisfies fM A—l,cPkf fM x)du, for every f € C°(M). By
the same techniques of Theorem 3.4 (see also [40, Propositions 3.1.1 and 3.1.3]), it
follows that if f € CO(M) is an eigenfunction of P* associated with the eigenvalue A,
then f*(z) := max{0, f(x)} and f~(z) = max{0, —f(x)} are also eigenfunctions of P*
associated with the eigenvalue A\*. This provides a set of k linearly independent non-
negative continuous functions that span ker(P¥ — A\¥). We are left to check that these
can be chosen with pair-wise disjoint support.

Define G := {h; > 0} \ {ha > 0} # 0 and H = {h; > 0} N {he > 0}. We claim
that if hy, he € C?L(M) N ker(Pk — )\k), then 1gh; and 1hy are also a eigenfunctions of
Pk associated with the eigenvalue A*. Observe that this is enough to conclude the proof
since we can choose k functions of the set below which have disjoint supports

. . k k
{hiﬂ{(z;v;gtjhj)iw}v to.. s tpr > 0andie {0,... k— 1}} C ker(PF — Ak,
We organise the remainder of the proof into three steps:
Step 1. 1gP*1y = 0.

Let z € G and assume that P*1y > 0. Then, 0 < PFly = [ 1u(y) YPE(x, dy),
and since hy > 0 on H, 0 < [ 1y(y)ha(y)(P*)*8,(dy), implying that P*1ghe(z) > 0.
Moreover,

ho(z) = FP%( z) = Azﬂ’ (Lghs + (1 — 1g)ho)(z) > F73’6(]1,{@)(11) >0,
which contradicts x & {ho > 0}. In particular, 15P*1y = PFly.
Step 2. 15P*1g = 0.

From Step 1, it follows that

1 1 1 1
lgh = ]IHEP’“hl — ]IHXP’“(]Ith + 1ghy) = F7>’f(]1Hh1) + HHF'Pk(lghl).
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Integrating either side and using p € ker((P*)* — A¥), we obtain
1 1
/]thld,u, = / F’Pk(]thl)dM + / ]IHFPk(]lghl)d,u
1
= / Tghidp + / ]IHFPk(]lghl)d,u,,
implying that [ 1z 5FP*(Lghi)dp = 0, which yields 15P*1g = 0.

Step 3. lghi and 1ghy are eigenfunctions of P* with eigenvalue \*.

From Steps 1 and 2, it follows that

Ighy + 1gh1 = hy = )\kp hi = )\kp (Lphy + 1gh1)
1 1
E7>’f(]1Hh1) + Ak?? (Ighy) = nHﬁpk(thl) + HGEPk(]lghl).
Since G N H = (), the claim is verified and we finish the proof. O

Lemma A.7. Let {g:}=3 < COU(M) be as in Proposition A.6. Then, these can be
relabelled so that 739Z = i1 (mod k) for i € {0,1,...,k —1}. In particular, we have

thatg—kz Ogl

Proof. We divide the proof into two steps.
Step 1. There exists a continuous function 6 : {g > 0} — {0,1/k,2/k,...,(k—1)/k},
such that

(1) for every j € {0,1,... . k—1}, 6\{g oy = b0; is constant,

(2) the set {g; ?;& can be relabelled so that 0; = j/k.

From Step 1 of Lemma A.3, there exists a function 6 : {g > 0} — R such that
e2m0(@) g ¢ ker(P — Ne2mi/k ). Observe that by multiplying 6 by a complex constant, we
can assume without loss of generality that there exists © € M such that 6(x) = 0.
Since e>™0@) g g € ker(P* — A\F) = span{go, ..., gs_1}, there exist ag, ..., az_; > 0 and
fg,...,0,_1 > 0 such that

k—1 k—1
g= Zajgj and e2m‘eg _ Zaje%ri@jgj.
J=0 Jj=0
Since {g;;, > 0} N {gj, > 0} = 0 if j; # jo, then 0(x) = 0; for every = € {g; > 0}. This
proves (1).

Without loss of generality, we may assume that g # and 6y = 0. Let us fix x € {gg >

0}. Then,

' 1 ‘ ) 1
€2m/kg($) _ _73(627rz€g)(x) _ / e27rl'9(y)g(y)—73($, dy),
A M A
and therefore

, 1
gla) = [ O g(y) 5, ay)
M A
Since g(z) = [ g(y) % (z,dy), and @ is continuous we obtain
1
0(y) = Z for every y € supp P(z,dy) N {g > 0}.
The same argument for P" yields
0(y) = % for every y € supp P"(z,dy) N {g > 0}. (A.10)

Note that if y € supp P™(x,dy)N{g; > 0} for some j, then §; = O(y) = n/k. This implies
that supp P™(z,dy)N{g; > 0} = 0 for any m # n (mod k). Since supp P*(z,dy)N{go} #
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() and there are exactly k functions go, ..., gk, each must have a different phase 6;. After
relabelling, we may assume that 6; = j/k, for j € {0,1,...,k}, showing (2).
Step 2. We conclude the proof of the lemma.

