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CONDITIONED STOCHASTIC STABILITY OF EQUILIBRIUM

STATES ON UNIFORMLY EXPANDING REPELLERS

BERNAT BASSOLS-CORNUDELLA1, MATHEUS M. CASTRO1, AND JEROEN S.W. LAMB1,2,3

Abstract. We propose a notion of conditioned stochastic stability of invariant mea-
sures on repellers: we consider whether quasi-ergodic measures of absorbing Markov
processes, generated by random perturbations of the deterministic dynamics and con-
ditioned upon survival in a neighbourhood of a repeller, converge to an invariant mea-
sure in the zero-noise limit. Under suitable choices of the random perturbation, we
find that equilibrium states on uniformly expanding repellers are conditioned stochas-
tically stable. In the process, we establish a rigorous foundation for the existence of
“natural measures”, which were proposed by Kantz and Grassberger in 1984 to aid the
understanding of chaotic transients.
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1. Introduction

Understanding how typical trajectories evolve in a dynamical system and describing
its relevant statistics is a central topic in Dynamical Systems theory. This question
is commonly addressed from an ergodic theoretical point of view, stating that each
(ergodic) invariant measures µ provides the distribution of the trajectory starting at
a point x, µ-almost surely. Dynamical systems often admit infinitely many ergodic
invariant measures, so it is natural to ask which ones are the most meaningful or relevant
to study. To tackle this, Kolmogorov and Sinai, proposed the notion of stochastic stability
of invariant measures [35, 1].

Stochastic stability concerns the stationary measures of Markov processes generated
by small bounded random perturbations of a deterministic dynamical system and their
limit as the amplitude of the perturbation vanishes [35, 1]. When a stationary measure
converges to an invariant measure of the original deterministic system we say that the
limiting measure is stochastically stable. These measures have been recognised to high-
light the statistics of (Lebesgue) typical trajectories [60]. Note that stochastically stable
invariant measures sit on attractors.

In transient dynamics [39], trajectories that remain for a long time near a repeller
have been observed to have well-defined statistics. While there is also an abundance
of invariant ergodic measures on repellers, so-called natural measures have been heuris-
tically identified as the relevant invariant measures that represent observed long time
behaviour of trajectories near a repeller, and provide important information regarding
the statistics of transient dynamics [34]. Despite the fact that such measures feature
at the heart of the intuitive understanding of transient dynamics, their existence and
mathematical properties remain to be rigorously established.

Like stochastic stability successfully provides relevant measures on attractors, we seek
a strategy to establish persistence of measures on repellers under random perturbations.
The strategy of Kolmogorov and Sinai fails since stationary measures of the Markov
process generated by random perturbations of the original system do not converge to
invariant measures supported on repellers in the deterministic limit.

In this paper, we propose a novel notion of stochastic stability for repellers referring
to quasi-ergodic measures rather than stationary measures. Quasi-ergodic measures
originate from the theory of absorbing Markov processes and capture the typical average
behaviour of trajectories conditioned upon remaining in a certain region of the state space
for asymptotically long times. By conditioning the Markov process generated by random
bounded perturbations of the original map upon survival in a suitable neighbourhood
of the repeller, the associated quasi-ergodic measure provides the conditioned statistics
of (Lebesgue) typical trajectories that stay close to the repeller for asymptotically long
times. When these quasi-ergodic measures converge to an invariant measure of the
deterministic system, we say that the limiting measure is conditioned stochastically stable.
Note that while stochastically stable invariant measures are supported on attractors,
conditioned stochastically stable invariant measures may be supported on repellers.

We show that uniformly expanding repellers admit a unique conditioned stochastically
stable invariant measure, which corresponds to the equilibrium state associated with the
geometric potential [20, Section 1.2.2] in the framework of thermodynamic formalism
[50]. More generally, we establish that any equilibrium state from the thermodynamic
formalism on repellers1 is approximated by quasi-ergodic measures of so-called weighted
Markov processes, which originate from the theory of Feynman-Kac path distributions
(see [30, 18, 16, 36] and references therein), and thus show that equilibrium states are
conditioned stochastically stable in a broader sense.

1This result also applies to attractors.
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1.1. Conditioned stochastic stability. The notion of conditioned stochastic stability
that we propose is based on ideas from the theory of absorbing Markov processes [22]
and conditioned random dynamical systems [62, 31, 14, 12, 13]. As mentioned above,
the statistical behaviour of a Markov process Xn on a state space M conditioned upon
remaining outside of a subset ∂ ⊂ M is captured by its quasi-ergodic measure ν on
M \ ∂ [26, 10, 61, 23]. This object describes the limiting distribution of the conditioned
Birkhoff averages of Xn, i.e. given an observable h : M → R it holds that for ν-almost
every x ∈M \ ∂,

Ex

[
1

n

n−1∑

i=0

h ◦Xi

∣∣∣∣ τ > n

]
:=

1

Px [τ > n]
Ex

[
1{τ>n}

1

n

n−1∑

i=0

h ◦Xi

]
n→∞−−−→

∫
h(x)ν(dx),

where τ := min{n∈ N;Xn ∈ ∂}.
Given a map T :M →M on a manifold M and a subset ∂ ⊂M , consider the Markov

process Xε
n on M generated by ε-bounded random perturbations of T . Conditioned

stochastic stability concerns the quasi-ergodic measures of Xε
n on M \ ∂, and their limit

as the amplitude of the perturbation ε goes to 0. When these quasi-ergodic measures
converge to a T -invariant measure ν0 (in the weak∗ topology), we say that the limiting
measure is conditioned stochastically stable on M \∂. Observe that this notion depends
on the choice of random perturbation generating Xε

n, which is also true for (classical)
stochastic stability. As is common in the study of (classical) stochastic stability, we only
consider random bounded diffusive perturbations [7, 4, 2, 6, 1] (see Section 2 for the
precise details).

In this paper, we first consider the case where T admits a topologically mixing2 uni-
formly expanding repeller R and establish the following result (see Theorem 2.10):

Theorem A1. There exists a unique T -invariant measure ν0 on R which is conditioned
stochastically stable on every sufficiently small neighbourhood of R.

It turns out that ν0 is a well-known object in the thermodynamic formalism theory
[20] and corresponds to the unique equilibrium state on R associated with the potential
− log |det dT |, i.e. ν0 is the unique T -invariant measure satisfying

hν0(T )−
∫

log |det dT |dν0 = sup
µ∈I(T,R)

(
hµ(T )−

∫
log |det dT |dµ

)
,

where hµ is the Kolmogorov-Sinai (or metric) entropy [37, 54] and I(T,R) is the set
of T -invariant probability measures on R. This result has its parallel in the (classi-
cal) theory of stochastic stability. Indeed, given a uniformly hyperbolic transformation
T : M → M on a compact metric space M , it is well known that stochastically stable
invariant measures on attractors correspond to the equilibrium states from the thermo-
dynamic formalism associated with the potential − log |det dT |Eu |, where Eu denotes
the unstable expanding direction of T [60].

In this paper, we uncover a stronger connection between conditioned stochastic stabil-
ity and the thermodynamic formalism, establishing the approximation of any equilibrium
state by quasi-ergodic measures of weighted Markov processes.

1.2. Thermodynamic formalism and weighted Markov processes. The thermo-
dynamic formalism is a powerful framework for the analysis of statistical properties
of dynamical systems. Pioneered by Sinai, Ruelle and Bowen [55, 8, 9, 49, 50] and
motivated by the field of statistical physics, this theory aims to describe properties of
equilibrium states, such as the measure of maximal entropy and other invariant Gibbs
measures [20, 3].

2This condition is relaxed in the main theorem but assumed here for the sake of simplicity.
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Given a T -invariant set Λ ⊂ M , an equilibrium state on Λ is defined for each given
potential ψ : Λ → R as an invariant measure νψ on Λ whose metric pressure is equal to
the topological pressure P (T, ψ,Λ) of the system on Λ, i.e. νψ satisfies

hνψ(T ) +

∫
ψ dνψ = sup

µ∈I(T,Λ)

(
hµ(T ) +

∫
ψ dµ

)
=: P (T, ψ,Λ). (1)

In particular, observe that when ψ = 0 the equilibrium states associated with this po-
tential correspond to the measures of maximal entropy [57, Section 10.5]. Moreover, a
classical result of Ruelle (see [51, Lemma 1.4] or Lemma 2.7 below) provides the exis-
tence and uniqueness of equilibrium states for Hölder potentials on uniformly expanding
repellers [57, Theorem 11.2.15].

It is natural to ask whether the definition of conditioned stochastic stability can be
extended to approximate other equilibrium states of T . This question appears not to
have been raised in the literature, even for stochastic stability of equilibrium states on
attractors. Here, we show that equilibrium states on uniformly expanding repellers are
approximated by quasi-ergodic measures of weighted Markov processes [30, 18, 16, 36],
providing a general notion of conditioned stochastic stability.

Given a Markov process Xn on M , consider a non-positive weight function3 φ :M →
R≤0 and define the new process Xφ

n by

Xφ
n+1 =

{
Xn+1, with probability eφ(Xn),

∂, with probability 1− eφ(Xn),
(2)

where ∂ is a cemetery state. If Xn is already an absorbing Markov process killed at ∂′,

we may (and do) set ∂ = ∂′. We refer to the new Markov process Xφ
n as a φ-weighted

Markov process. As before, a quasi-ergodic measure νφ provides the statistical behaviour
of the process when conditioned upon survival, i.e. for any observable h :M → R,

E
φ
x

[
1

n

n−1∑

i=0

h ◦Xφ
i

∣∣∣∣ τφ > n

]
n→∞−−−→

∫
h(x)νφ(dx),

for νφ-almost every x ∈ M \ ∂, where τφ := min{n ∈ N; Xφ
n ∈ ∂} and E

φ is the

expectation with respect to the weighted process Xφ
n .

The random variable τφ denotes the time at which the process is killed, either by
dynamically entering ∂ (hard killing) or due to the weight φ (soft killing). When both
are present, the conditioned Birkhoff averages simplify to (see Section 2 for precise
details)

E
φ
x

[
1

n

n−1∑

i=0

h ◦Xφ
i

∣∣∣∣ τφ > n

]
:=

1

Ex[eSnφ1{τ>n}]
Ex

[
eSnφ1{τ>n}

1

n

n−1∑

i=0

h ◦Xi

]

n→∞−−−→
∫
h(x)νφ(dx),

(3)

where τ = min{n; Xn ∈ ∂} relates to hard killing and Snφ :=
∑n−1

i=0 φ◦Xi relates to soft
killing. Note that when φ = 0, we recover the setting introduced in the previous section.

Observe that the right-hand side of equation (3) is also well-defined as long as φ is
measurable and bounded, even if it is occasionally positive. Indeed,

Ex

[
eSnφ1{τ>n}

1
n

∑n−1
i=0 h ◦Xi

]

Ex[eSnφ1{τ>n}]
=

Ex

[
eSnφ̄1{τ>n}

1
n

∑n−1
i=0 h ◦Xi

]

Ex[eSnφ̄1{τ>n}]

3The weight function is sometimes referred to as a “potential” in the literature [30, 61]. Here, we
only use this term when referring to ψ in equation (1).
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where φ̄ = φ − supφ+, with φ+(x) := max{φ(x), 0}. Defining the φ-weighted process

Xφ
n to be equal to X φ̄

n , we recover the interpretation from equation (2).
Recall that Xε

n is a Markov process on M generated by ε-bounded random perturba-

tions of the map T and absorbed on ∂ ⊂ M and denote by Xε,φ
n the φ-weighted of Xε

n.

We say that a T -invariant measure νφ0 is conditioned φ-weighted stochastically stable if

the quasi-ergodic measures νφε on M \ ∂ of the weighted process Xε,φ
n converge to νφ0 in

the weak∗ topology as ε goes to 0.
The following theorem generalises Theorem A1 when T has a topologically mixing

uniformly expanding repeller R (see Theorem 2.10 for the precise details):

Theorem A2. Given a Hölder potential φ, there exists a unique T -invariant measure
νψ on R which is conditioned φ-weighted stochastically stable on every sufficiently small
neighbourhood of R. Moreover, νψ is the unique equilibrium state associated with the

potential ψ = φ− log |det dT | on R, i.e. νψ = νφ0 .

In general, repellers of a given transformation T are not necessarily transitive, let
alone topologically mixing. In the case of uniformly expanding repellers, it is natural to
assume that the repelling set is characterised by

Λ =
⋂

n≥0

T−n(M \ ∂), (4)

where ∂ could be, for example, a small open neighbourhood of the attractors of T (see
Section 5.1), or the complement of a neighbourhood of the repeller (see Section 5.2). In
this setting, we prove the following result (see Theorem 2.11 for a more precise and more
general result):

Theorem B. Given a C2 map T , a Hölder potential φ, and a suitable open set ∂ ⊂M ,
with Λ as in equation (4), assume that

(1) T |Λ : Λ → Λ is uniformly expanding,
(2) Λ ⊂ Int(M \ ∂), and
(3) T : Λ → Λ admits a unique equilibrium state νψ associated with the potential

ψ = φ− log |det dT |, which is mixing (see e.g. [57, Section 7.1]).

Then νψ is conditioned φ-weighted stochastically stable on M \ ∂, i.e. νψ = νφ0 .

The proof of Theorems A1 and A2 are based on classical techniques of hyperbolic
dynamics. In particular, we adapt the arguments presented in the seminal paper of
Pianigiani and Yorke [46] to the context of absorbing Markov processes. To prove The-

orem B, we identify a graph structure representing the dynamical behaviour of Xε,φ
n

conditioned upon staying on M \ U . This construction resembles the graphs built via
chain recurrence and filtration methods [24, 28, 27] and allows us to recover the setting
of Theorem A2.

1.3. Outline. This paper is organised as follows. In Section 2, we introduce the ob-
jects of interest from the theory of conditioned random dynamics. We also lay out the
required technical conditions (Hypotheses H1 and H2), explore their direct implications
and present the two main theorems (Theorems 2.10 and 2.11). In Section 3, we analyse
the local problem (i.e. conditioning the random dynamics on a small neighbourhood of
a repeller) and prove Theorem 2.10. In Section 4, we consider the global picture (i.e.
conditioning upon not escaping from a general neighbourhood of the repeller) and prove
Theorem 2.11. We provide examples in Section 5 where these theorems are applica-
ble. Finally, we devote Appendix A to a general proof for the existence of (weighted)
quasi-ergodic measures, simplifying previous techniques.
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2. Abstract setup and notation

We begin with a brief recollection of the basic concepts in the theory of conditioned
random dynamics as introduced in [14, 13]. Consider a Markov chain Xn evolving in a
metric space (E, d) and let Y ⊂ E be a compact subset. We are interested in studying
the behaviour of a Markov chain as it evolves in Y , we condition upon remaining in
Y , and kill the process as soon as it leaves this subset. We thus identify E \ Y with
a “cemetery state” ∂ and consider the space EY := Y ⊔ ∂ with the induced topology.
Throughout this paper, we assume that

X := (Ω, {Fn}n∈N0 , {Xn}n∈N0 , {Pn}n∈N0 , {Px}x∈EY )
is a Markov chain with state space EY , in the sense of [48, Definition III.1.1]. Hard
killing, or absorption, on ∂ means that P(∂, ∂) = 1. We define the (dynamical) stopping
time τ := inf{n ∈ N; Xn ∈ ∂}.

Consider an α-Hölder weight function φ : Y → R and define the weighted process Xφ
n

as in Section 1.2. For this process, we define the stopping time τφ := min{n ∈ N; Xφ
n ∈

∂}, providing the time at which Xφ
n enters ∂ either dynamically (hard killing) or due to

the weight φ (soft killing).

Observe that the weighted processXφ
n has transition probabilities given byPφ(x,dy) =

eφ̄(x)P(x,dy) for all x ∈ Y , recall that φ̄ = φ− supφ+. Moreover, (2) naturally induces

a filtered space (Ωφ, {Fφ
n }n∈N0) and a family of probability measures {Pφx}x∈EY which

makes Xφ
n a Markov process (see [48, Section III.7] for such a construction). Finally, we

denote by Ex and E
φ
x the expectation with respect to Px and P

φ
x, respectively.

Under an irreducibility condition of Xn on Y [14], the process almost surely escapes
this set, implying that the system’s long-term behaviour is characterised by a stationary
delta measure sitting on the cemetery state. To understand the dynamics of the process
before escaping from Y one generalises the notion of stationary measures to that of
quasi-stationary measures [26, 10, 22, 15].

Definition 2.1. Given a bounded and measurable function φ : Y → R, we say that a
Borel probability measure µ on Y is a quasi-stationary measure of the weighted Markov

process Xφ
n if ∫

Y
eφ(y)P(y,dx)µ(dx) = λφµ(dx)

and λφ =
∫
Y e

φ(x)P(x, Y )µ(dx) > 0 is the growth rate of µ for Xφ
n on Y . Observe that

when φ = 0 we recover the classical definition of quasi-stationary measure [21, Definition
2.1].

Remark 2.2. Note that in the usual setting of absorbed Markov processes with no
weight function, i.e. φ = 0, and only hard killing, λφ ≤ 1 is called the survival rate and
denotes the probability that the process is not killed in the next iterate when distributed
according to µ.

We recall that quasi-stationary measures are not the relevant measures to consider
when studying conditioned Birkhoff averages [26, 10, 17, 14], as these measures do not
perceive how likely it is for a point to remain indefinitely in Y . Instead, this information
is provided by the so-called quasi-ergodic measure.

