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Abstract

Recent works in dataset distillation seek to minimize
training expenses by generating a condensed synthetic
dataset that encapsulates the information present in a
larger real dataset. These approaches ultimately aim to
attain test accuracy levels akin to those achieved by mod-
els trained on the entirety of the original dataset. Previous
studies in feature and distribution matching have achieved
significant results without incurring the costs of bi-level op-
timization in the distillation process. Despite their convinc-
ing efficiency, many of these methods suffer from marginal
downstream performance improvements, limited distillation
of contextual information, and subpar cross-architecture
generalization. To address these challenges in dataset dis-
tillation, we propose the ATtentiOn Mixer (ATOM) module
to efficiently distill large datasets using a mixture of chan-
nel and spatial-wise attention in the feature matching pro-
cess. Spatial-wise attention helps guide the learning pro-
cess based on consistent localization of classes in their re-
spective images, allowing for distillation from a broader
receptive field. Meanwhile, channel-wise attention cap-
tures the contextual information associated with the class
itself, thus making the synthetic image more informative for
training. By integrating both types of attention, our ATOM
module demonstrates superior performance across various
computer vision datasets, including CIFAR10/100 and Tiny-
Imagenet. Notably, our method significantly improves per-
formance in scenarios with a low number of images per
class, thereby enhancing its potential. Furthermore, we
maintain the improvement on cross-architectures and ap-
plications such as neural architecture search.

1. Introduction
Efficient deep learning has surged in recent years due to
the increasing computational costs associated with training

*Equal contribution

Figure 1. The ATOM Framework utilizes inherent information to
capture both context and location, resulting in significantly im-
proved performance in dataset distillation. We display the perfor-
mance of various components within the ATOM framework, show-
casing a 5.8% enhancement from the base distribution matching
performance on CIFAR10 at IPC50. Complete numerical details
can be found in Table 4.

and inferencing pipelines [2, 26, 51–54, 63, 71, 75, 76].
This growth can be attributed to the escalating complex-
ity of model architectures and the ever-expanding scale of
datasets. Despite the increasing computational burden, two
distinct approaches have emerged as potential avenues for
addressing this issue: the model-centric and data-centric
approaches. The model-centric approach is primarily con-
cerned with mitigating computational costs by refining the
architecture of deep learning models. Techniques such as
pruning, quantization, knowledge distillation, and architec-
tural simplification are key strategies employed within this
paradigm [26, 29, 30, 49, 50, 65, 68, 71]. In contrast, the
data-centric approach adopts a different perspective, focus-
ing on exploring and leveraging the inherent redundancy
within datasets. Rather than modifying model architectures,
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this approach seeks to identify or construct a smaller dataset
that retains the essential information necessary for main-
taining performance levels. Coreset selection was a fairly
adopted method for addressing this gap [4, 6, 47, 55, 60].
In particular works such as Herding [66] and K-Center [55]
offered a heuristic-based approach to intelligently select an
informative subset of data. However, as a heuristic-based
method, the downstream performance is limited by the in-
formation contained solely in the subset. More recently,
shapely data selection [17] found the optimal subset of data
by measuring the downstream performance for every subset
combination achievable in the dataset. However inefficient
this may be, the downstream performance is still limited by
the diversity of samples selected. therefore, Dataset Distil-
lation (DD) [63] has emerged as a front-runner wherein a
synthetic dataset can be learned.

Dataset distillation aims to distill large-scale datasets
into a smaller representation, such that downstream mod-
els trained on this condensed dataset will retain competi-
tive performance with those trained on the larger original
one [7, 63, 76]. Recently, many techniques have been intro-
duced to address this challenge, including gradient match-
ing [38, 74, 76], feature/distribution matching [51, 75, 77],
and trajectory matching [7, 14, 21]. However, many of
these methods suffer from complex and computationally
heavy distillation pipelines [7, 21, 76] or inferior perfor-
mance [51, 75, 76]. A promising approach, DataDAM [51],
effectively tackled the computational challenges present in
prior distillation techniques by employing untrained neu-
ral networks, in contrast to bi-level optimization methods.
However, despite its potential, DataDAM faced several sig-
nificant limitations: (1) it obscured relevant class-content-
based information existing channel-wise in intermediate
layers; (2) it only achieved marginal enhancements on pre-
vious dataset distillation algorithms; and (3) it exhibited in-
ferior cross-architecture generalization.

In this work, we introduce ATtentiOn Mixer, dubbed
ATOM as an efficient dataset distillation pipeline that strikes
an impressive balance between computational efficiency
and superior performance. Drawing upon spatial attention
matching techniques from prior studies like DataDAM [51],
we expand our receptive field of information in the match-
ing process. Our key contribution lies in mixing spatial in-
formation with channel-wise contextual information. Intu-
itively, different convolutional filters focus on different lo-
calizations of the input feature; thus, channel-wise atten-
tion aids in the distillation matching process by compress-
ing and aggregating information from multiple regions as
evident by the performance improvmenets displayed in Fig-
ure 1. ATOM not only combines localization and context,
but it also produces distilled images that are more gener-
alizable to various downstream architectures, implying that
the distilled features are true representations of the original

dataset. Moreover, our approach demonstrates consistent
improvements across all settings on a comprehensive distil-
lation test suite. In summary, the key contributions of this
study can be outlined as follows:

[C1]: We provide further insight into the intricacies
of attention matching, ultimately introducing the use of
channel-wise attention matching for capturing a higher level
of information in the feature-matching process. Our mixing
module combines both spatial localization awareness of a
particular class, with distinctive contextual information de-
rived channel-wise.

[C2]: Empirically we show superior performance
against previous dataset distillation methods including fea-
ture matching and attention matching works, without bi-
level optimization on common computer vision datasets.

[C3]: We extend our findings by demonstrating supe-
rior performance in cross-architecture and neural architec-
ture search. In particular, we provide a channel-only setting
that maintains the majority of the performance while incur-
ring a lower computational cost.

2. Related Works
Coreset Selection. Coreset selection, an early data-centric
approach, aimed to efficiently choose a representative sub-
set from a full dataset to enhance downstream training per-
formance and efficiency. Various methods have been pro-
posed in the past, including geometry-based approaches [1,
10, 55, 57, 66], loss-based techniques as mentioned in [46,
59], decision-boundary-focused methods [16, 42], bilevel
optimization strategies [32, 33], and gradient-matching al-
gorithms outlined in [31, 43]. Notable among them are
Random, which randomly selects samples as the coreset;
Herding, which picks samples closest to the cluster center;
K-Center, which selects multiple center points to minimize
the maximum distance between data points and their nearest
center; and Forgetting, which identifies informative training
samples based on learning difficulties [4, 6, 55, 59]. While
these selection-based methods have shown moderate suc-
cess in efficient training, they inherently possess limitations
in capturing rich information. Since each image in the se-
lected subset is treated independently, they lack the rich fea-
tures that could have been captured if the diversity within
classes had been considered. These limitations have moti-
vated the emergence of dataset distillation within the field.

