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Abstract

The fusion research facility ITER is currently being assembled to demonstrate that fusion can be
used for industrial energy production, while several other programmes across the world are also
moving forward, such as EU-DEMO, CFETR, SPARC and STEP. The high engineering complexity
of a tokamak makes it an extremely challenging device to optimise, and test-based optimisation
would be too slow and too costly. Instead, digital design and optimisation must be favored, which re-
quires strongly-coupled suites of High-Performance Computing calculations. In this context, having
surrogate models to provide quick estimates with uncertainty quantification is essential to explore
and optimise new design options. Furthermore, these surrogates can in turn be used to accelerate
simulations in the first place. This is the case of Parareal, a time-parallelisation method that can
speed-up large HPC simulations, where the coarse-solver can be replaced by a surrogate. A novel
framework, Neural-Parareal, is developed to integrate the training of neural operators dynamically
as more data becomes available. For a given input-parameter domain, as more simulations are
being run with Parareal, the large amount of data generated by the algorithm is used to train new
surrogate models to be used as coarse-solvers for future Parareal simulations, leading to progres-
sively more accurate coarse-solvers, and thus higher speed-up. It is found that such neural network
surrogates can be much more effective than traditional coarse-solver in providing a speed-up with
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Parareal. This study is a demonstration of the convergence of HPC and AI which simply has to
become common practice in the world of digital engineering design.

1 Introduction

1.1 Motivation

Solving non-linear systems of partial differential equations is a field of research that has applications
in a wide range of scientific and engineering problems. In the aerospace and automotive industries,
in weather and climate predictions, in fusion energy research, countless numerical solvers are being
used routinely to predict the evolution of complex physical systems. Conventional PDE solvers
are constantly being developed as part of scientific research (MOOSE, MFEM, Firedrake, Open-
Foam, JOREK) [1, 1–8] as well as industrial tools (ANSYS, ABAQUS, SIEMENS) [9–11]. Modern
PDE solvers are typically parallelised on the spatial domain they address, but in the case of fully
implicit solvers, which have strong numerical stability advantages, this typically results in large ma-
trix inversions with preconditioners. These typically do not scale well on large High-Performance
Computing (HPC) systems with GPU accelerators due to memory limits and bandwidth. Methods
to further parallelise conventional solvers have been explored in recent decades including, among
others, parallel-in-time methods such as Parareal [12] and deep learning methods such as neural
operators [13–15]. While these emerging methods often lack the precision of the underlying conven-
tional solvers they exploit, their efficacy and practical relevance is highly dependent on the use-case
of interest. Their value lies in providing fast approximations of the detailed computation, which is
of interest for wider integrated digital engineering tools and digital twins [16].

In fusion research, the design (and design optimisation) of new tokamak and stellerator devices
requires a wide range of HPC calculations, to be integrated in a coupled workflow, that may require
several steps to converge to a final solution. Some of these individual components needed for fusion
power plant designs are themselves integrated workflows comprising of several HPC codes. For
example, the blankets around a tokamak plasma, which will be used to breed tritium from the
fusion-born neutrons and extract their energy into a cooling system, require neutronics calculations
with codes like OpenMC or MCNP [17–19], coupled to fluid mechanics [20] or even liquid-metal
Magnetohydrodynamics (MHD) [21]. However, the material and mechanical properties of these
blankets are also strongly dependent on the heat-fluxes that result from plasma turbulence at
the plasma edge [22, 23], which eventually requires integrated simulations from a plasma flight
simulator like JINTRAC [24]. This couples key characteristics of the plasma dynamics, such as the
Grad-Shafranov equilibrium, turbulent pressure transport fluxes, deposition of various heating and
fueling systems, MHD stability limits, and Scrape-Off Layer kinetic simulations. Breeding blankets
and plasma dynamics are just two examples of the complex coupled system required to obtain a
fully consistent digital design or digital twin of tokamak devices. Having the ability to accelerate
some of these components, even to obtain an initial guess, can enable engineers to quickly explore
a wider range of configurations to optimise the design of future machines.
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The work proposed here combines two independent methods to provide a novel approach of
accelerating conventional solver approximations. Namely, using neural operators as the coarse
solvers required by the Parareal method [12]. The convergence of High-Performance-Computing
and Artificial Intelligence is illustrated by this approach, where the training of the neural operator
is bootstrapped into the large data-production feature of the Parareal method. To demonstrate this
approach, a generic fusion application is chosen, using a set of MHD equations in toroidal geometry,
where filamentary blob structures are evolved inside a 2D slab domain. The outcome of this study
is threefold: 1. the speed-up provided by the Parareal algorithm is increased by improving the
accuracy of the coarse-solver, 2. a fast, accurate coarse-solver is obtained which can be used as
surrogate inside other workflows to accelerate estimates of calculations, and 3. the accuracy of the
coarse-solver can be defined by how fast the Parareal simulations converge, providing an uncertainty
quantification of the surrogate.

1.2 Current Research on Parareal and Neural Operators

The current research on parallel-in-time methods is a wide field of science and the Parareal method
[12] is only one of its branches. The particularity of the Parareal method is that it is relatively
straight-forward to understand and implement, with a non-intrusive implementation for the nu-
merical tool, although in practice it requires the developer to understand in detail the i/o of the
code in question. In this work, the code chosen for the demonstration uses Finite-Element Methods
(FEM), which makes this aspect of the Parareal implementation more intrusive, as will be explained
in detail in further sections. Applications of Parareal methods have been achieved in various fields
of numerical studies, including Molecular Dynamics [25], fluid dynamics [26], geodynamics [27], as
well as fusion [28].

The Parareal approach, although abstract, is relatively simple. A good introduction to Parareal
can be found in [29]. It consists of splitting a time-domain into multiple time-windows, and evolving
each window concurrently. A first rapid estimate is done across all time-windows with a so-called
coarse-solver, which should have a negligible execution time compared to the full simulation code
(often called the fine-solver), which is run for each time-window in parallel, starting from the
estimate provided by the coarse solver. The same procedure is repeated at each Parareal cycle,
where the initial-value for each time-window is calculated using a predictor-corrector scheme, which
combines the result of the previous time-window’s coarse solution and the previous time-window’s
coarse and fine solutions from the previous cycle.