Definition 2.3. A probability measure ν on Y is a quasi-ergodic measure of the φ-

weighted Markov process Xφ
n if for any bounded measurable function f : Y → R it holds

that

lim
n→∞

E
φ
x

[
1

n

n−1∑

i=0

f ◦Xφ
i

∣∣∣∣ τφ > n

]
=

∫

Y
f(y)ν(dy) for ν-almost every x ∈ Y.
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If Xφ
n has both hard and soft killing, then for every n ∈ N

E
φ
x

[
1

n

n−1∑

i=0

h ◦Xφ
i

∣∣∣∣ τφ > n

]
=

1

Ex[eSnφ1{τ>n}]
Ex

[
eSnφ1{τ>n}

1

n

n−1∑

i=0

h ◦Xi

]
,

where Snφ :=
∑n−1

i=0 φ ◦Xi is the Birkhoff sum.
While showing the existence of quasi-stationary measures relates to solving an eigen-

functional equation and can be approached using fixed point arguments (see [44, The-
orem 4] and [21, Proposition 2.10]), this is not the case for quasi-ergodic measures and
proving their existence and uniqueness is not straightforward. Indeed, this involves
characterising the non-trivial limit of a conditional expectation that requires rigorous
techniques in functional analysis and probability theory [17, 61, 14]. We devote the
Appendix A to address this question in our setup.

From here onwards, let (M, 〈·, ·〉) be an orientable Riemannian compact manifold,
possibly with boundary and let U ⊂ M be an open subset. Without loss of generality,
we may assume that M is embedded in an orientable boundaryless compact manifold E
of the same dimension and endowed with a Riemannian metric whose restriction to M
coincides with 〈·, ·〉 (in the case that M is without boundary we assume that E = M).
Since this will be clear by context, we may also write the Riemannian metric of E as
〈·, ·〉. The manifold E should be thought of as an ambient space for M and a mere
theoretical artefact since it does not play a major role in applications, while U may be
interpreted as an open hole in the system.

Notation 2.4. Throughout this paper, we use the following notation:

(i) Given x ∈ E and v ∈ TxE, define ‖v‖x :=
√
〈v, v〉x as the natural norm on TxM .

(ii) We denote by dist(·, ·) the distance on E induced by the Riemannian metric 〈·, ·〉.
(iii) As usual, we write ρ for a Borel measure on E induced by a smooth volume form

VE compatible with 〈·, ·〉.
(iv) We denote by Ck(E) the space of continuous functions with k continuous deriva-

tives on E and use M(E) to denote the space of signed Borel finite measures
on a E. Given a non-negative measure ρ ∈ M(E), we denote by Lk(E, ρ) the
space of functions with finite k-th ρ-moment (although ρ may be omitted when
it is the reference measure). Ck+(E), Lk+(E) and M+(E) denote the respective
subsets of non-negative functions and measures on E.

(v) Given a C1 function G : E → E and x ∈ E, we denote its determinant by

det dG(x) =
VE(G(x))(dG(x)v1, . . . ,dG(x)vdimE)

VE(x)(v1, . . . , vdimE)
,

for any (and therefore all) orthonormal basis {v1, . . . , vm} of TxM.
(vi) Given a set A ⊂ E we denote its closed neighbourhood of radius δ > 0 by

Aδ = Bδ(A) := {x ∈ E; dist(x, a) ≤ δ for some a ∈ A}.

2.1. Main results. Let T : E → E be a map such that T |E\U is C2, and let φ : E → R

be α-Hölder. The following two hypotheses contain the main assumptions in this paper:

Hypothesis H1. There exists a compact T -invariant set Λ ⊂ E that is uniformly
hyperbolic expanding, i.e. there exist C, r > 0 such that for all x ∈ Λ,

‖dT n(x)−1‖ < C
1

(1 + r)n
for every n ≥ 1,

and there exists a neighbourhood V of Λ in E such that T−1(Λ) ∩ V = Λ.

Remark 2.5. Observe that the manifold M does not play a role in Hypothesis H1.
Moreover, we use the term uniformly hyperbolic expanding to refer to a set that is
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eventually uniformly expanding, i.e. the equation above is equivalent to the following
statement: there exist N ∈ N and r > 0 such that for all x ∈ Λ,

‖dT n(x)−1‖ < 1

(1 + r)n
for every n ≥ N.

Hypothesis H2. We say that T satisfies Hypothesis H2 for the open hole U if

(1) Λ :=
⋂
n≥0 T

−n(M \ U) is a uniformly hyperbolic expanding set, and

(2) T admits a unique equilibrium state for the potential φ− log |det dT | on Λ.

In the case that dim(M) > 1, we additionally assume that there exists δ > 0 such that
T−1(Λδ) ∩Mδ ⊂ Λδ and Mδ \M has no T -invariant subsets.

Remark 2.6. If M = [0, 1], items (1) and (2) of Hypothesis H2 are equivalent to
the Axiom A (see [29, Chapter 3.2.b]). In the case that M is a manifold without
boundary, then Mδ = M = E and Λδ ⊂ M. Moreover, observe that Hypothesis H2
implies Hypothesis H1.

Lemma 2.7. Let T satisfy Hypothesis H1 and R := {p ∈ Λ; p is a T -periodic point}.
Then, there exists a (finite) partition of R in non-empty compact sets Ri,j, with 1 ≤ i ≤ k
and 1 ≤ j ≤ m(i), such that

(1) Ri = ∪m(i)
j=1 R

i,j is a T -invariant set for every i,

(2) T (Ri,j) = Ri,j+1 (mod m(i)) for every i, j,
(3) T : Ri → Ri is uniformly hyperbolic and topologically transitive, and

(4) each Tm(i) : Ri,j → Ri,j is uniformly hyperbolic and topologically exact.

Furthermore, the number k, the numbers m(i) and the sets Ri,j are unique up to renum-
bering.

Proof. This result follows directly for uniformly expanding maps, i.e. C = 1 in Hy-
pothesis H1 (see e.g. [57, Theorem 11.2.15]), so the proof is concluded by changing the
Riemannian metric on M in a way that T becomes uniformly expanding on Λ under
Hypothesis H1 (see [53, Proposition 4.2]). �

When T satisfies Hypothesis H1, given a finite ε > 0 we consider the random pertur-
bation of the form Fε : [−ε, ε]m ×E → E, where Fε(ω, ·) ∈ C2(E \U ;E) and ∂ωFε(ω, x)
is surjective for all ω ∈ [−ε, ε]m. Moreover, we assume that distC2(Fε(ω, ·), T ) ≤ C‖ω‖
for some C > 0, where distC2 denotes the metric on C2(E \ U,E) which generates the
C2-Whitney topology [45, Chapter 1.2]. In particular, surjectivity of ∂ωFε(ω, x) implies
m ≥ dimE. We note that this type of random perturbation is natural and commonly
considered [7, 4, 2, 6, 1].

Notation 2.8. Let Ωε := ([−ε, ε]m)N be the space of semi-infinite sequences of elements
in [−ε, ε]m endowed with the probability measure Pε := (Leb|[−ε,ε]m /(2ε)m)⊗N, and

let Eε denote the corresponding expectation with respect to Pε. For every ω ∈ Ωε,
ω = (ω0ω1 . . .), we define Tω(x) := Tω0(x) := Fε(ω0, x) and T

n
ω (x) := Tωn−1 ◦ · · · ◦ Tωn(x)

for every n ∈ N.
For each i ∈ {1, . . . , k} and every α-Hölder function φ : Riδ → R (see Notation 2.4

item (vi)), we define the annealed Koopman operator

Pε : f 7→ eφ(x)Eε[f ◦ Tω(x) · 1Riδ ◦ Tω(x)],
for f in a suitable domain.

Theorems A1 and A2 above apply to suitable δ-neighbourhoods of each repeller Ri,
1 ≤ i ≤ k, in the dynamical decomposition of Lemma 2.7. In particular, we choose δ
and ε0 such that the following holds true.

Lemma 2.9. Assume Hypothesis H1, for every δ > 0 small enough there exists ε0 :=
ε0(δ) > 0 such that for every 0 ≤ ε ≤ ε0 we have that:
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(1) Rδ = R1
δ ⊔ . . . ⊔Rkδ , and

(2) supx∈Ri
δ
Pε[ω ∈ Ωε; Tω(x) ∈ Rjδ] = 0 for every i 6= j ∈ {1, . . . , k}.

The main results of this paper are as follows:

Theorem 2.10. Assume Hypothesis H1 and let δ > 0 be small enough. Given 1 ≤ i ≤ k
and an α-Hölder function φ : Riδ → R, the following properties hold for ε > 0 sufficiently
small:

(1) the φ-weighted Markov process Xε,φ
n admits a unique quasi-stationary measure

µε on Riδ,

(2) let λε be the growth rate of Xε,φ
n on Riδ, then λε is equal to the spectral radius of

Pε : L∞(Riδ, ρ) → L∞(Riδ, ρ), and log(λε) → P (T, φ− log |det dT |, Ri) as ε→ 0,
(3) there exists a unique positive eigenfunction gε ∈ L∞(Riδ , ρ) for the operator

Pε : L∞(Riδ, ρ) → L∞(Riδ, ρ), associated with the eigenvalue λε,

(4) let νε(dx) be the unique quasi-ergodic measure of the φ-weighted process Xε,φ
n on

{gε > 0}. Then, νε(dx) → ν0(dx) in the weak∗ topology as ε→ 0, and
(5) ν0 is the unique T -invariant equilibrium state for the potential φ − log |det dT |

on Ri.

If the measure ν0 is mixing for the map T : Ri → Ri, then the measure νε is also a
quasi-ergodic measure of the φ-weighted Markov process Xε

n on Riδ.

Theorem 2.11. Assume Hypothesis H2 and let δ > 0 be small enough. Given an α-
Hölder function φ : Mδ \ U → R, the following properties hold for ε > 0 sufficiently
small:

(1) the φ-weighted Markov process Xε,φ
n admits a unique quasi-stationary measure

µε on Mδ \ U ,

(2) let λε be growth rate of Xε,φ
n on Mδ \ U , then λε is equal the spectral radius of

Pε : L∞(Mδ \ U) → L∞(Mδ \ U), and log(λε) → P (T, φ − log |det dT |,Λ) as
ε→ 0,

(3) there exists a unique positive eigenfunction gε ∈ L∞(Mδ \ U, ρ) for the operator
Pε : L∞(Mδ \ U, ρ) → L∞(Mδ \ U, ρ), associated with the eigenvalue λε,

(4) let νε(dx) be the unique quasi-ergodic measure of the φ-weighted Markov process

Xε,φ
n on {gε > 0} ∩ suppµε. Then, νε(dx) → ν0(dx) in the weak∗ topology as

ε→ 0, and
(5) ν0 is the unique T -invariant equilibrium state for the potential φ − log |det dT |

on Λ.

If ν0 is mixing for the map T : R→ R, then the conclusions of the above theorem remain
true when changing the set {gε > 0} ∩ suppµε by Mδ \ U . Additionally, if ν0 is mixing
and supp ν0 ⊂ Int(M \ U), then (4) is also true on the set M \ U .

2.2. Some direct consequences of Hypothesis H1. This section contains several
dynamical and topological results that follow from Hypothesis H1 rather immediately
and are exploited later in the paper. We also introduce the equilibrium states we shall
approximate and present the transfer operators Pε and Lε that reappear throughout the
text.

Lemma 2.12. Let T satisfy Hypothesis H1 and ‖dT (x)−1‖ < 1/(1+ r) for every x ∈ Λ.
Consider δ > 0 small enough. Then there exists ε0 := ε0(δ) and σ1 := σ1(δ) < 1 such
that for every x, y ∈ Λδ satisfying T (y) = x and for every 0 < ε < ε0, there exists a C2

function h : [−ε, ε]m × Cx → E, where Cx is the connected component of x in Λδ, with
the following properties holding for every ω ∈ Ωε:

(1) the map z 7→ h(ω, z) is a diffeomorphism onto its image,
(2) Tω ◦ h(ω, z) = z for every z ∈ Cx and h(0, x) = y,
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(3) dist(h(ω, x1), h(ω, x2)) ≤ σ1dist(x1, x2) for every x1, x2 ∈ Cx, and
(4) there exists K0 = K0(δ) > 0 uniform on ε ∈ (0, ε0), x ∈ Λδ and y ∈ T−1(x)∩Λδ,

such that sup{‖∂ωh(ω, z)‖; ω ∈ Ωε, z ∈ Cx} ≤ K0.

All statements in this lemma also hold true replacing Λδ by Riδ, 1 ≤ i ≤ k.

Proof. Take δ0, ε0 > 0 small enough such that

σ1 := sup
{
‖dTω(x)−1‖; x ∈ Λiδ0 , ω ∈ Ωε0

}
< 1, (5)

and such that the exponential map expz : Bδ0(0) ⊂ TzE → E is well defined for every
z ∈ Λδ0 .

Observe that there exists δ2 > 0 such that for ε0 > 0 small enough and for every ω ∈
[−ε0, ε0]m, if dist(x1, x2) < δ2 then we obtain that dist(Tω(x1), T (x2)) < δ0. Consider
the map

G = Gx,y : [−ε, ε]m ×Bδ(x)×Bδ2(y) → TxE

(ω, z1, z2) 7→ exp−1
x (z1)− exp−1

x (Tω(z2)).

Observe that G(0, x, y) = 0. Since ∂yG(0, x, y) is surjective, by means of the implicit
function theorem, there exists a C2 function h : [−ε0(y), ε0(y)]m × Bτ(y)(x) → E such
that Tω(h(ω, z)) = z for every z ∈ Bτ(y)(x) and h(0, x) = y. Notice, as well, that

ε0(y), τ(y) can be taken uniformly since Λδ is compact and therefore we can C2-extend
h to the domain [−ε, ε]m × Cx. Finally, from (5) we obtain that the function h satisfies
all the desirable properties. Replacing Λδ by R

i
δ follows from Lemma 2.9 item (2). �

Lemma 2.13. Assume Hypothesis H1 and ‖dT (x)−1‖ < 1/(1 + r) for every x ∈ R.
There exists δ0 > 0 small enough satisfying Lemma 2.9 such that

(1) there exists σ0 := σ0(δ0) ∈ (0, 1) such that T−1(Λδ)∩Λδ ⊂ Λσ0δ for all 0 < δ < δ0.

Moreover, there exists ε0 := ε0(δ) satisfying Lemma 2.12 such that for every 0 < ε < ε0
we have that:

(2) there exists σ := σ(δ, ε) ∈ (0, 1), such that T−1
ω (Λδ)∩Λδ ⊂ Λσδ, for every ω ∈ Ωε,

and
(3) for all x, y lying in the same connected component of Λδ and ω ∈ Ωε we have

#{T−1(x) ∩ Λδ} = #{T−1
ω (y) ∩ Λδ}.

All statements in this lemma also hold true replacing Λδ by Riδ, 1 ≤ i ≤ k.

Proof. We prove (1). First of all, take δ0 and ε0 small enough such that ‖dTω0(x)
−1|Λδ0‖ <

1 for all ω0 ∈ [−ε0, ε0]m and Λ2δ0 ⊂ V , where V is as in Hypothesis H1. Let 0 < δ < δ0
and 0 < ε < ε0.

Given x ∈ E and v ∈ TxE such that ‖v‖x = 1, let γx,v : (−δ0, δ0) → E be a geodesic
on E such that γx,v(0) = x and γ′x,v(0) = v ∈ TxE. From Hypothesis H1, the fact that

T is a C2 function and Λ is compact, we have that γy,w(δ) is well defined for every y ∈ Λ
and w ∈ TyE, and that there exists r0 > 0 such that

dist(T ◦ γy,w(t), T (y)) ≥ |t|(1 + r0) for every |t| ≤ δ0. (6)

From the above equation and the fact that dT (x) is a surjective linear operator, we
obtain that T (Bδ/(1+r0)(y)) ⊃ Bδ(T (y)). Take y ∈ Λδ, then there exits x ∈ Λ, v ∈ TxE
and h ∈ [−δ, δ] such that y = γx,v(h). Let x1, . . . , xℓ ∈ Λ be all pre-images of x. From
(6) there exist h1, . . . , hℓ ∈ [−δ/(1+ r0), δ/(1+ r0)], and unit vectors v1 ∈ Tx1E, . . . , vℓ ∈
TxℓE such that all yi = γxi,vi(hi), 1 ≤ i ≤ ℓ, are pre-images of y. Note that yi ∈
Λδ/(1+r0). We claim that these are precisely the only pre-images of y in Λδ. Suppose
there exists y′ ∈ Λδ \ Λδ/(1+r0) such that T (y′) = y. Since x ∈ Bδ(y), from (6) there is
h′ ∈ [−δ/(1 + r0), δ/(1 + r0)] and v

′ ∈ TxE such that T (γy′,v′(h
′)) = x. This contradicts

Hypothesis H1 as γy,v(h
′) ∈ Λ2δ \ Λ ⊂ V \ Λ. Therefore, T−1(Λδ) ∩ Λδ ⊂ Λδ/(1+r0). Set

σ0 := 1/(1 + r0).
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We prove (2). For every y ∈ Λδ, let {y1, . . . , yℓ} := T−1(y) ∩ Λδ. Let h1, . . . , hℓ :
[−ε, ε]m × Cy → E be the inverse branch functions defined in Lemma 2.12, such that
hi(0, y) = yi. Since dist(hi(ω, y), yi) = dist(hi(ω, y), hi(0, y)) < K0‖ω‖ ≤ K0ε, and
yi ∈ Λδ/(1+r0) from item (1), we obtain that hi(ω, y) ∈ Λδ(K0ε+1/(1+r0)). Choosing ε
small enough, there exists σ ∈ (0, 1) for which hi(ω, y) ∈ Λσδ for all ω ∈ Ωε.