Dataset Distillation. Dataset distillation has emerged as
a learnable method of synthesizing a smaller, information-
rich dataset from a large-scale real dataset. This approach
offers a more efficient training paradigm, commonly ap-
plied in various downstream applications such as contin-
ual learning [9, 20, 51, 70, 76], neural architecture search
[27, 58], and federated learning [28, 39, 40, 69]. The semi-
nal work, initially proposed by Wang et al. [63], introduced



Figure 2. (a) An overview of the proposed ATOM framework. By mixing attention, ATOM is able to capture both spatial localization and
class context. (b) Demonstration of the internal architecture for spatial- and channel-wise attention in the ATOM Module. The spatial-wise
attention computes attention at specific locales through different filters, resulting in a matrix output, whereas the channel-wise attention
calculates attention between each filter, naturally producing a vectorized output.

bilevel optimization, comprising an outer loop for learning
the pixel-level synthetic dataset and an inner loop for train-
ing the matching network. Following this, several studies
adopted surrogate objectives to tackle unrolled optimization
problems in meta-learning. For example, gradient match-
ing methods [15, 34, 38, 74, 76] learn images by aligning
network gradients derived from real and synthetic datasets.
Trajectory matching [7, 11, 14, 21] improves performance
by minimizing differences in model training trajectories be-
tween original and synthetic samples. Meanwhile, feature
matching strategies [51, 51, 61, 73, 75, 77] aim to align fea-
ture distributions between real and synthetic data within di-
verse latent spaces. Despite significant advancements in this
field, methods still struggle to find a trade-off between the
computational costs associated with the distillation pipeline
and the model’s performance. A recent work, DataDAM
[51], used spatial attention to improve the performance of
feature-matching-based methods by selectively matching
features based on their spatial attention scores. However,
although this method operates without bilevel optimiza-
tion, it only marginally improves performance on larger test
suites. In this study, we delve deeper into the potential of
attention-based methods and demonstrate superior perfor-
mance compared to DataDAM and previous benchmarks
across various computer vision datasets. Additionally, we
achieve a lower computational cost compared to conven-
tional attention-matching approaches by leveraging infor-
mation in a channel-wise manner.

Attention Mechanism. Attention mechanisms have
been widely adopted in deep learning to enhance perfor-
mance across various tasks [3, 64, 72]. Initially applied
in natural language processing [3], it has extended to com-

puter vision, with global attention models [64] improving
image classification and convolutional block attention mod-
ules [67] enhancing feature map selection. Additionally, at-
tention aids model compression in knowledge distillation
[72]. They are lauded for their ability to efficiently incor-
porate global contextual information into feature represen-
tations. When applied to feature maps, attention can take
the form of either spatial or channel-based methods. Spa-
tial methods focus on identifying the informative regions
(”where”), while channel-based methods complementarily
emphasize the informative features (”what”). Both spatial
localization and channel information are crucial for identi-
fying class characteristics. Recently, Sajedi et al. proposed
DataDAM [51] to concentrate only on spatial attention, cap-
turing class correlations within image localities for efficient
training purposes. However, inspired by the inherent ob-
fuscation of the content in the attention maps, we propose
an Attention Mixer module that uses a unique combination
of spatial and channel-wise attention to capture localization
and information content.

3. Methodology

Given the larger source dataset T = {(xi, yi)}|T |
i=1 con-

taining |T | real image-label pairs, we generate a smaller
learnable synthetic dataset S = {(sj , yj)}|S|

j=1 with |S| syn-
thetic image and label pairs. Following previous works
[7, 51, 61, 74, 76], we use random sampling to initial-
ize our synthetic dataset. For every class k, we obtain a
batch of real and synthetic data (BT

k and BS
k , respectively)

and use a neural network ϕθ(·) with randomly initialized
weights θ [22] to extract intermediate and output features.



We illustrate our method in Figure 2 where an L-layer neu-
ral network ϕθ(·) is used to extract features from the real
and synthetic sets. The collection of feature maps from
the real and synthetic sets can be expressed as ϕθ(Tk) =
[fTk

θ,1, · · · ,f
Tk

θ,L] and ϕθ(Sk) = [fSk

θ,1, · · · ,f
Sk

θ,L], respec-
tively. The feature fTk

θ,l comprises a multi-dimensional array

within R|BT
k |×Cl×Wl×Hl , obtained from the real dataset at

the lth layer, where Cl denotes the number of channels and
Hl × Wl represents the spatial dimensions. Correspond-
ingly, a feature fSk

θ,l is derived for the synthetic dataset.
We now introduce the Attention Mixer Module (ATOM)

which generates attention maps for the intermediate fea-
tures derived from both the real and synthetic datasets.
Leveraging a feature-based mapping function A(·), ATOM
takes the intermediate feature maps as input and produces
a corresponding attention map for each feature. Formally,
we express this as: A

(
ϕθ(Tk)

)
= [aTk

θ,1, · · · ,a
Tk

θ,L−1] and
A(ϕθ(Sk)) = [aSk

θ,1, · · · ,a
Sk

θ,L−1] for the real and synthetic
sets, respectively. Previous works [51, 72] have shown that
spatial attention, which aggregates the absolute values of
feature maps across the channel dimension, can emphasize
common spatial locations associated with high neuron acti-
vation. The implication of this is retaining the most infor-
mative regions, thus generating an efficient feature descrip-
tor. In this work, we also consider the effect of channel-wise
attention, which emphasizes the most significant informa-
tion captured by each channel based on the magnitude of its
activation. Since different filters explore different regions or
locations of the input feature, channel-wise activation yields
the best aggregation of the global information. Ultimately,
we convert the feature map fTk

θ,l of the lth layer into an at-
tention map aTk

θ,l representing spatial or channel-wise atten-
tion using the corresponding mapping functions As(·) or
Ac(·) respectively. Formally, we can denote the spatial and
channel-wise attention maps as:

As(f
Tk

θ,l) =

Cl∑
i=1

∣∣(fTk

θ,l)i

∣∣ps
, (1)

Ac(f
Tk

θ,l) =

Hl∗Wl∑
i=1

∣∣(fTk

θ,l)
⋆
i

∣∣pc
, (2)

where, (fTk

θ,l)i = fTk

θ,l(:, i, :, :) is the feature map of chan-
nel i from the lth layer, and the power and absolute value
operations are applied element-wise; meanwhile, the sym-
bol ⋆ flattens the feature map along the spatial dimen-
sion

(
(fTk

θ,l)
∗ ∈ R|BT

k |×Cl×Wl∗Hl

)
, such that (fTk

θ,l)
⋆
i =

(fTk

θ,l)
⋆(:, :, i). By leveraging both types of attention, we

can better encapsulate the relevant information in the inter-
mediate features, as investigated in Section 4.3. Further, the

effect of power parameters for spatial and channel-wise at-
tention, i.e. ps and pc is studied in the Section 4.3.

Given our generated spatial and channel attention maps
for the intermediate features, we apply standard normaliza-
tion such that we can formulate a matching loss between the
synthetic and real datasets. We denote our generalized loss
LATOM as:

E
θ∼Pθ

[ K∑
k=1

L−1∑
l=1

∥∥∥ETk

[ zTk

θ,l

∥zTk

θ,l∥2

]
− ESk

[ zSk

θ,l

∥zSk

θ,l∥2

]∥∥∥2], (3)

where, in the case of spatial attention, we denote zTk

θ,l =

vec(aTk

θ,l) ∈ R|BT
k |×(Wl×Hl) and zSk

θ,l = vec(aSk

θ,l) ∈
R|BS

k |×(Wl×Hl) to represent the vectorized spatial atten-
tion map pairs at the lth layer for the real and synthetic
datasets, respectively. Meanwhile, for channel-based at-
tention, we have zTk

θ,l = vec(aTk

θ,l) ∈ R|BT
k |×(Cl) and

zSk

θ,l = vec(aSk

θ,l) ∈ R|BS
k |×(Cl) to represent the flattened

channel attention map pairs at the lth layer for the real and
synthetic datasets, respectively. The parameter K is the
number of categories in a dataset, and Pθ denotes the distri-
bution of network parameters. We estimate the expectation
terms in Equation (3) empirically if ground-truth data dis-
tributions are not available.

