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Abstract
For a graph G, a subset S ⊆ V (G) is called a resolving set of G if, for any two vertices u, v ∈ V (G),
there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v). The Metric Dimension problem takes as
input a graph G on n vertices and a positive integer k, and asks whether there exists a resolving set
of size at most k. In another metric-based graph problem, Geodetic Set, the input is a graph G

and an integer k, and the objective is to determine whether there exists a subset S ⊆ V (G) of size
at most k such that, for any vertex u ∈ V (G), there are two vertices s1, s2 ∈ S such that u lies on a
shortest path from s1 to s2.

These two classical problems turn out to be intractable with respect to the natural parameter,
i.e., the solution size, as well as most structural parameters, including the feedback vertex set number
and pathwidth. Some of the very few existing tractable results state that they are both FPT with
respect to the vertex cover number vc.

More precisely, we observe that both problems admit an FPT algorithm running in time
2O(vc2) · nO(1), and a kernelization algorithm that outputs a kernel with 2O(vc) vertices. We prove
that unless the Exponential Time Hypothesis (ETH) fails, Metric Dimension and Geodetic Set,
even on graphs of bounded diameter, do not admit

an FPT algorithm running in time 2o(vc2) · nO(1), nor
a kernelization algorithm that reduces the solution size and outputs a kernel with 2o(vc) vertices.

The versatility of our technique enables us to apply it to both these problems.
We only know of one other problem in the literature that admits such a tight lower bound.

Similarly, the list of known problems with exponential lower bounds on the number of vertices in
kernelized instances is very short.
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1 Introduction

In this article, we study two metric-based graph problems, one of which is defined through
distances, while the other relies on shortest paths. Metric-based graph problems are ubi-
quitous in computer science; for example, the classical (Single-Source) Shortest Path,
(Graphic) Traveling Salesperson or Steiner Tree problems fall into this category.
Those are fundamental problems, often stemming from applications in network design, for
which a considerable amount of algorithmic research has been done. Metric-based graph
packing and covering problems, like Distance Domination [27] or Scattered Set [28],
have recently gained a lot of attention. Their non-local nature leads to non-trivial algorithmic
properties that differ from most graph problems with a more local nature.

We focus here on the Metric Dimension and Geodetic Set problems, which arise
from network monitoring and network design, respectively. As noted in the introduction of [6]
and the conclusion of [29], and recently demonstrated in [3, 19], these two metric-based graph
covering problems share many algorithmic properties. They have far-reaching applications,
as exemplified by, e.g., the recent work [3] where it is shown that enumerating minimal
solution sets for the Metric Dimension and Geodetic Set problems in (general) graphs
and split graphs, respectively, is equivalent to the enumeration of minimal transversals in
hypergraphs, whose solvability in total-polynomial time is arguably the most important open
problem in algorithmic enumeration. Formally, these two problems are defined as follows.

Metric Dimension
Input: A graph G and a positive integer k.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and, for any pair of vertices
u, v ∈ V (G), there exists a vertex w ∈ S with d(w, u) ̸= d(w, v)?

Geodetic Set
Input: A graph G and a positive integer k.
Question: Does there exist S ⊆ V (G) such that |S| ≤ k and, for any vertex u ∈ V (G),
there are two vertices s1, s2 ∈ S such that u lies on a shortest path from s1 to s2?

Metric Dimension dates back to the 1970s [25, 36], whereas Geodetic Set was
introduced in 1993 [24]. The non-local nature of these problems has since posed interesting
algorithmic challenges. Metric Dimension was first shown to be NP-complete in general
graphs in Garey and Johnson’s book [21], and this was later extended to many restricted
graph classes (see ‘Related work’ below). Geodetic Set was proven to be NP-complete in
the seminal paper [24], and later shown to be NP-hard on restricted graph classes as well.

As these two problems are NP-hard even in very restricted cases, it is natural to ask for
ways to confront this hardness. In this direction, the parameterized complexity paradigm
allows for a more refined analysis of a problem’s complexity. In this setting, we associate each
instance I of a problem with a parameter ℓ, and are interested in algorithms running in time
f(ℓ) · |I|O(1) for some computable function f . Parameterized problems that admit such an
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algorithm are called fixed-parameter tractable (FPT for short) with respect to the considered
parameter. On the other hand, under standard complexity assumptions, parameterized
problems that are hard for the complexity class W[1] or W[2] do not admit such algorithms.
A parameter may originate from the formulation of the problem itself (called a natural
parameter) or it can be a property of the input (called a structural parameter).

This approach, however, had limited success in the case of these two problems. In
the seminal paper [26], Metric Dimension was proven to be W[2]-hard parameterized
by the solution size k, even in subcubic bipartite graphs. Similarly, Geodetic Set is
W[2]-hard parameterized by the solution size [15, 29], even on chordal bipartite graphs. These
initial hardness results drove the ensuing meticulous study of the problems under structural
parameterizations. We present an overview of such results in ‘Related work’ below. In this
article, we focus on the vertex cover number, denoted by vc, of the input graph and prove
the following positive results.

▶ Theorem 1. Metric Dimension and Geodetic Set admit
FPT algorithms running in time 2O(vc2) · nO(1), and
kernelization algorithms that output kernels with 2O(vc) vertices.

The second set of results follows from simple reduction rules, and was also observed
in [26] for Metric Dimension. The first set of results builds on the second set by using
a simple, but critical observation. For Metric Dimension, this also improves upon the
22O(vc) · nO(1) algorithm mentioned in [26]. Our main technical contribution, however, is in
proving that these results are optimal assuming the Exponential Time Hypothesis (ETH).

▶ Theorem 2. Unless the ETH fails, Metric Dimension and Geodetic Set do not admit
FPT algorithms running in time 2o(vc2) · nO(1), nor
kernelization algorithms that reduce the solution size and output kernels with 2o(vc) vertices,

even on graphs of bounded diameter.

Both of these statements constitute a rare set of results in the existing literature. We
know of only one other problem in the literature that admits a lower bound of the form
2o(vc2) · nO(1) and a matching upper bound [1] - whereas such results parameterized by
pathwidth are mentioned in [34] and [35]. Very recently, the authors in [7] also proved
a similar result with respect to solution size. Similarly, the list of known problems with
exponential lower bounds on the number of vertices in kernelized instances is very short.1
To the best of our knowledge, the only known results of this kind (that is, ETH-based lower
bounds on the number of vertices in a kernel) are for Edge Clique Cover [13], Biclique
Cover [9], Strong Metric Dimension [19], B-NCTD+ [8], and Locating Dominating
Set [7].2 For Metric Dimension, the above also improves a result of [23], which states that
Metric Dimension parameterized by k + vc does not admit a polynomial kernel unless the
polynomial hierarchy collapses to its third level. Indeed, the result of [23] does not rule out
a kernel of super-polynomial or sub-exponential size.

In a recent work [19], the present set of authors proved that unless the ETH fails, Metric
Dimension and Geodetic Set on graphs of bounded diameter do not admit 22o(tw) · nO(1)-
time algorithms, thereby establishing one of the first such results for NP-complete problems.
Note that n ≻ vc ≻ fvs ≻ tw and n ≻ vc ≻ td ≻ pw ≻ tw in the parameter hierarchy, where

1 For the definition of a kernelized instance and kernelization algorithm, refer to Section 2 or [12].
2 Point Line Cover also does not admit a kernel with O(k2−ϵ) vertices, for any ϵ > 0, unless NP ⊆

coNP/poly [30].
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n is the number of vertices, fvs is the feedback vertex set number, td is the treedepth, and
tw is the treewidth of the graph. The authors further proved that their lower bound also
holds for fvs and td in the case of Metric Dimension, and for td in the case of Geodetic
Set [19]. Note that a simple brute-force algorithm enumerating all possible candidates
runs in time 2O(n) for both of these problems. Thus, the next natural question is whether
such a lower bound for Metric Dimension and Geodetic Set can be extended to larger
parameters, in particular vc. Our first results answer this question in the negative. Together
with the lower bounds with respect to vc, this establishes the boundary between parameters
yielding single-exponential and double-exponential running times for Metric Dimension
and Geodetic Set.

Related Work. We mention here results concerning structural parameterizations of Metric
Dimension and Geodetic Set, and refer the reader to the full version of [19] for a more
comprehensive overview of applications and related work regarding these two problems.

As previously mentioned, Metric Dimension is W[2]-hard parameterized by the solution
size k, even in subcubic bipartite graphs [26]. Several other parameterizations have been
studied for this problem, on which we elaborate next (see also [20, Figure 1]). Through
careful algorithmic design, kernelization, and/or meta-theorems, it was proven that there is
an XP algorithm parameterized by the feedback edge set number [18], and FPT algorithms
parameterized by the max leaf number [17], the modular-width and the treelength plus the
maximum degree [2], the treedepth and the clique-width plus the diameter [22], and the
distance to cluster (co-cluster, respectively) [20]. Recently, an FPT algorithm parameterized
by the treewidth in chordal graphs was given in [5]. On the negative side, Metric Dimension
is W[1]-hard parameterized by the pathwidth even on graphs of constant degree [4], para-NP-
hard parameterized by the pathwidth [32], and W[1]-hard parameterized by the combined
parameter feedback vertex set number plus pathwidth [20].

The parameterized complexity of Geodetic Set was first addressed in [29], in which they
observed that the reduction from [15] implies that the problem is W[2]-hard parameterized
by the solution size (even for chordal bipartite graphs). This motivated the authors of [29]
to investigate structural parameterizations of Geodetic Set. They proved the problem
to be W[1]-hard for the combined parameters solution size, feedback vertex set number,
and pathwidth, and FPT for the parameters treedepth, modular-width (more generally,
clique-width plus diameter), and feedback edge set number [29]. The problem was also shown
to be FPT on chordal graphs when parameterized by the treewidth [6].