It follows immediately from equation (A.10) that {Pg; > 0} C {gj—1 (mod k) > 0}
Moreover, since e2™g € ker(P — X\e?™/*), we have

k—1 k-1
)\62’”/’“62’”99 _ )\627ri/k Z ajeZWij/kgj _ 7)(62“09) _ Z OéjGZWij/kng7
j=0 Jj=0
so Aaj_1gj—1 = «jPgj, with —1 = k — 1. Integrating both sides with respect to u
yields a;j_j(mod k) = @4, from which we conclude that ap = ay = ... = a;_1 and
%ng = §j—1 (mod k), for every j € {0,1,... &k —1}. O

The following corollary follows directly from Lemma A.7.

Corollary A.8. Fvery function f; = 1 Zk ! 27”ﬂ/kg satisfies Pfy = Xe2™/k £, i.e.
ker(P — \e?™/k) = span(f,), for £ € {0,1,... k —1}.

A.3. Existence of quasi-ergodic measures. Recall that g € C} (M) is the unique
function satisfying Pg = Ag.

Lemma A.9. Ply,.0y < clygsoy, for some constant ¢ > 0.

Proof. Observe that for every a > 0 we have Pl{;~q) < %Pg = %g. Hence, {Plyg~a) >
0} € {g > 0}. Since l{g>0} = Z?ﬂ ]l{||g||oo/nzg>||g||oo/(n+1)}’ we obtain that

{’P]l{g>0} > 0} C U {P]l{g>1/n} > O} C {g > 0}.

neN
It follows that P, < HPH]1{9>0}- U

Notation A.10. We define the operator Py : L>®({g > 0},p) — L*°({g > 0}, ) as
ng = 7)(]l{g>0}f)'
Corollary A.11. The measure pi(dr) = p(dzn{g > 0})/u({g > 0}) satisfies Py = Afi.

Proof. From Lemma A.9 we have that for every h € L>({g > 0}), Pyh = P(1igs01h) =
L¢g>0yPgh. Therefore,

1
A ~

Observe that since [ gdu = u({g > 0}), [ gdpp = 1. The above corollary implies that
Oper(P) = oper(Py) and

L¢gs0y ker(P — AeZmialky — ker(P, — Ae2™/R) for every j € {0,... k —1}.

Since each g; defined in Lemma A.5 satisfies C; = {g; > 0} C {g > 0}, we can assume
by abuse of notation that g; € L>({g > 0}, ). Moreover,

L>*({g > 0}, &) = span(go, ..., 9xk—1) DV,
where V' is P-invariant and 7(P|;,) < A.
Lemma A.12. For everyi € {0,1,...,k — 1} define p;(dz) = p(C; Ndx), where C; =
{9: > 0}. Then Pyii; = Miit1 (mod k)-
Proof. We divide the proof into two steps

O
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Step 1. v € V if and only z'ffcivdﬁ:Ofor every i € {0,1,...,k—1}.

Suppose first that v € V. We claim that 1o,v € V for all i € {0,1,...,k—1}. Indeed,
if 1o,v €V, then v = a9 + w + Z#i lo;v with o; # 0 and w € V. Since, C; N Cj = ()
for all j # i, we get that v & V. If follows that

[ vl =| [ 100t || Epaana]<|
k—1

Suppose now that fC¢ vdp =0 foreveryi € {0,1,...,k—1}. Writev ="y a9 +w,
with w € V. Observing that [ g;dfz = 1, we have

n—oo

1

|

k-1
ai= [ agdi= [ (Y ag+w|di= [ vai-o

We obtain that «; = 0 for every ¢ € {0,1,...,k — 1}, which implies v € V.
Step 2. We conclude the proof of the lemma.
Take f € L*({g > 0}, u). Therefore f = Z?:_ol a;g; +v, v € V. From Step 1, it

follows that
ai= [ rai= [ 1ap
C;

/fdP*Ni = /Pf dpi = ;Zé/M Le,P(ayg;) di

and

k1
= Z/ Lo Aajgi—1di = Aoy = )\/ J ARt (mod k)-
par Vi M

O

Theorem A.13. Assume that P satisfies Hypothesis HA. Given a bounded and mea-
surable function h : {g > 0} — R we have that for every x € {g > 0}

n—1
1 1 nooo, | h(x)g(x)p(dx)
—El‘ eSn¢1 >nl hOXZ - )
Eo[e5n P12 py] [ tr=nhn Z:; ] J 9(@)p(dz)

where 7 = min{n € N; X,, & {g > 0}} and S,¢ = 31" ¢ o X;. In other words, there
exists a unique quasi-ergodic measure for the ¢p-weighted Markov process X¢ on {g > 0}.