The closest work that the authors are aware of, and similar to the study presented here, is
that of Gorynina et al. [30], where a Machine Learning surrogate is used as coarse solver for
molecular dynamics, and more recently, of notable interest, the work by Qadir-Ibrahim et al. [31],
where a Physics-Informed version of the FNO [13] algorithm (PINO [32]) is used as the coarse
solver. Another relevant study is that of Pentland et al. [33], where a Gaussian Process is used
to learn the difference (i.e. the predictor-corrector) between a given coarse-solver and the fine-
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(a)

Figure 1:
The Neural-Parareal framework, where neural operators are trained live as more simulation data becomes available, to provide a
progressively more precise coarse-solver, thus leading to more potential speedup and accuracy as simulations are being produced.

solver. The way the work described here differs from previous achievements is both the application,
which is fusion-specific with a set of highly non-linear PDEs (MHD), and most importantly the
demonstration of how the training of the Machine Learning coarse solver can be integrated into the
Parareal workflow to produce a more accurate coarse solver as the number of simulations increases.
This framework integration can be compared to Solver-in-the-Loop methods [34, 35], where the
simulation code is integrated inside the neural operator training, except that it does the reverse:
here the training of neural operators is integrated inside the HPC simulation algorithm. This ‘AI-
in-the-Loop’ idea is illustrated in Figure-1. It may be compared to methods where AI acceleration
is used for preconditioning of simulations, such as [36]. This convergence of HPC and AI methods
is most relevant to the development of Digital Twins and Digital Models for fusion research, where
the need for rapid designs of future fusion power plants requires quick yet accurate estimations of
costly and slow HPC simulations using Machine Learning surrogates.

1.3 Fusion Application

In the current alarming climate change situation [37], nuclear fusion could provide an abundant en-
ergy source with a minimal level of greenhouse gas emissions and no long-lived radioactive nuclear
waste. Together with renewable energies, fusion could contribute to the electricity of future soci-
eties, without the limit of exhaustible natural resources. Currently, the most promising candidate
for industrial fusion reactors is the tokamak device [38], which uses a magnetic field to confine a
hot plasma of ionised hydrogen isotopes. The toroidal, periodic nature of the tokamak ensures that
the hydrogen ions and the electrons, which approximately follow the magnetic field lines, are not
lost at the end of open field lines, like in linear plasma devices. However, this periodicity can lead
to resonance and instability. Resonant and unstable modes typically involve the plasma and the
magnetic field, and are commonly studied using MHD models [39–41], combining the Navier–Stokes
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equations with Maxwell’s equations.
Theoretical analysis of the MHD equations can provide some limited insight into the properties

of various waves and unstable modes in a tokamak [39], however to obtain a more detailed un-
derstanding of tokamak MHD instabilities, numerical simulations are required. Some of the main
tokamak MHD instabilities include Edge-Localised-Modes (ELMs), Toroidal Alfven Eigenmodes
(TAEs) and Global instabilities (Disruptions). ELMs eject plasma filaments from the edge region
onto the first wall of the machine, leading to large heat-fluxes on surface materials [42–45]. TAEs,
which are excited by the 3.5MeV alpha-particles born of fusion reactions, can limit the performance
of plasma operations [46–49]. Global MHD instabilities which affect the entire plasma can lead to
the total loss of plasma control, these are called disruptions. During disruption events, the kinetic
and magnetic energy of the plasma can be transferred to the wall, leading to unsustainable ma-
terial heat-fluxes and/or wall-currents that can damage the structural components of the machine
[50–55]. In order to study, understand and predict these MHD instabilities, numerical simulations
are performed using codes like JOREK [7, 8, 56, 57], M3D-C1 [58, 59], NIMROD [60, 61], XTOR
[62], BOUT++ [63, 64], MEGA [65–67], HALO [48] (and many others).

In this study, we use the Reduced-MHD equations [68, 69] in a 2D slab geometry with toroidal
curvature (toroidally axisymmetric domain). The simulations are evolving filamentary blobs similar
to ELM filaments at the plasma edge. Although the geometry is simplified, the physics model
and type of dynamics is similar to state-of-the-art applications of the JOREK code [8, 70], and
therefore represents a practical demonstration from which future extensions of the framework could
be developed to address realistic tokamak use cases. Note that blob convection in tokamaks is also
extensively studied in the context of electrostatic turbulence, such as in [71, 72].

1.4 Overview of the work

In this paper, we present an integrated framework that combines Parareal simulations of the JOREK
code [7] with the training of neural operators in PDEarena [73, 74], bootstrapped into the workflow
to benefit from the large data-generation of the Parareal algorithm in real time. This integration
results in progressively more and more accurate coarse solvers as the input-parameter domain is
explored with new simulations, and thus potentially higher speed-up. Section-2 introduces the MHD
simulation use cases that were used for the development of the Parareal framework and the initial
development of the Neural Operator surrogates. Section-3 presents the work done with PDEarena
[73, 74] to create surrogate models of the simulations, which are used as the coarse solvers of the
Parareal framework. Section-4 describes the full implementation of the Parareal framework which
accommodates the FEM discretisation of JOREK, the neural coarse solvers from PDEarena, and
the non-negligible parallel i/o processing required for an efficient framework. Finally, Section-5
presents the main results of the framework while Section-6 summarises the work and lays out the
further improvements desirable for future studies and extensions.
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2 The MHD Simulation Use Cases

In this study, two use cases are addressed, both simulating blob convection in a 2D slab domain
with toroidal axisymmetric geometry. The first use case employs a simplified electrostatic model,
which already has a large dataset published in several studies [75, 76]. This use case was used
for the development of the Neural-Parareal framework and initial tests that the performance was
reasonable.

The second use case is a new dataset based on similar blob simulations but with a more complex
MHD model, the so-called Reduced-MHD model, which has been used extensively in literature for
the study of tokamak instabilities [8, 70]. This use case was used to demonstrate the integrated
framework with the dynamic training of the coarse-solver, bootstrapped inside the workflow to
exploit the data generated by new simulations.

In both use cases, the simulations are run with a bi-cubic (high-order) C1-continuous Bezier
finite-element grid with uniform resolution of 200 by 200 elements. The poloidal 2D slab is centered
at a toroidal major radius of 10m with height and width of 1m. The time-step size is approximately
0.15µs. Both spatial and temporal resolutions are voluntarily chosen to be conservatively high (fine)
to ensure numerical stability across the entire input-parameter domain. For all simulations, 2000
time-steps are run. The boundary conditions around the domain are Dirichlet for all variables.

2.1 Electrostatic Blob Simulations

The first use case employs an electrostatic model, which is equivalent to the Reduced-MHD model as
routinely used in JOREK [8], but without the magnetic potential and current. There are a total of
4 variables in the model: 3 physical variables and an auxiliary variable, used for numerical stability
(see [8]). These physical variables are the fluid density ρ, the fluid temperature T and the electric
potential Φ. The auxiliary variable is the toroidal vorticity, defined as ω = ∇2Φ. Note that the
Laplacian here is in toroidal coordinates. This model is very similar to the Navier-Stokes equations,
where Φ can be associated to the stream function of the fluid velocity. The exact formulation of the
velocity is given, as in [8], with v⃗ = R2∇ϕ× ∇Φ, where R is the major radius, and ϕ is the toroidal
coordinate. One can easily derive that the toroidal vorticity is in fact simply ω = ∇ϕ · (∇ × v⃗).