To finish the proof, we show that for ε > 0 small enough, #{T−1(x) ∩ Λδ} =
#{T−1

ω (x) ∩ Λδ}, for every x ∈ Λδ and ω ∈ Ωε. From the construction above, we obtain
that #{T−1(x) ∩ Λδ} ≤ #{T−1

ω (x) ∩ Λδ}. Suppose by contradiction that there exist
sequences {xn}n∈N ⊂ Λδ and {ωn}n∈N ⊂ [−ε0, ε0]m, such that #{T−1(xn) ∩ Λδ} <
#{T−1

ωn (xn) ∩ Λδ} and ωn → 0. From the compactness of Λδ and the pigeonhole princi-

ple, the above assumption implies that there exist sequences {y1n}n∈N and {y2n}n∈N such

that: (a) y1n 6= y2n and Tωn(y
1
n) = Tωn(y

2
n) for every n ∈ N; and (b) y1n, y

2
n

n→∞−−−→ y∗ ∈ Λδ.

From the continuity of (ω, x) 7→ Tω(x), we obtain that dist(T (y1n), T (y
2
n))

n→∞−−−→ 0, which
contradicts the fact that dT (y∗) is invertible and completes the proof.

We prove (3). From the last part in the proof of item (2) we obtain that #{T−1(x)∩
Λδ} = #{T−1

ω (x) ∩ Λδ}, for every x ∈ Λδ and ω ∈ Ωε for ε sufficiently small. Therefore,
it is sufficient to show that the map x ∈ Λδ 7→ #{T−1(x)∩Λδ} is locally constant. This
is a direct consequence of ‖dT−1(x)‖ < 1 for all x ∈ Λδ and the inverse function theorem
(see e.g. the proof of [57, Lemma 11.1.4]).

The last statement follows from replacing Λδ by Riδ in every argument above, and
from item (2) in Lemma 2.9. Note that for (1), we have that Ri is open in T−1(Ri) (see
the proof of [57, Corollary 11.2.16]). �

As mentioned in the introduction, stochastic stability has been previously studied in
the context of trajectories accumulating on attractors. Instead, in this paper, we are
interested in characterising the stochastic stability of general equilibrium states on uni-
formly hyperbolic expanding repellers, for which no such notion exists in the literature.
The existence and uniqueness of equilibrium states on uniformly hyperbolic expanding
repellers is guaranteed by the following classical result of Ruelle (see [51, Lemma 1.4] or
[50, Chapters 7.26-7.31]).

Theorem 2.14 (Ruelle). Let T satisfy Hypothesis H1. Let R1, . . . , Rk be as in Lemma 2.7
and fix i ∈ {1, . . . , k}. For every α-Hölder potential φ : Ri → R consider the operator

L : C0(Ri) → C0(Ri)

f 7→
∑

T (y)=x

eφ(y)f(y).

Then, there exist unique m ∈ C0
+(R

i), γ ∈ M+(R
i) and λ > 0 satisfying

• ker(L − λ) = span(m),
• ker(L∗ − λ) = span(γ) and

∫
Rim(x)γ(dx) = 1, and

• log λ = log r(L) = hν +
∫
φ(x)ν(dx), where ν(dx) = m(x)µ(dx).

In this context, ν is the (unique) T -invariant equilibrium state for the potential φ on Ri.

To approximate these equilibrium states, we propose using quasi-ergodic measures,
which we construct from the principal eigenfunctions of the following annealed transfer
operators.

Notation 2.15. For each i ∈ {1, . . . , k} and every α-Hölder function φ : Riδ → R, we
define the annealed Ruelle-Perron-Frobenius operator

Lε : L1(Riδ, ρ) → L1(Riδ , ρ)

f 7→ Eε


 ∑

Tω(y)=x

eφ(y)f(y)1Ri
δ
(y)

|det dTω(y)|
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and the annealed Koopman operator

Pε : L∞(Riδ, ρ) → L∞(Riδ, ρ)

f 7→ eφ(x)Eε[f ◦ Tω(x) · 1Ri
δ
◦ Tω(x)],

which are well-posed from Lemmas 2.9, 2.12 and 2.13. Moreover, given x ∈ Riδ and n ∈ N

we refer to the measure Pn
ε (x, ·) as the unique measure on Riδ such that Pn

ε (x,A) =
Pn
ε 1A(x) for every measurable subset A of Riδ.

Remark 2.16. Note that the Ruelle-Perron-Frobenius operator L introduced in The-
orem 2.14 differs from the operator Lε since the latter is divided by |det dTω|. This
causes the correction − log |det dT | for the limiting potential in Theorems 2.10 and 2.11.
This choice provides a more interpretable expression for Pε and its eigenfunctions as

quasi-stationary measures for the φ-weighted Markov process Xε,φ
n .

The following proposition establishes that Xε,φ
n is a strong Feller absorbing Markov

process. This is constantly exploited throughout the paper.

Proposition 2.17. For every α-Hölder function φ : Riδ → R, the operator Pε : L∞(Riδ , ρ) →
L∞(Riδ, ρ) is strong Feller, i.e. given a bounded measurable function h :M → R we have
Pεh ∈ C0(M). In particular, P2

ε is a compact operator.

Proof. Let {xn}n∈N ⊂ Riδ be a sequence converging to x ∈ Riδ. Write [−ε, ε]m = [−ε, ε]e×
[−ε, ε]m−e, where e = dimE, and let F := Fε : [−ε, ε]e × [−ε, ε]m−e ×Riδ → E. Assume

without loss of generality that ∂ω0F (ω0, ω1, xn) is surjective for every n ∈ N. Let F−1
(ω1,x)

denote the inverse of F for fixed (ω1, x). Then, for any bounded and measurable function
h :M → R we obtain that

Pεh(xn) =
eφ(xn)

(2ε)m

∫

[−ε,ε]m−e×[−ε,ε]e
(1Ri

δ
h) ◦ F (ω0, ω1, xn)dω0dω1

=
eφ(xn)

(2ε)m

∫

[−ε,ε]m−e

∫

F ([−ε,ε]e,ω1,xn)∩Riδ

h(y)
∣∣∣det dF−1

(ω1,x)
(y)
∣∣∣ ρ(dy)dω1

=

∫

Ri
δ

[
eφ(xn)

(2ε)m

∫

[−ε,ε]m−e

1F ([−ε,ε]e,ω1,xn)(y)
∣∣∣det dF−1

(ω1,xn)
(y)
∣∣∣ dω1

]
h(y)ρ(dy).

Defining κ as

κ(xn, y) :=
eφ(xn)

(2ε)m

∫

[−ε,ε]m−e

1F ([−ε,ε]e,ω1,xn)(y)
∣∣∣det dF−1

(ω1,xn)
(y)
∣∣∣ dω1,

it is clear that κ(xn, y)
n→∞−−−→ κ(x, y) for ρ-a.e. y ∈ Riδ. We obtain from the Lebesgue

dominated convergence theorem that limn→∞Pεh(xn) = Pεh(x), so Pε is strong Feller.
From [47, Chapter 1, Theorem 5.11] (which we recall in Lemma A.2), we have that P2

ε

is a compact operator. �

Observe that given an α-Hölder-potential φ : Riδ → R, then L∗
ε = Pε. Indeed, for any

f ∈ L1(Riδ) and g ∈ L∞(Riδ),
∫

Riδ

f(x)Pεg(x)ρ(dx) = Eε

[∫

Riδ

eφ(x)f(x)g ◦ Tω(x)1Riδ ◦ Tω(x)ρ(dx)
]

=

∫

Riδ

Eε


 ∑

Tω(y)=x

eφ(y)f(y)1Ri
δ
(y)

|det dTω(y)|


 g(x)ρ(dx)

=

∫

Riδ

Lεf(x)g(x)ρ(dx),

(7)
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where (if needed) we assume that f : E → R vanishes outside of Riδ. From Proposi-
tion 2.17 and equation (7), we obtain that L2

ε : L1(Riδ) → L1(Riδ) is also a compact
operator.

3. The local problem

In this section, we focus on a single repeller Ri of T from the dynamical decomposition
of Lemma 2.7 and establish the stochastic stability of equilibrium states associated with
the restricted transformation T |Ri . To achieve this, we condition the process Xε

n upon
remaining within a δ-neighbourhood of the repeller Ri. For a given α-Hölder potential
φ, we begin by showing that there exists a unique quasi-stationary measure µε for the

φ-weighted Markov process Xε,φ
n on Riδ absorbed in ∂ := Mδ \ Riδ. To do so, we adapt

the analysis of conditionally invariant probability measures provided by Pianigiani and

Yorke [46] as fixed points of the (normalised) Ruelle-Perron-Frobenius operator, L̂ε. We
continue with a detailed study of the operator Pε to obtain the (unique) eigenfunction
gε of maximal eigenvalue λε. Finally, we prove the existence and uniqueness of a quasi-
ergodic measure of the φ-weighted Markov process Xε

n conditioned upon not escaping
the support of gε, and characterise its limiting behaviour as the noise strength ε vanishes.
This measure follows from the pointwise product of µε and gε. As previously mentioned,
we show that the limiting object as ε → 0 corresponds to an ergodic invariant measure
sitting on the repelling set Ri that corresponds to the unique equilibrium state for the
potential φ− log |det dT |.

Throughout this section, we assume Hypothesis H1 holds true and employ the notation
introduced in Section 2. In particular, we use “ε small enough” and “δ small enough”
to refer to ε and δ as in Lemmas 2.9, 2.12 and 2.13. All arguments in this section hold
for each 1 ≤ i ≤ k and every α-Hölder potential φ : Riδ → R, which we fix once and for
all. To improve readability we drop the super-index φ of the weighted Markov process

Xε,φ
n and simply write Xε

n.

3.1. Quasi-stationary measures on Riδ. Denote by L̂ε the L1-normalised operator
Lε, i.e.

L̂εf =
Lεf

‖Lεf‖1
.

Notation 3.1. Given a compact metric space (N, d) and 0 < α < 1 we denote by Cα(N)
the set of α-Hölder functions f : N → R and consider the α-Hölder norm

‖f‖Cα = sup
x∈N

|f(x)|+ sup
x 6=y

|f(x)− f(y)|
d(x, y)α

.

To obtain a quasi-stationary density for the conditioned process on each component
Riδ we apply the Schauder-Tychonoff fixed point theorem (see, e.g. [57, Theorem 2.2.3])

to the operator L̂ε acting on a suitable space Cβ.

Theorem 3.2. Consider an α-Hölder potential φ : Riδ → R and suppose that T satisfies
Hypothesis H1 and ‖dT (x)−1‖ < 1/(1 + r). Let δ > 0 be small enough. Then, for every
ε > 0 small enough there exists a measure µε on Riδ such that:

(1) µε is the unique quasi-stationary measure of the φ-weighted Markov process Xε
n

on Riδ,
(2) µε is absolutely continuous with respect to ρ, and
(3) defining mε := µε(dx)/ρ(dx), there exists C > 0 such that ‖mε‖Cα ≤ C and

mε(x) > 0 for every x ∈ Riδ.
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Proof. Given β > 0 consider the set

Cβ :=

{
g ∈ L1(Riδ , ρ)

∣∣∣∣∣

∫
g dρ = 1, g > 0, and g(x)

g(y) ≤ eβd(x,y)
α
if x, y

lie in the same connected component of Riδ

}
.

We divide the proof into 3 steps.

Step 1. There exists β > 0 such that L̂ε(Cβ) ⊂ Cβ.

First of all, observe that if δ > 0 is small enough f > 0, f ∈ Cβ, implies Lεf > 0 for
every ε > 0. Define ψ : Riδ → R as ψ := φ− log |det dT | and let

D := sup
x 6=y

|ψ(x)− ψ(y)|
d(x, y)α

<∞,

Recall from Lemma 2.13 (3) that if ε > 0 is small enough, then given x, y in the same
connected component C of Riδ we have

#{T−1(x) ∩ Λδ} = #{T−1
ω (y) ∩ Λδ}

for every ω ∈ Ωε. Suppose that #{T−1(x) ∩Λδ} = ℓ. Let h1, . . . , hℓ : [−ε, ε]m ×C → Riδ
be the pre-image functions (inverse branches) defined in Lemma 2.12. Given f ∈ Cβ, we
have that

Lεf(x) = Eε


 ∑

Tω(z)=x

eφ(z)f(z)

|det dTω(z)|


 = Eε

[
ℓ∑

i=1

eψ◦hi(ω,x)f ◦ hi(ω, x)
]

= Eε

[
ℓ∑

i=1

eψ◦hi(ω,x)−ψ◦hi(ω,y)
f ◦ hi(ω, x)
f ◦ hi(ω, y)

f ◦ hi(ω, y)eψ◦hi(ω,y)
]

≤
(

sup
i∈{1,...,ℓ}

e(β+D)dist(hi(ω,x),hi(ω,y))α

)
Lεf(y)

≤ eσ
α
1 (β+D)dist(x,y)αLεf(y).

Therefore, if f ∈ Cβ then L̂εf ∈ Cσα1 (β+D). Taking β > Dσα1 /(1 − σα1 ) > 0 we conclude
Step 1.

Step 2. For every ε > 0 small, there exists mε ∈ Cβ such that L̂εmε = mε.

Observe that Cβ is pre-compact and convex in L1(Riδ , ρ). From the Schauder fixed-

point theorem, there exists mε lying in the closure of Cβ such that L̂εmε = mε, which
implies that Lεmε = λεmε for λε = ‖Lεmε‖ > 0. We claim that mε ∈ Cβ. Suppose by

contradiction that mβ ∈ Cβ
L1(Ri

δ
,ρ) \Cβ . Then, there exists x ∈ Riδ such that mε(x) = 0.

Therefore, mε(y) = 0 for every y in the same connected component Cx of x in Riδ. Hence,
for every y ∈ Cx

0 = mε(y) =
1

λnε
Eε


 ∑

Tnω (z)=y

eSnφ(ω,z)1Ri
δ
(z)mε(z)

|det dT nω (z)|


 ,

where Snφ(ω, z) =
∑n−1

i=0 φ ◦ T iω(z).
This implies that mε vanishes in the connected components of points in T−n(y)∩Riδ,

for every y ∈ Cx. Since there exists z ∈ Ri such that {T n(z)}n∈N is dense in Ri, it
follows that mε ≡ 0, which is a contradiction.

Step 3. We conclude the proof of the theorem.

Item (1) follows from the same arguments in the proof of [46, Theorem 2]. Items (2)
and (3) are readily verified since mε ∈ Cβ for a uniform β. �
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For the remainder of this section, let mε ∈ Cβ denote the unique function such that
Lεmε = λεmε and let µε be the unique quasi-stationary measure, i.e. be such that
mε = µε(dx)/ρ(dx), as of Theorem 3.2.

3.2. Analysis of the operator Pε : L∞(Riδ) → L∞(Riδ). We now study the adjoint
operator of Lε to obtain the eigenfunction gε, associated with the maximal eigenvalue λε
from the previous result, and its properties. We also construct the unique quasi-ergodic
measure of the φ-weighted Markov process Xε

n on {gε > 0}.

Lemma 3.3. Assume Hypothesis H1, let δ, ǫ > 0 be small enough and let λε be the
eigenvalue associated with mε from Theorem 3.2. Let gε ∈ ker(Pε − λε) ∩ C0

+(R
i
δ), then

Ri ⊂ {gε > 0}.

Proof. We divide the proof into two steps. First, we check that gε is positive on dense
orbits of T and, second, construct a neighbourhood of Ri where gε is positive. It is clear
that a dense orbit exists since T : Ri → Ri is topologically transitive by Lemma 2.7. Let
K0 = minx∈Ri

δ
eφ(x) > 0.

Step 1. If {T i(x0)}i∈N is dense in Ri, then gε(x0) > 0.

Recall that gε ∈ C0
+(R

i
δ). Assume that gε(x0) = 0, then for every n ∈ N,

0 = gε(x0) =
1

λnε
Pn
ε gε(x0) ≥

Kn
0

λnε
Eε[gε ◦ T nω (x0) · 1Riδ ◦ T

n
ω (x0)].

Combining this with the submersion theorem applied to ∂ωTω (see [41, Theorem 4.12])
and the fact that Riδ is compact, we obtain that there exists r0 > 0 such that gε|Br0 (Tn(x0)) =
0 for every n ∈ N. Since {T i(x0)}i∈N is dense in Ri, there exists a neighbourhood U ⊃ Ri

such that gε|U = 0.
Let T∩Ri

δ
(U) := T (U ∩ Riδ). Recall that, from (6), there exists N ∈ N such that

TN
∩Ri

δ

(U) ⊃ Riδ. Take y ∈ Riδ. Then, there exists z ∈ U such that TN (z) = y and

T i(z) ∈ U for every i ∈ {1, . . . , N}. Since

0 = gε(z) =
1

λNε
PN
ε gε(z) ≥

KN
0

λNε
Eε[gε ◦ TNω (z) · 1Riδ ◦ T

N
ω (z)],

continuity of gε and the submersion theorem applied to ∂ωTω yields gε(y) = 0. This
contradicts gε 6= 0.