2 Preliminaries

For an integer a, we let [a] = {1, . . . , a}.

Graph theory. We use standard graph-theoretic notation and refer the reader to [14] for
any undefined notation. For an undirected graph G, the sets V (G) and E(G) denote its set
of vertices and edges, respectively. Two vertices u, v ∈ V (G) are adjacent or neighbors if
(u, v) ∈ E(G). The open neighborhood of a vertex u ∈ V (G), denoted byN(u) := NG(u), is the
set of vertices that are neighbors of u. The closed neighborhood of a vertex u ∈ V (G) is denoted
by N [u] := NG[u] := NG(u) ∪ {u}. For any X ⊆ V (G) and u ∈ V (G), NX(u) = NG(u) ∩X.
Any two vertices u, v ∈ V (G) are true twins if N [u] = N [v], and are false twins if N(u) = N(v).
Observe that if u and v are true twins, then (u, v) ∈ E(G), but if they are only false twins,
then (u, v) ̸∈ E(G). For a subset S of V (G), we say that the vertices in S are true (false,
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respectively) twins if, for any u, v ∈ S, u and v are true (false, respectively) twins. The
distance between two vertices u, v ∈ V (G) in G, denoted by d(u, v) := dG(u, v), is the length
of a (u, v)-shortest path in G. For a subset S of V (G), we define N [S] =

⋃
v∈S N [v] and

N(S) = N [S] \ S. For a subset S of V (G), we denote the graph obtained by deleting S from
G by G− S. We denote the subgraph of G induced on the set S by G[S]. For a graph G, a
set X ⊆ V (G) is said to be a vertex cover if V (G) \ X is an independent set. We denote
by vc(G) the size of a minimum vertex cover in G. When G is clear from the context, we
simply say vc.

Metric Dimension and Geodetic Set. A subset of vertices S ⊆ V (G) resolves a pair of
vertices u, v ∈ V (G) if there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v). A subset of
vertices S ⊆ V (G) is a resolving set of G if it resolves all pairs of vertices u, v ∈ V (G). A
vertex u ∈ V (G) is distinguished by a subset of vertices S ⊆ V (G) if, for any v ∈ V (G) \ {u},
there exists a vertex w ∈ S such that d(w, u) ̸= d(w, v).

▶ Observation 3. Let G be a graph. For any (true or false) twins u, v ∈ V (G) and any
w ∈ V (G) \ {u, v}, d(u,w) = d(v, w), and so, for any resolving set S of G, S ∩ {u, v} ≠ ∅.

Proof. As w ∈ V (G) \ {u, v}, and u and v are (true or false) twins, the shortest (u,w)- and
(v, w)-paths contain a vertex of N := N(u) \ {v} = N(v) \ {u}, and d(u,w) = d(v, w). Hence,
any resolving set S of G contains at least one of u and v. ◀

A subset S ⊆ V (G) is a geodetic set if for every u ∈ V (G), the following holds: there exist
s1, s2 ∈ S such that u lies on a shortest path from s1 to s2. The following simple observation
is used throughout the paper. Recall that a vertex is simplicial if its neighborhood forms a
clique. Observe that any simplicial vertex v does not belong to any shortest path between
any pair x, y of vertices (both distinct from v). Hence, the following observation follows:

▶ Observation 4 ([10]). If a graph G contains a simplicial vertex v, then v belongs to any
geodetic set of G. Specifically, degree-1 vertex v belongs to any geodetic set of G.

Parameterized Complexity. An instance of a parameterized problem Π comprises an input
I, which is an input of the classical instance of the problem, and an integer ℓ, which is
called the parameter. A problem Π is said to be fixed-parameter tractable or in FPT if given
an instance (I, ℓ) of Π, we can decide whether or not (I, ℓ) is a Yes-instance of Π in time
f(ℓ) · |I|O(1), for some computable function f whose value depends only on ℓ.

A kernelization algorithm for Π is a polynomial-time algorithm that takes as input an
instance (I, ℓ) of Π and returns an equivalent instance (I ′, ℓ′) of Π, where |I ′|, ℓ′ ≤ f(ℓ),
where f is a function that depends only on the initial parameter ℓ. If such an algorithm
exists for Π, we say that Π admits a kernel of size f(ℓ). If f is a polynomial or exponential
function of ℓ, we say that Π admits a polynomial or exponential kernel, respectively. If Π is
a graph problem, then I contains a graph, say G, and I ′ contains a graph, say G′. In this
case, we say that Π admits a kernel with f(ℓ) vertices if the number of vertices of G′ is at
most f(ℓ).

It is typical to describe a kernelization algorithm as a series of reduction rules. A reduction
rule is a polynomial time algorithm that takes as an input an instance of a problem and
outputs another (usually reduced) instance. A reduction rule said to be applicable on an
instance if the output instance is different from the input instance. A reduction rule is safe
if the input instance is a Yes-instance if and only if the output instance is a Yes-instance.
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The Exponential Time Hypothesis roughly states that n-variable 3-SAT cannot be solved
in time 2o(n). For more on parameterized complexity and related terminologies, we refer the
reader to the recent book by Cygan et al. [12].

3-Partitioned-3-SAT. Our lower bound proofs consist of reductions from the 3-Partitioned-
3-SAT problem. This version of 3-SAT was introduced in [31] and is defined as follows.

3-Partitioned-3-SAT
Input: A formula ψ in 3-CNF form, together with a partition of the set of its variables
into three disjoint sets Xα, Xβ , Xγ , with |Xα| = |Xβ | = |Xγ | = n, and such that no
clause contains more than one variable from each of Xα, Xβ , and Xγ .
Question: Determine whether ψ is satisfiable.

The authors of [31] also proved the following.

▶ Proposition 5 ([31, Theorem 3]). Unless the ETH fails, 3-Partitioned-3-SAT does not
admit an algorithm running in time 2o(n).

3 Metric Dimension: Lower Bounds Regarding Vertex Cover

In this section, we first prove the following theorem.

▶ Theorem 6. There is an algorithm that, given an instance ψ of 3-Partitioned-3-SAT on
N variables, runs in time 2O(

√
N), and constructs an equivalent instance (G, k) of Metric

Dimension such that vc(G) + k = O(
√
N) (and |V (G)| = 2O(

√
N)).

The above theorem, along with the arguments that are standard to prove the ETH-based
lower bounds, immediately implies the following results.

▶ Corollary 7. Unless the ETH fails, Metric Dimension does not admit an algorithm
running in time 2o(vc2) · nO(1).

▶ Corollary 8. Unless the ETH fails, Metric Dimension does not admit a kernelization
algorithm that reduces the solution size k and outputs a kernel with 2o(k+vc) vertices.

Proof. (Proof assuming Theorem 6) For the sake of contradiction, assume that such a
kernelization algorithm exists. Consider the following algorithm for 3-SAT. Given a 3-SAT
formula on N variables, it uses Theorem 6 to obtain an equivalent instance of (G, k) such
that vc(G) + k = O(

√
N) and |V (G)| = 2O(

√
N). Then, it uses the assumed kernelization

algorithm to construct an equivalent instance (H, k′) such that H has 2o(vc(G)+k) vertices
and k′ ≤ k. Finally, it uses a brute-force algorithm, running in time |V (H)|O(k′), to
determine whether the reduced instance, or equivalently the input instance of 3-SAT,
is a Yes-instance. The correctness of the algorithm follows from the correctness of the
respective algorithms and our assumption. The total running time of the algorithm is
2O(

√
N) + (|V (G)| + k)O(1) + |V (H)|O(k′) = 2O(

√
N) + (2O(

√
N))O(1) + (2o(

√
N))O(

√
N) = 2o(N).

But this contradicts the ETH. ◀

Before presenting the reduction, we first introduce some preliminary tools.
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bit-rep(X)

bits(X)

nullifier(X)

X

xi

y*

according to bin(i)

H

G'

N(X)

bi°

bi*

bj°

bj*

Ai

Aj

bit-rep(B) bit-rep(A)

nullifier(B) nullifier(A)

AB

Figure 1 Set Identifying Gadget (left). The blue box represents bit-rep(X). The yellow lines
represent that all possible edges exist between bit-rep(X) and nullifier(X), nullifier(X) and N(X),
and y⋆ and X. Note that G′ is not necessarily restricted to the graph induced by the vertices in
X ∪N(X). Vertex Selector Gadget (right). For X ∈ {B,A}, the blue box represents bit-rep(X),
the blue link represents the connection with respect to the binary representation, and the yellow line
represents that nullifier(X) is adjacent to each vertex in the set. Dotted lines highlight absent edges.

3.1 Preliminary Tools

3.1.1 Set Identifying Gadget
We redefine a gadget we introduced in [19]. Suppose that we are given a graph G′ and a
subset X ⊆ V (G′) of its vertices. Further, suppose that we want to add a vertex set X+ to
G′ in order to obtain a new graph G with the following properties. We want that each vertex
in X ∪X+ will be distinguished by vertices in X+ that must be in any resolving set S of G,
and no vertex in X+ can resolve any “critical pair” of vertices in V (G) (critical pairs will be
defined in the next subsection).

The graph induced by the vertices of X+, along with the edges connecting X+ to G′, is
referred to as the Set Identifying Gadget for the set X [19].

Given a graph G′ and a non-empty subset X ⊆ V (G′) of its vertices, to construct such a
graph G, we add vertices and edges to G′ as follows:

The vertex set X+ that we are aiming to add is the union of a set bit-rep(X) and a special
vertex denoted by nullifier(X).
First, let X = {xi | i ∈ [|X|]}, and set q := ⌈log(|X| + 2)⌉ + 1. We select this value for q
to (1) uniquely represent each integer in [|X|] by its bit-representation in binary (note
that we start from 1 and not 0), (2) ensure that the only vertex whose bit-representation
contains all 1’s is nullifier(X), and (3) reserve one spot for an additional vertex y⋆.
For every i ∈ [q], add three vertices ya

i , yi, y
b
i , and add the path (ya

i , yi, y
b
i ).