The simulations are initialised with multiple blobs inside the slab, varying randomly the number
of blobs, their positions, their (2D-Gaussian) width, their density amplitude and their temperature
amplitude. The range of these input parameters are as follows:
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input parameter min/max type & unit
number of blobs [1 : 10] discrete
R-position of blobs [9.6 : 10.4] continuous [m]
Z-position of blobs [-0.4 : 0.4] continuous [m]
width of blobs [0.02 : 0.1] continuous [m]
density amplitude of blobs [0.1 : 0.4] continuous [1020m−3]
temperature amplitude of blobs [12 : 72] continuous [eV ]

These quantities are representative of small filamentary blobs in the Scrape-Off Layer of a tokamak
plasma, i.e. just outside the hot, confined plasma region. In a tokamak, such filamentary structures
are expelled from the confined region due to turbulence and/or MHD instabilities. As a reference,
the electron density and temperature in the JET-ILW tokamak, just at the edge of the confined
plasma region, is typically of the order of 5.1019m−3 and 1keV .

The electric potential Φ is initialised as zero. As the simulation starts, the toroidal curvature
combined with the pressure gradient of the blobs generates an electric field that leads the blobs
to move radially outwards (away from the centre of the torus). The hotter the blob, the faster its
motion. The Dirichlet boundary conditions cause the blob material to mix inside the slab until
they dissipate through diffusion.

(a)

Figure 2:
The first use case with an electrostatic Reduced-MHD model, showing one of the simulations with blobs initialised in a poloidal
2D slab domain. The first 1000 time-steps are illustrated here (half of the full simulation), with each frame corresponding to
approximately 30µs, i.e. [0,30,60,90,120,150]µs.

The poloidal diffusion parameters are the density diffusion D = 3.5m2.s−1, the temperature
diffusion κ = 2.10−7kg.m−1.s−1, and the viscosity µ = 2.10−6kg.m−1.s−1. For more details on
the Reduced-MHD model and its parameters, see [8]. Figure-2 shows an example of a simulation
with 7 blobs moving radially towards the outer boundary of the domain. Note that only half the
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simulation (1000 time-steps) is shown in Figure-2 for illustration purposes. All datasets can be
downloaded from Zenodo, including GIFs [77–81]. The simulations (2000 time-steps) take just
above 6 hours to run on a 2x24-cores Intel-Xeon-8160 (SkyLake) node. More information about
the existing (spatial) parallelisation of the JOREK code can be found in [8].

2.2 Electromagnetic Blob Simulations

The second use case is exactly the same as above but with the more complex Reduced-MHD
model, as implemented in routine JOREK studies, which includes a magnetic field but without the
(optional) parallel velocity [8]. This model has the same variables ρ, T , Φ and ω as before, with an
extra physical variable for the poloidal magnetic potential ψ, and an additional auxiliary variable
for the toroidal plasma current density, defined as j = R2∇(R−2∇ψ). The magnetic field is given,
as in [8], by B⃗ = B⃗ϕ + B⃗pol, where the toroidal magnetic field B⃗ϕ = F0∇ϕ is constant in time in the
Reduced-MHD model, and only the poloidal magnetic field B⃗pol = ∇ψ× ∇ϕ is evolved through the
scalar potential variable ψ. Note that this is why the model is called Reduced-MHD, as opposed to
full-MHD where the toroidal field also evolves [70]. In this set-up, one can easily derive that the
toroidal current is in fact simply j = R2∇ϕ · (∇ × B⃗).

(a)

Figure 3:
The second use case with an electromagnetic Reduced-MHD model, showing a simulation with the same initialisation as in
Figure-2. The first 1000 time-steps are illustrated here as well, each frame corresponding to approximately 30µs. It is worth
noting the difference between the electromagnetic model and the electrostatic model: the blobs move slower and deviate up/down-
wards, due to the interaction with the background magnetic field. In the bottom row, the color shows the current generated by
the filaments, as well as contours of the magnetic potential ψ, to illustrate the bending of the magnetic field by the blobs.

In the simulations presented here, the toroidal magnetic field is set to 1T , and the poloidal
magnetic field is set to a background of 10−3T to represent the Scrape-Off Layer of a tokamak,
just outside the confined plasma, where there the poloidal magnetic field is much lower than inside
the confined plasma region. The poloidal magnetic field actually vanishes in the so-called X-point
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(saddle point) region of the plasma.
No current is initialised inside the blobs, but as can be seen in Figure-3, as the blobs start

evolving, they generate their own current, which affects their dynamics and bends the magnetic
field. This is illustrated by the bottom row of the figure, which shows the current scalar together
with contour lines of ψ (which can be considered as the stream function of the poloidal magnetic
field). The resistivity in these simulations is relatively high, at 4.10−5Ω.m, such that the plasma
fluid is not ‘frozen’ to the magnetic field and can travel through flux surfaces. Still, the field-line
bending and current have a significant effect on the dynamics of the blobs, which can be clearly seen
when comparing Figure-3 to Figure-2 which has exactly the same initial conditions. In particular,
with the Reduced-MHD model, the blobs can be observed to travel slower and deviate up/down-
wards compared to the simpler model where they just travel radially outward until reaching the
outer boundary.

With this Reduced-MHD model, the simulations (2000 time-steps) take just under 14 hours to
run on a 2x24-cores Intel-Xeon-8160 (SkyLake) node. Note that in a fully implicit time-scheme,
the problem (matrix) size scales as the number of variables squared, so the factor 2 in computation
increase between the two models corresponds to 62/42 = 2.25.

3 Neural Operator Surrogates

3.1 PDEarena using FNO method

The initial dataset using the electrostatic model from Section-2.1 was used for previously published
studies in [75, 76]. It comprises of 2000 simulations [78–81]. From these samples, 90% was used for
training, and 10% for testing. Because conservative resolution was used in the simulations, the data
is down-sampled both spatially and temporally before ingestion into the neural operator training.
The spatial resolution is set to 100×100, while the temporal frequency is reduced by a factor 10,
hence 200 time-frames per simulation. All variables are normalised to [-1:1] with respect to the
minima/maxima of the entire dataset.