Step 2. There exists an open set B ⊃ Ri, such that gε(x) > 0 for every x ∈ B.

Set B := {x ∈ Riδ; ∃ ω0 ∈ (−ε/2, ε/2)m s.t. Tω0(x) ∈ Ri}. From the submersion
theorem, we have that given x ∈ B and ω0 ∈ (−ε/2, ε/2) such that Tω0(x) ∈ Ri we
obtain that there exists r1 > 0 such that

⋃

ω∈Ωε

Tω(x) ⊃ Br1(Tω0(x)) for some r1 > 0.

Let x0 ∈ Ri be such that {T i(x0)}i∈N is dense in Ri, then there exists N0 such that
TN0(x0) ∈ Br1(Tω0(x)). From Step 1, gε(T

N0(x0)) > 0. Continuity of gε then implies

0 <
K0

λε
Eε[gε ◦ Tω(x) · 1Riδ ◦ Tω(x)] ≤

1

λε
Pεgε(x) = gε(x).

This concludes Step 2 and proves the lemma. �

Theorem 3.4. Consider the operator Pε : L∞(Riδ) → L∞(Riδ). Then, ker(Pε − λε) =
span(gε) for some gε ∈ C0

+(R
i
δ).
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Proof. Let gε ∈ ker(Pε − λε). Since Pε is strong Feller, then gε ∈ C0(Riδ,C). Moreover,
since P(C0(Riδ)) ⊂ C0(Riδ), it is clear that Re(gε), Im(gε) ∈ ker(Pε − λε). Given gε ∈
ker(Pε − λε) ∩ C0(Riδ), we claim that g±ε ∈ ker(P − λε). Indeed, observe that (see [40,
Propositions 3.1.1 and 3.1.3])

g±ε =

(
1

λε
Pεgε

)±

≤ 1

λε
Pεg±ε ,

where g±ε = max{0,±gε}. Therefore,

0 =

∫

Riδ

(
1

λε
Pε|gε|(x)− |gε|(x)

)
µε(dx)

=

∫

Ri
δ

(
1

λε
Pεg+ε (x)− g+ε (x)

)
µε(dx) +

∫

Ri
δ

(
1

λε
Pεg−ε (x)− g−ε (x)

)
µε(dx).

From Theorem 3.2, suppµε = Riδ, therefore Pεg±ε = λεg
±
ε .

Take g1, g2 ∈ ker(Pε − λε) ∩ C0
+(R

i
δ). From Lemma 3.3, we have g1, g2 > 0 on Ri.

Choose t0 > 0 such that t0 = inf{t; g1(x)− tg2(x) < 0 for some x ∈ Ri}.
Since g1 − t0g2 ∈ ker(Pε − λε), then (g1 − t0g2)

+ ∈ ker(Pε − λε). However, from the
choice of t0 and Lemma 3.3 we obtain that (g1 − t0g2)

+ = 0. From the minimality of t0,
it follows that g1(x) = t0g2(x) for every x ∈ Ri. Observe that (g1−t0g2)+ = 0 yields that
t0g2 ≥ g1. Therefore t0g2 − g1 ∈ ker(Pε − λε) ∩ C0

+(R
i
δ) and (t0g2 − g1)|Ri = 0, implying

that t0g2 − g1 = 0. �

For the remainder of this section, let gε ∈ C0
+(R

i
δ) denote the unique function such

that Pεgε = λεgε and normalised so that
∫
gεdµε = 1, as of Theorem 3.4. We summarise

some relevant properties of Pε : L∞(Riδ) → L∞(Riδ) that have been shown above:

(1) Pε : L∞(Riδ, ρ) → L∞(Riδ, ρ) is a strong Feller operator,
(2) dimker(Pε − λε) = 1, where λε = r(Pε) is the spectral radius,
(3) there exists µε ∈ M+(R

i
δ) and gε ∈ C0

+(R
i
δ), such that P∗

εµε = λεµε and Pgε =
λεgε, and

(4) µε ≪ ρ and suppµε = Riδ.

In particular, this implies that Pε satisfies Hypothesis HA in Appendix A. The lemma
below is a consequence of the properties just listed and Theorems A.13 and A.14, whose
proof is deferred to the appendix in order not to break the flow of the text.

Lemma 3.5. The measure νε(dx) := gε(x)µε(dx) is the unique quasi-ergodic measure of
the φ-weighted Markov process Xε

n on {gε > 0}. If we further assume that T : Ri → Ri

is topologically mixing, then νε is a φ-weighted quasi-ergodic measure on Riδ.

Proof. It is clear from the properties of Pε listed above that it satisfies Hypothesis HA
(see Appendix A). Hence, Theorem A.13 implies that νε is the unique φ-weighted quasi-
ergodic measure for Xε

n on {gε > 0}.
To finish the proof of the theorem, it remains to be shown that if T is topologically

mixing, then νε is a φ-weighted quasi-ergodic measure for Xε
n on Riδ. Since T is topo-

logically mixing, then Xε
n is aperiodic in Riδ and {gε > 0}. Let kε := #(σper(

1
λPε)∩ S

1).
From Lemma A.3, kε <∞. Moreover, from Proposition A.6 and Lemma A.7 we obtain
that there exist sets Ci ⊂ {gε > 0}, i ∈ {0, 1, . . . , kε−1} such that C0⊔C1⊔ . . .⊔Ckε−1 =
{gε > 0}, and {Pε1Ci > 0} ⊂ Ci−1 (mod kε), for every i ∈ {0, 1, . . . , kε − 1}. Since T is

assumed to be topologically mixing on Ri, Xε
n is aperiodic, thus kε = 1. Finally, from

Theorem A.14 we obtain that νε is a quasi-ergodic measure of the φ-weighted Markov
process Xε

n on Riδ. �
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3.3. Proof of the main (local) result. We conclude this section with the main results
concerning the stochastic stability of equilibrium states on each repeller Riδ and their
limiting behaviour as ε→ 0.

Notation 3.6. Recall that given a suitable function f we denote the action of the
(deterministic) Ruelle-Perron-Frobenius operator L for the potential φ − log |det dT |
[57, Chapter 12] by

L : f 7→
∑

T (y)=x

eφ(y)f(y)1Ri
δ
(y)

|det dT (y)| ,

when this is well-posed (see Theorem 2.14). In particular, this is the case for any function
supported on Riδ.

Lemma 3.7. Consider a sequence {mε}ε>0 ⊂ Cα(Riδ), with ‖mε‖Cα ≤ C for every ε > 0.

Then, ‖Lεmε − Lmε‖L∞
ε→0−−−→ 0.

Proof. Using the usual bounds, we have that

|Lεmε(x)−Lmε(x)| =

∣∣∣∣∣∣
Eε


 ∑

Tω(y)=x

eφ(y)mε(y)

|det dTω(y)|
−

∑

T (y)=x

eφ(y)mε(y)

|det dT (y)|



∣∣∣∣∣∣

=

∣∣∣∣∣Eε
[∑

i

eφ◦hi(ω,x)mε ◦ hi(ω, x)
|det dTω ◦ hi(ω, x)|

− eφ◦hi(0,x)mε ◦ hi(0, x)
|det dT ◦ hi(0, x)|

]∣∣∣∣∣

≤
∑

i

Eε

[∣∣∣∣∣
eφ◦hi(ω,x)mε(hi(ω, x))− eφ◦hi(0,x)mε(hi(0, x)

|det dTω(hi(ω, x))|

∣∣∣∣∣

+|eφ◦hi(ω,x)mε ◦ hi(0, x)|
∣∣∣∣

1

|det dTω(hi(ω, x))|
− 1

|det dT (hi(0, x))|

∣∣∣∣
]

≤ N max
i
KiC(sup |Dωhi|ε)α + CK ′

i sup |Dωhi|ε −→ 0, as ε→ 0,

where N = sup(x,ω)∈Ri
δ
×Ωε #(T−1

ω ({x} ∩Riδ) <∞, the Ki provide a bound for the term

|det dTω(hi(ω, x))−1|, C sup |Dωhi|αεα are a Hölder-like bound for the difference

|eφ◦hi(ω,x)mε ◦ hi(ω, x)− eφ◦hi(0,x)mε ◦ hi(0, x)|,

and so is K ′
i sup |Dωhi|ε for (|det dTω(hi(ω, x))|−1 − |det dT (hi(0, x))|−1|)−1. �

Proposition 3.8. Let mε : R
i
δ → R be the functions given by Theorem 3.2. There exist

λ0 > 0 and m0 ∈ C0(Riδ), such that λε
ε→0−−−→ λ0 and mε|Ri

ε→0−−−→ m0 in C0(Ri), with
Lm0 = λ0m0.

Proof. Since ‖mε‖Cα ≤ C, there exists {εn}n∈N, such that εn → 0 andm0 ∈ C0(Riδ), such
that ‖mεn −m0‖C0(Ri

δ
) → 0. We can assume without loss of generality, by restricting to

a subsequence if necessarily, that λεn → λ0 ≥ 0.
From Lemma 3.7 we obtain that

λ0m0 = lim
n→∞

λεnmεn = lim
n→∞

Lεnmεn = lim
n→∞

Lmεn = Lm0.

In the following, we show that λ0 > 0. Since
∫
Ri
δ
mεn(x)ρ(dx) = 1 for every n ∈ N,

then by the Lebesgue-dominated convergence theorem
∫
Rδi
m0(x)ρ(dx) = 1. Therefore,

there exists x0 ∈ Riδ such that m0(x) > 0. Let Cx0 ⊂ Riδ be the connect component
of x0 in Riδ. From the proof of Theorem 3.2 (Step 2), we obtain that for every n ∈ N,

e−βd(x0,y)mεn(x0) ≤ mεn(y), for every y ∈ Cx0 . Therefore, taking n→ ∞ we obtain that
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0 < m0(y), for every y ∈ Cx0 . In particular m0|Ri 6= 0. Assume by contradiction that
λ0 = 0. Then, for every x ∈ Ri

∑

T (y)=x

eφ(y)m0(y)

|det dT (y)| = Lm0 = 0.

Since Ri ⊂ T−1(Ri) the above equation implies that m0|Ri = 0, which is a contradiction.
Therefore λ0 > 0.

Since there exists a uniquem0 ∈ C0(Ri) such that Lm0(x) = λ0m0(x) for every x ∈ Ri

and λ0 > 0 [57, Chapter 12], the proposition follows. �

Proposition 3.9. Let gε ∈ C0
+(R

i
δ) be the functions given by Theorem 3.4 and consider

λ0 > 0 as in Proposition 3.8. There exists a probability measure γ on Riδ such that

gε(x)dx
ε→0−−−→ γ(dx) in the weak∗ topology of M(Riδ). Moreover, γ is the unique confor-

mal measure for T on Ri for the potential φ−log |det dT |, i.e. γ is the unique probability
measure on Ri such that L∗γ = λ0γ.

Proof. Let γ be an accumulation point of {gε(x)dx}ε>0 in the weak∗ topology of M(Riδ),

i.e. there exists a sequence {gεn(x)dx}n∈N such that εn
n→∞−−−→ 0 and gεn(x)dx

n→∞−−−→ γ(dx)
in the weak∗ topology. We first check that γ is a conformal measure on Riδ. Indeed, for
a test function f ∈ Cα(Riδ) we have:

(L∗γ)(f) =

∫

Ri
δ

Lfdγ = lim
n→∞

∫

Ri
δ

Lf(x)gεn(x)dx

(Lem. 3.7) = lim
n→∞

∫

Ri
δ

Lεnf(x)gεn(x)dx = lim
n→∞

∫

Ri
δ

f(x)Pεngεn(x)dx

= lim
n→∞

λεn

∫

Riδ

f(x)gεn(x)dx = λ0

∫

Riδ

f(x)γ(dx) = λ0γ(f).

We claim that supp γ ⊂ Ri. From Lemma 2.9 item (2), we obtain that

1 = γ(Riδ) =
1

λ0

∫

Riδ

L1Riδ(x)γ(dx) =
1

λ0

∫

Riδ

∑

T (y)=x

eφ(y)1Ri
δ
(y)

|det dT (y)|γ(dx)

=
1

λ0

∫

Ri
δ

∑

T (y)=x

eφ(y)1Riσ0δ
(y)

|det dT (y)| γ(dx) =
1

λε

∫

Ri
δ

L1Ri
σ0δ

(x)γ(dx) = γ(Riσ0δ).

Repeating this argument n times we obtain that γ(Riσn0 δ
) = 1 and the claim follows by

taking n → ∞. Since there exists a unique measure γ in Ri such that L∗γ = λ0γ (see

[57, Chapter 12]), we conclude that gε(x)dx
ε→0−−−→ γ(dx) in the weak∗ topology. �

Proposition 3.10. Assume Hypothesis H1 and that ‖dT (x)−1‖ < 1/(1 + r) for every
x ∈ R. Let νε be the unique quasi-ergodic measure of the φ-weighted Markov process Xε

n

on {gε > 0}. Then, νε
ε→0−−−→ ν0(x) := m0(x)γ(dx), in the weak∗ topology. Moreover, ν0

is the unique T -invariant equilibrium state for the potential φ− log |det dT | in Ri.
Proof. From Lemma 3.5, we have that νε(dx) = gε(x)µε(dx) is the unique quasi-ergodic
measure of the φ-weighted Markov process Xε

n on {gε > 0} such that Ri ⊂ supp gε. Since

mε
ε→0−−−→ m0 in C0(Riδ) and gε(x)dx

ε→0−−−→ γ(dx) in the weak∗ topology then, νε
ε→0−−−→ ν0

in the weak∗ topology. The final part of the proposition follows from well-known results
in the thermodynamic formalism for expanding maps (see [57, Chapter 12]). �

We close this section proving Theorem 2.10.
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Proof of Theorem 2.10. Let n0 ∈ N be large enough such that T n0 has the same dynam-
ical decomposition as T and |(T n0)′(x)| > 1+r0 for every x ∈ R. Then, Proposition 3.10
holds for T nω . It is clear that:

(1) σper

(
1
λ
n0
ε
Pn0
ε

)
= σper

(
1
λε
Pε
)
and σper

(
1
λ
n0
ε
Ln0
ε

)
= σper

(
1
λε
Lε
)
,

(2) σper

(
1
λ
n0
0

Ln0 : C0(Ri) → C0(Ri)
)
= σper

(
1
λ0
L : C0(Ri) → C0(Ri)

)
, and

(3) σper

(
1
λ
n0
0

(L∗)n0 : M(Ri) → M(Ri)
)
= σper

(
1
λ0
L∗ : M(Ri) → M(Ri)

)
,

where σper denotes the point peripheral spectrum, i.e. σper(Pε) = {α ∈ C; |α| =
r(Pε) and ker(Pε − α) 6= ∅}.

Therefore νε(dx) = gε(x)µε(dx) is the unique quasi-ergodic measure of the φ-weighted
Markov process Xε

n on {gε > 0} such that Ri ⊂ supp νε. Since ν0 is a equilibrium state
of Tm0 for the potential Sn0φ − log |det dT n0 | on Ri and an equilibrium state of T for
the potential φ− log |det dT | on Ri, the proof is finished.

If ν0 is mixing for the map T : Ri → Ri, then T : Ri → Ri is topologically mixing since
supp ν0 = Ri. From Lemma 3.5 we obtain that νε is a quasi-ergodic measure φ-weighted
Markov process Xε

n on Riδ and the result follows. �

Corollary 3.11. Assume Hypothesis H1 and that T |Ri is topologically mixing. Let
δ > 0 be small enough. For every ε > 0 sufficiently small, let νε(dx) be the unique quasi-
ergodic measure of the φ-weighted Markov process Xε

n on Riδ such that Ri ⊂ supp νε.

Then, νε(dx)
ε→0−−−→ ν0(dx) in the weak∗ topology. Finally, ν0 is the unique T -invariant

equilibrium state for the potential φ− log |det dT | on Ri.
Proof. From Lemma 3.5 we have that gε(x)µε(dx) is a quasi-ergodic measure of the φ-
weighted Markov process Xε

n on Riδ. Combining this observation with Theorem 2.10 we
obtain the result. �

4. The global problem

In this section, we prove conditioned stochastic stability of equilibrium states on
the global repeller Λ by studying the quasi-ergodic measure of the φ-weighted Markov
process Xε

n on Λδ and absorbed in ∂ := U ∪ (E \Mδ). As in Section 3, let us fix once
and for all an α-Hölder potential φ :Mδ \U → R. Moreover, we assume that T satisfies
Hypothesis H2.

We start by arguing that restricting the study of quasi-ergodic measures on Λδ is
sufficient to characterise those on Mδ \ U . Then, we decompose Λδ into transient and
recurrent subsets, the latter being those that contain the original repellers Ri. In par-
ticular, we show that all the relevant information for the global dynamics follows from
the recurrent subset containing the repeller R0 of maximal growth rate. The stochas-
tic stability of global equilibrium states is then inferred via the stochastic stability of
equilibrium states around R0.