Add three vertices ya
⋆ , y⋆, y

b
⋆, and add the path (ya

⋆ , y⋆, y
b
⋆). Add all the edges to make

{yi | i ∈ [q]} ∪ {y⋆} into a clique. Make y⋆ adjacent to each vertex v ∈ X. We denote
bit-rep(X) = {yi, y

a
i , y

b
i | i ∈ [q]} ∪ {y⋆, y

a
⋆ , y

b
⋆} and its subset bits(X) = {ya

i , y
b
i | i ∈

[q]} ∪ {ya
⋆ , y

b
⋆} for convenience in a later case analysis.

For every integer j ∈ [|X|], let bin(j) denote the binary representation of j using q bits.
Connect xj with yi if the ith bit (going from left to right) in bin(j) is 1.
Add a vertex, denoted by nullifier(X), and make it adjacent to every vertex in {yi |
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i ∈ [q]} ∪ {y⋆}. One can think of the vertex nullifier(X) as the only vertex whose
bit-representation contains all 1’s.
For every vertex u ∈ V (G) \ (X ∪ X+) such that u is adjacent to some vertex in X,
add an edge between u and nullifier(X). We add this vertex to ensure that vertices in
bit-rep(X) do not resolve critical pairs in V (G).

This completes the construction of G. The properties of G are not proven yet, but just given
as an intuition behind its construction. See Figure 1 for an illustration.

3.1.2 Gadget to Add Critical Pairs
Any resolving set needs to resolve all pairs of vertices in the input graph. As we will see, some
pairs, which we call critical pairs, are harder to resolve than others. In fact, the non-trivial
part will be to resolve all of the critical pairs.

Suppose that we need to have many critical pairs in a graph G, say ⟨c◦
i , c

⋆
i ⟩ for every

i ∈ [m] for some m ∈ N. Define C := {c◦
i , c

⋆
i | i ∈ [m]}. We then add bit-rep(C) and

nullifier(C) as mentioned above (taking C as the set X), but the connection across {c◦
i , c

⋆
i }

and bit-rep(C) is defined by bin(i), i.e., connect both c◦
i and c⋆

i with the j-th vertex of
bit-rep(C) if the jth digit (going from left to right) in bin(i) is 1. Hence, bit-rep(C) can
resolve any pair of the form ⟨c◦

i , c
⋆
ℓ ⟩, ⟨c◦

i , c
◦
ℓ ⟩, or ⟨c⋆

i , c
⋆
ℓ ⟩ as long as i ≠ ℓ. As before, bit-rep(C)

can also resolve all pairs with one vertex in C ∪ bit-rep(C) ∪ {nullifier(C)}, but no critical
pair of vertices. Again, when these facts will be used, they will be proven formally.

3.1.3 Vertex Selector Gadgets
Suppose that we are given a collection of sets A1, A2, . . . , Aq of vertices in a graph G, and
we want to ensure that any resolving set of G includes at least one vertex from Ai for every
i ∈ [q]. In the following, we construct a gadget that achieves a slightly weaker objective.

Let A =
⋃

i∈[q]
Ai. Add a set identifying gadget for A as mentioned in Subsection 3.1.1.

For every i ∈ [q], add two vertices b◦
i and b⋆

i . Use the gadget mentioned in Subsection 3.1.2
to make all the pairs of the form ⟨b◦

i , b
⋆
i ⟩ critical pairs.

For every a ∈ Ai, add an edge (a, b◦
i ). We highlight that we do not make a adjacent

to b⋆
i by a dotted line in Figure 1. Also, add the edges (a, nullifier(B)), (b◦

i , nullifier(A)),
(b⋆

i , nullifier(A)), and (nullifier(A), nullifier(B)).
This completes the construction.

Note that the only vertices that can resolve a critical pair ⟨b◦
i , b

⋆
i ⟩, apart from b◦

i and b⋆
i ,

are the vertices in Ai. Hence, every resolving set contains at least one vertex in {b◦
i , b

⋆
i } ∪Ai.

Again, when used, these facts will be proven formally.

3.2 Reduction
Consider an instance ψ of 3-Partitioned-3-SAT with Xα, Xβ , Xγ the partition of the
variable set. By adding dummy variables in each of these sets, we can assume that

√
n is an

integer. From ψ, we construct the graph G as follows. We describe the construction of Xα,
with the constructions for Xβ and Xγ being analogous. We rename the variables in Xα to
xα

i,j for i, j ∈ [
√
n].

We partition the variables of Xα into buckets Xα
1 , X

α
2 , . . . , X

α√
n

such that each bucket
contains

√
n many variables. Let Xα

i = {xα
i,j | j ∈ [

√
n]} for all i ∈ [

√
n].
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For every Xα
i , we construct the set Aα

i of 2
√

n new vertices, Aα
i = {aα

i,ℓ | ℓ ∈ [2
√

n]}. Each
vertex in Aα

i corresponds to a certain possible assignment of variables in Xα
i . Let Aα be

the collection of all the vertices added in the above step. Formally, Aα = {aα
i,ℓ ∈ Ai| i ∈

[
√
n] and ℓ ∈ [2

√
n]}. We add a set identifying gadget as mentioned in Subsection 3.1.1

in order to resolve every pair of vertices in Aα.
For every Xα

i , we construct a pair ⟨bα,◦
i , bα,⋆

i ⟩ of vertices. Then, we add a gadget to
make the pairs {⟨bα,◦

i , bα,⋆
i ⟩ | i ∈ [

√
n]} critical as mentioned in Subsection 3.1.2. Let

Bα = {bα,◦
i , bα,⋆

i | i ∈ [
√
n]} be the collection of vertices in the critical pairs. We add

edges in Bα to make it a clique.
We would like that any resolving set contains at least one vertex in Aα

i for every i ∈ [
√
n],

but instead we add the construction from Subsection 3.1.3 that achieves the slightly
weaker objective as mentioned there. However, for every Aα

i , instead of adding two new
vertices, we use ⟨bα,◦

i , bα,⋆
i ⟩ as the necessary critical pair. Formally, for every i ∈ [

√
n], we

make bα,◦
i adjacent to every vertex in Aα

i . We add edges to make nullifier(Bα) adjacent
to every vertex in Aα, and nullifier(Aα) adjacent to every vertex in Bα. Recall that there
is also the edge (nullifier(Bα), nullifier(Aα)).
We add portals that transmit information from vertices corresponding to assignments, i.e.,
vertices in Aα, to critical pairs corresponding to clauses, i.e., vertices in C which we define
soon. A portal is a clique on

√
n vertices in the graph G. We add three portals, the truth

portal (denoted by Tα), false portal (denoted by Fα), and validation portal (denoted by
V α). Let Tα = {tα1 , tα2 , . . . , tα√n

}, Fα = {fα
1 , f

α
2 , . . . , f

α√
n
}, and V α = {vα

1 , v
α
2 , . . . , v

α√
n
}.

Moreover, let Pα = V α ∪ Tα ∪ Fα.
We add a set identifying gadget to Pα as mentioned in Subsection 3.1.1. We add an edge
between nullifier(Aα) and every vertex of Pα; and the edge (nullifier(Pα), nullifier(Aα)).
However, we note that we do not add edges across nullifier(Pα) and Aα, as can be seen
in Figure 2. Lastly, we add edges in Pα to make it a clique.
We add edges across Aα and the portals as follows. For i ∈ [

√
n] and ℓ ∈ [2

√
n],

consider a vertex aα
i,ℓ in Aα

i . Recall that this vertex corresponds to an assignment
π : Bα

i 7→ {True, False}, where Bα
i is the collection of variables {xα

i,j | j ∈ [
√
n]}. If

π(xα
i,j) = True, then we add the edge (aα

i,ℓ, t
α
j ). Otherwise, π(xα

i,j) = False, and we add
the edge (aα

i,ℓ, f
α
j ). We add the edge (aα

i,ℓ, v
α
i ) for every ℓ ∈ [2

√
n].

Then, we repeat the above steps to construct Bβ , Aβ , P β , Bγ , Aγ , P γ .
Now, we are ready to proceed through the final steps to complete the construction.
For every clause Cq in ψ, we introduce a pair of vertices ⟨c◦

q , c
⋆
q⟩. Let C be the collection

of vertices in such pairs. Then, we add a gadget as was described in Subsection 3.1.2 to
make each pair ⟨c◦

q , c
⋆
q⟩ a critical one.