A neural operator learning [82? –85] framework is constructed to learn a mapping between
function spaces – as needed when approximating solutions of partial differential equations (PDEs).
Similar to [85], it assumes U ,V to be Banach spaces of functions on compact domains X ⊂ Rdx

or Y ⊂ Rdy , mapping into Rdu or Rdv , respectively. The goal of operator learning is to learn
a ground truth operator G : U → V via an approximation Ĝ : U → V. This is usually done
in the vein of supervised learning by independent and identically distributed (i.i.d.) sampling
input-output pairs, with the notable difference that in operator learning the spaces sampled from
are not finite dimensional. More precisely, with a given data set consisting of N function pairs
(ui,vi) = (ui,G(ui)) ⊂ U × V, i = 1, ...N , a neural operator aim to learn Ĝ : U → V, so that G can
be approximated in a suitably chosen norm.

The PDEarena platform [73, 74] was used to train the surrogate models. Although PDEarena
includes several options of neural operators, in this work only the Fourier-Neural Operator method
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(FNO) [13] was used. PDEarena was used as a code base and extended to support the JOREK
simulation data. A modified version of the FNO configuration ‘FNO-128-32m’ in PDEarena is used
with the number of Fourier blocks increased to 3, and where the grid discretisation is concatenated
in the same dimension as the physics variable fields as it was found to improve performance, as
demonstrated in [76].

The FNO method [13] trains a neural network in both the real space and a Fourier space
representation of the data (for a given number of Fourier modes). This effectively means the neural
network learns a functional mapping of the training data rather than just discrete data values.
The advantage of this method is that any interpolation between data points (both spatially and in
terms of the input domain) with be more reliable than for data-only neural networks. The FNO has
been shown to work well on a wide number of applications, including fluid models with convection
particularly relevant to the use case presented here.

3.2 Rollout and network inputs

For a given temporal resolution, the neural operator is trained to predict k time-steps ahead, given
l time-steps as input. These parameters k and l will affect the performance of the predictions,
but they also affect how the solver can be integrated into the Parareal framework, which will be
addressed in more details in Section-4. Typically, and in all cases included in this study, l is chosen
to be 1, while k is varied between 5 and 20.

In order to predict far ahead of a given set of input time-steps, the prediction is rolled out in
an autoregressive manner. Given [1−→k] input steps, once the step k+1 has been predicted, a new
set of inputs [2−→k+1] is fed to the network to predict the step k+2. Following which the inputs
[3−→k+2] are fed back into the network to predict step k+3, and so on until the desired prediction
length is achieved. This is illustrated in Figure-1 of [75].

If G is the mapping from an initial condition u(0,x) = u0(x) to the solutions u(t,x) = ut(x)
at later times, then in order to obtain accurate predictions over long time horizons, a temporal
operator could either be directly trained for large ∆t or recursively applied for smaller time intervals.
However, in practical applications, the predictions of neural operators degrade for large ∆t, while
autoregressive approaches are found to perform substantially better [86–89].

The models are trained for about 72 hours (depending on performance) using the Adam opti-
mizer with cosine annealing learning rate scheduler with the starting learning rate of 0.0002 and
minimum learning rate value of 1.e-7 for both. The number of epochs and learning rate was varied
for optimum performance in some of the training runs, but systematic hyperparameter tuning of
the entire model was not performed here and is being considered for future work, as described
below.

Again for the same simulation example as in Figure-2 (for the electrostatic model), the prediction
of the PDEarena surrogate is rolled out and compared to the ground truth in Figure-4. Each frame
of Figure-4 corresponds to 200 time-steps (30µs) from the original simulation, thus 20 steps of the
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(a)

Figure 4:
Comparison of the evolution of the real simulation (top) compared to the PDEarena surrogate (bottom). As in Figure-2, each
frame corresponds to 200 time-steps, so 30µs.

PDEarena temporal resolution. For this example, the neural solver was trained using 20 steps as
input, meaning that the second frame is, in fact, still the actual simulation. The next 4 frames,
80 steps in total, are thus entirely predicted by the neural solver. As can be seen, the precision of
the prediction is reasonably reliable for about 40 steps, beyond which it diverges from the ground
truth.

The run-time of neural operators like the FNO is one of the main points of this study: it is
extremely cheap. For a full rollout of the same length as a simulation of 2000 time-steps (i.e.
200 rollout steps), the execution time is approximately 2 minutes on a single core. Most of the
execution time is in fact dominated by the NN-model load. At present the model is loaded each
time an evaluation is needed, but future improvement may include having background jobs with the
model loaded and awaiting external signals to process model evaluations whenever needed. This
may sound excessive, considering that 2 minutes is negligible in comparison to the real simulations
that require 14 hours on 48 cores, but in a Parareal framework, the speed of the coarse-solver is
essential. For example, if a Parareal run is executed with 100 time-windows, and each coarse-solver
evaluation takes 2 minutes, it quickly adds up.

3.3 Limitations of current versions

More work is currently under way to improve the PDEarena solvers, both for the purpose of
exploration of surrogates in fusion applications in general, but also for this specific application with
Parareal. Although these improvement areas are beyond the scope of this study, they are worth
mentioning here for the sake of clarity.

Firstly, using higher spatial and temporal resolution may have significant effects on the precision
of the neural solver. Although 200×200 bi-cubic finite-elements may be conservative, the granularity
of the 100×100 grid used for the neural solver can be seen by eye when zooming on the details
of Figure-4. With a set of non-linear PDEs, any loss of precision will undoubtedly accumulate to
significant deviation for long rollout predictions. Likewise, down-sampling the temporal frequency
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of the data may play a role. Of course, increasing resolution means the training time and cost of
the models would increase significantly, which is part of the reason why this is being kept for future
plans. At present, parallelising the training on multiple GPU nodes is being explored to alleviate
this limitation.

Secondly, there are more neural operator options in PDEarena, besides the FNO, which ought
to be explored. The efficiency of each of these methods may be strongly dependent on the use case.
For example, one particular model may perform very well on 2D regular meshes, but could become
unreliable when addressing unstructured meshes in 3D with more complex geometries. The most
relevant aspect of this issue is to scale up towards realistic fusion applications, such as turbulence in
3D toroidal geometries, which will require larger models and larger datasets, for which transformer
architectures may be most appropriate.

Finally, hyperparameter tuning has not been done systematically in this study, as it represent
another dimension to the total cost of the framework as a whole. Note that it isn’t just the internal
parameters of each model that should be subject to optimisation, but the models themselves, as
well as the data-resolution described above. It’s entirely possible that, depending on the use case, as
more data is made available to the neural solver training, different models and different resolutions
may be more appropriate, not just model parameters.

4 Parareal Framework

Although the implementation of the Parareal algorithm is generally straight-forward, in this partic-
ular case there are two aspects that make the framework more complex than a standard situation.
In particular, the fact that the JOREK code uses finite-elements, and that the neural coarse solver
to be used requires several input time-steps, as opposed to a single initial-value state in typical
Parareal applications.