Proposition 4.1. Assume that T satisfies Hypothesis H2. Let δ > 0 be sufficiently small
and µε be a quasi-stationary measure of the φ-weighted Markov process Xε

n on Mδ \ U .
Then, for sufficiently small ε > 0,

(1) µε ≪ ρ,
(2) suppµε ∩ Λδ 6= ∅, and
(3) µε|Λδ , after normalisation, is a quasi-stationary measure of the φ-weighted Markov

process Xε
n on Λδ.

Proof. Observe that (1) follows directly from the fact that Pε(x,dy) ≪ ρ(dy) for every
x ∈Mδ \ U .

To show item (2), arguing by contradiction, suppose that suppµε ∩Λδ = ∅. We claim

that there exists N ∈ N and ε > 0 small enough such that for every x ∈ Mδ \ Λδ there
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exists i ∈ {0, 1, . . . , N} such that T iω(x) ∈ U ∪ (E \Mδ) for every ω ∈ Ωε, or in other
words, τ(x, ω) ≤ N for every ω ∈ Ωε. This is sufficient to prove (2) since, if true, any
measurable set A ⊂Mδ \ U would be assigned measure zero:

µε(A) =
1

λNε

∫

Mδ\U
PN
ε (x,A)µε(dx)

(
assumed

suppµε∩Λδ=∅

)
=

1

λNε

∫

Mδ\Λδ

PN
ε (x,A)µε(dx)

=
1

λNε

∫

Mδ\Λδ

Eε

[
e
∑N−1
i=0 φ◦T iω(x)

1A ◦ TNω (x)1{τ(ω,x)>N}

]
µε(dx) = 0,

which is a contradiction. To verify the claim, choose y ∈ Mδ \ Λδ. Then, there exists
n(y) ∈ N such that T n(y) ∈ U ∪ (E \Mδ). Since this is an open set, by continuity of
T and C2 closeness of the perturbation, there exists r(y) > 0 and ε(y) > 0 such that

T
n(y)
ω (Br(y)(y)) ⊂ U ∪ (E \Mδ) for all ω ∈ Ωε(y). Consider a finite open cover of Mδ \Λδ

with such balls around n points y1, . . . , yn with respective radius r(y1), . . . , r(yn). Setting
N = max{n(y1), . . . , n(yn)}, and ε = min{ε(y1), . . . , ε(yn)} the claim follows.

Finally we show (3). Since T−1(Λ) ∩M = Λ, from the same proof of Lemma 2.13
items (2) and (3) we obtain that T−1

ω (Λδ) ∩Mδ ⊂ Λδ for every ω ∈ Ωε. Let A be a
measurable subset of Λδ, then
∫

Λδ

Pε(x,A)µε(dx) =
∫

Λδ

eφ(x)Eε[1A ◦ Tω(x)]µε(dx) =
∫

Mδ\U
eφ(x)Eε[1A ◦ Tω(x)]µε(dx)

=

∫

Mδ\U
Pε(x,A)µε(dx) = λεµε(A),

so µε|Λδ normalised is a quasi-stationary measure of the φ-weighted Markov process Xε
n

on Λδ. �

Proposition 4.2. Assume that T satisfies Hypothesis H2. Consider the operator Pε :
L∞(Mδ\U) → L∞(Mδ\U). If g ∈ L∞

+ (Mδ \ U) is such that Pεg = λg, then g|Mδ\Λδ
= 0.

Proof. The proof of Proposition 4.1 yields that for ε > 0 small enough there exists N
such that TNω (x) ∈ U for every x ∈Mδ \ Λδ and ω ∈ Ωε. Therefore,

PN
ε (x,Mδ ∩ U) = 0 for every x ∈Mδ \ Λδ.

It follows that for every x ∈Mδ \ Λδ,

0 ≤ g(x) =
1

λN
Pn
ε g(x) ≤

‖g‖∞
λN

Pε(x,Mδ \ U) = 0,

verifying the claim. �

As a result of Propositions 4.1 and 4.2, it is natural to redefine the operator Pε as
Pε : L∞(Λδ) → L∞(Λδ)

f 7→ eφEε[f ◦ Tω · 1Λδ ◦ Tω],
and denote by λε = r(Pε) its spectral radius. Moreover, observe that

Lε : L1(Λδ) → L1(Λδ)

f 7→ Eε


 ∑

Tω(y)=x

eφ(y)f(y)1Λδ(y)

|det dTω(y)|




is well defined and that L∗
ε = Pε.
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4.1. Recurrent and transient regions. In this section, we represent the relevant
dynamical behaviour of the absorbing Markov process Xε

n for every ε > 0 via a graph
whose vertices are the connected components of Λδ. This approach resembles the graphs
constructed via chain recurrence and filtration methods for classical dynamical systems
(see [24, 28, 27]). Later, we use this construction to characterise the support of the
relevant quasi-stationary measure of the φ-weighted Markov process Xε

n.
Given ε > 0, we define an equivalence relation ∼ε on the set of connected components

Γδ := {C ⊂ Λδ; C is a connected component of Λδ}
as follows: for any C1, C2 ∈ Γδ, we say that C1 ∼ε C2 if

• C1 = C2, or
• both sets are reachable from each other, i.e. for every i, j ∈ {1, 2}, there exist
W0,W1, . . . ,Wn,Wn+1 ∈ Γδ such that minℓ∈{0,...,n} supx∈Wℓ

Pε(x,Wℓ+1) > 0,
with W0 = Ci and Wn+1 = Cj.

Proposition 4.3. Assume that T satisfies Hypothesis H2. The set of equivalence classes
Γδ/ ∼ε stabilises as ε → 0, i.e. there exist C1, . . . , Cn ∈ Γδ such that for every ε small
enough we have that

Γδ/ ∼ε= {[C1], . . . , [Cn]},
where [Ci] represents the equivalence class of the element Ci.

Proof. Observe that if 0 < ε1 < ε2, then C1 ∼ε1 C2 implies C1 ∼ε2 C2. Since
The amount of elements of Γδ is finite, and observe that if 0 < ε1 < ε2, then C1 ∼ε1 C2

implies C1 ∼ε2 C2. This ensures that Γδ/ ∼ε stabilises as ε→ 0. �

Definition 4.4. Given δ > 0 small enough, let C1, . . . , Cn ∈ Γδ be the sets given in
Proposition 4.3. Define

Mi :=
⋃

C∈[Ci]

C,

i.e. Mi is the (disconnected) region spanned by all elements in the class [Ci]. Then:

• If there exists j ∈ {1, . . . , k} such that Rjδ ⊂ Mi, we say that Mi is a recurrent
region.

• If there are no sets Rjδ intersecting Mi, we say that Mi is a transient region.

Lemma 4.5. All regions Mi can be classified as either recurrent or transient.

Proof. Assume that Mi is not a transient region so that there exists Rjδ such that such

that Rjδ ∩Mi 6= ∅. Then, there exists a connected component C ⋐ Rjδ such that C ⊂Mi.

Since T is topologically transitive on Rj we obtain that Rjδ ⊂ Mi and therefore Mi is
recurrent. �

Proposition 4.6. Let Mt be a transient region, then there exists N ∈ N such that for
all x ∈Mt, Pn

ε (x,Mt) = 0 for all n ≥ N.

Proof. We begin by showing that there exists N ∈ N such that for every x ∈Mt, either:

• T n(x) ∈ Int (
⋃
Mr) for some n ≤ N , where

⋃
Mr is the union of all recurrent

regions, or
• T n(x) 6∈ Λδ for some n ≤ N .

Let x ∈ Λ̃ ∩Mt, where

Λ̃ := {x ∈Mδ; there exists n ∈ N such that T n(x) ∈ R}.
There exists an open neighbourhood Ux of x, such that T nx(Ux) ⊂ Int (

⋃
Mr), the

union of recurrent regions. Since Λ̃ ∩Mt is compact, there exist points x1, . . . , xs with
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respective open neighbourhoods Ux1 , . . . , Uxs such that

Λ̃ ∩Mt ⊂
s⋃

j=1

Uxj .

Set N = max{nx1 , . . . , nxs}.
On the other hand, observe that for every y ∈ Mt \ Λ̃ ⊂ Mδ \ Λ̃, it follows from

T satisfying Hypothesis H2 and [57, Theorem 11.2.14] that there exists ny such that
T ny(y) /∈ Λδ. From continuity there exists an open neighbourhood Vy of y such that
T ny(Vy) ∩ Λδ = ∅. Since Mt \B is compact, there exist y1, . . . , ym with respective open
neighbourhoods Vy1 , . . . , Vym such that

Mt \B ⊂
m⋃

i=1

Vyi .

Set N = max{ny1 , . . . , nym}. From continuity of (x, ω) → Tω(x) we obtain that for every
x ∈ Mt, either T

n
ω (x) ∈ ⋃Mr, for every ω ∈ Ωε and some n ≤ N ; or T nω (x) /∈ Λδ, for

every ω ∈ Ωε and some n ≤ N . In the first case, allowing return to Mt would join
the equivalence classes [Ct] of Mt with [Cr] for some recurrent region Mr, contradicting
transience. In the second case, once the process escapes Λδ it is killed. Thus, Pn

ε (x,Mt) =
0 for every n > N . �

Proposition 4.6 naturally motivates the following definition.

Definition 4.7. Fix ε > 0 such that the conclusions of Proposition 4.3 hold. Let
M1, . . . ,Mn be the sets introduced in Definition 4.4. We define the directed graph
Gδ = (Vδ, E) in the following way:

• the set of vertices Vδ is given by Vδ := {M1, . . . ,Mn},
• given Mi,Mj ∈ Vδ we say that the edge Mi →Mj is in Eε if Mi 6=Mj and there
exists x ∈Mi such that Pε(x,Mj) > 0.

Observe that using the same argument as in Proposition 4.3, the set of edges E does
not depend on ε as long as this parameter is small enough.

Proposition 4.8. Given a transient region Mt ∈ Vδ there exists a path in Gδ connecting
Mt to a recurrent region Mr. Moreover, the graph Gδ is acyclic.

Proof. To see the first part of the proposition, observe that there exists x ∈Mt∩ (Λ\R).
In this way, there exists n ∈ N, such that T n(x) ∈ R. DefiningMr as the unique recurrent
region such that T n(x) ∈ Mr, we obtain that there exists a path from Mt to Mr in the
graph Gδ.

Finally, observe that if Gδ had a cycle then this would contradict the maximality of
the equivalence classes [C1], . . . , [Cn]. �

4.2. Proof of the main (global) result. Recall from Lemma 2.7 that R = ⊔ki=1R
i.

For every i ∈ {1, . . . , k}, consider the (deterministic) operator

Li : C0(Ri) → C0(Ri)

f 7→
∑

T (y)=x

eφ(y)f(y)

|det dT (y)| ,

and set λi = r(Li).
Notation 4.9. Assume Hypothesis H2. Given a closed set A ⊂ Λδ we write:

• PA,ε : L∞(A, ρ) → L∞(A, ρ), PA,εf = Pε(1A · f),
• LA,ε : L1(A, ρ) → L1(A, ρ), LA,εf = Lε(1A · f), and
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• for each vertex Mv of the graph Gδ we define

LMv : C0(Mv) → C0(Mv)

f 7→
∑

T (y)=x

eφ(y)f(y)1Mv(y)

|det dT (x)| .

Note from Lemma 2.13 that this linear operator is well-defined.

Lemma 4.10. Given a recurrent region Mv we have that

r(PMv,ε)
ε→0−−−→ λMv

:= max{λi; i ∈ IMv},
where IMv

:= {i ∈ {1, . . . , k}; Ri ⊂Mv}.
Proof. We divide the proof into two steps.

Step 1. λMv ≤ lim infε→0 r(PMv,ε).

Observe that for every i ∈ IMv and every f ∈ L∞(Mv), 1Riδ
Pε(1Riδ · f) ≤ PMv,εf.

From Theorem 2.10 and the above equation we obtain

λi = lim
ε→0

r(PRi
δ
,ε) ≤ lim inf

ε→0
r(PMv,ε),

for every i ∈ IMv .

Step 2. lim supε→∞ r(PMv,ε) ≤ λMv .

Repeating the same argumentation of Section 3, we obtain that:

(1) there exists gε ∈ ker(PMv,ε− r(PMv,ε)) for some gε(x) ∈ C0
+(Mv) and

∫
gεdρ = 1,

(2) ker(LMv,ε − r(PMv,ε)) = span(mε) for some mε ∈ Cα(Mv) and mε(x) > 0 for
every x ∈Mv, and

(3) there exists a sequence {εn}n∈N satisfying εn → 0, such that:

• r(PMv,εn)
n→∞−−−→ λ0 = lim supε→0 r(PMv,ε),

• gεn(x)dx
n→∞−−−→ γ(dx) in the weak∗ topology and L∗

Mv
γ = λ0γ, and

• mεn
n→∞−−−→ m in C0(Mv) and LMvm = λ0m.

It is clear that γ(Mv ∩ Λ) = 1. Since Λ =
⋃
n∈N T

−n(R), there exists N ∈ N such that

γ(Mv ∩ T−N (R)) > 0. This implies that

0 < γ(Mv ∩ T−N (R)) =
1

λN0

∫

Mv∩Λ
LNMv

1T−N (R)(x)γ(dx)

=
1

λN0

∫

Mv∩Λ

∑

TN (y)=x

eSNφ(y)1R ◦ TN (y)
|det dTN(y)| γ(dx)

=
1

λN0

∫

Mv∩R

∑

TN (y)=x

eSNφ(y)1R ◦ TN (y)
|det dTN (y)| γ(dx),

where SNφ(x) =
∑N−1

i=0 φ ◦ T i(x), therefore γ(Mv ∩ R) > 0. In this way, there exists
Rj ⊂Mv such that γ(Rj) > 0. Define γj(dx) := γ(Rj∩dx). Given f ∈ C0(Rj), we obtain
that

L∗
jγj(f) = γj(Ljf) =

∫

Rj

∑

T (y)=x

eφ(y)1Rj (y)f(y)

|det dT (y)| γ(dx)

=

∫

Λ
L(1Rjf)γ(dx) = λ0γ(1Rjf) = λ0γj(f) ≤ r(Lj)γj(f).

Since r(Lj) = λj , this implies that

λ0 = lim sup
ε→0

r(PMv,ε) ≤ λj ≤ λMv ,

and conclude the proof. �
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Remark 4.11. Observe that from Theorem 2.14, item (3) of Hypothesis H2 is equivalent
to the existence of i ∈ {1, . . . , k} such that λi > maxj 6=i λj.

Notation 4.12. If T satisfies Hypothesis H2, we define λ0 := max{λi; i ∈ {1, . . . , k}}.
Let i0 ∈ {1, . . . , k} be the unique natural number such that λi0 = λ0. We denote by M0

the unique recurrent region such that R0 := Ri0 ⊂M0.

Proposition 4.13. Assume Hypothesis H2 and let ε be small enough. If g ∈ ker(Pε−λε),
then PM0,ε(1M0g) = λε1M0g. Moreover, for every vertex Mv of Gδ such that there exists
a path from M0 to Mv, we have that g|Mv

= 0. Also, if g|M0
= 0, then g(x) = 0 for

every x ∈ Λδ.

Proof. First of all, observe that such a g exists from the Krein-Rutman Theorem (see
e.g. [42, Theorem 4.1.4]).

Let
Vg := {Mi; Mi is a vertex of Gδ and Mi ∩ {g 6= 0} 6= ∅}

and define Gg := (Vg, Eg) ⊂ Gδ as the maximal subgraph which contains the vertices Vg.
Since Gg is acyclic, there exists a terminal vertex Mf ∈ Vg, i.e. no edge in Gg exits from
Mf . We claim that Mf =M0.

Observe that if x ∈ Mf and Tω(x) ∈ {g 6= 0} for some ω ∈ Ωε, then Tω(x) ∈ Mf .
Indeed, if there exists Mv ∈ Vg such that Tω(x) ∈ Mv, then Mf → Mv ∈ Eg but Mf is
a terminal vertex. This shows the second part of the proposition for Mf . It remains to
verify that Mf =M0.

We claim that PMf ,ε(1Mf
g) = λε1Mf

g. Indeed, for every x ∈Mf we obtain that

PMf ,ε(1Mf
g)(x) = eφ(x)Eε[1Mf

◦ Tω(x) · g ◦ Tω(x)]
= eφ(x)Eε[1Mf∩{g 6=0} ◦ Tω(x) · g ◦ Tω(x)]
= eφ(x)Eε[1{g 6=0} ◦ Tω(x) · g ◦ Tω(x)] = Pεg(x) = λεg(x).

Taking ε → 0, from Lemma 4.10 and item (3) of Hypothesis H2 we obtain that Mf =
M0. �

Proposition 4.14. Assume Hypothesis H2 and let ε be small enough. We have that, if
m ∈ ker(Lε − λε) ∩ L1

+(Λδ), then LM0,ε(1M0m) = λε1M0m. Moreover, for every vertex
Mv of Gδ such that there exists a path from Mv to M0, we have that m|Mv

= 0.

Proof. Again, such an m exists from the Krein-Rutman Theorem [42, Theorem 4.1.4].
Analogous to the previous proof, let

Vm := {Mi; Mi is a vertex of Gδ and Mi ∩ {m > 0} 6= ∅}
and define Gm ⊂ Gδ as the maximal subgraph which contains the vertices Vm. Since Gm

is acyclic, there exists an initial vertex Ms ∈ Vm, i.e. no edge in Gm ends in Ms. We
claim that Ms =M0.