We add edges across C and the portals as follows for each δ ∈ {α, β, γ}. Consider a
clause Cq in ψ and the corresponding critical pair ⟨c◦

q , c
⋆
q⟩ in C. As ψ is an instance of

3-Partitioned-3-SAT, there is at most one variable in Xδ that appears in Cq. Suppose
that variable is xδ

i,j for some i, j ∈ [
√
n]. The first subscript decides the edges across

⟨c◦
q , c

⋆
q⟩ and the validation portal, whereas the second subscript decides the edges across

⟨c◦
q , c

⋆
q⟩ and either the truth portal or false portal in the following sense. If xδ

i,j appears in
Cq, then we add all edges of the form (vδ

i′ , c◦
q) and (vδ

i′ , c⋆
q) for every i′ ∈ [

√
n] such that

i′ ̸= i. If xδ
i,j appears as a positive literal in Cq, then we add the edge (tδj , c◦

q). If xδ
i,j

appears as a negative literal in Cq, then we add the edge (fδ
j , c

◦
q). Note that if Cq does

not contain a variable in Xδ, then we make c◦
q and c⋆

q adjacent to every vertex in V δ,
whereas they are not adjacent to any vertex in T δ ∪ F δ. Finally, we add an edge between
nullifier(P δ) and every vertex of C, and we add the edge (nullifier(P δ), nullifier(C)).
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bi°bi*

b1°b1*

b√n°b√n*

Tα

Pα

Fα

Aα

A1
α

A√n
α

Ai
α

Bα

nullifier(Bα)

nullifier(Aα) nullifier(Pα)

nullifier(С)

bit-rep(С)

bit-rep(Pα)bit-rep(Aα)

bit-rep(Bα)

Vα

C

cq°

cq*

Figure 2 Overview of the reduction. Sets with elliptical (rectangular, resp.) boundaries are
independent sets (cliques, resp.). For X ∈ {Bα, Aα, Pα, C}, the blue rectangle attached to it via
the blue edge represents bit-rep(X). We omit bits(X) for legibility. The yellow line represents that
nullifier(X) is connected to every vertex in the set. Note the exception of nullifier(Pα) which is
not adjacent to any vertex in Aα. Purple lines across two sets denote adjacencies with respect to
indexing, i.e., bα,◦

i is adjacent only with all the vertices in Aα
i , and all the vertices in Aα

i are adjacent
with vα

i in validation portal V α. Gray lines also indicate adjacencies with respect to indexing, but in
a complementary way. If Cq contains a variable in Bα

i , then c◦
q and c⋆

q are adjacent with all vertices
vα

j ∈ V α such that j ̸= i. Green and red lines across the Aα and Tα and Fα roughly transfer, for
each aα

i,ℓ ∈ Aα, the underlying assignment structure. If the jth variable by aα
i,ℓ is assigned to True,

then we add the green edge (aα
i,ℓ, t

α
j ), and otherwise the red edge (aα

i,ℓ, f
α
j ). Similarly, we add edges

for each c◦
i ∈ C depending on the assignment satisfying the variable from the part Xδ of a clause ci,

and in which block Bδ
j it lies, putting either an edge (c◦

i , t
δ
j) or (c◦

i , f
δ
j ) accordingly (δ ∈ {α, β, γ}).

This concludes the construction of G. The reduction returns (G, k) as an instance of
Metric Dimension where

k = 3 ·
(√
n+ (⌈log(|Bα|/2 + 2)⌉ + 1) + (⌈log(|Aα| + 2)⌉ + 1) + (⌈log(|Pα| + 2)⌉ + 1)

)
+

⌈log(|C| + 2)⌉ + 1.

We give an informal description of the proof of correctness here. See Figure 3. Suppose√
n = 3 and the vertices in the sets are indexed from top to bottom. For the sake of clarity,

we do not show all the edges and only show 4 out of 8 vertices in each Aα
i for i ∈ [3]. We

also omit bit-rep and nullifier for these sets. The vertex selection gadget and the budget k
ensure that exactly one vertex in {bα,◦

i , bα,⋆
i } ∪Aα

i is selected for every i ∈ [3]. If a resolving
set contains a vertex from Aα

i , then it corresponds to selecting an assignment of variables in
Xα

i . For example, the vertex aα
2,2 corresponds to the assignment π : Xα

2 7→ {True, False}.
Suppose Xα

2 = {xα
2,1, x

α
2,2, x

α
2,3}, π(xα

2,1) = π(xα
2,3) = True, and π(xα

2,2) = False. Hence, aα
2,2

is adjacent to the first and third vertex in the truth portal Tα, whereas it is adjacent with
the second vertex in the false portal Fα. Suppose the clause Cq contains the variable xα

2,1 as
a positive literal. Note that c◦

q and c⋆
q are at distance 2 and 3, respectively, from aα

2,2. Hence,
the vertex aα

2,2, corresponding to the assignment π that satisfies clause Cq, resolves the
critical pair ⟨c◦

q , c
⋆
q⟩. Now, suppose there is another assignment σ : Xα

3 7→ {True, False} such
that σ(xα

3,1) = σ(xα
3,3) = True and σ(xα

3,2) = False. As ψ is an instance of 3-Partitioned-
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C

cq°

cq*

b2°b2*

Vα

Tα

Fα

Aα

A1
α

A3
α

A2
α

Bα
π

σ

Figure 3 A toy example to illustrate the core ideas in the reduction. Note that bit-rep and nullifier
are omitted for the sets.

3-SAT and Cq contains a variable in Xα
2 (⊆ Xα), Cq does not contain a variable in Xα

3
(⊆ Xα). Hence, σ does not satisfy Cq. Let aα

3,2 be the vertex in Xα
3 corresponding to σ. The

connections via the validation portal V α ensure that both c◦
q and c⋆

q are at distance 2 from
aα

3,2, and hence, aα
3,2 cannot resolve the critical pair ⟨c◦

q , c
⋆
q⟩. Hence, finding a resolving set in

G corresponds to finding a satisfying assignment for ψ. These intuitions are formalized in
the following subsection.

3.3 Correctness of the Reduction
Suppose, given an instance ψ of 3-Partitioned-3-SAT, that the reduction of this subsection
returns (G, k) as an instance of Metric Dimension. We first prove the following lemma
which will be helpful in proving the correctness of the reduction.

▶ Lemma 9. For any resolving set S of G and for all X ∈ {Bδ, Aδ, P δ, C} and δ ∈ {α, β, γ},
1. S contains at least one vertex from each pair of false twins in bits(X).
2. Vertices in bits(X) ∩ S resolve any non-critical pair of vertices ⟨u, v⟩ when u ∈ X ∪X+

and v ∈ V (G).
3. Vertices in X+ ∩ S cannot resolve any critical pair of vertices ⟨bδ′,◦

i , bδ′,⋆
i ⟩ nor ⟨c◦

q , c
⋆
q⟩ for

all i ∈ [
√
n], δ′ ∈ {α, β, γ}, and q ∈ [m].

Proof. 1. By Observation 3, the statement follows for all X ∈ {Bδ, Aδ, P δ, C} and δ ∈
{α, β, γ}.

2. For all X ∈ {Bδ, Aδ, P δ, C} and δ ∈ {α, β, γ}, note that nullifier(X) is distinguished by
bits(X) since it is the only vertex in G that is at distance 2 from every vertex in bits(X).
We now do a case analysis for the remaining non-critical pairs of vertices ⟨u, v⟩ assuming
that nullifier(X) /∈ {u, v} (also, suppose that both u and v are not in S, as otherwise,
they are obviously distinguished):
Case i: u, v ∈ X ∪ X+.

Case i(a): u, v ∈ X or u, v ∈ bit-rep(X) \ bits(X). In the first case, let j be the
digit in the binary representation of the subscript of u that is not equal to the jth

digit in the binary representation of the subscript of v (such a j exists since ⟨u, v⟩
is not a critical pair). In the second case, without loss of generality, let u = yi
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and v = yj . By the first item of the statement of the lemma (1.), without loss of
generality, ya

j ∈ S ∩ bits(X). Then, in both cases, d(ya
j , u) ̸= d(ya

j , v).
Case i(b): u ∈ X and v ∈ bit-rep(X). Without loss of generality, ya

⋆ ∈ S ∩ bits(X)
(by 1.). Then, d(ya

⋆ , u) = 2 and, for all v ∈ bits(X) \ {yb
⋆}, d(ya

⋆ , v) = 3. Without
loss of generality, let yi be adjacent to u and let ya

i ∈ S ∩ bits(X) (by 1.). Then, for
v = yb

⋆, 3 = d(ya
i , v) ̸= d(ya

i , u) = 2. If v ∈ bit-rep(X) \ bits(X), then, without loss
of generality, v = yj and ya

j ∈ S ∩ bits(X) (by 1.), and 1 = d(ya
j , v) < d(ya

j , u).
Case i(c): u, v ∈ bits(X). Without loss of generality, u = yb

i and ya
i ∈ S (by 1.).

Then, 2 = d(ya
i , u) ̸= d(ya

i , v) = 3.
Case i(d): u ∈ bits(X) and v ∈ bit-rep(X) \ bits(X). Without loss of generality,
v = yi and ya

i ∈ S (by 1.). Then, 1 = d(ya
i , v) < d(ya

i , u).
Case ii: u ∈ X ∪ X+ and v ∈ V (G) \ (X ∪ X+). For each u ∈ X∪X+, there exists
w ∈ bits(X) ∩ S such that d(u,w) ≤ 2, while, for each v ∈ V (G) \ (X ∪ X+) and
w ∈ bits(X) ∩ S, we have d(v, w) ≥ 3.

3. For all X ∈ {Bδ, Aδ, P δ}, δ ∈ {α, β, γ}, u ∈ X+, v ∈ {c◦
q , c

⋆
q}, and q ∈ [m], we have

that d(u, v) = d(u, nullifier(P δ)) + 1. Further, for X = C and all u ∈ X+ and q ∈ [m],
either d(u, c◦

q) = d(u, c⋆
q) = 1, d(u, c◦

q) = d(u, c⋆
q) = 2, or d(u, c◦

q) = d(u, c⋆
q) = 3 by the

construction in Subsection 3.1.2 and since bit-rep(X) \ bits(X) is a clique. Hence, for
all X ∈ {Bδ, Aδ, P δ, C} and δ ∈ {α, β, γ}, vertices in X+ ∩ S cannot resolve a pair of
vertices ⟨c◦

q , c
⋆
q⟩ for any q ∈ [m].