Following previous works [51, 61, 73, 75, 77], we lever-
age the features in the final layer to regularize our matching
process. In particular, the features of the penultimate layer
represent a high-level abstraction of information from the
input images in an embedded representation and can thus
be used to inject semantic information in the matching pro-
cess [19, 48, 51, 75]. Thus, we employ LMMD as described
in [51, 75] out-of-the-box.

Finally, we learn the synthetic dataset by minimizing the
following optimization problem using SGD optimizer:

S∗ = argmin
S

(
LATOM + λLMMD

)
, (4)

where λ is the task balance parameter inherited from [51].
In particular, we highlight that LMMD brings semantic infor-
mation from the final layer, while LATOM mixes the spatial
and channel-wise attention information from the interme-
diate layers. Note that our approach assigns a fixed label
to each synthetic sample and keeps it constant during train-
ing. A summary of the learning algorithm can be found in
Algorithm 1.

4. Experiments
4.1. Experimental Setup

Datasets. Our method is evaluated on the CIFAR-10 and
CIFAR-100 datasets [35], which maintain a resolution of
32 × 32, aligning with state-of-the-art benchmarks. Fur-
thermore, we resize the Tiny ImageNet [37] datasets to 64



Algorithm 1 Attention Mixer for Dataset Distillation

Input: Real training dataset T = {(xi, yi)}|T |
i=1

Required: Initialized synthetic samples for K classes,
Deep neural network ϕθ parameterized with θ, Probability
distribution over randomly initialized weights Pθ, Learning
rate ηS , Task balance parameter λ, Number of training iter-
ations I .

1: Initialize synthetic dataset S
2: for i = 1, 2, · · · , I do
3: Sample θ from Pθ

4: Sample mini-batch pairs BT
k and BS

k from the real
and synthetic sets for each class k

5: Compute LATOM and LMMD
6: Calculate L = LATOM + λLMMD
7: Update the synthetic dataset using S ← S−ηS∇SL
8: end for

Output: Synthetic dataset S = {(si, yi)}|S|
i=1

× 64 for additional experimentation. The supplementary
materials provide more detailed dataset information.

Network Architectures. We employ a ConvNet archi-
tecture [18] for distillation, following prior studies. The de-
fault ConvNet comprises three convolutional blocks, each
consisting of a 128-kernel 3 × 3 convolutional layer, in-
stance normalization, ReLU activation, and 3 × 3 average
pooling with a stride of 2. To accommodate the increased
resolutions in Tiny ImageNet, we append a fourth convolu-
tional block. Network parameters are initialized using nor-
mal initialization [22] in all experiments.

Evaluation Protocol. We evaluate the methods using
standard measures from previous studies [51, 61, 74–76].
Five sets of synthetic images are generated from a real train-
ing dataset with 1, 10, and 50 images per class. Then, 20
neural network models are trained on each synthetic set us-
ing an SGD optimizer with a fixed learning rate of 0.01.
Each experiment reports the mean and standard deviation
values for 100 models to assess the efficacy of distilled
datasets. Furthermore, computational costs are assessed by
calculating run-time per step over 100 iterations, as well as
peak GPU memory usage during 100 iterations of training.

Implementation Details. We use the SGD optimizer
with a fixed learning rate of 1 to learn synthetic datasets
containing 1, 10, and 50 IPCs over 8000 iterations with task
balances (λ) set at 0.01. Previous works have shown that
ps = 4 is sufficient for spatial attention matching [51]. As
such we set our default case as: pc = ps = 4. This is
further ablated in Section 4.3. We adopt differentiable aug-
mentation for both training and evaluating the synthetic set,
following [51, 76]. For dataset reprocessing, we utilized
the Kornia implementation of Zero Component Analysis
(ZCA) with default parameters, following previous works

[7, 44, 51]. All experiments are performed on a single A100
GPU with 80 GB of memory. Further hyperparameter de-
tails can be found in the supplementary materials.

Competitive Methods. In this paper, we compare
the empirical results of ATOM on three computer vision
datasets: CIFAR10/100 and TinyImageNet. We evaluate
ATOM against four corset selection approaches and thir-
teen distillation methods for training set synthesis. The
corset selection methods include Random selection [47],
Herding [4, 6], K-Center [55], and Forgetting [60]. We
also compare our approach with state-of-the-art distillation
methods, including Dataset Distillation [63] (DD), Flexi-
ble Dataset Distillation [5] (LD), Dataset Condensation [76]
(DC), Dataset Condensation with Contrastive (DCC) [38],
Dataset Condensation with Differentiable Siamese Aug-
mentation [74] (DSA), Distribution Matching [75] (DM),
Deep Generative Priors (GLaD), Aligning Features [61]
(CAFE), VIG [41], Kernel Inducing Points [44, 45] (KIP),
Matching Training Trajectories [7] (MTT), and Attention
Matching [51] (DAM).

4.2. Comparison with State-of-the-art Methods

Performance Comparison. In this section, we present
a comparative analysis of our method against coreset and
dataset distillation approaches. ATOM consistently outper-
forms these studies, especially at smaller distillation ratios,
as shown in Table 1. Since the goal of dataset distillation
is to generate a more compact synthetic set, we emphasize
our significant performance improvements at low IPCs. We
achieve almost 4% improvement over the previous attention
matching framework [51], DataDAM when evaluated on
CIFAR-100 at IPC1. Notably, our performance on CIFAR-
100 at IPC50 is 50.2% – that is nearly 90% of the baseline
accuracy at a mere 10% of the original dataset. These exam-
ples motivate the development of dataset distillation works
as downstream models can achieve relatively competitive
performance with their baselines at a fraction of the train-
ing costs. Our primary objective in this study is to investi-
gate the impact of channel-wise attention within the feature-
matching process. Compared to prior attention-based and
feature-based methodologies, our findings underscore the
significance of channel-wise attention and the ATOM mod-
ule, as validated also in the ablation studies in Section 4.3.

