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BURNING HAMMING GRAPHS

NORIHIDE TOKUSHIGE

Abstract. The Hamming graph H(n, q) is defined on the vertex set [q]n and two ver-
tices are adjacent if and only if they differ in precisely one coordinate. Alon [1] proved
that the burning number of H(n, 2) is ⌈n

2
⌉ + 1. In this note we show that the burning

number of H(n, q) is (1− 1

q
)n+O(

√
n logn) for fixed q ≥ 2 and n → ∞.

Graph burning has been actively studied in recent years as a model for the spread of
influence in a network, see e.g., [3]. One of the seminal results due to Alon determines the
burning number of the n-dimensional cube. In this note we obtain the burning number
of the Hamming graph asymptotically.

Let us define the burning number of a finite graph G with the vertex set V . For vertices
x, y ∈ V let d(x, y) denote the distance between x and y. For a non-negative integer k, let
Γk(x) denote the k-neighbors of x, that is, the set of vertices y ∈ V such that d(x, y) ≤ k.

We say that x0, x1, . . . , xb ∈ V is a burning sequence of length b+1 if
⋃b

k=0
Γb−k(xk) = V .

The burning number of G, denoted by β(G), is defined to be the minimum length of the
burning sequences.

A path with n vertices has burning number ⌈√n⌉, and it is conjectured that β(G) ≤
⌈√n⌉ for every n-vertex graph G. Although this is one of the major open problems
concerning graph burning, it is also interesting to find graphs which have small burning
number and small maximum degree. We will show that Hamming graphs satisfy these
conditions.

Recall some basic facts about Hamming graphs. For positive integers n, q, let [q] :=
{0, 1, . . . , q − 1} and let [q]n denote the set of n-tuple of elements of [q]. For x ∈ [q]n

we write (x)i for the ith coordinate of x. The Hamming distance between x, y ∈ [q]n

is defined to be #{i : (x)i 6= (y)i}. The Hamming graph H(n, q) has the vertex set
V = [q]n, and two vertices are adjacent if they have Hamming distance one. Thus H(n, q)

is (q − 1)n-regular, and |Γk(x)| =
∑k

i=0
(q − 1)i

(

n

i

)

is independent of the choice of x ∈ V .
Note that H(n, 2) is the n-dimensional cube.

Alon considered a problem of transmitting on the n-dimensional cube. His result is
restated in terms of burning number as follows.

Theorem 1 (Alon [1]). β(H(n, 2)) = ⌈n
2
⌉ + 1 = ⌊n

2
+ 3

2
⌋.

It is easy to see that β(H(n, 2)) ≤ b + 1, where b := ⌈n
2
⌉. Indeed, by choosing x0 =

(0, . . . , 0) and x1 = (1, . . . , 1), we see that Γb(x0)∪Γb−1(x1) = [2]n. (Thus you can choose
x2, . . . , xb arbitrarily.) On the other hand, it is non-trivial to see that b+ 1 is the correct
lower bound. To this end, Alon used the Beck-Fiala Theorem [2] in discrepancy theory.

Now we show that β(H(n, q)) = (1− 1

q
)n+O(

√
n logn) for fixed q ≥ 2 and n → ∞.
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Theorem 2. We have

β(H(n, q)) ≤ ⌊(1 − 1

q
)n + q+1

2
⌋.

Proof. Let n = qk + r where r ∈ [q], and let s := ⌈r − r
q
+ q−1

2
+ 1

2q
⌉. Let b + 1 =

(q − 1)k + s, and let xi = (i, . . . , i) for i ∈ [q]. Note that x ∈ Γb(x0) if and only if
#{j : (x)j 6= 0} ≤ b, or equivalently, #{j : (x)j = 0} ≥ n− b = k + r − s + 1. Similarly,
x ∈ Γb−i(xi) if and only if #{j : (x)j = i} ≥ k + r − s + 1 + i for i ∈ [q]. We claim that

W :=
⋃q−1

i=0
Γb−i(xi) = [q]n. To the contrary, suppose that y ∈ [q]n is not covered by W .

Then #{j : (y)j = i} ≤ k + r − s + i for all i ∈ [q]. By summing both sides from i = 0
to q − 1, we get n = qk + r ≤ (k + r − s)q +

(

q

2

)

, or equivalently, s ≤ r − r
q
+ q−1

2
, a

contradiction. Thus we have β(H(n, q)) ≤ b + 1 = (q − 1)n−r
q

+ s = ⌊(1 − 1

q
)n + q+1

2
⌋,

where we used ⌈N/(2q)⌉ = ⌊(N + 2q − 1)/(2q)⌋ for N ∈ Z in the last equality. �

Theorem 3. Let p = 1− 1

q
. Then we have

β(H(n, q)) > pn−
√

2pn log n.

Proof. Let b = ⌊pn−
√
2pn logn⌋. We need to show that no matter how x0, . . . , xb ∈ V are

chosen, we have |
⋃b

i=0
Γb−i(xi)| < |V |. Even more strongly, we claim that (b+1)|Γb(x0)| <

|V |.
Let X1, . . . , Xn be independent random variables with P[Xi = 1] = p, P[Xi = 0] = 1−p.

Let X =
∑n

i=1
Xi. Then we have µ := E[X ] = pn and P[X = k] =

(

n

k

)

pk(1 − p)n−k.
It follows from the Chernoff bound [4] (see also e.g., Corollary 23.7 in [5]), by setting

ǫ =
√

(2 logn)/(pn), that

P

[

X ≤ pn−
√

2pn log n
]

= P [X ≤ (1− ǫ)µ] ≤ exp

(

−µǫ2

2

)

=
1

n
.

Thus we have

q−n|Γb(x0)| = q−n

b
∑

k=0

(q − 1)k
(

n

k

)

=

b
∑

k=0

(

n

k

)

pk(1− p)n−k

= P[X ≤ b] ≤ P

[

X ≤ pn−
√

2pn log n
]

≤ 1

n
,

and so

(b+ 1)|Γb(x0)| ≤ (b+ 1)
|V |
n

< p|V | < |V |,

as desired. �

Conjecture. β(H(n, q)) = (1− 1

q
)n +O(1).
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