For all δ ∈ {α, β, γ}, if v ∈ Bδ, then, for all X ∈ {Bδ′
, Aδ′

, P δ′
, C}, δ′ ∈ {α, β, γ}

such that δ ̸= δ′, and u ∈ X+, we have that d(u, v) = d(u, nullifier(Aδ)) + 1. Similarly,
for all δ ∈ {α, β, γ}, if v ∈ Bδ, then, for all X ∈ {Aδ, P δ} and u ∈ X+, we have
that d(u, v) = d(u, nullifier(Aδ)) + 1. Lastly, for each ⟨bδ,◦

i , bδ,⋆
i ⟩, δ ∈ {α, β, γ}, and

i ∈ [
√
n], if X = Bδ, then, for all u ∈ X+, either d(u, bδ,◦

i ) = d(u, bδ,⋆
i ) = 1, d(u, bδ,◦

i ) =
d(u, bδ,⋆

i ) = 2, or d(u, bδ,◦
i ) = d(u, bδ,⋆

i ) = 3 by the construction in Subsection 3.1.2 and
since bit-rep(X) \ bits(X) is a clique. ◀

▶ Lemma 10. If ψ is a satisfiable 3-Partitioned-3-SAT formula, then G admits a resolving
set of size k.

Proof. Suppose π : Xα ∪ Xβ ∪ Xγ 7→ {True, False} is a satisfying assignment for ψ. We
construct a resolving set S of size k for G using this assignment.

Initially, set S = ∅. For every δ ∈ {α, β, γ} and i ∈ [
√
n], consider the assignment

π restricted to the variables in Xδ
i . By the construction, there is a vertex in Aδ

i that
corresponds to this assignment. Include that vertex in S. For each X ∈ {Bδ, Aδ, P δ, C},
where δ ∈ {α, β, γ}, we add one vertex from each pair of the false twins in bits(X) to S.
Note that |S| = k and that every vertex in S is distinguished by itself.

In the remaining part of the proof, we show that S is a resolving set of G. First, we prove
that all critical pairs are resolved by S in the following claim.

▷ Claim 11. All critical pairs are resolved by S.

Proof. For each i ∈ [
√
n] and δ ∈ {α, β, γ}, the critical pair ⟨bδ,◦

i , bδ,⋆
i ⟩ is resolved by the

vertex S ∩ Aδ
i by the construction. For each q ∈ [m], the clause Cq is satisfied by the

assignment π. Thus, there is a variable x in Cq that satisfies Cq according to π. Suppose
that x ∈ Xδ

i . Let aδ
i,ℓ be the vertex in Aδ

i corresponding to π. Then, by the construction,
d(aδ

i,ℓ, c
◦
q) = 2 < 3 = d(aδ

i,ℓ, c
⋆
q). Thus, every critical pair ⟨c◦

q , c
⋆
q⟩ is resolved by S. ◁

Then, every vertex pair in V (G) is resolved by S by Claim 11 in conjunction with the
second item of the statement of Lemma 9. ◀
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▶ Lemma 12. If G admits a resolving set of size k, then ψ is a satisfiable 3-Partitioned-
3-SAT formula.

Proof. Assume that G admits a resolving set S of size k. First, we prove some properties
regarding S. By the first item of the statement of Lemma 9, for each δ ∈ {α, β, γ}, we have
that

|S ∩ bits(Aδ)| ≥ ⌈log(|Aδ| + 2)⌉ + 1, |S ∩ bits(P δ)| ≥ ⌈log(|P δ| + 2)⌉ + 1,
|S ∩ bits(Bδ)| ≥ ⌈log(|Bδ|/2 + 2)⌉ + 1, |S ∩ bits(C)| ≥ ⌈log(|C| + 2)⌉ + 1.

Hence, any resolving set S of G already has size at least

3·((⌈log(|Bα|/2 + 2)⌉ + 1) + (⌈log(|Aα| + 2)⌉ + 1) + (⌈log(|Pα| + 2)⌉ + 1))+⌈log(|C|+2)⌉+1.

Now, for each δ ∈ {α, β, γ} and i ∈ [
√
n], consider the critical pair ⟨bδ,◦

i , bδ,⋆
i ⟩. By

the construction mentioned in Subsection 3.1.2, only v ∈ Aδ
i ∪ {bδ,◦

i , bδ,⋆
i } resolves a pair

⟨bδ,◦
i , bδ,⋆

i ⟩. Indeed, for all X ∈ {Bδ′
, Aδ′

, P δ′
, C} and δ′ ∈ {α, β, γ}, no vertex in X+

can resolve such a pair by the third item of the statement of Lemma 9. Also, for all
X ∈ {Aδ′′

, P δ′
, C}, δ′ ∈ {α, β, γ}, δ′′ ∈ {α, β, γ} such that δ ̸= δ′′, and u ∈ X, we have that

d(u, bδ,◦
i ) = d(u, bδ,⋆

i ) = d(u, nullifier(Aδ))+1. Furthermore, for any a ∈ Aδ
j with j ∈ [

√
n] such

that i ̸= j, we have that d(a, bδ,◦
i ) = d(a, bδ,⋆

i ) = 2 by construction and since Bδ is a clique.
Hence, since any resolving set S of G of size at most k can only admit at most another 3

√
n

vertices, we get that equality must in fact hold in every one of the aforementioned inequalities,
and any resolving set S of G of size at most k contains one vertex from Aδ

i ∪ {bδ,◦
i , bδ,⋆

i } for
all i ∈ [

√
n] and δ ∈ {α, β, γ}. Hence, any resolving set S of G of size at most k is actually

of size exactly k.
Next, for each δ ∈ {α, β, γ}, we construct an assignment π : Xα ∪ Xβ ∪ Xγ 7→

{True, False} in the following way. If aδ
i,ℓ ∈ S and π′ : Xδ

i → {True, False} corresponds to
the underlying assignment of aδ

i,ℓ for the variables in Xδ
i , then let π : Xδ

i → {True, False} :=
π′ for each i ∈ [

√
n] and δ ∈ {α, β, γ}. If S ∩ Aδ

i = ∅, then one of bδ,◦
i , bδ,⋆

i is in S, and we
can use an arbitrary assignment of the variables in the bucket Xδ

i .
We contend that the constructed assignment π satisfies every clause in C. Since S is a

resolving set, it follows that, for every clause cq ∈ C, there exists v ∈ S such that d(v, c◦
q) ̸=

d(v, c⋆
q). Notice that, for any v in bits(Aδ), bits(Bδ), bits(P δ) for any δ ∈ {α, β, γ} or in bits(C),

we have d(v, c◦
q) = d(v, c⋆

q) by the third item of the statement of Lemma 9. Further, for any
v ∈ Bδ and any δ ∈ {α, β, γ}, we have that d(v, c◦

q) = d(v, c⋆
q) = d(v, nullifier(P δ)) + 1. Thus,

v ∈ S ∩
⋃

δ∈{α,β,γ}
Aδ. Without loss of generality, suppose that c◦

q and c⋆
q are resolved by aα

i,ℓ.

So, d(aα
i,ℓ, c

◦
q) ̸= d(aα

i,ℓ, c
⋆
q). By the construction, the only case where d(aα

i,ℓ, c
◦
q) ̸= d(aα

i,ℓ, c
⋆
q)

is when Cq contains a variable x ∈ Xα
i and π(x) satisfies Cq. Thus, we get that the clause

Cq is satisfied by the assignment π.
Since S resolves all pairs ⟨c◦

q , c
⋆
q⟩ in V (G), then the assignment π constructed above

indeed satisfies every clause cq, completing the proof. ◀

Proof of Theorem 6. The proof of Proposition 5, relies on the fact that there is a polynomial-
time reduction from 3-SAT to 3-Partitioned-3-SAT that increases the number of variables
and clauses by a constant factor. In Subsection 3.2, we presented a reduction that takes an
instance ψ of 3-Partitioned-3-SAT and returns an equivalent instance (G, k) of Metric
Dimension (by Lemmas 10 and 12) in 2O(

√
n) time. Note that V (G) = 2O(

√
n). Further,

note that taking all the vertices in Bδ, P δ, and bit-rep(X) for all X ∈ {Bδ, Aδ, P δ, C} and
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δ ∈ {α, β, γ}, results in a vertex cover of G. Hence,

vc(G) ≤ 3 · ((⌈log(|Bα|/2 + 2)⌉ + 1) + (⌈log(|Aα| + 2)⌉ + 1) + (⌈log(|Pα| + 2)⌉ + 1)) +
3 · (|Bα| + |Pα|) + (⌈log(|C| + 2)⌉ + 1) = O(

√
n).

Lastly, the metric dimension of G is at most

k = 3 ·
(√
n+ (⌈log(|Bα|/2 + 2)⌉ + 1) + (⌈log(|Aα| + 2)⌉ + 1) + (⌈log(|Pα| + 2)⌉ + 1)

)
+

(⌈log(|C| + 2)⌉ + 1) = O(
√
n).

Thus, vc(G) + k = O(
√
n). ◀

4 Geodetic Set: Lower Bounds Regarding Vertex Cover

In this section, we follow the same template as in Section 3 and first prove the following
theorem.

▶ Theorem 13. There is an algorithm that, given an instance ψ of 3-Partitioned-3-SAT on
N variables, runs in time 2O(

√
N), and constructs an equivalent instance (G, k) of Geodetic

Set such that vc(G) + k = O(
√
N) (and |V (G)| = 2O(

√
N)).

The proofs of the following two corollaries are analogous to the ones in the previous
section.

▶ Corollary 14. Unless the ETH fails, Geodetic Set does not admit an algorithm running
in time 2o(vc2) · nO(1).

▶ Corollary 15. Unless the ETH fails, Geodetic Set does not admit a kernelization
algorithm that reduces the solution size k and outputs a kernel with 2o(k+vc) vertices.

4.1 Reduction
Consider an instance ψ of 3-Partitioned-3-SAT with Xα, Xβ , Xγ the partition of the
variable set, where |Xα| = |Xβ | = |Xγ | = n. By adding dummy variables in each of these
sets, we can assume that

√
n is an integer. Further, let C = {C1, . . . , Cm} be the set of all

the clauses of ψ. From ψ, we construct the graph G as follows. We describe the first part of
the construction for Xα, with the constructions for Xβ and Xγ being analogous. We rename
the variables in Xα to xα

i,j for i, j ∈ [
√
n].