Cross-architecture Generalization. In this section, we
assess the generalization capacity of our refined dataset by
training various unseen deep neural networks on it and then
evaluating their performance on downstream classification
tasks. Following established benchmarks [51, 61, 75, 76],
we examine classic CNN architectures such as AlexNet
[36], VGG-11 [56], ResNet-18 [23], and additionally, a
standard Vision Transformer (ViT) [13]. Specifically, we
utilize synthetic images learned from CIFAR-10 with IPC50
using ConvNet as the reference model and subsequently



Dataset CIFAR-10 CIFAR-100 Tiny ImageNet
IPC 1 10 50 1 10 50 1 10 50

Ratio % 0.02 0.2 1 0.2 2 10 0.2 2 10

Random 14.4±2.0 26.0±1.2 43.4±1.0 4.2±0.3 14.6±0.5 30.0±0.4 1.4±0.1 5.0±0.2 15.0±0.4

Herding [66] 21.5±1.2 31.6±0.7 40.4±0.6 8.3±0.3 17.3±0.3 33.7±0.5 2.8±0.2 6.3±0.2 16.7±0.3

K-Center [55] 21.5±1.3 14.7±0.9 27.0±1.4 8.4±0.3 17.3±0.3 30.5±0.3 - - -
Forgetting [59] 13.5±1.2 23.3±1.0 23.3±1.1 4.5±0.2 15.1±0.3 - 1.6±0.1 5.1±0.2 15.0±0.3

DD†[63] - 36.8±1.2 - - - - - - -
LD†[5] 25.7±0.7 38.3±0.4 42.5±0.4 11.5±0.4 - - - -
DC [76] 28.3±0.5 44.9±0.5 53.9±0.5 12.8±0.3 25.2±0.3 30.6±0.6 5.3±0.1 12.9±0.1 12.7±0.4

DCC [38] 32.9±0.8 49.4±0.5 61.6±0.4 13.3±0.3 30.6±0.4 - - - -
DSA [74] 28.8±0.7 52.1±0.5 60.6±0.5 13.9±0.3 32.3±0.3 42.8±0.4 5.7±0.1 16.3±0.2 15.1±0.2

DM [75] 26.0±0.8 48.9±0.6 63.0±0.4 11.4±0.3 29.7±0.3 43.6±0.4 3.9±0.2 12.9±0.4 25.3±0.2

GLaD [8] 28.0±0.8 46.7±0.5 59.9±0.7 - - - - - -
CAFE [61] 30.3±1.1 46.3±0.6 55.5±0.6 12.9±0.3 27.8±0.3 37.9±0.3 - - -

CAFE+DSA [61] 31.6±0.8 50.9±0.5 62.3±0.4 14.0±0.3 31.5±0.2 42.9±0.2 - - -
VIG [41] 26.5±1.2 54.6±0.1 35.6±0.6 17.8±0.1 29.3±0.1 - - - -
KIP [44] 29.8±1.0 46.1±0.7 53.2±0.7 12.0±0.2 29.0±0.3 - - - -
MTT [7] 31.9±1.2 56.4±0.7 65.9±0.6 13.8±0.6 33.1±0.4 42.9±0.3 6.2±0.4 17.3±0.2 26.5±0.3

DAM [51] 32.0±1.2 54.2±0.8 67.0±0.4 14.5±0.5 34.8±0.5 49.4±0.3 8.3±0.4 18.7±0.3 28.7±0.3

ATOM (Ours) 34.8±1.0 57.9±0.7 68.8±0.5 18.1±0.4 35.7±0.4 50.2±0.3 9.1±0.2 19.5±0.4 29.1±0.3

Full Dataset 84.8±0.1 56.2±0.3 37.6±0.4

Table 1. Comparison with previous dataset distillation methods on CIFAR-10, CIFAR-100 and Tiny ImageNet. The works DD† and LD†

use AlexNet [36] for CIFAR-10 dataset. All other methods use ConvNet for training and evaluation. Bold entries are the best results.

train the aforementioned networks on the refined dataset
to assess their performance on downstream tasks. The re-
sults, as depicted in Table 2, indicate that ATOM demon-
strates superior generalization across a spectrum of archi-
tectures. Notably, it achieves a significant performance
boost of over 4% compared to the prior state-of-the-art on
ResNet-18 [23]. This implies that the channel-wise atten-
tion mechanism effectively identifies features not only rel-
evant to ConvNet but also to a wider range of deep neural
networks, thereby enhancing the refined dataset with this
discerned information.

ConvNet AlexNet VGG-11 ResNet-18 ViT Avg.

DC [76] 53.9±0.5 28.8±0.7 38.8±1.1 20.9±1.0 30.1±0.5 34.5±0.8

CAFE [61] 62.3±0.4 43.2±0.4 48.8±0.5 43.3±0.7 22.7±0.7 44.1±0.5

DSA [74] 60.6±0.5 53.7±0.6 51.4±1.0 47.8±0.9 43.3±0.4 51.4±0.7

DM [75] 63.0±0.4 60.1±0.5 57.4±0.8 52.9±0.4 45.2±0.4 55.7±0.5

KIP [44] 56.9±0.4 53.2±1.6 53.2±0.5 47.6±0.8 18.3±0.6 45.8±0.8

MTT [7] 66.2±0.6 43.9±0.9 48.7±1.3 60.0±0.7 47.7±0.6 53.3±0.8

DAM [51] 67.0±0.4 63.9±0.9 64.8±0.5 60.2±0.7 48.2±0.8 60.8±0.7

ATOM (Ours) 68.8±0.4 64.1±0.7 66.4±0.6 64.5±0.6 49.5±0.7 62.7±0.6

Table 2. Cross-architecture testing performance (%) on CIFAR-10
with 50 images per class. The ConvNet architecture is employed
for distillation. Bold entries are the best results.

Distillation Cost Analysis. In this section, we delve into
an examination of the training costs required for the distilla-
tion process. Although the main goal of dataset distillation
is to reduce training costs across different applications such
as neural architecture search and continual learning, the dis-
tillation technique itself must be efficient, enabling smooth
operation on consumer-grade hardware. Approaches such

Method Run Time (Sec.) GPU memory (MB)
IPC1 IPC10 IPC50 IPC1 IPC10 IPC50

DC [76] 0.16±0.01 3.31±0.02 15.74±0.10 3515 3621 4527
DSA [74] 0.22±0.02 4.47±0.12 20.13±0.58 3513 3639 4539
DM [75] 0.08±0.02 0.08±0.02 0.08±0.02 3323 3455 3605
MTT [7] 0.36±0.23 0.40±0.20 OOM 2711 8049 OOM

DAM [51] 0.09±0.01 0.08±0.01 0.16±0.04 3452 3561 3724
ATOM† (Ours) 0.08±0.02 0.08±0.02 0.13±0.03 3152 3263 4151
ATOM (Ours) 0.10±0.02 0.10±0.01 0.17±0.02 3601 4314 5134

Table 3. Comparisons of training time and GPU memory usage
for prior dataset distillation methods. Run time is averaged per
step over 100 iterations, while GPU memory usage is reported
as peak memory during the same 100 iterations of training on an
A100 GPU for CIFAR-10. Methods that surpass the GPU memory
threshold and fail to run are denoted as OOM (out-of-memory).
ATOM† represents our method with on-channel attention, hence
offering a better tradeoff in computational complexity.

as DC, DSA, and MTT introduce additional computational
overhead due to bi-level optimization and training an ex-
pert model. In contrast, our method, akin to DM and DAM,
capitalizes on randomly initialized networks, obviating the
need for training and thereby reducing the computational
cost per step involved in the matching stage. As illustrated
in Table 3 utilizing solely the channel-based ATOM† de-
creases the computational burden of matching compared to
the default ATOM configuration. This efficiency is crucial,
as channel-wise attention offers a more effective distillation
process while maintaining superior performance (refer to
Section 4.3).