4.1 Parareal with a finite-element fine-solver

As a first demonstration, the Parareal framework was first implemented using a classical coarse-
solver, namely the same simulation code JOREK, but with (optionally) coarser spatial/temporal
resolution. This step was useful not just to develop the framework itself, but as will be seen in
Section-5, it also gives a practical reference for testing and evaluation.

The first technical aspect in the implementation is to convert data from one spatial resolution
to another. In this context, given two equidistant grids of point-wise data with different resolu-
tions, simple algorithms like linear interpolation are easily applied. However, when finite-elements
are involved, such conversions need to be projected onto the degrees-of-freedoms of each element.
This projection, which is applied for each scalar variable independently, requires the weak-form
integration of each element around a given node to solve for its degrees of freedom. This procedure
is already an available feature in the JOREK code, but it requires the data to be evaluated at
the Gaussian integration points of each element. For bi-cubic elements, 4 Gaussian integration
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points in each direction are necessary for each element. Thus, whether data is being up-sampled or
down-sampled between two grids, if the final destination is a finite-element grid, this sampling must
be done on the Gaussian integration points. It is important to note that the location of Gaussian
integration points are not equidistant, such that linear interpolation is not adequate.

Whether Parareal is run with a classical coarse-solver that uses finite-elements or not, interpo-
lation between different resolutions is clearly required, and since these interpolations involve non-
equidistant Gaussian integration meshes (and with the long-term goal of extending the framework
to unstructured grids), a robust and generic approach is to use the Clough-Tocher 2D-Interpolator
from the scipy.interpolate library. This method has the great advantage that it is mesh-agnostic,
thus ideal for this application.

Consider a fine-solver F and coarse solver G that evolve on different grid resolutions. In practice,
it is safe to assume that the fine-solver has the highest spatial resolution. Note that although this
is not strictly necessary, one would assume that if the coarse-solver also has high spatial resolution,
it is because its grid is the same as the fine-solver, in which case no interpolation is needed. At
each Parareal cycle ip and time-window it, the predictor-corrector algorithm must be applied to the
outputs from the previous time-window and previous Parareal cycle, such that the new initial-value
map is given by

U |(ip,it) = G|(ip,it−1) + F |(ip−1,it−1) −G|(ip−1,it−1). (1)

However, it is important to note that this operation involves data from two different grids as inputs,
and that the output U |(ip,it) must be evaluated on both the coarse grid and the fine grids in order
to run the next Parareal cycle. Thus there are two choices:

(a) all inputsG|(ip,it−1), F |(ip−1,it−1) andG|(ip−1,it−1) are first interpolated onto the higher-resolution
grid, the predictor-corrector operation (1) is applied, and the resulting initial-value map
U |(ip,it) is interpolated onto the coarse grid.

(b) all inputs G|(ip,it−1), F |(ip−1,it−1) and G|(ip−1,it−1) are interpolated onto both the fine-solver grid
and the coarse-solver grid, and the predictor-corrector operation (1) is applied to both sets
of interpolated inputs.

While the difference between these two option may seem irrelevant, there is one important point
to consider: at each Parareal cycle ip, and at each time-window it, the predictor-corrector step can
only be applied once the coarse-solver solution has been obtained for the previous time-window it−1.
In other words, the predictor-corrector step is sequential across time-windows, just like the coarse-
solver evaluation. However, interpolations with the Clough-Tocher method can be non-negligible,
particularly when running realistic use cases with high resolution grids. Note, it is most expensive
to interpolate from a high-resolution grid, but once the Clough-Tocher spline has been calculated,
evaluation is relatively cheap. This means that for option-(a), the final interpolation onto the
coarse-solver grid will be expensive. The advantage of the second option-(b) above is that the
interpolation of all F and G solutions, on both coarse- and fine-solver grids, can be executed at the
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end of each evaluation independently. That means the most expensive interpolation (from F ) can
be done in parallel when the fine-solver evaluation is deployed. And only the (cheaper) interpolation
of G|(ip,it−1) remains sequential since the interpolation of G|(ip−1,it−1) is already available from the
previous cycle.

(a)

Figure 5:
Schema of the Parareal predictor-corrector step for an application with finite-element grids. Note that if the coarse-solver
also uses a finite-element grid (such as the ‘classical’ coarse-solver), the last step (dashed-green arrow) also involves a FEM
projection. In order to avoid i/o overheads at run-time, the evaluation/interpolation onto the two grid domains (grey box)
is executed together with the deployment of each F |(ip−1,it−1) and G|(ip−1,it−1). This is particularly important for the (most
expensive) interpolation of the fine-solver F |(ip−1,it−1), which can therefore be run in parallel, rather than sequentially at the
end of each time-window’s coarse-solver pass G|(ip,it−1). Note that the 2D frames of the blobs in this figure are representative,
and the coarseness is exaggerated on purpose to illustrate the coarse-solver

There is one additional aspect to this interpolation issue. The interpolation from a given
fine-solver input F |(ip−1,it−1) does not necessarily have to use the Clough-Tocher method (or any
interpolation method), since the fine-solver grid is in fact already a bi-cubic spline itself. This
means that the F |(ip−1,it−1) inputs can be directly evaluated onto the required grids (either coarse-
solver or Gaussian-integration points), and no spline calculation is required. Note, however, that
this step is fast provided the local-coordinates (s, t), in finite-element space, are already known
for each evaluation point. This means that for each evaluation point with poloidal coordinates
(R,Z) in real-space, the corresponding FEM local-coordinates (s, t) have to be calculated and
recorded at the beginning of each Parareal run, since these evaluations will be repeated for each
time-window at each Parareal cycle (i.e. potentially thousands of times). This local-coordinates
mapping is achieved using the Newton-Raphson method for each point and the resulting map saved
for future evaluations. Contrary to this optimal approach, if option-(a) is employed, then the final
interpolation of the high-resolution U |(ip,it) has to be done using an interpolator like the Clough-
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Tocher method, since that U |(ip,it) map is already a mixture of 3 solutions on a grid that isn’t a
spline (typically the Gaussian-integration mesh of the high-resolution finite-element grid).

Option-(a) is manageable for small tests and code-development examples but for realistic appli-
cations it becomes prohibitively expensive, such that the interpolation i/o can even dominate over
everything else. This becomes particularly problematic for very large numbers of time-windows,
where the evaluation of each fine-solver becomes faster (fewer time-steps to compute) but where
the number of predictor-corrector operations increase.

Nevertheless, as will become evident in the next section, there is one disadvantage to option-(b).
Namely, the more natural implementation of option-(a) is doing all the data i/o and processing
‘on-the-fly’, meaning that for each predictor-corrector operation, all the mappings required (on
fine- and/or coarse-grids) can be generated instantly, even in-memory, and discarded as soon as
the output of the predictor-corrector is obtained. With option-(b), that data must be saved on the
file-system and saved until at least the end of the next Parareal cycle, since the predictor-corrector
operation requires the interpolated data from F |(ip−1,it−1) and G|(ip−1,it−1).