We partition the variables of Xα into buckets Xα
1 , X

α
2 , . . . , X

α√
n

such that each bucket
contains

√
n many variables. Let Xα

i = {xα
i,j | j ∈ [

√
n]} for all i ∈ [

√
n].

For every bucket Xα
i , we add an independent set Aα

i of 2
√

n new vertices, and we add
two isolated edges (aα

i,1, b
α
i,1) and (aα

i,2, b
α
i,2). Let Bα = {aα

i,j , b
α
i,j | i ∈ [

√
n], j ∈ {1, 2}}.

For all i ∈ [
√
n] and u ∈ Aα

i , we make both aα
i,1 and aα

i,2 adjacent to u (see Figure 4).
Each vertex in Aα

i corresponds to a certain possible assignment of variables in Xα
i .

Then, we add three independent sets Tα, Fα, and V α on
√
n vertices each: Tα = {tαi |

i ∈ [
√
n]}, Fα = {fα

i | i ∈ [
√
n]}, and V α = {vα

i | i ∈ [
√
n]}.

For each i ∈ [
√
n], we connect vα

i with all the vertices in Aα
i .

For each i ∈ [
√
n], we add a special vertex gα

i (also referred to as a g-vertex later on) that
is adjacent to each vertex in Tα ∪ Fα. Further, gα

i is also adjacent to both aα
i,1 and aα

i,2
(see Figure 4).
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α
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g1
α
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α

g√n
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Figure 4 Overview of the reduction. Sets with elliptical boundaries are independent sets, and
sets with rectangular boundaries are cliques. For each δ ∈ {α, β, γ}, the sets V δ and U almost
form a complete bipartite graph modulo the matching (marked by dotted edges), which is excluded.
Yellow lines from a vertex to a set denote that this vertex is connected to all the vertices in that
set. The green and red lines across the Aα

i and Tα ∪ Fα transfer, in some sense, for each w ∈ Aα
i ,

the underlying assignment structure. If an underlying assignment w sets the jth variable to True,
then we add the green edge (w, tαj ), and otherwise, we add the red edge (w, fα

j ). For all q ∈ [m]
and δ ∈ {α, β, γ}, let xδ

i,j be the variable in Xδ that is contained in the clause Cq in ψ. So, for all
q ∈ [m], if assigning True (False, respectively) to xδ

i,j satisfies Cq, then we add the edge (cq, t
δ
j)

((cq, f
δ
j ), respectively).

This finishes the first part of the construction. The second step is to connect the three
previously constructed parts for Xα, Xβ , and Xγ .

We introduce a vertex set U = {ui | i ∈ [
√
n]} that forms a clique. Then, for each ui,

we add an edge to a new vertex u′
i. Thus, we have a matching {(ui, u

′
i) | i ∈ [

√
n]}. Let

U ′ = {u′
i | i ∈ [

√
n]}.

For each δ ∈ {α, β, γ}, we make it so that the vertices of U ∪ V δ form almost a complete
bipartite graph, i.e., E(G) contains edges between all pairs ⟨v, w⟩ where v ∈ U and
w ∈ V δ, except for the matching {(vδ

i , ui) | i ∈ [
√
n]}.

For each δ ∈ {α, β, γ} and i ∈ [
√
n], we make gδ

i adjacent to each vertex in U .

For each Cq ∈ C, we add a new vertex cq. Let C = {cq | q ∈ [m]}. Since we are
considering an instance of 3-Partitioned-3-SAT, for each δ ∈ {α, β, γ}, there is exactly
one variable in Cq that lies in Xδ

i , and, without loss of generality, let it be xδ
i,j . Then, we

make cq adjacent to ui. Finally, if xδ
i,j = True (xδ

i,j = False, respectively) satisfies Cq,
then (cq, t

δ
j) ∈ E(G) ((cq, f

δ
j ) ∈ E(G), respectively).

This concludes the construction of G. The reduction returns (G, k) as an instance of
Geodetic Set where k = 10

√
n.
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4.2 Correctness of the Reduction
Suppose, given an instance ψ of 3-Partitioned-3-SAT, that the reduction above returns
(G, k) as an instance of Geodetic Set. We first prove the following lemmas which will be
helpful in proving the correctness of the reduction, and note that we use distances between
vertices to prove that certain vertices are not contained in shortest paths.

▶ Lemma 16. For all δ, δ′ ∈ {α, β, γ}, the shortest paths between any two vertices in
Bδ ∪ U ∪ U ′ do not cover any vertices in C nor V δ′′ .

Proof. Since, for all i ∈ [
√
n], j ∈ {1, 2}, and δ ∈ {α, β, γ}, the shortest path from bδ

i,j (u′
i,

respectively) to any other vertex in G first passes through aδ
i,j (ui, respectively), it suffices

to prove the statement of the lemma for the shortest paths between any two vertices in
U ∪ (Bδ \ {bδ

i,j | i ∈ [
√
n], j ∈ {1, 2}}).

For all i ∈ [
√
n], j ∈ {1, 2}, and δ, δ′ ∈ {α, β, γ}, we have d(aδ

i,1, a
δ
i,2) = 2 and d(aδ

i,j , w) ≥ 2
for all w ∈ V δ′ ∪ C. For all i, i′ ∈ [

√
n], j, j′ ∈ {1, 2}, and δ, δ′, δ′′ ∈ {α, β, γ} such that

i ≠ i′ and/or δ ̸= δ′ (i.e., we are not in the previous case), we have d(aδ
i,j , a

δ′

i′,j′) = 4,
d(aδ

i,j , w) = d(aδ′

i′,j′ , w) = 3 for all w ∈ C, and, for any w′ ∈ V δ′′ , we have d(aδ
i,j , w

′) ≥ 2,
d(aδ′

i′,j′ , w′) ≥ 2, and 3 ∈ {d(aδ
i,j , w

′), d(aδ′

i′,j′ , w′)}. Further, for any i, i′ ∈ [
√
n] with

i ̸= i′, d(ui, ui′) = 1. Lastly, for all i, i′ ∈ [
√
n], j ∈ {1, 2}, and δ, δ′ ∈ {α, β, γ}, we have

d(aδ
i,j , ui′) = 2, while d(aδ

i,j , w) ≥ 2 for all w ∈ V δ′ ∪ C. Hence, the vertices in C and V δ′

are not covered by any shortest path between any of these pairs. ◀

▶ Lemma 17. For all i ∈ [
√
n] and δ ∈ {α, β, γ}, vδ

i can only be covered by a shortest path
from a vertex in Aδ

i ∪ {vδ
i } to another vertex in G.

Proof. As stated in the proof of Lemma 16, we do not need to consider any shortest path
with an endpoint that is a degree-1 vertex. First, we show that vδ

i cannot be covered by a
shortest path with one endpoint in U and the other not in Aδ

i ∪ {vδ
i }. To cover this case,

by Lemma 16, we just need to consider all shortest paths between a vertex w ∈ U and any
other vertex z ∈ V (G) \ (U ∪ U ′ ∪ Bα ∪ Bβ ∪ Bγ ∪ Aδ

i ∪ {vδ
i }). Note that d(z, vδ

i ) ≥ 2),
and so, if d(w, z) ≤ 2, then vδ

i is not covered by the pair ⟨w, z⟩. Further, d(w,w′) ≤ 3 for
all w′ ∈ V (G), and, for all z′ ∈ V (G) such that d(w, z′) = 3, we have that d(z′, vδ

i ) ≥ 3.
Hence, vδ

i cannot be covered by a shortest path with one endpoint in U and the other not in
Aδ

i ∪ {vδ
i }.

For all i ∈ [
√
n] and δ ∈ {α, β, γ}, we have that N(vδ

i ) = Aα
i ∪ (U \ {ui}), and d(w, z) ≤ 2

for any w, z ∈ N(vδ
i ). Hence, for a shortest path between two vertices in V (G) \ (Aδ

i ∪ {vδ
i })

to contain vδ
i , that path must also contain two vertices from N(vδ

i ). Furthermore, since vδ
i

cannot be covered by a shortest path with one endpoint in U and the other not in Aδ
i ∪ {vδ

i },
any shortest path whose endpoints are in V (G) \ (Aδ

i ∪ {vδ
i )} that could cover vδ

i cannot
have any of its endpoints in N(vδ

i ), and thus, must have length at least 4. In particular, this
proves the following property that we put as a claim to make reference to later.

▷ Claim 18. For any shortest path whose endpoints cannot be in N [vδ
i ], if its first and

second endpoints are at distance at least ℓ1 and ℓ2, respectively, from any vertex in N(vδ
i ),

then this shortest path cannot cover vδ
i if it has length less than ℓ1 + ℓ2 + 2.

We finish with a case analysis of the possible pairs ⟨u, v⟩ to prove that no such shortest
path covering vδ

i exists using Claim 18. We note that, by the arguments above, we do not
need to consider the case where u and/or v is a degree-1 vertex, nor the case where both u

and v are in U ∪Bα ∪Bβ ∪Bγ , nor the case where one of u and v is in U . We now proceed
with the case analysis assuming that u, v /∈ N [vδ

i ].
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Case 1: u ∈ Aδ′

i′ for any i′ ∈ [
√

n] and δ′ ∈ {α, β, γ} such that Aδ′

i′ ̸= Aδ
i . First, u

is at distance at least 2 from any vertex in N(vδ
i ), and hence, if d(u, v) ≤ 4, then we are

done by Claim 18. Note that d(u, v) ≤ 4 as long as v /∈ Aδ′′

i′ for any δ′′ ∈ {α, β, γ} such
that δ′′ ̸= δ′, since u is at distance 2 from every vertex in U \ {ui′}. However, in the case
where v ∈ Aδ′′

i′ , we have that v is also at distance at least 2 from any vertex in N(vδ
i ),

and so, since d(u, v) ≤ 5, we are done by Claim 18.
Case 2: u ∈ C or u is a g-vertex. By Claim 18 and the previous case, it suffices to
note that d(u, v) ≤ 3 as long as v /∈ Aδ′

i′ for any i′ ∈ [
√
n] and δ′ ∈ {α, β, γ}.