Convergence Speed Analysis. In Figure 3, we plot the



Figure 3. Test accuracy evolution of synthetic image learning on
CIFAR10 with IPC50 for ATOM (ours), DM [75] and DataDAM
[51].

downstream testing accuracy evolution for the synthetic im-
ages on CIFAR10 IPC50. Comparing with previous meth-
ods, DM [75] and DataDAM [51], we can explicitly see
an improvement in convergence speed and a significantly
higher steady state achieved with the ATOM framework.
Our included convergence analysis supports the practicality
of our method and the consistency to which we outperform
previous baselines.

4.3. Ablation Studies and Analysis

Evaluation of loss components in ATOM. In Table 4, we
evaluate the effect of different attention-matching mecha-
nisms with respect to pure feature matching in interme-
diate layers and distribution matching in the final layer
(LMMD). The results clearly demonstrate that attention-
matching improves the performance of the distillation pro-
cess. In particular, the attention-matching process improves
feature matching by 8.0%. Further, it seems that channel
attention is able to capture the majority of relevant infor-
mation from the intermediate features, as evidenced by an
improvement of over 1.5% from spatial attention matching.
Ultimately, this provides an incentive to favor channel at-
tention in the distillation process.

LMMD Feature Map Spatial Atn. Channel Atn. Performance (%)

✓ - - - 63.0±0.4
✓ - - 60.8±0.6

✓ - ✓ - 67.0±0.7
✓ - - ✓ 68.6±0.3
✓ - ✓ ✓ 68.8±0.5

Table 4. Evaluation of loss components and attention components
in ATOM using CIFAR-10 with IPC50.

Evaluating attention balance in ATOM. In this sec-
tion, we evaluate the balance between spatial and channel-
wise attention through the power value p. Referencing
Equation (1) and Equation (2), modulating the values of ps
and pc ultimately affects the balance of spatial and channel-
wise attention in LATOM. In Table 5, we examine the im-

pact of different exponentiation powers p in the attention-
matching mechanisms. Specifically, we conduct a grid-
based search to investigate how varying the exponentiation
of spatial (ps) and channel (pc) attention influences subse-
quent performance. Our findings reveal that optimal per-
formance (nearly 1% improvement over our default) oc-
curs when the exponentiation for channel attention signif-
icantly exceeds that of spatial attention. This suggests that
assigning a higher exponential value places greater empha-
sis on channel-attention matching over spatial-wise match-
ing. This aligns with our observations from the loss compo-
nent ablation, where channel-wise matching was found to
encapsulate the majority of information within the feature
map. Consequently, we deduce that prioritizing channel-
wise matching will enhance downstream performance out-
comes.

Channel Attention pc
Spatial Attention ps

1 2 4 8

1 57.4% 57.5% 57.0% 56.2%
2 58.2% 57.5% 57.2% 56.3%
4 58.4% 58.5% 57.9% 57.6%
8 58.8% 58.7% 58.2% 57.8%

Table 5. Evaluation of power values in the spatial and channel
attention computations for LATOM using CIFAR-10 with IPC10.

Visualization of Synthetic Images. We include samples
of our distilled images in Figure 4. The images appear to
be interleaved with artifacts that assimilate the background
and object information into a mixed collage-like appear-
ance. The synthetic images effectively capture the corre-
lation between background and object elements, suggesting
their potential for generalizability across various architec-
tures, as empirically verified in Table 2. Additional visual-
izations are available in the supplementary material.

4.4. Applications

Neural Architecture Search. In Table Table 6 we lever-
age our distilled synthetic datasets as proxy sets to accel-
erate Neural Architecture Search. In line with previous
state-of-the-art, [51, 74, 76], we outline our architectural
search space, comprising 720 ConvNets on the CIFAR-
10 dataset. We commence with a foundational ConvNet
and devise a consistent grid, varying in depth D ∈ {1, 2,
3, 4}, width W ∈ {32, 64, 128, 256}, activation func-
tion A ∈ {Sigmoid, ReLU, LeakyReLU}, normalization
technique N ∈ {None, BatchNorm, LayerNorm, Instan-
ceNorm, GroupNorm}, and pooling operation P ∈ {None,
MaxPooling, AvgPooling}. Additionally, we benchmark
our approach against several state-of-the-art methods, in-
cluding Random, DSA [76], DM [75], CAFE [61], DAM
[51], and Early-Stopping. Our method demonstrates su-
perior performance, accompanied by a heightened Spear-
man’s correlation (0.75), thereby reinforcing the robustness



Figure 4. Sample learned synthetic images for CIFAR-10/100 (32×32 resolution) IPC10 and TinyImageNet (64×64 resolution) IPC 1.

of ATOM and its potential in neural architecture search.

Random DSA DM CAFE DAM ATOM Early-stopping Full Dataset

Performance (%) 88.9 87.2 87.2 83.6 89.0 88.9 88.9 89.2
Correlation 0.70 0.66 0.71 0.59 0.72 0.75 0.69 1.00

Time cost (min) 206.4 206.4 206.6 206.4 206.4 206.4 206.2 5168.9
Storage (imgs) 500 500 500 500 500 500 5 × 104 5 × 104

Table 6. Neural architecture search on CIFAR-10 with IPC50.

5. Limitations
Many studies in dataset distillation encounter a constraint
known as re-distillation costs [24, 25, 62]. This limitation
becomes apparent when adjusting the number of images per
class (IPC) or the distillation ratios. Like most other dis-
tillation methods, our approach requires re-distillation on
the updated setting configuration, which limits flexibility re-
garding configuration changes and storage allocation. Ad-
ditionally, we observed in Table 2 that dataset distillation
methods often struggle with generalizing to transformer ar-
chitectures. Despite ATOM outperforming other methods,
there is still a noticeable performance drop compared to
convolutional neural networks. This suggests that the ef-
fectiveness of transformers for downstream training might
be constrained by the distilled data.

6. Conclusion
In this work, we introduced an Attention Mixer (ATOM)
for efficient dataset distillation. Previous approaches have
struggled with marginal performance gains, obfuscating
channel-wise information, and high computational over-
heads. ATOM addresses these issues by effectively combin-
ing information from different attention mechanisms, facili-
tating a more informative distillation process with untrained
neural networks. Our approach utilizes a broader receptive
field to capture spatial information while preserving dis-
tinct content information at the channel level, thus better

aligning synthetic and real datasets. By capturing informa-
tion across intermediate layers, ATOM facilitates multi-scale
distillation. We demonstrated the superior performance of
ATOM on standard distillation benchmarks and its favorable
performance across multiple architectures. We conducted
several ablative studies to justify the design choices behind
ATOM. Furthermore, we applied our distilled data to Neu-
ral Architecture Search, showing a superior correlation with
the real large-scale dataset. In the future, we aim to extend
attention mixing to various downstream tasks, including im-
age segmentation and localizations. We also hope to ad-
dress limitations of ATOM, such as re-distillation costs and
cross-architecture generalizations on transformers.
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Cordelia Schmid, and Karteek Alahari. End-to-end incre-



mental learning. In Proceedings of the European conference
on computer vision (ECCV), pages 233–248, 2018. 2, 5

[7] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Dataset distillation
by matching training trajectories. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4750–4759, 2022. 2, 3, 5, 6, 1

[8] George Cazenavette, Tongzhou Wang, Antonio Torralba,
Alexei A Efros, and Jun-Yan Zhu. Generalizing dataset
distillation via deep generative prior. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3739–3748, 2023. 6, 1