4.2 Parareal with a neural coarse solver

In the case where a neural coarse solver is used, like the FNO method in PDEarena, the input
data needed for each coarse-solver run, at each time-window, is not just a single initial-value state.
As described in Section-3, the neural solver requires several time-steps as input. In practice, this
means that the predictor-corrector step described above must be applied for several time-steps.

While this may sound like a simple matter of iterating the predictor-corrector step over each
input-step, in practice this characteristic of Neural-Parareal has several implications, both in terms
of data-processing and data-management, as explained below.

4.2.1 Checkpoint synchronisation

Firstly, this multiple-input constraint implies that the correct frequency of checkpoints is required
for both the fine-solver and coarse-solver, to coincide with the required data-input of the neural
solver, compared to standard Parareal applications, where only the total duration of the time-
window needs to be the same for both solvers, with only one final checkpoint for each time-window.
Note that checkpoint here refers to a state file, or a restart file which holds all the information
necessary from which to continue the simulation.

Additionally, since the neural coarse-solver requires multiple input checkpoints, the Neural-
Parareal framework cannot be run like a standard simulation with an initial condition. It requires
a first pre-run time-window with the fine-solver to create the initial set of multiple input checkpoints,
from which the full Parareal simulation is initiated.
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4.2.2 Performance and i/o parallelisation

As mentioned above, each predictor-corrector operation is not negligible, and if it needs to be
run for several checkpoints, possibly 10 to 20 of them, then this operation must be parallelised.
Note that in the predictor-corrector schema described in Figure-5, there are two locations where
parallelisation is required.

The interpolation/evaluation of each input, as described in the grey box of Figure-5, can be
run in parallel at the end of each coarse-solver and fine-solver run, simply deploying across however
many time-steps are required by the neural solver.

The predictor-corrector step, however, occurs sequentially after each coarse-solver pass through
the time-windows of each new Parareal cycle. For the fine-solver (top row of Figure-5, only a single
input is required (the junction between time-windows), but for the coarse-solver (bottom row), the
predictor-corrector must be applied to all time-steps required as input for the neural solver. This
operation must also be parallelised.

4.2.3 Data generation (and annihilation)

Since all operations to generate the mappings of the data onto the Gaussian-integration points of
the fine-solver grid and the coarse-solver grid (grey box in Figure-5) are not happening ‘on-the-fly’
as the predictor-corrector and must be saved onto the file-system, that data can be deleted.

Apart from the data generation/annihilation necessary for the predictor-corrector, the par-
ticularity of the Parareal algorithm is that it creates a lot more data than a normal simulation.
Assuming that the framework is run with a large number of time-windows, then each Parareal cycle
includes the equivalent amount of fine-solver time-steps as the entire run would (except that they
are disjointed since they start with separate initial-conditions). Therefore, even if the Parareal run
achieves the desired level of precision/convergence after 4 cycles, it means that approximately 4
times more data has been produced than for a single simulation. This large amount of extra data
per run is ideal for training the neural operator.

A normal JOREK simulation (without Parareal) with 200 checkpoint files out of 2000 timesteps
is about 5.8GB. This contains the full spatial resolution with all variables on the high-order finite-
element grid. A full simulation (without Parareal) in the down-sampled format for the neural
operator training (100×100 grid, 200 time frames) is 93MB. A Parareal simulation with 20 time-
windows, run for the full 20 Parareal iterations, and saving all of the intermediary data (grey box in
Figure-5), is about 265GB. After clean-up, the same Parareal simulation, without saving all these
intermediary files, and keeping only strategic data, is about 61GB.

4.2.4 Implementation with Slurm scheduler

All runs were executed on HPC clusters that operate with a Slurm Workload Manager. The current
implementation requires a Slurm job ‘master’ that orchestrates all the Parareal run, its i/o and the
deployment of children Slurm jobs. The master job submits a new Slurm job for each fine-solver
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time-window, but the coarse-solver time-windows can either be submitted as separate Slurm job
or be executed inside the master job, assuming it does not require too many resources. This can
be advantageous in case queuing times are elevated, since the master job will remain idle while
waiting for its children jobs to return.

5 Neural-Parareal Results

5.1 Initial demonstration and tests

In order to validate the implementation of the Parareal framework, a series of tests were run. The
first result is a test that the framework works and runs to completion. By definition, the Parareal
algorithm can be run for as many cycles as there are time-windows. At each new cycle, the first
time-window becomes the actual fine-solver target simulation. At cycle 1, time-window 1 will be
run with the fine-solver starting from the initial conditions. At cycle 2, time-window 1 does not need
to be run at all anymore, and time-window 2 will be run with the fine-solver, starting from where
time-window 1 finished, i.e. the exact simulation is continuing. At cycle 3, time-window 3 becomes
the continuation of the real simulation, and so on. Thus, at cycle n, where n is the number of time-
windows, the entire simulation has been run from start to end. In practice, one would never run
all cycles of a Parareal simulation, since that becomes at least as slow as the simulation itself (i/o
and coarse-solver timing added), but it is computationally much more expensive, namely

∑n
i=1

i
n =

1
2(n+ 1) times more expensive, since at each cycle i, there are n− i time-windows to be run, each
costing 1

n times the cost of the full simulation. Nevertheless, for testing and demonstration, it is
useful to be able to compare the Parareal to the real simulation. For this purpose, the last time-step
of the last time-window of the Parareal simulation should converge towards the last time-step of
the full simulation. If that convergence occurs quickly, it means the Parareal simulation is efficient.

Figure-6 displays the evolution of the last time-step of the last time-window for a Parareal
simulation with 40 time-windows, showing how the Parareal result progressively converges to the
ground truth. This simulation is run with the electrostatic model, using a neural operator that
takes 5 input steps, similar to the surrogates shown in [75]. At the last cycle, as expected, the
Parareal result is identical to the ground truth simulation.

