
Staggered Routing in Autonomous Mobility-on-Demand Systems

Antonio Coppola1, Gerhard Hiermann1, Dario Paccagnan2, and Maximilian Schiffer3

1School of Management, Technical University of Munich, Germany
antonio.coppola@tum.de, gerhard.hiermann@tum.de

2 Department of Computing, Imperial College London, U.K.
d.paccagnan@imperial.ac.uk

3School of Management & Munich Data Science Institute,
Technical University of Munich, Germany

schiffer@tum.de

Abstract

In autonomous mobility-on-demand systems, effectively managing vehicle flows to mitigate in-
duced congestion and ensure efficient operations is imperative for system performance and posi-
tive customer experience. Against this background, we study the potential of staggered routing,
i.e., purposely delaying trip departures from a system perspective, in order to reduce congestion
and ensure efficient operations while still meeting customer time windows. We formalize the
underlying planning problem and show how to efficiently model it as a mixed integer linear
program. Moreover, we present a matheuristic that allows us to efficiently solve large-scale
real-world instances both in an offline full-information setting and its online rolling horizon
counterpart. We conduct a numerical study for Manhattan, New York City, focusing on low-
and highly-congested scenarios. Our results show that in low-congestion scenarios, staggering
trip departures allows mitigating, on average, 94% of the induced congestion in a full informa-
tion setting. In a rolling horizon setting, our algorithm allows us to reduce 90% of the induced
congestion. In high-congestion scenarios, we observe an average reduction of 66% as the full
information bound and an average reduction of 56% in our online setting. Surprisingly, we show
that these reductions can be reached by shifting trip departures by a maximum of six minutes
in both the low and high-congestion scenarios.
Keywords: autonomous mobility-on-demand; trip-staggering

ar
X

iv
:2

40
5.

01
41

0v
1

 [
m

at
h.

O
C

]
 2

 M
ay

 2
02

4

2

1. Introduction

Congestion in cities is soaring. In 2022, the average US driver spent 51 hours stuck in traffic, re-
sulting in a country-wide loss of $81 billion when accounting solely for lost working hours (Pishue
2023). Beyond financial implications, congestion is responsible for emissions of noxious gases, in-
cluding carbon dioxide, which fuel climate change and cause significant health issues (Levy et al.
2010). Against this backdrop, new mobility paradigms such as autonomous mobility-on-demand
(AMoD) hold the promise to mitigate the negative externalities of congestion by allowing for more
efficient transport solutions. Such an AMoD system consists of a centrally controlled fleet of self-
driving vehicles that provide ride-hailing services to passengers (Pavone 2015). By observing the
system’s complete state in real time and by leveraging centralized vehicle dispatching and rebalanc-
ing algorithms, a fleet operator may provide transportation solutions that are more efficient than
passengers traveling either in their own cars or via uncoordinated ride-hailing services. However,
no consensus exists yet as to whether AMoD systems will ultimately reduce congestion. Indeed,
while some experts argue for reduced congestion via improved fleet control, others claim that AMoD
systems may lead to an increase in demand, possibly resulting in higher transport volumes during
peak hours (Oh et al. 2020).

To effectively reduce congestion, particularly in light of potentially increased demand, a number
of approaches have been proposed, including ride-sharing (Ruch et al. 2020), allocation of parking
space (Zhang & Guhathakurta 2017), and strategic coordination with public transport (Salazar
et al. 2019), to name a few. Amongst them, congestion pricing and fleet-optimal routing have
emerged as the most prominent ones both within academia and practice. To this end, congestion
pricing assumes a system-wide authority that decides on a congestion fee for certain districts or
roads to influence driver behavior and, consequently, the traffic flow (Pigou 1920). Depending on
the tolling scheme, individuals may be incentivized to choose an alternative route (Roughgarden
2005, Paccagnan & Gairing 2023) or shift their travel to a different time (Arnott et al. 1990).
Accordingly, congestion pricing approaches aim to balance traffic flow across two dimensions, space
and time. Fleet-optimal routing, instead, assumes control over a fleet of vehicles and aims at
reducing congestion by coordinating their routing decisions (Jahn et al. 2005, Patriksson 2015).
This approach can be applied locally by a fleet operator or via central control, i.e., traffic guidance
by a municipality (Levin 2017, Houshmand et al. 2019). Notably, a significant bulk of the existing
literature in this domain has focused on balancing traffic flow across the space dimension (Jalota
et al. 2023). On the contrary, fleet-optimal approaches to balance traffic across the time dimension
remain unexplored. Nonetheless, with the advent of AMoD systems, orchestrating vehicle flows
over time provides an additional degree of freedom, which may prove valuable in taming congestion.
Indeed, similar approaches have already provided factual benefits in related fields, e.g., in the context
of ground delay programs for air traffic control (cf. Jacquillat 2022), thus further motivating the
pursuit of this direction.