[9] Xuxi Chen, Yu Yang, Zhangyang Wang, and Baharan Mirza-
soleiman. Data distillation can be like vodka: Distilling more
times for better quality. In The Twelfth International Confer-
ence on Learning Representations, 2024. 2

[10] Yutian Chen, Max Welling, and Alex Smola. Super-samples
from kernel herding. In Proceedings of the Twenty-Sixth
Conference on Uncertainty in Artificial Intelligence, pages
109–116, 2010. 2

[11] Justin Cui, Ruochen Wang, Si Si, and Cho-Jui Hsieh. Scaling
up dataset distillation to imagenet-1k with constant memory.
In International Conference on Machine Learning, pages
6565–6590. PMLR, 2023. 3

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, pages 248–255. Ieee, 2009. 1

[13] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, et al. An image is worth 16x16 words: Trans-
formers for image recognition at scale. In International Con-
ference on Learning Representations, 2021. 5

[14] Jiawei Du, Yidi Jiang, Vincent YF Tan, Joey Tianyi Zhou,
and Haizhou Li. Minimizing the accumulated trajectory
error to improve dataset distillation. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3749–3758, 2023. 2, 3

[15] Jiawei Du, Qin Shi, and Joey Tianyi Zhou. Sequential subset
matching for dataset distillation. Advances in Neural Infor-
mation Processing Systems, 36, 2024. 3

[16] Melanie Ducoffe and Frederic Precioso. Adversarial active
learning for deep networks: a margin based approach. arXiv
preprint arXiv:1802.09841, 2018. 2

[17] Amirata Ghorbani, James Zou, and Andre Esteva. Data shap-
ley valuation for efficient batch active learning. In 2022 56th
Asilomar Conference on Signals, Systems, and Computers,
pages 1456–1462. IEEE, 2022. 2

[18] Spyros Gidaris and Nikos Komodakis. Dynamic few-shot
visual learning without forgetting. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 4367–4375, 2018. 5

[19] Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bern-
hard Schölkopf, and Alexander Smola. A kernel two-sample
test. The Journal of Machine Learning Research, 13(1):723–
773, 2012. 4

[20] Jianyang Gu, Kai Wang, Wei Jiang, and Yang You. Sum-
marizing stream data for memory-restricted online continual
learning. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence (AAAI), 2024. 2

[21] Ziyao Guo, Kai Wang, George Cazenavette, HUI LI,
Kaipeng Zhang, and Yang You. Towards lossless dataset dis-
tillation via difficulty-aligned trajectory matching. In The
Twelfth International Conference on Learning Representa-
tions, 2024. 2, 3

[22] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Delving deep into rectifiers: Surpassing human-level perfor-
mance on imagenet classification. In Proceedings of the
IEEE international conference on computer vision, pages
1026–1034, 2015. 3, 5

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 770–778, 2016. 5, 6

[24] Yang He, Lingao Xiao, and Joey Tianyi Zhou. You only con-
dense once: Two rules for pruning condensed datasets. Ad-
vances in Neural Information Processing Systems, 36, 2024.
8

[25] Yang He, Lingao Xiao, Joey Tianyi Zhou, and Ivor Tsang.
Multisize dataset condensation. In The Twelfth International
Conference on Learning Representations, 2024. 8

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015. 1

[27] Jonathan Ho and Stefano Ermon. Generative adversarial im-
itation learning. Advances in neural information processing
systems, 29, 2016. 2

[28] Yuqi Jia, Saeed Vahidian, Jingwei Sun, Jianyi Zhang, Vyach-
eslav Kungurtsev, Neil Zhenqiang Gong, and Yiran Chen.
Unlocking the potential of federated learning: The sym-
phony of dataset distillation via deep generative latents.
arXiv preprint arXiv:2312.01537, 2023. 2

[29] Samir Khaki and Weihan Luo. Cfdp: Common frequency
domain pruning. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition, pages
4714–4723, 2023. 1

[30] Samir Khaki and Konstantinos N Plataniotis. The need for
speed: Pruning transformers with one recipe. arXiv preprint
arXiv:2403.17921, 2024. 1

[31] Krishnateja Killamsetty, Sivasubramanian Durga, Ganesh
Ramakrishnan, Abir De, and Rishabh Iyer. Grad-match:
Gradient matching based data subset selection for efficient
deep model training. In International Conference on Ma-
chine Learning, pages 5464–5474. PMLR, 2021. 2

[32] Krishnateja Killamsetty, Durga Sivasubramanian, Ganesh
Ramakrishnan, and Rishabh Iyer. Glister: Generalization
based data subset selection for efficient and robust learning.
In Proceedings of the AAAI Conference on Artificial Intelli-
gence, pages 8110–8118, 2021. 2

[33] Krishnateja Killamsetty, Xujiang Zhao, Feng Chen, and
Rishabh Iyer. Retrieve: Coreset selection for efficient and
robust semi-supervised learning. Advances in Neural Infor-
mation Processing Systems, 34:14488–14501, 2021. 2



[34] Jang-Hyun Kim, Jinuk Kim, Seong Joon Oh, Sangdoo
Yun, Hwanjun Song, Joonhyun Jeong, Jung-Woo Ha, and
Hyun Oh Song. Dataset condensation via efficient synthetic-
data parameterization. In International Conference on Ma-
chine Learning, pages 11102–11118. PMLR, 2022. 3

[35] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple
layers of features from tiny images. 2009. 4, 1

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton.
Imagenet classification with deep convolutional neural net-
works. Communications of the ACM, 60(6):84–90, 2017. 5,
6

[37] Ya Le and Xuan Yang. Tiny imagenet visual recognition
challenge. CS 231N, 7(7):3, 2015. 4, 1

[38] Saehyung Lee, Sanghyuk Chun, Sangwon Jung, Sangdoo
Yun, and Sungroh Yoon. Dataset condensation with con-
trastive signals. In International Conference on Machine
Learning, pages 12352–12364. PMLR, 2022. 2, 3, 5, 6

[39] Ping Liu, Xin Yu, and Joey Tianyi Zhou. Meta knowledge
condensation for federated learning. In The Eleventh Inter-
national Conference on Learning Representations, 2023. 2

[40] Songhua Liu, Jingwen Ye, Runpeng Yu, and Xinchao Wang.
Slimmable dataset condensation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 3759–3768, 2023. 2

[41] Noel Loo, Ramin Hasani, Mathias Lechner, and Daniela Rus.
Dataset distillation with convexified implicit gradients. In In-
ternational Conference on Machine Learning, pages 22649–
22674. PMLR, 2023. 5, 6

[42] Katerina Margatina, Giorgos Vernikos, Loı̈c Barrault, and
Nikolaos Aletras. Active learning by acquiring contrastive
examples. In Proceedings of the 2021 Conference on Empir-
ical Methods in Natural Language Processing, pages 650–
663, 2021. 2

[43] Baharan Mirzasoleiman, Jeff Bilmes, and Jure Leskovec.
Coresets for data-efficient training of machine learning mod-
els. In International Conference on Machine Learning, pages
6950–6960. PMLR, 2020. 2

[44] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset
meta-learning from kernel ridge-regression. In International
Conference on Learning Representations, 2021. 5, 6