In order to evaluate the efficiency of subsequent Parareal tests, the Structural Similarity Index
Measure (SSIM) [90] algorithms is used. As can be observed in Figure-6, even though the general
structure of the density map at cycles 20 and 30 are similar to the ground truth, the fine details are
so different that an MSE comparison between the two would be dominated by point-wise differences
rather than inform on the similarity of the blob structures. The SSIM algorithm is designed to
provide a better focus on general structures of image maps rather than their exact details. The
SSIM is relatively simple to implement in Python and available from the skimage.metrics library.
An SSIM value of zero means the two images are completely different, while an SSIM of 1.0 means
the two images are identical. The bottom part of Figure-6 shows the SSIM measure from that
Parareal simulation, aligned with the corresponding 2D frames for reference. Note that since the
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(a)

Figure 6:
Evolution of the last time-step of the last (40th) time-window of a Parareal simulation (showing the density map), compared to
the ground-truth from the exact simulation. As the algorithm evolves through each cycle, the final state progressively converges
to the ground truth. As expected, at the last cycle, the result exactly coincides with the ground-truth simulation. The bottom
plot shows the evolution of the SSIM difference between the final state and the ground truth, as a function of Parareal cycles.

last time-step coincides with the ground truth simulation at the last Parareal cycle, the SSIM will
converge to 1.0 at the final cycle. In other words, no matter how bad the coarse-solver is, and how
slowly Parareal converges, the SSIM will always go to 1.0 at the final Parareal cycle. Of course, in
order to look at very high-precision convergence, an MSE comparison would be preferable, but this
is not the objective of this study, and the Parareal algorithm is not aimed at providing extreme
precision, but rather reasonable statistical estimation at high speedup.

In order to obtain some measure of the efficacy of the Neural-Parareal framework, and the
corresponding neural coarse-solver, it is useful to run the same cases with classical coarse-solvers.
This is achieved by using the actual JOREK code for the coarse solver, with exactly the same
physics model, but with a reduced resolution grid of 90×90 instead of 200×200, and increased
diffusion coefficients. For this exercise, 4 cases are run with 4 levels of increased diffusion, with all
parameters D, κ, µ increased together by a given factor coefficient γ. The 4 cases are run with a γ
of 3, 5, 10 and 30. Effectively, this means that the classical coarse-solver with γ = 30 is a very bad
or inaccurate coarse-solver, while the one with γ = 3 is much more reliable. All cases are run with
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40 time-windows, using the electrostatic model, which was the maximum number of time-windows
possible for the neural operator which was trained to use 5 time-samples as input. The comparison
between these 4 cases and the real neural coarse solver from PDEarena is done by observing the
evolution of the SSIM between the last time-step of the last time-window and the ground truth, as
a function of Parareal cycles, which is shown in Figure-7.

(a)

Figure 7:
Evolution of the SSIM computed for the density map (with the electrostatic model) at the last time-step of the last (10th)
time-window of a Parareal simulation, compared to the ground-truth from the exact simulation. The evolution is plotted for
5 cases: the Parareal framework with a PDEarena neural operator as the coarse-solver, and 4 ‘classical’ coarse-solvers with
increasing levels of additional diffusion. Even for the best ‘classical’ coarse-solver with only 3 times the level of extra diffusion,
the SSIM evolution is still outperformed by the Neural-Parareal case.

As can be seen in this result, the Neural-Parareal framework with a PDEarena surrogate as
coarse-solver outperforms even the best classical coarse-solver. It should be noted that, as far as
the Parareal method is concerned, such a classical coarse-solver with diffusion coefficients increased
by only a factor 3, with exactly the same physics model, should be considered an extremely reliable
coarse-solver. Effectively, anything better than that should be considered almost identical to the
real-solver. Now, evidently, in a non-linear system, any deviation, even at numerical accuracy,
can lead to drastic differences for long simulation times, but at least this comparison provides an
informative initial measure of how well the neural coarse-solver performs.

Nevertheless, as can be seen from Figure-7, after 10/40 cycles (i.e. up to 4× speedup), even
the best Parareal run has barely reached 65% SSIM accuracy, and by the 20/40 cycle (i.e. up to
2× speedup), barely 70%. Although the point of this study is not to investigate the performance
of Parareal as a speed-up option for the JOREK code, a relevant point is to investigate how far
the neural operators can be improved to increase the precision (and/or speed-up) of the Parareal
framework.
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5.2 Integrated framework demonstration

As mentioned earlier, for a specific number n of time-windows, assuming the i/o and orchestration
operations are negligible compared to the fine-solver, the Parareal algorithm will provide a real-
time speed-up of n

i , where i is the number of Parareal cycles needed to reach the desired level
of convergence (the exact speed-up of n

i might be reduced depending on the cost of the coarse-
solver, the i/o operations and the orchestration of all jobs). However, assuming n is large, then
the total amount of fine-solver time-steps simulated will be i times the amount that a single (non-
Parareal) simulation would provide. Given this large amount of data produced by the Parareal
framework, a sensible approach is to consider a situation where a scientist would need to produce
new simulations progressively within an input-parameter domain to explore new features of the
problem at hand. Initially, since no data is available, it is impossible to train any neural operator,
but after a reasonable number of simulations are achieved, a first (very) coarse neural solver can
be trained, thus enabling simulations to be run with the Parareal framework. From that point
onward, all simulations run with Parareal produce more data, which can then be bootstrapped into
the training of progressively more accurate neural solvers. Ideally, the more simulations are run,
the more training data, the better the neural solver, and thus the higher Parareal speed-up. In the
ideal scenario that the neural solver can become as accurate as the fine-solver itself, this means
simulations could then reach a speed-up with Parareal equal to the number of time-windows, i.e.
with n = 100, simulations would be achieved 100 times faster.

This optimistic vision will be highly dependent on the use case. For simple problems where
neural solvers can indeed reach high accuracy levels, such speed-up results might be achievable, but
one would argue that simple sets of PDEs do not need to be parallelised in the first place, as they
would be easily and quickly evaluated with ordinary numerical solver methods. A demonstration
of this bootstrap method is provided here with the electromagnetic model of Reduced-MHD. Since
a lot of data was already available for the electrostatic model, it was intriguing to explore an
entirely new case where no data was available, in order to provide a genuine test of the idea of
Neural-Parareal.

First, a set of 20 simulations is run, without Parareal. Each one with a random sampling of the
initial conditions of multiple blobs. Once these 20 simulations are obtained, the time-trajectories
of these are each split into segments of the size of the time-windows. In order to enable enough
data within a time-window to be used for the training of the neural solver, the time-domain is
decomposed into 20 time-windows. This results in segments of data containing 100 time-steps of
simulations, meaning 10 data frames (due to down-sampling of the frequency agreed for the neural
solver input). The neural solver itself is trained to use 5 time-samples as inputs (to output a single
one, which can be rolled-out).

After the first neural coarse-solver is trained, another set of 20 simulations is run with Parareal
using the neural coarse-solver, starting from a new set of random inputs. Each simulation is run
for the full 20 Parareal cycles. Thus the total number of time-windows run for each Parareal
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simulation is
∑n

i=1 i = n(n+1)
2 , which gives 210 with n = 20. This new batch of 20 simulations

produces a total of 4200 fine-solver segments that can be added to the initial data set to re-train
the neural coarse-solver.