Against these backdrops, we introduce the concept of staggered routing, where an AMoD operator
delays the departure of trips over time to reduce local congestion bottlenecks so long as all trips’

2

3

drop-off deadlines are met. Specifically, we take a first step to unravel the potential of staggered
routing in AMoD systems.

1.1. Contribution

Our work aims to inform on the impact of staggering trip departures in reducing congestion. Towards
this goal, we present three key contributions. First, we introduce the problem of staggered routing,
i.e., the problem of staggering the fleet departure times so as to minimize the resulting congestion
while meeting drop-off deadlines. We then formulate this problem as a mixed integer linear program
(MILP) and show that it is NP-hard. Second, we provide an effective algorithmic framework to
solve the staggered routing problem at scale. Specifically, we i) show how a large number of the
resulting big-M constraints can be dropped without altering the optimal solutions, and ii) develop a
matheuristic that allows us to solve large-scale instances. This matheuristic bases on a construction
heuristic, a problem-specific local search for intensification, while relying on our MILP to escape
local optima and verify optimality. Finally, we apply our methodology to a real-world case study
for the Manhattan area in New York City. Specifically, we study the impact that staggered routing
has in both an offline and an online decision-making setting.

Our results show that in low-congestion (LC) scenarios, i.e., scenarios in which only the AMoD
fleet induces congestion but the system without the fleet would remain uncongested, staggering
trip departures allow to mitigate on average 94% of the induced congestion in a full-information
setting. While not entirely reaching this upper bound, our rolling horizon approach still allows us to
reduce 90% of the induced congestion in the online LC scenario. In high-congestion (HC) scenarios,
i.e., scenarios in which the system already encounters exogenous congestion and the AMoD fleet
induces further congestion, we observe an average congestion reduction of 66% and 56% in the
full-information and rolling-horizon settings. Surprisingly, we show that these reductions can be
reached by shifting trip departures of a maximum of two minutes in the LC scenario and by six
minutes in the HC scenario while meeting each trip’s arrival time.

1.2. Technical challenges and our approach.

Solving the staggered routing problem at scale requires tackling at least three intertwined challenges.
First, following the commonly employed approach whereby one keeps track of the congestion level

on each arc at predetermined time intervals (see, e.g., time-expanded construction in Köhler et al.
(2002)) is simply not possible as the size of the resulting optimization problem grows too quickly,
making the solution of even moderately sized instances beyond reach. We tackle this challenge by
taking a so-called Lagrangian perspective, that is, we “follow” each trip along their path and only
keep track of the congestion this trip encounters at the time when it enters each arc on its path.
This allows us to formalize an optimization problem that is significantly more compact.

Second, while the Lagrangian perspective we adopt allows to reduce the problem dimensionality, it
makes it more difficult to determine the congestion level each trip encounters along the travelled arcs,
leading to a set of non-linear constraints. Although easily handled through big-M reformulations,

3

4

the number of such constraints grows quickly such that the resulting continuous relaxation performs
poorly for large problem instances. We resolve this challenge by showing how to significantly reduce
their number without affecting optimality. We do so by carefully reformulating the problem over a
multigraph.

Third, the resulting MILP can still not be solved at scale by state-of-the-art solvers. We tackle
this challenge by developing a local-search algorithm that we embed within the branch and bound
tree generated when solving the MILP. Specifically, whenever we find a new incumbent by solving
the MILP, we stop and improve this solution through our local search before feeding it back to
warmstart the MILP. While our local search follows a greedy approach based on delay severity, its
development requires careful considerations as efficiently evaluating the impact that modifying one
departure time has on all other trips is nontrivial.