[45] Timothy Nguyen, Zhourong Chen, and Jaehoon Lee. Dataset
meta-learning from kernel-ridge regression. In International
Conference on Learning Representations, 2021. 5

[46] Mansheej Paul, Surya Ganguli, and Gintare Karolina Dziu-
gaite. Deep learning on a data diet: Finding important ex-
amples early in training. Advances in Neural Information
Processing Systems, 34:20596–20607, 2021. 2

[47] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg
Sperl, and Christoph H Lampert. icarl: Incremental classifier
and representation learning. In Proceedings of the IEEE con-
ference on Computer Vision and Pattern Recognition, pages
2001–2010, 2017. 2, 5

[48] Kuniaki Saito, Kohei Watanabe, Yoshitaka Ushiku, and Tat-
suya Harada. Maximum classifier discrepancy for unsuper-
vised domain adaptation. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition, pages
3723–3732, 2018. 4

[49] Ahmad Sajedi and Konstantinos N Plataniotis. On the ef-
ficiency of subclass knowledge distillation in classification
tasks. arXiv preprint arXiv:2109.05587, 2021. 1

[50] Ahmad Sajedi, Yuri A Lawryshyn, and Konstantinos N Pla-
taniotis. Subclass knowledge distillation with known sub-
class labels. In 2022 IEEE 14th Image, Video, and Multidi-
mensional Signal Processing Workshop (IVMSP), pages 1–5.
IEEE, 2022. 1

[51] Ahmad Sajedi, Samir Khaki, Ehsan Amjadian, Lucy Z
Liu, Yuri A Lawryshyn, and Konstantinos N Plataniotis.
Datadam: Efficient dataset distillation with attention match-
ing. In Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, pages 17097–17107, 2023. 1, 2,
3, 4, 5, 6, 7

[52] Ahmad Sajedi, Samir Khaki, Konstantinos N. Plataniotis,
and Mahdi S. Hosseini. End-to-end supervised multilabel
contrastive learning, 2023.

[53] Ahmad Sajedi, Yuri A Lawryshyn, and Konstantinos N Pla-
taniotis. A new probabilistic distance metric with application
in gaussian mixture reduction. In ICASSP 2023-2023 IEEE
International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 1–5. IEEE, 2023.

[54] Ahmad Sajedi, Samir Khaki, Yuri A Lawryshyn, and Kon-
stantinos N Plataniotis. Probmcl: Simple probabilistic con-
trastive learning for multi-label visual classification. arXiv
preprint arXiv:2401.01448, 2024. 1

[55] Ozan Sener and Silvio Savarese. Active learning for convo-
lutional neural networks: A core-set approach. In Interna-
tional Conference on Learning Representations, 2018. 2, 5,
6

[56] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014. 5

[57] Samarth Sinha, Han Zhang, Anirudh Goyal, Yoshua Bengio,
Hugo Larochelle, and Augustus Odena. Small-gan: Speed-
ing up gan training using core-sets. In International Confer-
ence on Machine Learning, pages 9005–9015. PMLR, 2020.
2

[58] Felipe Petroski Such, Aditya Rawal, Joel Lehman, Kenneth
Stanley, and Jeffrey Clune. Generative teaching networks:
Accelerating neural architecture search by learning to gener-
ate synthetic training data. In International Conference on
Machine Learning, pages 9206–9216. PMLR, 2020. 2

[59] Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J
Gordon. An empirical study of example forgetting during
deep neural network learning. In International Conference
on Learning Representations, 2018. 2, 6

[60] Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geoffrey J
Gordon. An empirical study of example forgetting during
deep neural network learning. In International Conference
on Learning Representations, 2019. 2, 5

[61] Kai Wang, Bo Zhao, Xiangyu Peng, Zheng Zhu, Shuo Yang,
Shuo Wang, Guan Huang, Hakan Bilen, Xinchao Wang, and
Yang You. Cafe: Learning to condense dataset by align-
ing features. In Proceedings of the IEEE/CVF Conference



on Computer Vision and Pattern Recognition, pages 12196–
12205, 2022. 3, 4, 5, 6, 7, 1

[62] Kai Wang, Jianyang Gu, Daquan Zhou, Zheng Zhu, Wei
Jiang, and Yang You. Dim: Distilling dataset into genera-
tive model. arXiv preprint arXiv:2303.04707, 2023. 8

[63] Tongzhou Wang, Jun-Yan Zhu, Antonio Torralba, and
Alexei A Efros. Dataset distillation. arXiv preprint
arXiv:1811.10959, 2018. 1, 2, 5, 6

[64] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaim-
ing He. Non-local neural networks. In Proceedings of the
IEEE conference on computer vision and pattern recogni-
tion, pages 7794–7803, 2018. 3

[65] Yi Ru Wang, Samir Khaki, Weihang Zheng, Mahdi S. Hos-
seini, and Konstantinos N. Plataniotis. Conetv2: Efficient
auto-channel size optimization for cnns. In 2021 20th IEEE
International Conference on Machine Learning and Appli-
cations (ICMLA), pages 998–1003, 2021. 1

[66] Max Welling. Herding dynamical weights to learn. In Pro-
ceedings of the 26th Annual International Conference on
Machine Learning, pages 1121–1128, 2009. 2, 6

[67] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In So
Kweon. Cbam: Convolutional block attention module. In
Proceedings of the European conference on computer vision
(ECCV), pages 3–19, 2018. 3

[68] Jiaxiang Wu, Cong Leng, Yuhang Wang, Qinghao Hu, and
Jian Cheng. Quantized convolutional neural networks for
mobile devices. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 4820–4828,
2016. 1

[69] Yuanhao Xiong, Ruochen Wang, Minhao Cheng, Felix Yu,
and Cho-Jui Hsieh. Feddm: Iterative distribution matching
for communication-efficient federated learning. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pages 16323–16332, 2023. 2

[70] Enneng Yang, Li Shen, Zhenyi Wang, Tongliang Liu, and
Guibing Guo. An efficient dataset condensation plugin and
its application to continual learning. Advances in Neural In-
formation Processing Systems, 36, 2024. 2

[71] Xiyu Yu, Tongliang Liu, Xinchao Wang, and Dacheng Tao.
On compressing deep models by low rank and sparse decom-
position. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 7370–7379, 2017. 1

[72] Sergey Zagoruyko and Nikos Komodakis. Paying more at-
tention to attention: Improving the performance of convolu-
tional neural networks via attention transfer. arXiv preprint
arXiv:1612.03928, 2016. 3, 4

[73] Hansong Zhang, Shikun Li, Pengju Wang, and Shiming
Zeng, Dan Ge. M3D: Dataset condensation by minimizing
maximum mean discrepancy. In Proceedings of the AAAI
Conference on Artificial Intelligence (AAAI), 2024. 3, 4

[74] Bo Zhao and Hakan Bilen. Dataset condensation with differ-
entiable siamese augmentation. In International Conference
on Machine Learning, pages 12674–12685. PMLR, 2021. 2,
3, 5, 6, 7, 1

[75] Bo Zhao and Hakan Bilen. Dataset condensation with dis-
tribution matching. In Proceedings of the IEEE/CVF Win-
ter Conference on Applications of Computer Vision, pages
6514–6523, 2023. 1, 2, 3, 4, 5, 6, 7