(a) (b)

Figure 8:
Performance of the Neural-Parareal framework evaluated at (a) cycle 5 out of 20 (i.e. speed-up of 4), and at (b) cycle 10 out
of 20 (i.e. speed-up of 2). For each batch (different colors/signs), all simulations are ordered in descending order to provide a
distribution-like view of the performance.)

With this new coarse-solver, another set of 20 simulations is run with Parareal, and the resulting
data aggregated to the existing dataset for a new training, and so on. This Neural-Parareal loop,
described in Figure-1 is run for 4 iterations, and the result is shown in Figure-8, demonstrating
clear performance improvement at each iteration of the framework. The framework implementation,
although specific to the JOREK code for now, is available on [91].

Although in a normal situation one may wish to stop after a fixed number of parareal cycles
if convergence is not achieved, for the purpose of this exercise, running all the Parareal cycles
ensures more data is created for future training, and it also enables a direct comparison against the
ground truth, which would not be available otherwise. All final simulation trajectories (without
the additional Parareal intermediate windows) can be downloaded from Zenodo [77].

The result in Figure-8 demonstrates that in a Neural-Parareal framework, the more simulations
are run, the more precise the neural coarse-solver becomes. As the neural coarse-solver improves, the
speed-up obtained by the Parareal framework will increase. This is best illustrated in Figure-9, by
plotting the speed-up efficiency of each Parareal simulation for a given SSIM accuracy requirement.
The maximal speedup of a Parareal simulation is the number of time-windows (assuming the
number of computing resources are scaled linearly with the number of time-windows). If it takes a
single evaluation of the coarse-solver (and fine-solver) on each time-window to obtain the required
accuracy level, then the speed-up (time-to-solution acceleration) is equivalent to the number of
time-windows. In other words, the speed-up efficiency is 100%. With every Parareal iteration, the
speed-up efficiency diminishes. As shown in Figure-9, the speed-up efficiency increases significantly
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for each batch of simulation, when the neural operator coarse-solver is updated.

(a) (b)

Figure 9:
Speed-up efficiency of the Neural-Parareal framework for a required SSIM-accuracy of (a) 70%, and (b) 80%. For each batch
(different colors/signs), all simulations are ordered in descending order to provide a distribution-like view of the speed-up. In
this particular example, since the Parareal simulations have 20 time-windows, a 100% speed-up efficiency means a time-to-
solution accelerated by a factor 20 (for the required SSIM-accuracy), whereas a speed-up efficiency of 50% means an acceleration
of a factor 10.)

6 Conclusion

6.1 Summary

This paper presents the development of an integrated Neural-Parareal framework, which bootstraps
the training of neural coarse-solvers as more simulations are being produced by users, progressively
leading to more and more accurate neural operators, and thus larger speed-ups of the Parareal
simulations. The framework exploits the large amount of data that Parareal frameworks produce by
design. The Parareal algorithm can provide real-time speedup (i.e. time-to-solution) of simulations
for a given precision requirement. Provided a very fast and precise coarse-solver is available, and
given large amounts of High-Performance-Computing resources if the simulation can be split into n
time-windows on n parallel computing resources, the speedup can potentially become n/2 or n/3.
If n is large, of the order of hundreds, this speedup can be significant. This trade of computing
cost versus time-to-solution also comes with increased simulation data production, which is ideal
for training deep learning models and, in this context, neural operators.

The demonstration of this self-improving framework is demonstrated using MHD simulations
relevant to fusion research, with radially evolving blobs in a 2D poloidal slab with toroidally ax-
isymmetric. The neural operators are trained using PDEarena, and the MHD simulations are
performed with the JOREK code. Parallelisation of the framework is implemented with SLURM
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on HPC clusters. For a set of Reduced-MHD equations, the framework is evolved for 4 iterations
using 20 new simulations at each iteration, clearly showing rapidly improving performance.

Beyond this demonstration, several improvements could be implemented. Particularly in the
urgent context of Digital Twins for fusion, this self-improving platform could take full advantage
of the rapidly evolving domain of Artificial Intelligence and exascale computing, revealing an in-
teresting avenue in the convergence of AI and HPC.

6.2 Potential extensions and improvements

In order to build upon the work presented here, the following ideas could be addressed in the near
future:

1. Using a real Parareal convergence measure
In the demonstration above, each Parareal simulation is run for the full number of iterations
possible. This is partly to create more data for the training, but also to provide a clean
performance measure by comparing against the real simulation. In the future, instead of using
SSIM (or MSE) against the ground truth of the final simulation result, one could compare
each Parareal iteration against the previous iteration to check the relative convergence. How
to properly measure Parareal convergence is a question in itself. A preview of this is given in
Figure-10, with the SSIM accuracy compared to the previous Parareal iteration (instead of
the ground truth) for a speed-up of 2 and a speed-up of 4.

(a) (b)

Figure 10:
Performance of the Neural-Parareal framework evaluated at (a) cycle 5 out of 20 (i.e. speed-up of 4), and at (b) cycle 10 out
of 20 (i.e. speed-up of 2). Here the SSIM is evaluated against the final time-step of the previous Parareal iteration, as opposed
to the ground truth (assuming the ground truth is not available).)

2. Higher resolution surrogates
As mentioned in Section-3, the spatial/temporal resolution of the neural operator is down-
sampled from the simulation. Although the full resolution equivalent to the simulation may
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not be required, it will undoubtedly affect the precision of the Parareal framework as a whole,
and should therefore be investigated.

3. Other PDEarena options
The high performance of the FNO option in PDEarena may be dependent on the use case, as
addressed in Section-3, and it would be interesting to investigate other options, ideally using
multiple options at once and choosing the optimal one as part of a broader hyperparameter
tuning.

4. Using existing foundation models
Instead of training neural operators from scratch, one could directly fine-tune existing foun-
dation models to create the first coarse-solvers of a given simulation set-up if the amount of
data is sparse. This would be particularly relevant to realistic use cases, where engineers and
researchers are regularly faced with new problems, including new geometries, new meshes and
new physics models.

5. Filtering and discarding data
A particularly attractive aspect of the above point is that fine-tuning of large models would
be more suited to the potential requirement of discarding data after simulations have been
run, with respect to available data-storage capabilities. Regardless, even with the current
framework, one could retain only the data of simulations that have struggled to converge,
and discard data from simulations that have converged quickly, and thus are already covered
by the surrogate.

6. Better input-domain sampling with Active Learning
For a self-improving framework like the one presented here, it may be more efficient to sample
the input-domain space with advanced methods like Active Learning, rather than letting users
choose new simulations at random. In other words, a modern framework would ingest new
input requests from users, and provide a first estimation of whether the new simulation is
actually needed, or whether several simulations have already been performed in the vicinity,
thus implying the coarse neural solver is already reliable, and requesting confirmation before
this specific simulation is run.
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