Case 3: u ∈ T δ′ ∪ F δ′ for any δ′ ∈ {α, β, γ} such that δ′ ̸= δ. Since u is at distance
2 from any vertex in U , we have that d(u, v) ≤ 4, and we are done by Claim 18.
Case 4: u ∈ T δ ∪ F δ. First, if v /∈ Aδ′

i′ for any i′ ∈ [
√
n] and δ′ ∈ {α, β, γ}, and v is a

vertex with a superscript δ, then d(u, v) ≤ 3. Otherwise, the path from u to v contains
a vertex in U ∪ C, and thus, does not cover vδ

i since d(u, vδ
i ) ≥ 2, u is at distance 2 (at

most 3, respectively) from any vertex in U (C, respectively), and vδ
i is at distance at

least 2 from any vertex in C. Thus, we are done by the previous cases and Claim 18.
Case 5: u ∈ V δ′ for any δ′ ∈ {α, β, γ}. For any δ′′ ∈ {α, β, γ}, if v ∈ Bδ′′ ∪ V δ′′ ,
then d(u, v) ≤ 3, and we are done by the previous cases and Claim 18. ◀

▶ Lemma 19. If G admits a geodetic set of size k, then ψ is a satisfiable 3-Partitioned-3-
SAT formula.

Proof. Assume that G admits a geodetic set S of size k. Then, let us consider the set
S′ = {u′

i | i ∈ [
√
n]} ∪ {bδ

i,1, b
δ
i,2 | δ ∈ {α, β, γ}, i ∈ [

√
n]} of all the degree-1 vertices in G. By

Observation 4, S′ ⊆ S. By Lemma 17, for each i ∈ [
√
n] and δ ∈ {α, β, γ}, there is at least

one vertex from Aδ
i ∪ {vδ

i } in S. Since |S′| = 7
√
n and k = 10

√
n, for each i ∈ [

√
n] and

δ ∈ {α, β, γ}, S contains exactly 1 vertex from Aδ
i ∪ {vδ

i }.
By Lemma 16, the shortest paths between vertices in S′ do not cover vertices in C, and

thus, the 3
√
n vertices in S \ S′ must cover them.

For this goal, the vertices in S that are in V δ for any δ ∈ {α, β, γ} are irrelevant. Indeed,
any such vertex is at distance at most 3 from any other vertex in S \ S′, while every vertex
in S \ S′ is at distance at least 2 from any vertex in C. So, let us consider one vertex from
Aδ for some δ ∈ {α, β, γ} that lies in S, say, without loss of generality, w ∈ Aα

i . Note that
d(w, u′

i) = 4 and recall that u′
i ∈ S. For any q ∈ [m], there is a path of length 4 between w

and u′
i that covers cq if there is v ∈ Tα ∪ Fα such that both (w, v) and (v, cq) are in E(G).

But, by the construction, such an edge (w, v) ∈ E(G) corresponds to an assignment of a
variable that occurs in cq, i.e., (v, cq) ∈ E(G) if the corresponding assignment to v (True or
False) satisfies the clause Cq of the instance ψ. Since S is a geodetic set, for each q ∈ [m],
there is a vertex w ∈

⋃
δ∈{α,β,γ} A

δ ∩ S that covers cq by a shortest path to some u ∈ U ′.
Thus, let π : Xα ∪Xβ ∪Xγ → {True, False} be the retrieved assignment from the partial
assignments that correspond to such vertices w that are in both S and

⋃
δ∈{α,β,γ} A

δ, and
that is completed by selecting an arbitrary assignment for the variables in the buckets Xδ

i

where Aα
i ∩ S = ∅.

Finally, as we observed above, for each q ∈ [m], cq is covered, and thus, the constructed
assignment π satisfies all the clauses in C. ◀

▶ Lemma 20. If ψ is a satisfiable 3-Partitioned-3-SAT formula, then G admits a geodetic
set of size k.

Proof. Suppose π : Xα ∪ Xβ ∪ Xγ → {True, False} is a satisfying assignment for ψ. We
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construct a geodetic set S of size k for G using this assignment. Initially, let

S = {u′
i | i ∈ [

√
n]} ∪ {bδ

i,1, b
δ
i,2 | δ ∈ {α, β, γ}, i ∈ [

√
n]}.

At this point, |S| = 7
√
n. Now, for each i ∈ [

√
n] and δ ∈ {α, β, γ}, we add one vertex from

Aδ
i to S in the following way. For the bucket of variables Xδ

i , consider how the variables of
Xδ

i are assigned by π, and denote this assignment restricted to Xδ
i by πδ

i . Since Aδ
i contains

a vertex for each of the possible 2
√

n assignments and each of those corresponds to a certain
assignment of Xδ

i , we will find w ∈ Aδ
i that matches the assignment πδ

i . Then, we include
this w in S as well. At the end, |S| = 10

√
n.

Now, we show that S is indeed a geodetic set of G. First, recall that the vertices of S are
covered by any shortest path between them and any another vertex in S. Further, recall that
the neighbors of the degree-1 vertices in S are also covered by the shortest paths between
their degree-1 neighbor in S and any another vertex in S. In the following case analysis, we
omit the cases just described above. In each case, we consider sets of vertices that we want
to cover by shortest paths between pairs of vertices in S.

Case 1: Aδ
i ∪ {gδ

i } | i ∈ [
√

n], δ ∈ {α, β, γ}}. For each i ∈ [
√
n] and δ ∈ {α, β, γ},

there is a shortest path of length 4 between bδ
i,1 and bδ

i,2 that contains gδ
i (any vertex in

Aδ
i , respectively).

Case 2: T δ ∪ F δ for any δ ∈ {α, β, γ}. For each δ ∈ {α, β, γ} and i, i′ ∈ [
√
n] such

that i ̸= i′, there is a shortest path of length 6 between bδ
i,1 and bδ

i′,1 that is as follows.
First, it goes to aδ

i,1 and then through gδ
i to w ∈ T δ ∪ F δ, and then through gδ

i′ to aδ
i′,1,

before finishing at bδ
i′,1. Since, for each i ∈ [

√
n] and δ ∈ {α, β, γ}, gδ

i is adjacent to all
the vertices in T δ ∪ F δ, the described path of length 6 covers T δ ∪ F δ.
Case 3: {cq}q∈[m] and V δ for any δ ∈ {α, β, γ}. For all i ∈ [

√
n] and δ ∈ {α, β, γ},

consider the vertex w ∈ Aδ
i ∩ S. Recall that this w corresponds to the assignment πδ

i ,
i.e., π that is restricted to the subset of variables Xδ

i . First, there is a shortest path of
length 4 between w and u′

i that contains vδ
i , ui′ (for some i′ ∈ [

√
n] such that i ≠ i′), and

ui. Second, for each q ∈ [m], there exists i ∈ [
√
n] and δ ∈ {α, β, γ} such that there is a

shortest path of length 4 from w ∈ Aδ
i to u′

i that covers cq. Consider the variable that
satisfied the clause Cq of the initial instance ψ under the assignment π, and, without
loss of generality, let it be xδ

i,j . Then, consider the bucket Aδ
i and select w ∈ Aδ

i such
that w corresponds to πδ

i . Since w corresponds to πδ
i , if π(xδ

i,j) = True (π(xδ
i,j) = False,

respectively), then (w, tδj) ∈ E(G) ((w, fδ
j ) ∈ E(G), respectively) and, since xδ

i,j = True
(xδ

i,j = False, respectively) satisfies Cq, (tδj , cq) ∈ E(G) ((fδ
j , cq) ∈ E(G), respectively) as

well. Thus, we have a shortest path of length 4 that goes from w to tδj (fδ
j in the latter

case) to cq to ui to u′
i. This way, all the vertices in {cq | q ∈ [m]} are also covered.

This covers all the vertices in V (G), and thus, S is a geodetic set of G. ◀

Proof of Theorem 13. The proof of Proposition 5 relies on the fact that there is a polynomial-
time reduction from 3-SAT to 3-Partitioned-3-SAT that increases the number of variables
and clauses by a constant factor. In Section 4.1, we presented a reduction that takes an
instance ψ of 3-Partitioned-3-SAT and returns an equivalent instance (G, k) of Geodetic
Set (by Lemmas 19 and 20) in 2O(

√
n) time. Note that V (G) = 2O(

√
n). Further, note that

taking all the vertices in Bδ, V δ, T δ, F δ, U , C, and gδ
i for all i ∈ [

√
n] and δ ∈ {α, β, γ},

results in a vertex cover of G. Hence,

vc(G) ≤ 3 · (|Bα| + |V α| + |Tα| + |Fα| +
√
n) + |U | + |C| = O(

√
n).
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Lastly, any minimum-size geodetic set of G has size at most k = 10
√
n. Thus, vc(G)+k =

O(
√
n). ◀

5 Algorithms for Vertex Cover Parameterization

5.1 Algorithm for Metric Dimension
To prove Theorem 1 for Metric Dimension, we first show the following.

▶ Lemma 21. Metric Dimension, parameterized by the vertex cover number vc, admits a
polynomial-time kernelization algorithm that returns an instance with 2O(vc) vertices.

Proof. Given a graph G, let X ⊆ V (G) be a minimum vertex cover of G. If such a vertex
cover is not given, then we can find a 2-factor approximate vertex cover in polynomial
time. Let I := V (G) \X. By the definition of a vertex cover, the vertices of I are pairwise
non-adjacent. The kernelization algorithm exhaustively applies the following reduction rule.