[76] Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. Dataset
condensation with gradient matching. In International Con-
ference on Learning Representations, 2021. 1, 2, 3, 5, 6,
7

[77] Ganlong Zhao, Guanbin Li, Yipeng Qin, and Yizhou Yu. Im-
proved distribution matching for dataset condensation. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, pages 7856–7865, 2023. 2, 3,
4

[78] Daquan Zhou, Kai Wang, Jianyang Gu, Xiangyu Peng,
Dongze Lian, Yifan Zhang, Yang You, and Jiashi Feng.
Dataset quantization. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision, pages 17205–
17216, 2023. 1



ATOM: Attention Mixer for Efficient Dataset Distillation

Supplementary Material

7. Implementation Details
7.1. Datasets

We conducted experiments on three main datasets: CI-
FAR10/100 [35] and TinyImageNet [37]. These datasets
are considered single-label multi-class; hence, each image
has exactly one class label. The CIFAR10/100 are conven-
tional computer vision benchmarking datasets comprising
32×32 colored natural images. They consist of 10 coarse-
grained labels (CIFAR10) and 100 fine-grained labels (CI-
FAR100), each with 50,000 training samples and 10,000
test samples. The CIFAR10 classes include ”Airplane”,
”Car”, ”Bird”, ”Cat”, ”Deer”, ”Dog”, ”Frog”, ”Horse”,
”Ship”, and ”Truck”. The TinyImageNet dataset, a subset of
ImageNet-1K [12] with 200 classes, contains 100,000 high-
resolution training images and 10,000 test images resized
to 64×64. The experiments on these datasets make up the
benchmarking for many previous dataset distillation works
[7, 8, 51, 61, 76, 78].

7.2. Dataset Pre-processing

We applied the standardized preprocessing techniques to all
datasets, following the guidelines provided in DM [75] and
DataDAM [51]. Following previous works, we apply the
default Differentiable Siamese Augmentation (DSA) [74]
scheme during distillation and evaluation. Specifically for
the CIFAR10/100 datasets, we integrated Kornia zero-phase
component analysis (ZCA) whitening, following the param-
eters outlined in [7, 51]. Similar to DataDAM [51], we
opted against ZCA for TinyImagenet due to the computa-
tional bottlenecks associated with full-scale ZCA transfor-
mation on a larger dataset with double the resolution. Note
that we visualized the distilled images by directly applying
the inverse transformation based on the corresponding data
pre-processing, without any additional modifications.

7.3. Hyperparameters

Our method conveniently introduces only one additional hy-
perparameter: the power term in channel attention, i.e. pc.
All the other hyperparameters used in our method are di-
rectly inherited from the published work, DataDAM [51].
Therefore, we include an updated hyperparameter table in
Table 7 aggregating our power term with the remaining pre-
set hyperparameters. In the main paper, we discussed the
effect of power terms on both channel- and spatial-wise at-
tention and ultimately found that higher channel attention
paired with lower spatial attention works best. However,
our default, as stated in the main draft, is pc = ps = 4.
Regarding the distillation and train-val settings, we use the

SGD optimizer with a learning rate of 1.0 for learning the
synthetic images and a learning rate of 0.01 for training
neural network models (for downstream evaluation). For
CIFAR10/100 (low-resolution), we use a 3-layer ConvNet;
meanwhile, for TinyImagenet (medium-resolution), we use
a 4-layer ConvNet, following previous works in the field
[7, 51, 75]. Our batch size for learning the synthetic images
was set to 128 due to the computational overhead of a larger
matching set.

7.4. Neural Architecture Search Details

Following previous works [51, 74–76], we define a search
space consisting of 720 ConvNets on the CIFAR10 dataset.
Models are evaluated on CIFAR10 using our IPC 50 dis-
tilled set as a proxy under the neural architecture search
(NAS) framework. The architecture search space is con-
structed as a uniform grid that varies in depth D ∈ {1,
2, 3, 4}, width W ∈ {32, 64, 128, 256}, activation
function A ∈ {Sigmoid, ReLu, LeakyReLu}, normaliza-
tion technique N ∈ {None, BatchNorm, LayerNorm, In-
stanceNorm, GroupNorm}, and pooling operation P ∈
{None, MaxPooling, AvgPooling} to create varying ver-
sions of the standard ConvNet. These candidate architec-
tures are then evaluated based on their validation perfor-
mance and ranked accordingly. In the main paper, Table 6
measures various costs and performance metrics associated
with each distillation method. Overall distillation improves
the computational cost; however, ATOM achieves the high-
est correlation, which is by far the most “important“ metric
in this NAS search, as it indicates that our proxy set best
estimates the original dataset.

8. Additional Visualizations.
We include additional visualizations of our synthetic
datasets in Figure 5, Figure 6, Figure 7. The first two repre-
sent CIFAR10/100 at IPC 50, while the third depicts Tiny-
ImageNet at IPC 10. Our images highly exhibit learned ar-
tifacts from the distillation process that are, in turn, helpful
during downstream classification tasks.



Figure 5. Distilled Image Visualization: CIFAR-10 dataset with IPC 50.



Figure 6. Distilled Image Visualization: CIFAR-100 dataset with IPC 50.



Figure 7. Distilled Image Visualization: TinyImageNet dataset with IPC 10.



Hyperparameters Options/ ValueCategory Parameter Name Description Range

Optimization

Learning Rate ηS (images) Step size towards global/local minima (0, 10.0] IPC ≤ 50: 1.0
IPC > 50: 10.0

Learning Rate ηθ (network) Step size towards global/local minima (0, 1.0] 0.01

Optimizer (images) Updates synthetic set to approach global/local minima SGD with Momentum: 0.5
Momentum Weight Decay: 0.0

Optimizer (network) Updates model to approach global/local minima SGD with Momentum: 0.9
Momentum Weight Decay: 5e− 4

Scheduler (images) - - -

Scheduler (network) Decays the learning rate over epochs StepLR Decay rate: 0.5
Step size: 15.0

Iteration Count Number of iterations for learning synthetic data [1,∞) 8000

Loss Function

Task Balance λ Regularization Multiplier [0,∞)
Low Resolution: 0.01
High Resolution: 0.02

Spatial Power Value ps Exponential power for amplification of spatial attention [1,∞) 4
Channel Power Value pc Exponential power for amplification of channel attention [1,∞) 4

Loss Configuration Type of error function used to measure distribution discrepancy - Mean Squared Error
Normalization Type Type of normalization used in the SAM module on attention maps - L2

DSA Augmentations

Color Randomly adjust (jitter) the color components of an image
brightness 1.0
saturation 2.0
contrast 0.5

Crop Crops an image with padding ratio crop pad 0.125
Cutout Randomly covers input with a square cutout ratio 0.5

Flip Flips an image with probability p in range: (0, 1.0] 0.5
Scale Shifts pixels either column-wise or row-wise scaling ratio 1.2

Rotate Rotates image by certain angle 0◦ − 360◦ [−15◦,+15◦]

Encoder Parameters
Conv Layer Weights The weights of convolutional layers R bounded by kernel size Uniform Distribution
Activation Function The non-linear function at the end of each layer - ReLU
Normalization Layer Type of normalization layer used after convolutional blocks - InstanceNorm

Table 7. Hyperparameters Details – boilerplate obtained from DataDAM [51].
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