Observe that for every x ∈Ms and ω ∈ Ωε,

T−1
ω (Ms) ∩ {m > 0} = T−1

ω (Ms) ∩Ms ∩ {m > 0}.
This shows the second part of the proposition forMs. It remains to show thatMs =M0.

We claim that LMs,ε(1Msm) = λε1Msm. In fact, observe that for every x ∈Ms

LMs,ε(1Msm)(x) = Eε


 ∑

Tω(y)=x

eφ(y)1Ms(y)m(y)

|det dTω(y)|


 = λε1Ms(x)m(x).

Hence, from the choice of ε we obtain that Ms =M0 and the result follows. �

Proposition 4.15. Assume Hypothesis H2 and let ε > 0 be small enough. There exists
gε ∈ C0

+(Λδ) and mε ∈ L1
+(Λδ) such that:

(1) ker(Pε − λε) = span(gε),
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(2) ker(Lε − λε) = span(mε),
(3) gε(x) > 0 for every x ∈ R0, and
(4) 1M0mε ∈ Cα(M0) and mε(x) > 0 for every x ∈M0.

Proof. From the same method provided in Theorem 3.2, there exists m̃ε ∈ Cα(M0) such
that LM0,εm̃ε = λεm̃ε and M0 = {m̃ε > 0}.

Given gε ∈ ker(Pε−λε), from Proposition 4.13, we have that PM0,ε(1M0gε) = λε1M0gε.
Since M0 = {m̃ε > 0}, repeating the same argument as in Theorem 3.4, we obtain that

1M0g
±
ε ∈ ker(PM0,ε − λε). (8)

We divide what is left of the proof into three steps.

Step 1. For every ε > 0 sufficiently small, if g̃ε ∈ ker(PM0,ε − λε), then g̃ε ∈ C0(Λδ)
and g̃ε(x) > 0 for every x ∈ R0.

Using the fact that PM0,ε is strong Feller and equation (8), assume by contradiction
that there exists a sequence of positive numbers {εn}n∈N such that εn → 0, and for
every n ∈ N, there exists a non-negative function g̃εn ∈ ker(PM0,εn − λεn) such that
g̃εn(xn) = 0 for some xn ∈ R0.

From the same arguments presented in Steps 1 and 2 of Lemma 3.3 we have that if
g̃εn(x) = 0 for some x ∈ R0 then g̃εn |R0

δ
= 0. Again, as in the proof of Lemma 4.10, up

to taking a subsequence of {εn}n∈N we can assume that

(a) r(PM0,εn)
n→∞−−−→ λ0,

(b) g̃εn(x)dx
n→∞−−−→ γ(dx) in the weak∗ topology and L∗

M0
γ = λ0γ, and

(c) m̃εn
n→∞−−−→ m0 in C0(M0) and LM0m0 = λ0m0.

Observe that γ(R0
δ) = 0 by construction. Repeating the same computations in Step 2

of Lemma 4.10 (now with Λ instead of M) we obtain that there exists Rj ⊂ M0 such
that γ(Rj) > 0 and L∗

jγ(R
j ∩ dx) = λ0γ(R

j ∩ dx), contradicting Hypothesis H2 since

r(Lj) < λ0. Therefore, g̃εn(x) > 0 for every x ∈ R0 and n ∈ N.

Step 2. We show that dimker(Pε − λε) = 1.

Let g1, g2 ∈ ker(Pε − λε). Observe that from the same proof of Theorem 3.4, we
obtain that there exists t0 such that (g1 − t0g2)|R0 = 0. Since g1 − t0g2 ∈ ker(Pε − λε),
we have from Step 1 that 1M0(g1 − t0g2) = 0. Finally, from Proposition 4.13 we obtain
that g1 − t0g2 = 0.

Step 3. We conclude the proof of the proposition.

From the Krein-Rutman theorem (see [42, Theorem 4.1.4]) and the fact that λε > 0,
we obtain that there exists gε ∈ L∞

+ (Λδ) such that Pεgε = λεgε, and since Pε is strong

Feller we obtain that gε ∈ C0
+(Λδ). Combining Steps 1 and 2, the fact that L∗

ε = Pε and
choosing mε ∈ L1(Λδ) such that 1M0mε = m̃ε the result follows. �

Theorem 4.16. Assume Hypothesis H2 and let ε > 0 be small enough. Let gε ∈
ker(Pε − λε) and mε ∈ ker(Lε − λε) be non-negative functions. Then,

νε(dx) =
mε(x)gε(x)ρ(dx)∫
Λδ
mε(y)gε(y)ρ(dy)

is the unique quasi-ergodic measure of the φ-weighted Markov process Xε
n on {mε >

0} ∩ {gε > 0}.
Moreover νε

ε→0−−−→ ν0 in the week∗ topology, where ν0 is the unique equilibrium state
for T for the potential φ− log |det dT | supported on Λ.
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Proof. For every ε > 0 small enough, choose gε ∈ C0
+(Λδ) and mε ∈ L1

+(Λδ) satisfying
the conclusions of Proposition 4.15. Following the same strategy as in the proof of
Lemma 3.5 we obtain that

νε(dx) =
gε(x)mε(x)ρ(dx)∫
M0

gε(x)mε(x)ρ(dx)
,

is a quasi-ergodic measure of the φ-weighted Markov process Xε
n on {gεmε > 0}. From

Propositions 4.13 and 4.14 we obtain that R0 ⊂ {gεmε > 0} ⊂ M0, PM0,ε1M0gε = λεgε
and LM0,ε1M0,εmε = λε1M0mε. Repeating the proof of Proposition 3.10 and Theo-
rem 2.10 changing Riδ to M0 we obtain the last part of the result. �

We close this section proving Theorem 2.11.

Proof of Theorem 2.11. Items (1) to (5) follow directly from Propositions 4.1 and 4.15
and Theorem 4.16.

We divide the remaining of the proof into six steps.

Step 1. If ν0 is topologically mixing, then for every ε > 0 small enough, the operator

Pε : C0(Mδ \ U) → C0(Mδ \ U)

f 7→ eφ(x)Eε[f ◦ Tω(x)1Mδ\U ◦ Tω(x)]
satisfies the following properties:

(1) Pε is a strong Feller operator, therefore P2
ε is a compact operator,

(2) r(Pε) = r(Pε) = λε,

(3) there exists a probability measure µε on Mδ\U such that span{µε} = ker(P∗
ε−λε)

and µε|Λδ /µε(Λδ) = µε, with µε(dx) := mε(x)dx given by Proposition 4.15, and

(4) span{gε} = ker(Pε − λε) where gε := 1Λδgε ∈ C0(Mδ \ U), with gε given by
Proposition 4.15 and

∫
gεdµε = 1.

Observe that the strong Feller property of Pε follows by the same computations pro-
vided in Theorem 2.17, showing (1). Item (2) follows since Pε is strong Feller, then

r(Pε : C0(Mδ \ U) → C0(Mδ \ U)) = r(Pε : L∞(Λδ , ρ) → L∞(Λδ , ρ)) = λε.

Finally, (3) and (4) are direct consequences of Propositions 4.1, 4.2 and 4.15.

Step 2. The operator 1
λε
Pε is power-bounded, i.e. supn∈N ‖ 1

λnε
Pn
ε ‖ <∞.

Repeating the same argumentation of the proof Proposition 4.1 (2). There exists
N > 0 such that PN

ε f(x) = 0 for every x ∈ Mδ \ Λδ and f ∈ C0(Mδ \ U). In this way,
for every n > 0, we obtain that for every

1

λn+Nε

PN+n
ε f = 1Λδ

1

λn+Nε

Pn
ε

(
1ΛεP

N
ε f
)
.

Since 1
λnε

Pn
ε is power-bounded we obtain the result.

Step 3. Given a function f ∈ C0(Mδ \U,C) let us define |f | ∈ C0(Mδ\U) as the function
x 7→ ‖f(x)‖C. Let α ≥ 0 and fε ∈ C0(Mδ \ U,C) be such that 1

λε
Pεfε = eiαfε. Then for

every x ∈ suppµε, we have that |fε|(x) = gε(x)
∫
|fε|dµε and

∫
|fε|dµε > 0.

It follows that

|fε| =
∣∣eiαfε

∣∣ =
∣∣∣∣
1

λε
Pεfε

∣∣∣∣ ≤
1

λε
Pε|fε|,

therefore, for every n ∈ N we obtain

|fε| ≤
1

λε
Pε|fε| ≤

1

λ2ε
P2
ε|fε| ≤ . . . ≤ 1

λnε
Pn
ε |fε|.
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Since P2
ε is a compact operator and 1

λε
Pε is power-bounded from Step 2, the above

sequence is monotone and bounded. Hence, there exists g ∈ C0(Mδ \ U) such that
1
λnε

Pn
ε |fε|

n→∞−−−→ g in C0(Mδ \ U). It follows that g ∈ ker(Pε − λε) = span{gε}. From

0 ≤ |fε| 6= 0, we obtain that there exists a > 0 such that g = agε. Finally, since |fε| ≤ g,
both functions are continuous, and their integrals with respect to µε coincide, i.e.∫

M
|fε|dµε =

∫

M
g dµε =

∫

M
agε dµε,

it follows that |fε|(x) = gε(x)
∫
M |fε|dµε for every x ∈ suppµε.

Step 4. The operator Pε has the spectral gap property, i.e. there exist a Pε-invariant
closed space W ⊂ C0(Mδ \U) such that C0(Mδ \U) = span{gε}⊕W and r(Pε

∣∣
W
) < λε.

Since P2
ε is a compact operator and 1

λne
Pn
ε is power-bounded, it is enough to show that

σper(Pε)∩λεS1 = {λε} (see details in the proof of Lemma A.5). Choose α ∈ [0, 2π) such

that eiαλε ∈ σ(Pε). Then, there exists fε ∈ C0(Mδ \ U,C) such that 1
λε
Pεfε = eiαfε.

From Step 3, we can assume without loss of generality that
∫
|fε|dµε = 1. Using again

Step 3 and Propositions 4.13 and 4.14 we have that, there exists a continuous function
θ : {gε > 0} → R such that fε(x) = gε(x)e

iθ(x) = gε(x)e
iθ(x) for every x ∈M0 and

1

λε
PM0,ε(1M0fε) = eiα1M0fε.

In this way, for every n ∈ N and x ∈M0

ei(θ(x)+nα)gε(x) =

∫

M0

eiθ(y)gε(y)
1

λnε
(Pn

M0,ε)
∗(δx)(dy),

which implies that

gε(x) =

∫

M0

ei(θ(y)−θ(x)−nα)gε(y)
1

λnε
(Pn

M0,ε)
∗(δx)(dy).

Since

gε(x) =

∫

M0

gε(y)
1

λnε
(Pn

M0,ε)
∗(δx)(dy),

we obtain that ei(θ(y)−θ(x)−nα) = 1 for every y ∈ supp {(Pn
M0,ε

)∗(δx)} ∩ {gε > 0}. By
hypothesis, the measure ν0 is mixing for the map T : R0 → R0, so T : R0 → R0 is
topologically mixing and therefore topologically exact. Hence, there exists n0 ∈ N such
that

R0 ⊂ supp {(Pn
M0,ε)

∗(δx)} ∩ {gε > 0}, for every n > n0.

This implies that ei(θ(x)−θ(y)−nα) = 1 for every n > n0 and x, y ∈ R0, so α = 0.

Step 5. We show that νε(dx) = gε(x)µε(dx) = gε(x)µε(dx)/
∫
gε(y)µε(dy) is a quasi-

ergodic measure of the φ-weighted Markov process Xε
n on Mδ \ U .

From Step 1 and Propositions 4.1, 4.2 and 4.15 it is clear that νε(dx) = gε(x)µε(dx) =
gε(x)µε(dx)/

∫
gε(y)µε(dy). From Steps 3 and 4 we obtain that for every bounded and

measurable function h :Mδ \ U → R,

1

λn
Pn
εh

n→∞−−−→ gε

∫

Mδ\U
h(y)µε(dy) in C0(Mδ \ U),

since Pεh ∈ C0(Mδ \ U).
Recall that τφ = min{n;Xε

n ∈ (E \Mδ)∪U} and by construction of the operator Pε,
for every x ∈ {gε > 0} ∩ suppµε = {gε > 0} ∩ suppµε and for every n ∈ N

E
φ
x

[
1

n

n−1∑

i=0

h ◦Xε
i

∣∣∣∣ τφ > n

]
=

λnε
Pn
ε1Mδ\U (x)

1

n

n−1∑

i=0

1

λiε
P i
ε

(
h

1

λn−iε

Pn−i
ε 1Mδ\U

)
(x).
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Since 1
λnε

Pn
ε1Mδ\U (x)

n→∞−−−→ gε(x), it is enough to show that

1

n

n−1∑

i=0

1

λiε
P i
ε

(
h

1

λn−iε

Pn−i
ε 1Mδ\U

)
(x)

n→∞−−−→ gε(x)

∫
h(y)gε(y)µε(dy).

This holds true since

1

n

n−1∑

i=0

1

λiε
Pi
ε

(
h

1

λn−iε

Pn−i
ε 1Mδ\U

)
(x) =

1

n

n−1∑

i=0

1

λiε
P i
ε

(
h

(
1

λn−iε

Pn−i
ε 1Mδ\U − gε

))
(x)

+
1

n

n−1∑

i=0

1

λiε
P i
ε (hgε) (x),

and
1

λiε
Pi
ε (hgε) (x)

i→∞−−−→ gε(x)

∫
h(y)gε(y)µε(dy).

Step 6. We conclude the proof of the theorem.

To conclude, we need to show that if supp ν0 = R0 ⊂ Int(M \ U), then νε is a quasi-
ergodic measure of the φ-weighted Markov process Xε

n on M \U . Redefine the operator
Pε as

Pε : C0(M \ U) → C0(M \ U)

f 7→ eφ(x)Eε[f ◦ Tω(x) · 1M\U ◦ Tω(x)].
Observe that since R0 ⊂ Int(M \ U), we can choose δ > 0 small enough such that
M0 ⊂M \ U . Repeating Steps 1, 2, 3 and 4 we obtain that

(1) Pε is a strong Feller operator,
(2) r(Pε) = r(Pε) = λε,

(3) there exists a probability measure µε onMδ\U such that span{µε} = ker(P∗
ε−λε)

and µε|M0
/µε(M0) = µε|M0

/µε(M0).

(4) span{gε} = ker(Pε − λε) and 1M0gε = 1M0gε, with gε given by Proposition 4.15
and

∫
gεdµε = 1.

(5) Pε : C0(M \ U) → C0(M \ U) has the spectral gap property.

As in Step 5, we obtain that νε(dx) = gε(x)µε(dx) = gε(x)µε(dx) is a quasi-ergodic
measure of the φ-weighted Markov process Xε

n on M \ U . �

5. Examples

5.1. The logistic map. Consider the Markov process Xε
n+1 = T (Xε

n)+ωn, n ∈ N, with
T (x) = ax(1−x) and ωn ∼ Unif(−ε, ε). Fix a = 3.83 so that the deterministic dynamical
system (with ε = 0) has an almost sure global three-periodic attractor [25, 52], i.e.
Lebesgue almost every initial condition in [0, 1] is attracted to the unique three-periodic
hyperbolic attractor A = {p, T (p), T 2(p)}, with p ≈ 0.1456149 (see Remark 2.6).

The dynamical decomposition of Lemma 2.7 yields two invariant sets: the origin
R1 = {0}, and a hyperbolic Cantor set R2 consisting of the closure of all periodic points
in (0, 1) that are not in the basin of attraction B(T ) of A [56]. Let Λ := [0, 1] \ B(T )
and U ⊃ A be a small enough neighbourhood of the attractor such that U ∩Λ = ∅. We
consider the family of α-Hölder potentials φt : [0, 1] → R, x 7→ (−t + 1) log |T ′(x)| for
t ≥ 0. Recall that an equilibrium state νi associated with the potential φt−log |a(1−2x)|
for T on Ri is a measure maximising

µ 7→ hµ(T ) +

∫
(φt − log |T ′|)dµ = hµ(T )− t

∫
log |T ′|dµ,

where hµ is the metric entropy and µ ∈ I(T,Ri), the set of T -invariant measures on Ri.
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It is well known that Λ is a hyperbolic (uniformly expanding) invariant set [29] and
T admits a unique equilibrium state associated with the potential φt(x)− log |T ′(x)| on
Λ (see e.g. [57, Chapters 11 and 12]). Therefore, Hypothesis H2 is satisfied and we
can apply the theory developed above. For R1, it is clear that ν1 = δ0 and P (T, φt −
log |T ′|, R1) = −t log |a|. For R2,

P (T, φt − log |T ′|, R2) = hν2(T )− t

∫
log |a(1− 2x)|ν2(dx) > −t log |a|,

since − log |a(1−2x)| reaches its minimum at 0 and hν2 = (1+
√
5)/2 (see [56] for precise

details). Therefore,

log λε = log r(Pε) ε→0−−−→ P (T, φt − log |T ′|,Λ) = P (T, φt − log |T ′|, R2) = log λ2,

with Pε : L∞([0, 1] \ U) → L∞([0, 1] \ U) the global annealed Koopman operator. It
follows from Theorem 2.11 that the unique equilibrium state sits on the invariant Cantor
set repeller R2 and can be approximated by quasi-ergodic measure νε of the φt-weighted
Markov process Xε

n on a neighbourhood of R2, as ε→ 0.
For the particular choice of t = 1, i.e. φt=1 = 0, the systems is no longer spatially

weighted and we recover the so-called “natural measure” of the repeller [34]. We note
that the relationship between limiting quasi-ergodic measures and natural measures in
the case of the zero weighting was previously discussed in [5] for this example.