Proof. In this proof, we adopt the notation gm = gp (mod k)» Hm = Hm (mod k) and
Cm = Cpy (mod k)- Recall that
J W(x)g(x)pu(dx) / -
= | h(x)g(x) p(dx).
J 9(z)u(dz) (w)glz) Aldz)

Given n € N and x € {g > 0} define

n—1
1 1
B, |50y~ Y ho X —/hxgxﬁdm

Observe that to prove the theorem, it suffices to show that for every measurable and
bounded non-negative h: {g > 0} — R we have

max{ W) e {0,1,... K — 1}} n7e )

Qp(x) =

for every x € Cg where s € {0,1,...,k —1}.
We divide the remainder of the proof into three steps.



CONDITIONED STOCHASTIC STABILITY OF EQUILIBRIUM STATES 39

Step 1. For every bounded and measurable function h : {g > 0} - R, ¢,s € {0,1,...,k—
1} and x € Cs we have

nk+~£ ~
T Py ) = aa) [ sl

From Step 1 of Lemma A.12 it is clear that

h = Zg]/ hdp + v,

with v € V. Since PnkM () = A Hg, (x), we obtain that

k-1

nk+£ nk—l—ﬁ n—)oo ~
)\nk+z7)g h = Zgj f/ hdp+ )\nkwp =) 95 ‘f/c_hd“'
Jj=0 J

Finally, if z € Cs, then

nk-+4 ~
Tim e P () = ga(2) /C _nan

Step 2. For every non-negative bounded and measurable function h : {g > 0} — R,
l,s€{0,1,...,k —1} and x € Cs we have
1 nk4+£—1

1 7 n 7 ~ -~
e Y 5P (P e ) (0) = @ (Cuse) [ ha ()

We denote g = Pg /A to simplify the notation and improve readability. Recall that
ligs0y = Z?;S 1(Cj)g; + v, where v € V. It follows that,

nk+0—1 ' '
Z G (hgnk+€—1]1{g>0}) (x) —
=0
k—1 nk+£6—1 ' ' nk+6—1 A '
= /j(Cj) Z g (hgnk+€—zgj) (.%')—i— Z gz(hgnk—kﬁ—zv)(x)
=0 =0 =0
k—1 nk+£ 1 kb1
= M Z g hg] K-H Z g hgnkJrZ i )()
J=0 i=0
Observe that
i h nk+0—i < g i h nk+0—i -
myy, 2% G'(hG v)(x) —355”g”nk+e 2% IIhG ol
1 nk+0—1
< g 7 h OO‘ nk+0—1 n—00 0.
<oy 3 M 6

0 < G'(hgj—+i) < hllocgj— < ll9lloollgj—ell Lo, ;-
It follows that for every x € Cj,
nk+£—1

k—1 ~
L) Y G gy (1) = BN G g ()
j=0 i=0 0

Moreover, since 0 < hgj_rti < ||h||ocgi—e4i, then

HEAS 6 (30 a0 ) 1+ 22050 (0 ) 0
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From Step 1, we obtain that
nk+~¢

li i(h _ ﬁ(C¥+€)kgl i(h I.(d
e Zu »;wgsﬂ-)(x)—gs(x)TZ/g(gs+j><y>us< )

) +5
(tom. A7 ana) = g, () PC Z / 9)9s15 (8)Tesy(dy)

— 0, @)(Cir) / o))
Step 3. We conclude the proof of the theorem.

Given a non-negative bounded and measurable function h : {g > 0} — R, ;s €
{0,1,...,k—1} and = € Cs.

. )\Nk"i‘f 1 nk+0—1 1 el
I, (x) = ngwl{gw}( )nk_|_g Z _P <h)\nk+é zP ]l{g 0}>( )-

From Steps 1 and 2, we obtain that

Ank+€ 1

lim ,
""“37)nk+gﬂ{g>0}( ) 9s(2)p(Cs10)

and

nk+0—1 1
. 7 nk-+4—i 7
i > 57 (P e ) (@) = @ Cene) [ Moot

Therefore Q"kH( ) 27 O forall s,f € {0,1,...,k—1} and € Cj, which concludes
the proof of the theorem. O

Theorem A.14. Assume that P satisfies Hypothesis HA and o(3+P) NS' = {1}. Then,
given a bounded measurable function h : M — R, for every x € {g > 0},

1 : = oo, [ M@)g(z)u(dz)
T [ e ZhOX] Jo(@nlda

where T:=min{n; X,, & M} and S,¢ = Zi:O o X;. In other words, there ezists a
unique quasi-ergodic of the ¢-weighted Markov process Xff on M.

Proof. Note that the spectral gap in the operator %P, along with its strong Feller prop-
erty, ensures that for any bounded and measurable function i : M — R, it holds that

1

P h@) (o) [ hdn
Repeating the proof of Step 2 of Theorem A.13 we obtain that
Z X Lpi < P ZlM) (z) — g(x) / h(y)g(y)p(dy)

Combining equatlons (A.11)-(A.12) and the same computations in the proof of The-
orem A.13 we obtain the result. O

n—00
sup
xeM

0. (A.11)

270, (A12)

sup
zeM
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