Reduction Rule 1. If there exist three vertices u, v, x ∈ I such that u, v, x are false twins,
then delete x and decrease k by one.

Since u, v, x are false twins, N(u) = N(v) = N(x). This implies that, for any vertex
w ∈ V (G) \ {u, v, x}, d(w, v) = d(w, u) = d(w, x). Hence, any resolving set that excludes
at least two vertices in {u, v, x} cannot resolve all three pairs {u, v}, {u, x}, and {v, x}. As
the vertices in {u, v, x} are distance-wise indistinguishable from the remaining vertices, we
can assume, without loss of generality, that any resolving set contains both u and x. Hence,
any pair of vertices in V (G) \ {u, x} that is resolved by x is also resolved by u. In other
words, if S is a resolving set of G, then S \ {x} is a resolving set of G− {x}. This implies the
correctness of the forward direction. The correctness of the reverse direction trivially follows
from the fact that we can add x into a resolving set of G− {x} to obtain a resolving set of G.

Consider an instance on which the reduction rule is not applicable. If the budget is
negative, then the algorithm returns a trivial No-instance of constant size. Otherwise, for
any Y ⊆ X, there are at most two vertices u, v ∈ I such that N(u) = N(v) = Y . This implies
that the number of vertices in the reduced instance is at most |X| + 2 · 2|X| = 2vc+1 + vc. ◀

Next, we present an XP-algorithm parameterized by the vertex cover number. This
algorithm, along with the kernelization algorithm above, imply that Metric Dimension
admits an algorithm running in time 2O(vc2) · nO(1).

▶ Lemma 22. Metric Dimension admits an algorithm running in time nO(vc).

Proof. The algorithm starts by computing a minimum vertex cover X of G in time 2O(vc) ·
nO(1) using an FPT algorithm for the Vertex Cover problem, for example the one in [11].
Let I := V (G) \X. Then, in polynomial time, it computes a largest subset F of I such that,
for every vertex u in F , I \ F contains a false twin of u. By the arguments in the previous
proof, if there are false twins in I, say u, v, then any resolving set contains at least one of
them. Hence, it is safe to assume that any resolving set contains F . If k − |F | < 0, then the
algorithm returns No. Otherwise, it enumerates every subset of vertices of size at most |X|
in X ∪ (I \ F ). If there exists a subset A ⊆ X ∪ (I \ F ) such that A ∪ F is a resolving set of
G of size at most k, then it returns A ∪ F . Otherwise, it returns No.

In order to prove that the algorithm is correct, we prove that X ∪F is a resolving set of G.
It is easy to see that, for a pair of distinct vertices u, v, if u ∈ X ∪F and v ∈ V (G), then the
pair is resolved by u. It remains to argue that every pair of distinct vertices in (I \F )× (I \F )
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is resolved by X ∪F . Note that, for any two vertices u, v ∈ I \F , N(u) ̸= N(v) as otherwise
u can be moved to F , contradicting the maximality of F . Hence, there is a vertex in X that
is adjacent to u, but not adjacent to v, resolving the pair ⟨u, v⟩. This implies the correctness
of the algorithm. The running time of the algorithm easily follows from its description. ◀

5.2 Algorithm for Geodetic Set
To prove Theorem 1 for Geodetic Set, we start with the following fact about false twins.

▶ Lemma 23. If a graph G contains a set T of false twins that are not true twins and not
simplicial, then any minimum-size geodetic set contains at most four vertices of T .

Proof. Let T = {t1, . . . , th} be a set of false twins in a graph G, that are not true twins and
not simplicial. Thus, T forms an independent set, and there are two non-adjacent vertices
x, y in the neighborhood of the vertices in T . Assume by contradiction that h ≥ 5 and G

has a minimum-size geodetic set S that contains at least five vertices of T ; without loss of
generality, assume {t1, . . . , t5} ⊆ S. We claim that S′ = (S \ {t1, t2, t3}) ∪ {x, y} is still a
geodetic set, contradicting the choice of S as a minimum-size geodetic set of G.

To see this, notice that any vertex from V (G) \ T that is covered by some pair of vertices
in T ∩ S is also covered by t4 and t5. Similarly, any vertex from V (G) \ T covered by some
pair ⟨ti, z⟩ in (S ∩ T ) × (S \ T ), is still covered by t4 and z. Moreover, x and y cover all
vertices of T , since they are at distance 2 from each other and all vertices in T are their
common neighbors. Thus, S′ is a geodetic set, as claimed. ◀

▶ Lemma 24. Geodetic Set, parameterized by the vertex cover number vc, admits a
polynomial-time kernelization algorithm that returns an instance with 2O(vc) vertices.

Proof. Given a graph G, let X ⊆ V (G) be a minimum-size vertex cover of G. If this vertex
cover is not given, then we can find a 2-factor approximate vertex cover in polynomial time.
Let I := V (G) \X; I forms an independent set. The kernelization algorithm exhaustively
applies the following reduction rules in a sequential manner.

Reduction Rule 2. If there exist three simplicial vertices in G that are false twins or true
twins, then delete one of them from G and decrease k by one.

Reduction Rule 3. If there exist six vertices in G that are false twins but are not true
twins nor simplicial, then delete one of them from G.

To see that Reduction Rule 2 is correct, assume that G contains three simplicial vertices
u, v, w that are twins (false or true). We show that G has a geodetic set of size k if and only
if the reduced graph G′, obtained from G by deleting u, has a geodetic set of size k − 1. For
the forward direction, let S be a geodetic set of G of size k. By Observation 4, S contains
each of u, v, w. Now, let S′ = S \ {u}. This set of size k − 1 is a geodetic set of G′. Indeed,
any vertex of G′ that was covered in G by u and some other vertex z of S, is also covered
by v and z in G′. Conversely, if G′ has a geodetic set S′′ of size k − 1, then it is clear that
S′′ ∪ {u} is a geodetic set of size k in G.

For Reduction Rule 3, assume that G contains six false twins (that are not true twins nor
simplicial) as the set T = {t1, . . . , t6}, and let G′ be the reduced graph obtained from G by
deleting t1. We show that G has a geodetic set of size k if and only if G′ has a geodetic set
of size k. For the forward direction, let S be a minimum-size geodetic set of size (at most)
k of G. By Lemma 23, S contains at most four vertices from T ; without loss of generality,
t1 and t2 do not belong to S. Since the distances among all pairs of vertices in G′ are the
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same as in G, S is still a geodetic set of G′. Conversely, let S′ be a minimum-size geodetic
set of G′ of size (at most) k. Again, by Lemma 23, we may assume that one vertex among
t2, . . . , t6 is not in S′, say, without loss of generality, that it is t2. Note that S′ covers (in G)
all vertices of G′. Thus, t2 is covered by two vertices x, y of S′. But then, t1 is also covered
by x and y, since we can replace t2 by t1 in any shortest path between x and y. Hence, S′ is
also a geodetic set of G.

Now, consider an instance on which the reduction rules cannot be applied. If k < 0,
then we return a trivial No-instance (for example, a single-vertex graph). Otherwise, notice
that any set of false twins in I contains at most five vertices. Hence, G has at most
|X| + 5 · 2|X| = 2O(vc) vertices. ◀

Next, we present an XP-algorithm parameterized by the vertex cover number. Together
with Lemma 24, they imply Theorem 1 for Geodetic Set.

▶ Lemma 25. Geodetic Set admits an algorithm running in time nO(vc).

Proof. The algorithm starts by computing a minimum vertex cover X of G in time 2O(vc) ·
nO(1) using an FPT algorithm for the Vertex Cover problem, for example the one in [11].
Let I := V (G) \X.

In polynomial time, we compute the set S of simplicial vertices of G. By Observation 4,
any geodetic set of G contains all simplicial vertices of G. Now, notice that X ∪ S is a
geodetic set of G. Indeed, any vertex v from I that is not simplicial has two non-adjacent
neighbors x, y in X, and thus, v is covered by x and y (which are at distance 2 from each
other).

Hence, to enumerate all possible minimum-size geodetic sets, it suffices to enumerate
all subsets S′ of vertices of size at most |X| in (X ∪ I) \ S, and check whether S ∪ S′ is a
geodetic set. If one such set is indeed a geodetic set and has size at most k, we return Yes.
Otherwise, we return No. The statement follows. ◀

6 Conclusion

We have seen that both Metric Dimension and Geodetic Set enjoy a (tight) non-trivial
2O(vc2) dependency in the vertex cover number parameterization. Both problems are FPT
for related parameters, such as vertex integrity, treedepth, distance to (co-)cluster, distance
to cograph, etc., as more generally, they are FPT for cliquewidth plus diameter [22, 29].
For both problems, it was proved that the correct dependency in treedepth (and treewidth
plus diameter) is in fact double-exponential [19], a fact that is also true for feedback vertex
set plus diameter for Metric Dimension [19]. For distance to (co-)cluster, algorithms
with double-exponential dependency were given for Metric Dimension in [20]. For the
parameter max leaf number ℓ, the algorithm for Metric Dimension from [17] uses ILPs,
with a dependency of the form 2O(ℓ6 log ℓ) (a similar algorithm for Geodetic Set with
dependency 2O(f log f) exists for the feedback edge set number f [29]), which is unknown
to be tight. What is the correct dependency for all these parameters? In particular, it
seems interesting to determine for which parameter(s) the jump from double-exponential to
single-exponential dependency occurs.

For the related problem Strong Metric Dimension, the correct dependency in the
vertex cover number is known to be double-exponential [19]. It would be nice to determine
whether similarly intriguing behaviors can be exhibited for related metric-based problems,
such as Strong Geodetic Set, whose parameterized complexity was recently adressed
in [16, 33]. Perhaps our techniques are applicable to such related problems.
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