Finally, consider the potential φ0(x) = log |T ′|. The topological pressure of the deter-
ministic system on Λ is given by P (T, 0,Λ) = hν(T ), where ν is the unique equilibrium
state. Since this measure maximises P (T, 0,Λ), it coincides with the measure of maximal
entropy of the system.

5.2. The complex quadratic map. Similarly to the previous example, let us consider
random perturbations of iterates of the complex quadratic map pc(z) = z2 + c, c ∈ C,

acting on the Riemann sphere Ĉ = C ⊔ {∞}. As before, we study the Markov process
Xε
n+1 = pc(X

ε
n) + ωn, where {ωn}n are i.i.d. random variables uniformly distributed on

{a+ ib ∈ C; (a, b) ∈ [−ε, ε]2}, with ε > 0 small enough.

Consider the Julia set J ⊂ Ĉ associated with the polynomial pc. Recall that J is the
closure of the set of repelling periodic points [43, Theorem 11.1]. The set J is non-empty,
compact, and totally invariant, meaning that J = pc(J) = p−1

c (J) (see [43, Lemma 3.1]).
Now, let c be a hyperbolic complex number within the Mandelbrot set, which ensures
that J is hyperbolic, i.e., J is connected and satisfies ‖p′c(z)‖ = ‖2z‖ > 1 for every z ∈ J .

In this context, it is readily verified that pc admits a finite attractor A ⊂ C. Moreover,
for any α-Hölder potential φ : C → R, pc satisfies Hypothesis H2 with T = pc, Λ = J

and E = M = Ĉ. Furthermore, notice that the unique equilibrium state of pc for the
potential φ− log |det dpc| on J is mixing.

Finally, from Theorem 2.11, for any α-Hölder function ψ : Ĉ → R, the unique pc-
invariant equilibrium state for the potential ψ on J , can be approximated in the weak∗

topology by quasi-ergodic measures of the (ψ + log |det dpc|)-weighted Markov process

Xε
n on Ĉ \ U , where U is a neighbourhood of A such that U ∩ J = ∅.
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Appendix A. Quasi-ergodic measures for a class of strong Feller

Markov chains

In this appendix, we provide sufficient conditions for the existence and uniqueness of
quasi-ergodic measures of φ-weighted Markov processes. We prove Theorems A.13 and
A.14, which are essential for the proof Lemma 3.5. The results below employ techniques
of absorbing Markov processes theory [14, 19, 13] and Banach Lattice theory [42].

Let M be a compact metric space, and consider an absorbing Markov process Xn on
E = M ⊔ ∂ absorbed at ∂. For every x ∈ M and function f ∈ L1(M,µ), we denote by
Ex[f ◦X1] the expected value of the observable f after one iterate of the process starting
at X0 = x. Define the annealed Koopman operator as

P : L∞(M,µ) → L∞(M,µ)

f 7→ eφ(x)Ex[f ◦X1 · 1M ◦X1].

Throughout this section, we assume that µ is a probability measure onM and φ :M → R

is a continuous function. The assumptions on P exploited in this appendix are:

Hypothesis HA.

(1) P is strong Feller, i.e. given f ∈ L∞(M,µ) then Pf ∈ C0(M),
(2) dimker(P − λ) = 1, where λ = r(P),
(3) there exists µ ∈ M+(M) and g ∈ C0

+(M), such that P∗µ = λµ and Pg = λg and∫
g dµ = µ({g > 0}), and

(4) suppµ =M .

Notation A.1. Given n ∈ N and x ∈ E we write Pn(x,dy) for the unique measure
on M such that Pn(x,A) = Pn

1A(x) for every measurable set A ⊂ M . Observe that
Pn(x,dy) is well defined since P(L∞(M,µ)) ⊂ C0(M).

A.1. Spectral properties of P. We begin by recalling a classical lemma in the theory
of Markov processes and prove a series of results which characterises the spectrum of P.

Lemma A.2 ([47, Chapter 1, Lemma 5.11]). The operator Pn : L∞(M,µ) → L∞(M,µ)
is compact for every n > 1.

Lemma A.3. Let λ = r(P) denote the spectral radius of P. Then, there exists k ∈ N such

that σper(P) =
{
λe2πij/k

}k−1

j=0
where σper(P) := {α ∈ C; ‖α‖C = r(P) and ker(P − α) 6=

{0}} denotes the point peripheral spectrum of P.
Proof. We divide the proof into three steps:

Step 1. If f ∈ ker(P − λeiβ) for some β > 0 then |f | ∈ span{g}, where |f | :M → R+,
|f |(x) = ‖f(x)‖C and ‖ · ‖C denotes the complex norm.

Since P is a positive operator |f | = |eiβf | = 1
λ |Pf | ≤ 1

λP|f |. Moreover,

0 ≤
∫

M

1

λ
P|f | − |f |dµ =

∫

M
|f |dµ−

∫

M
|f |dµ = 0.

Since suppµ =M and |f | is continuous, then |f | ∈ ker(P − λ) = span{g}.

Step 2. If eiβ1 , eiβ2 ∈ σper(
1
λP) for some for some β1, β2 > 0 then ei(β1+β2) ∈ σper(

1
λP).

Given j ∈ {0, 1}, let fj ∈ ker(P − λeiβj). From Step 1 and rescaling fj, if necessary,

there exists a measurable function θj :M → R such that f(x) = eiθj(x)g(x).
Hence, for every x ∈M

eiβjf(x) = eiβj
(
eiθj(x)g(x)

)
=

1

λ
P
(
eiθjg

)
(x) =

1

λ

∫

M
eiθ(y)g(y)P(x,dy),
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implying that

g(x) =

∫

M
ei(θj(y)−θj (x)−βj)g(y)P(x,dy).

Since g(x) ≥ 0 and g(x) =
∫
M g(y)P(x,dy), we obtain that ei(θj(y)−θj (x)−βj) = 1, for

P(x, ·)-almost every y ∈ {g > 0}.
Finally, observe that by defining h(x) := ei(θ1(x)+θ2(x))g(x) we obtain that

Ph(x) =
∫

M
ei(θ1(y)+θ2(y))g(y)P(x,dy)

=

∫

M
eiθ1(x)+iθ2(x)+i(β1+β2)g(y)P(x,dy) = ei(β1+β2)h(x),

which implies that ei(β1+β2) ∈ σper(P).

Step 3. We conclude the proof of the lemma.

From Step 2, it is enough to show that σper(P) is finite. Theorem A.2 implies that P2

is a compact operator and therefore σper(P2) is finite. Finally, since
{
λ2;λ ∈ σper(P)

}
⊂

σper(P2), we obtain that σper(P) is also finite. �

Let k ∈ N, be fixed as in Lemma A.3.

Lemma A.4. The sequence { 1
λnPn : C0(M) → C0(M)}n∈N is power bounded, i.e.

supn∈N ‖ 1
λnPn‖ <∞.

Proof. We dive the proof into three steps.

Step 1. We show that σper(
1
λP) = σper(

1
λk+1Pk+1).

Let us consider β ∈ (0, 2π) such that eiβ ∈ σper(
1

λk+1Pk+1) \ σper( 1λP). Since Pk+1

is a compact operator, there exists f ∈ ker(Pk+1 − λk+1eiβ). Observe that for every
j ∈ {0, 1, . . . , k}, we obtain that

0 =

(
1

λk+1
Pk+1 − eiβ

)
f =

(
1

λ
P − e

iβ
k+1

+ 2πij
k+1

) k∑

ℓ=0

e
iβ(k−ℓ)
k+1

+
2πij(k−ℓ)

k+1

λℓ
Pℓf.

From Step 2 of Lemma A.3, we have γ := e
iβ
k+1

+ 2πij
k+1 6∈ σper(

1
λP) for every j ∈

{0, 1, . . . , k}, as otherwise we would have γk+1 = eiβ ∈ σper(
1
λP). Hence, we obtain

that the sum above must be zero or, multiplying by the appropriate phase, that

0 = e−
iβk
k+1

− 2πijk
k+1

k∑

ℓ=0

e
iβ(k−ℓ)
k+1

+
2πij(k−ℓ)

k+1

λℓ
Pℓf =

k∑

ℓ=0

e
−iβℓ
k+1

+−2πijℓ
k+1

λℓ
Pℓf, (A.9)

for every j ∈ {0, 1, . . . , k}. Finally,

f =
1

k + 1

k∑

j=0

f =
1

k + 1




k∑

j=0

f +

k∑

ℓ=1




k∑

j=0

e
−2πijℓ
k+1


 e

−iβℓ
k+1

λℓ
Pℓf




=
1

k + 1

k∑

j=0

k∑

ℓ=0

e
−iβℓ
k+1

+−2πijℓ
k+1

λℓ
Pℓf = 0.

where the last equality follows form (A.9). This yields a contradiction, so such a β
cannot exist.

Step 2. We show that ker(Pk+1 − λk+1) = ker(P − λ) = span{g}.
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It is clear that ker(P − λ) ⊂ ker(Pk+1 − λk+1). In the following, we show the reverse
inclusion. Let f ∈ ker(Pk+1 − λk+1). For every j ∈ {1, . . . , k}, consider the functions

hj :=
k∑

ℓ=0

e
−2πijℓ
k+1

1

λℓ
Pℓf.

Since Pk+1f = λk+1f, we obtain that Phj = λe2πij/(k+1)hj for every j ∈ {1, . . . , k}.
From Lemma A.3, we have that λe2πij/(k+1) 6∈ σper(P), therefore hj = 0 for every
j ∈ {1, . . . , k}. Thus,

(
1

λ
P − 1

)
f =

(
1

λ
P − 1

)
1

k + 1

k∑

j=0

f

=

(
1

λ
P − 1

)
1

k + 1




k∑

j=0

f +

k∑

ℓ=1




k∑

j=0

e
−2πijℓ
k+1


 1

λℓ
Pℓf




=

(
1

λ
P − 1

) k∑

j=0

k∑

ℓ=0

e
−2πijℓ
k+1

λℓ
Pℓf =

(
1

λ
P − 1

)( k∑

ℓ=0

1

λℓ
Pℓ

)
f

=

(
1

λk+1
Pk+1 − 1

)
f = 0,

which implies that f ∈ ker(P − λ).

Step 3. There exists a decomposition C0(M) =
⊕k−1

j=0 ker
(
Pk+1 − λk+1e2πij/k

)
⊕W0,

where W0 is Pk+1-invariant subspace of C0(M) and r(Pk+1 |W0
) < λk+1. In particular,

{ 1
λnPn}n∈N is power bounded.

Recall from Lemma A.2 that, Pk+1 is a compact linear operator. Moreover, from Step
1 we obtain that σper(

1
λP) = σper(

1
λk+1Pk+1). From [38, Theorems 8.4-3 and 8.4-5] and

Lemma A.3 we obtain that there exist non-zero r0, r1, . . . , rk−1 ∈ N such that

C0(M) =
k−1⊕

j=0

ker(Pk+1 − λk+1e2πij/k)rj ⊕W0,

where rj = inf{m; ker(Pk+1−λ2πij/k)m+n = ker(Pk+1−λ2πij/k)m, all n ∈ N}, andW0 is

Pk+1-invariant satisfying r(Pk+1 |W0
) < λk+1. We show that r0 = r1 = . . . = rk−1 = 1.

Using once again that Pk+1 is a compact operator, we obtain from the Krein-Rutman
theorem [33, Theorem 4.1] that the spectral radius λk+1 = r(Pk+1) is a pole of maximal
order in the spectral circle, i.e. r0 ≥ max{r1, . . . , rk−1}. Suppose that r0 > 1, then there
exists f ∈ C0(M) such that g = (Pk+1 − λk+1)f. Therefore,

0 <

∫
g dµ =

∫
Pk+1f − λk+1f dµ =

∫
f d(Pk+1)∗µ−

∫
λk+1f dµ = 0,

implying that r0 = 1 and therefore r0 = r1 = . . . = rk−1 = 1. �

Lemma A.5. There exists a decomposition C0(M) =
⊕k−1

j=0 ker(P − λe
2πij
k )⊕W, where

W is a P-invariant space r (P|W ) < λ, and dimker(P − λe
2πij
k ) = 1 for every j ∈

{0, 1 . . . , k − 1}.

Proof. From Lemmas A.2 and A.4 we obtain that P2 is a compact linear operator and
supn≥0 ‖ 1

λnPn‖ < ∞. Then, from [59, An extension of Frechet-Kryloff-Bogoliouboff’s
theorem] (see also [11, Théorèm above Définition 1.5] and [58, Equation (8) in the proof
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of Theorem 4]), there exists a P-invariant space W ⊂ C0(M) such that r (P|W ) < λ and

C0(M) =

k−1⊕

j=0

ker
(
P − λe

2πij
k

)
⊕W.

Finally, we show that dimker(P − λe
2πij
k ) = 1 for every j ∈ {0, 1 . . . , k − 1}. Since

supn≥0

∥∥ 1
λnPn

∥∥ <∞, [32, Theorem 5.1] implies that

dimker(P − λe2πi/k) ≤ dimker(P − λe2πi2/k) ≤ . . .

≤ dimker(P − λe2πi(k−1)/k) ≤ dimker(P − λ) = 1,

which concludes the proof. �

A.2. Cyclic properties of P. Consider P acting only on continuous functions P :
C0(M) → C0(M). From Lemma A.5, we know that C0(M) = ker(Pk − λk) ⊕W, where
W is a Pk-invariant Banach space such that r

(
Pk
∣∣
W

)
< λk and dim ker(Pk − λk) = k.

Proposition A.6. There exist k non-negative linearly independent eigenfunctions g0,
. . ., gk−1 ∈ C0

+(M)∩ker(Pk−λk) such that spanC({gi}k−1
i=0 ) = ker(Pk−λk) and

∫
gidµ =

µ({g > 0}) for every i ∈ {0, 1, . . . , k − 1}. Moreover, these can be chosen such that the
sets Ci := {gi > 0} are pairwise disjoint.

Proof. Observe that since λk > 0 and P(C0(M)) ⊂ C0(M), it follows that if f ∈ C0(M,C)
satisfies Pkf = λkf, then PkRe(f) = λkRe(f) and PkIm(f) = λkIm(f).

Recall that µ is a measure on M satisfying P∗µ = λµ and suppµ = M . Note that
the operator Pk satisfies

∫
M

1
λk
Pkf(x)µ(dx) =

∫
M f(x)dµ, for every f ∈ C0(M). By

the same techniques of Theorem 3.4 (see also [40, Propositions 3.1.1 and 3.1.3]), it
follows that if f ∈ C0(M) is an eigenfunction of Pk associated with the eigenvalue λk,
then f+(x) := max{0, f(x)} and f−(x) = max{0,−f(x)} are also eigenfunctions of Pk

associated with the eigenvalue λk. This provides a set of k linearly independent non-
negative continuous functions that span ker(Pk − λk). We are left to check that these
can be chosen with pair-wise disjoint support.

Define G := {h1 > 0} \ {h2 > 0} 6= ∅ and H := {h1 > 0} ∩ {h2 > 0}. We claim
that if h1, h2 ∈ C0

+(M)∩ ker(Pk − λk), then 1Gh1 and 1Hh1 are also a eigenfunctions of

Pk associated with the eigenvalue λk. Observe that this is enough to conclude the proof
since we can choose k functions of the set below which have disjoint supports

{
hi1{(

∑k−1
j=0 tjhj)

±>0}; t0, . . . , tk−1 ≥ 0 and i ∈ {0, . . . , k − 1}
}
⊂ ker(Pk − λk).

We organise the remainder of the proof into three steps:

Step 1. 1GPk
1H = 0.

Let x ∈ G and assume that Pk
1H > 0. Then, 0 < Pk

1H =
∫
1H(y)Pk(x, dy),

and since h2 > 0 on H, 0 <
∫
1H(y)h2(y)(P∗)kδx(dy), implying that Pk

1Hh2(x) > 0.
Moreover,

h2(x) =
1

λk
Pkh2(x) =

1

λk
Pk(1Hh2 + (1− 1H)h2)(x) ≥

1

λk
Pk(1Hh2)(x) > 0,

which contradicts x 6∈ {h2 > 0}. In particular, 1HPk
1H = Pk

1H .

Step 2. 1HPk
1G = 0.

From Step 1, it follows that

1Hh1 = 1H
1

λk
Pkh1 = 1H

1

λ
Pk(1Hh1 + 1Gh1) =

1

λk
Pk(1Hh1) + 1H

1

λk
Pk(1Gh1).
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Integrating either side and using µ ∈ ker((Pk)∗ − λk), we obtain
∫
1Hh1dµ =

∫
1

λk
Pk(1Hh1)dµ+

∫
1H

1

λk
Pk(1Gh1)dµ

=

∫
1Hh1dµ+

∫
1H

1

λk
Pk(1Gh1)dµ,

implying that
∫
1H

1
λk
Pk(1Gh1)dµ = 0, which yields 1HPk

1G = 0.

Step 3. 1Gh1 and 1Hh1 are eigenfunctions of Pk with eigenvalue λk.

From Steps 1 and 2, it follows that

1Hh1 + 1Gh1 = h1 =
1

λk
Pkh1 =

1

λk
Pk(1Hh1 + 1Gh1)

=
1

λk
Pk(1Hh1) +

1

λk
Pk(1Gh1) = 1H

1

λk
Pk(1Hh1) + 1G

1

λk
Pk(1Gh1).

Since G ∩H = ∅, the claim is verified and we finish the proof. �

Lemma A.7. Let {gi}k−1
i=0 ⊂ C0

+(M) be as in Proposition A.6. Then, these can be

relabelled so that 1
λPgi = gi−1 (mod k), for i ∈ {0, 1, . . . , k − 1}. In particular, we have

that g = 1
k

∑k−1
i=0 gi.

Proof. We divide the proof into two steps.

Step 1. There exists a continuous function θ : {g > 0} → {0, 1/k, 2/k, . . . , (k − 1)/k},
such that

(1) for every j ∈ {0, 1, . . . , k − 1}, θ|{gj>0} = θj is constant,

(2) the set {gj}k−1
j=0 can be relabelled so that θj = j/k.

From Step 1 of Lemma A.3, there exists a function θ : {g > 0} → R such that

e2πiθ(x)g ∈ ker(P − λe2πi/k). Observe that by multiplying θ by a complex constant, we
can assume without loss of generality that there exists x ∈ M such that θ(x) = 0.

Since e2πiθ(x)g, g ∈ ker(Pk − λk) = span{g0, . . . , gk−1}, there exist α0, . . . , αk−1 ≥ 0 and
θ0, . . . , θk−1 ≥ 0 such that

g =

k−1∑

j=0

αjgj and e
2πiθg =

k−1∑

j=0

αje
2πiθjgj .

Since {gj1 > 0} ∩ {gj2 > 0} = ∅ if j1 6= j2, then θ(x) = θj for every x ∈ {gj > 0}. This
proves (1).

Without loss of generality, we may assume that α0 6= and θ0 = 0. Let us fix x ∈ {g0 >
0}. Then,

e2πi/kg(x) =
1

λ
P(e2πiθg)(x) =

∫

M
e2πiθ(y)g(y)

1

λ
P(x,dy),

and therefore

g(x) =

∫

M
e2πi(θ(y)−1/k)g(y)

1

λ
P∗δx(dy).

Since g(x) =
∫
g(y) 1λP(x,dy), and θ is continuous we obtain

θ(y) =
1

k
for every y ∈ suppP(x,dy) ∩ {g > 0}.

The same argument for Pn yields

θ(y) =
n

k
for every y ∈ suppPn(x,dy) ∩ {g > 0}. (A.10)

Note that if y ∈ suppPn(x,dy)∩{gj > 0} for some j, then θj = θ(y) = n/k. This implies

that suppPm(x,dy)∩{gj > 0} = ∅ for anym 6= n (mod k). Since suppPk(x,dy)∩{g0} 6=
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∅ and there are exactly k functions g0, . . . , gk, each must have a different phase θj. After
relabelling, we may assume that θj = j/k, for j ∈ {0, 1, . . . , k}, showing (2).

Step 2. We conclude the proof of the lemma.

It follows immediately from equation (A.10) that {Pgj > 0} ⊂ {gj−1 (mod k) > 0}.
Moreover, since e2πiθg ∈ ker(P − λe2πi/k), we have

λe2πi/ke2πiθg = λe2πi/k
k−1∑

j=0

αje
2πij/kgj = P(e2πiθg) =

k−1∑

j=0

αje
2πij/kPgj ,

so λαj−1gj−1 = αjPgj , with −1 = k − 1. Integrating both sides with respect to µ
yields αj−1 (mod k) = αj, from which we conclude that α0 = α1 = . . . = αk−1 and
1
λPgj = gj−1 (mod k), for every j ∈ {0, 1, . . . , k − 1}. �

The following corollary follows directly from Lemma A.7.

Corollary A.8. Every function fℓ :=
1
k

∑k−1
j=0 e

2πijℓ/kgj satisfies Pfℓ = λe2πiℓ/kfℓ, i.e.

ker(P − λe2πiℓ/k) = span(fℓ), for ℓ ∈ {0, 1, . . . , k − 1}.
A.3. Existence of quasi-ergodic measures. Recall that g ∈ C0

+(M) is the unique
function satisfying Pg = λg.

Lemma A.9. P1{g>0} ≤ c1{g>0}, for some constant c > 0.

Proof. Observe that for every a > 0 we have P1{g>a} ≤ 1
aPg = λ

ag. Hence, {P1{g>a} >
0} ⊂ {g > 0}. Since 1{g>0} =

∑∞
n=1 1{‖g‖∞/n≥g>‖g‖∞/(n+1)}, we obtain that

{P1{g>0} > 0} ⊂
⋃

n∈N

{P1{g>1/n} > 0} ⊂ {g > 0}.

It follows that P1{g>0} ≤ ‖P‖1{g>0}. �

Notation A.10. We define the operator Pg : L∞({g > 0}, µ) → L∞({g > 0}, µ) as
Pgf := P(1{g>0}f).

Corollary A.11. The measure µ̃(dx) := µ(dx∩{g > 0})/µ({g > 0}) satisfies P∗
g µ̃ = λµ̃.

Proof. From Lemma A.9 we have that for every h ∈ L∞({g > 0}), Pgh = P(1{g>0}h) =
1{g>0}Pgh. Therefore,∫

hd(P∗
g µ̃) =

∫
Pghdµ̃ =

1

µ({g > 0})

∫
1{g>0}Pghdµ =

1

µ({g > 0})

∫
P(1{g>0}h)dµ

=
1

µ({g > 0})

∫
1{g>0}hd(P∗µ) =

λ

µ({g > 0})

∫
1{g>0}hdµ = λ

∫
hdµ̃.

�

Observe that since
∫
g dµ = µ({g > 0}),

∫
g dµ̃ = 1. The above corollary implies that

σper(P) = σper(Pg) and
1{g>0} ker(P − λe2πij/k) = ker(Pg − λe2πij/k), for every j ∈ {0, . . . , k − 1}.

Since each gi defined in Lemma A.5 satisfies Ci = {gi > 0} ⊂ {g > 0}, we can assume
by abuse of notation that gi ∈ L∞({g > 0}, µ̃). Moreover,

L∞({g > 0}, µ̃) = span(g0, . . . , gk−1)⊕ V,

where V is P-invariant and r(P|V ) < λ.

Lemma A.12. For every i ∈ {0, 1, . . . , k − 1} define µ̃i(dx) = µ̃(Ci ∩ dx), where Ci =
{gi > 0}. Then P∗

g µ̃i = λµ̃i+1 (mod k).

Proof. We divide the proof into two steps
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Step 1. v ∈ V if and only if
∫
Ci
v dµ̃ = 0 for every i ∈ {0, 1, . . . , k − 1}.

Suppose first that v ∈ V . We claim that 1Civ ∈ V for all i ∈ {0, 1, . . . , k−1}. Indeed,
if 1Civ 6∈ V , then v = αigi +w+

∑
j 6=i 1Cjv with αi 6= 0 and w ∈ V . Since, Ci ∩Cj = ∅

for all j 6= i, we get that v 6∈ V . If follows that∣∣∣∣
∫

Ci

v dµ̃

∣∣∣∣ =
∣∣∣∣
∫

M
1Civ dµ̃

∣∣∣∣ =
∣∣∣∣
∫

M

1

λn
Pn(1Civ) dµ̃

∣∣∣∣ ≤
∥∥∥∥

1

λn
Pn

∣∣∣∣
V

∥∥∥∥ ‖v‖
n→∞−−−→ 0.

Suppose now that
∫
Ci
v dµ̃ = 0 for every i ∈ {0, 1, . . . , k−1}.Write v =

∑k−1
i=0 αigi+w,

with w ∈ V . Observing that
∫
gidµ̃ = 1, we have

αi =

∫

Ci

αigi dµ̃ =

∫

Ci



k−1∑

j=0

αjgj + w


 dµ̃ =

∫

Ci

v dµ̃ = 0.

We obtain that αi = 0 for every i ∈ {0, 1, . . . , k − 1}, which implies v ∈ V .

Step 2. We conclude the proof of the lemma.

Take f ∈ L∞({g > 0}, µ). Therefore f =
∑k−1

i=0 αigi + v, v ∈ V . From Step 1, it
follows that

αi =

∫

Ci

f dµ̃ =

∫
f dµ̃i,

and
∫
f dP∗µ̃i =

∫
Pf dµ̃i =

k−1∑

j=0

∫

M
1CiP(αjgj) dµ̃

=

k−1∑

j=0

∫

M
1Ciλαjgj−1 dµ̃ = λαi+1 = λ

∫

M
f dµ̃i+1 (mod k).

�

Theorem A.13. Assume that P satisfies Hypothesis HA. Given a bounded and mea-
surable function h : {g > 0} → R we have that for every x ∈ {g > 0}

1

Ex[eSnφ1{τ>n}]
Ex

[
eSnφ1{τ>n}

1

n

n−1∑

i=0

h ◦Xi

]
n→∞−−−→

∫
h(x)g(x)µ(dx)∫
g(x)µ(dx)

,

where τ = min{n ∈ N;Xn 6∈ {g > 0}} and Snφ =
∑n−1

i=0 φ ◦ Xi. In other words, there

exists a unique quasi-ergodic measure for the φ-weighted Markov process Xφ
n on {g > 0}.

Proof. In this proof, we adopt the notation gm := gm (mod k), µ̃m := µ̃m (mod k) and
Cm = Cm (mod k). Recall that∫

h(x)g(x)µ(dx)∫
g(x)µ(dx)

=

∫
h(x)g(x) µ̃(dx).

Given n ∈ N and x ∈ {g > 0} define

Qnh(x) :=

∣∣∣∣∣
1

Ex[eSnφ1{τ>n}]
Ex

[
eSnφ1{τ>n}

1

n

n−1∑

i=0

h ◦Xi

]
−
∫
h(x)g(x)µ̃(dx)

∣∣∣∣∣ .

Observe that to prove the theorem, it suffices to show that for every measurable and
bounded non-negative h : {g > 0} → R we have

max
{
Qnk+ℓh (x); ℓ ∈ {0, 1, . . . , k − 1}

}
n→∞−−−→ 0,

for every x ∈ Cs where s ∈ {0, 1, . . . , k − 1}.
We divide the remainder of the proof into three steps.
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Step 1. For every bounded and measurable function h : {g > 0} → R, ℓ, s ∈ {0, 1, . . . , k−
1} and x ∈ Cs we have

lim
n→∞

1

λnk+ℓ
Pnk+ℓ
g h(x) = gs(x)

∫

Cs+ℓ

h(y)µ̃s+ℓ(dy).

From Step 1 of Lemma A.12 it is clear that

h =
k−1∑

j=0

gj

∫

Cj

hdµ̃+ v,

with v ∈ V . Since Pnk+ℓ
g gj(x) = λnk+ℓgj−ℓ(x), we obtain that

1

λnk+ℓ
Pnk+ℓ
g h =

k−1∑

j=0

gj−ℓ

∫

Cj

hdµ̃+
1

λnk+ℓ
Pnk+ℓv

n→∞−−−→
k−1∑

j=0

gj−ℓ

∫

Cj

hdµ̃.

Finally, if x ∈ Cs, then

lim
n→∞

1

λnk+ℓ
Pnk+ℓ
g h(x) = gs(x)

∫

Cs+ℓ

hdµ̃.

Step 2. For every non-negative bounded and measurable function h : {g > 0} → R,
ℓ, s ∈ {0, 1, . . . , k − 1} and x ∈ Cs we have

lim
n→∞

1

nk + ℓ

nk+ℓ−1∑

i=0

1

λi
Pi
g

(
h

1

λnk+ℓ−i
Pnk+ℓ−i
g 1{g>0}

)
(x) = gs(x)µ̃(Cs+ℓ)

∫
hg µ̃(dx).

We denote G := Pg/λ to simplify the notation and improve readability. Recall that

1{g>0} =
∑k−1

j=0 µ̃(Cj)gj + v, where v ∈ V . It follows that,

nk+ℓ−1∑

i=0

Gi
(
hGnk+ℓ−i1{g>0}

)
(x) =

=

k−1∑

j=0

µ̃(Cj)

nk+ℓ−1∑

i=0

Gi
(
hGnk+ℓ−igj

)
(x) +

nk+ℓ−1∑

i=0

Gi(hGnk+ℓ−iv)(x)

=

k−1∑

j=0

µ̃(Cj)

nk+ℓ−1∑

i=0

Gi (hgj−ℓ+i) (x) +
nk+ℓ−1∑

i=0

Gi(hGnk+ℓ−iv)(x).

Observe that∣∣∣∣∣
1

nk + ℓ

nk+ℓ−1∑

i=0

Gi(hGnk+ℓ−iv)(x)
∣∣∣∣∣ ≤ sup

i≥0
‖Gi‖ 1

nk + ℓ

nk+ℓ−1∑

i=0

‖hGnk+ℓ−iv‖∞

≤ sup
i≥0

‖Gi‖ 1

nk + ℓ

nk+ℓ−1∑

i=0

‖h‖∞
∥∥∥Gnk+ℓ−iv

∥∥∥
∞

n→∞−−−→ 0.

Moreover, since 0 ≤ hgj−ℓ+i ≤ ‖h‖∞gi−ℓ+i, then
0 ≤ Gi(hgj−ℓ+i) ≤ ‖h‖∞gj−ℓ ≤ ‖g‖∞‖gj−ℓ‖1Ci−j .

It follows that for every x ∈ Cs,
1

nk + ℓ

k−1∑

j=0

µ̃(Cj)

nk+ℓ−1∑

i=0

Gi (hgj−ℓ+i) (x) =
µ̃(Cs+ℓ)

nk + ℓ

nk+ℓ−1∑

i=0

Gi (hgs+i) (x)

=
µ̃(Cs+ℓ)

nk + ℓ

n−1∑

i=0

Gik
(
k−1∑

r=0

Gr (hgs+r)
)
(x) +

µ̃(Cs+ℓ)

nk + ℓ
Gnk

(
ℓ∑

r=0

Gr (hgs+r)
)
(x).
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From Step 1, we obtain that

lim
n→∞

1

nk + ℓ− 1

k−1∑

j=0

µ̃(Cj)
nk+ℓ∑

i=0

Gi (hgs+i) (x) = gs(x)
µ̃(Cs+ℓ)

k

k−1∑

j=0

∫
Gj(hgs+j)(y)µ̃s(dy)

(
Lem. A.7 and
Lem. A.12

)
= gs(x)

µ̃(Cs+ℓ)

k

k−1∑

j=0

∫
h(y)gs+j(y)µ̃s+j(dy)

= gs(x)µ̃(Cs+ℓ)

∫
h(y)g(y)µ̃(dy).

Step 3. We conclude the proof of the theorem.

Given a non-negative bounded and measurable function h : {g > 0} → R, ℓ, s ∈
{0, 1, . . . , k − 1} and x ∈ Cs.

In,ℓh (x) :=
λnk+ℓ

Pnk+ℓ
g 1{g>0}(x)

1

nk + ℓ

nk+ℓ−1∑

i=0

1

λi
Pi
g

(
h

1

λnk+ℓ−i
Pnk+ℓ−i
g 1{g>0}

)
(x).

From Steps 1 and 2, we obtain that

lim
n→∞

λnk+ℓ

Pnk+ℓ
g 1{g>0}(x)

=
1

gs(x)µ(Cs+ℓ)
,

and

lim
n→∞

1

nk + ℓ

nk+ℓ−1∑

i=0

1

λi
Pi
g

(
h

1

λnk+ℓ−i
Pnk+ℓ−i
g 1{g>0}

)
(x) = gs(x)µ(Cs+ℓ)

∫
h(y)g(y)µ̃(dy).

Therefore Qnk+ℓh (x)
n→∞−−−→ 0 for all s, ℓ ∈ {0, 1, . . . , k−1} and x ∈ Cs, which concludes

the proof of the theorem. �

Theorem A.14. Assume that P satisfies Hypothesis HA and σ( 1λP)∩ S
1 = {1}. Then,

given a bounded measurable function h :M → R, for every x ∈ {g > 0},
1

Ex[eSnφ1{τ>n}]
Ex

[
eSnφ1{τ>n}

1

n

n−1∑

i=0

h ◦Xi

]
n→∞−−−→

∫
h(x)g(x)µ(dx)∫
g(x)µ(dx)

,

where τ :=min{n;Xn 6∈ M} and Snφ =
∑n−1

i=0 φ ◦ Xi. In other words, there exists a

unique quasi-ergodic of the φ-weighted Markov process Xφ
n on M .

Proof. Note that the spectral gap in the operator 1
λP, along with its strong Feller prop-

erty, ensures that for any bounded and measurable function h :M → R, it holds that

sup
x∈M

∣∣∣∣
1

λn
Pnh(x) − g(x)

∫
hdµ

∣∣∣∣
n→∞−−−→ 0. (A.11)

Repeating the proof of Step 2 of Theorem A.13 we obtain that

sup
x∈M

∣∣∣∣∣
1

n

n∑

i=1

1

λi
Pi

(
h

1

λn−i
Pn−i

1M

)
(x)− g(x)

∫
h(y)g(y)µ(dy)

∣∣∣∣∣
n→∞−−−→ 0. (A.12)

Combining equations (A.11)-(A.12) and the same computations in the proof of The-
orem A.13 we obtain the result. �
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