Complimentary to this, scaling our solution to complex real-world networks introduces additional
computational challenges due to the large number of road segments involved. By utilizing contrac-
tion hierarchies (cf. Geisberger et al. 2008), we reduce the network’s complexity while preserving
shortest path lengths. This strategy significantly improves the model’s applicability and computa-
tional efficiency, making it suitable for studying staggered routing in real-world scenarios.

1.3. Related work

Our work connects with various streams of literature for the optimization of AMoD systems, an area
that has recently attracted significant attention. Given the sheer volume of literature in this space,
providing a comprehensive overview is beyond the scope of this work, and we refer the interested
reader to Zardini et al. (2022) and Narayanan et al. (2020). Instead, we focus on two streams that
are closest to our work: fleet control at the strategic and operational level.

A significant bulk of the existing literature for strategic fleet control focuses on time-invariant
mesoscopic formulations that utilize network flow models to describe vehicle routing. Various con-
tributions have focused on such steady-state regimes, applying either capacity constraints to model
congestion (see, e.g., Rossi et al. 2018, 2020, Estandia et al. 2021) or alternatively utilizing a piece-
wise approximation of a Bureau of Public Roads (BPR) function (see, e.g., Salazar et al. 2019,
Bahrami & Roorda 2020, Bang & Malikopoulos 2022). However, none of these paradigms is suit-
able for our study as they remain time-invariant and, therefore, do not allow the study of staggered
routing.

Existing operational control approaches are instead based on fine-grained models that do incor-
porate a time dimension as they aim at devising an online control policy. Several works have been
published in this domain, focusing on planning tasks such as vehicle-to-request dispatching, vehicle
rebalancing, and request pooling. In this context, various methodological approaches have been
studied, ranging from model predictive control for vehicle dispatching (see, e.g., Iglesias et al. 2018,
Tsao et al. 2018, Liu & Samaranayake 2022) and request pooling (see, e.g., Alonso-Mora et al.
2017), to deep reinforcement learning for rebalancing (see, e.g., Jiao et al. 2021, Gammelli et al.
2021, Skordilis et al. 2021, Liang et al. 2021) and dispatching (see, e.g., Xu et al. 2018, Li et al.

4

5

2019, Tang et al. 2019, Zhou et al. 2019, Sadeghi Eshkevari et al. 2022, Enders et al. 2023), to
optimization-augmented learning pipelines (see, e.g., Zhang et al. 2017, Jungel et al. 2023). How-
ever, these approaches focus on optimizing the routing decisions over space but do not focus on the
possibility of staggering the departures over time, which is the focus of this work. Surprisingly, even
studies that explicitly model congestion are scarce as existing research often bases travel times on
precise forecasts or deterministic assumptions.

Finally, our work draws inspiration from the seminal work of Vickrey (1969) and its extensions (Li
et al. 2020), albeit with significant differences. Indeed, while Vickrey’s pioneering bottleneck model
lays the theoretical groundwork to analyze commuters’ departure time decisions to avoid congestion,
their model has a purely descriptive purpose. To the contrary, our work ventures beyond descriptive
modeling of traffic behaviors by actively optimizing departure times to minimize congestion.

1.4. Roadmap

The remainder of this paper is structured as follows. Section 2 outlines the problem setting for the
staggered routing problem. Section 3 details our matheuristic developed for solving the staggered
routing problem. In Section 4, we provide an overview of our experimental design, while in Section 5,
we present the results obtained from our numerical study. Finally, we conclude in Section 6 with
some remarks and future research directions.

2. Problem setting

We begin by considering an offline problem wherein an AMoD operator coordinates an autonomous
vehicle fleet to serve a given set of trips, e.g., trips arising within a day or a specific time window
within a city. Each trip is operated by a single vehicle and can correspond to both on-duty, i.e.,
customer delivery, or off-duty, i.e., rebalancing activities, of the vehicle. Importantly, vehicles
operate trips along a prespecified route, e.g., the shortest, within the road network. Within this
context, we focus on enhancing operational efficiency after vehicle routing decisions are taken. That
is, we assume that the origin, destination, and route for each trip (equivalently, vehicle) are fixed. To
do so, we aim to stagger trip departures, i.e., postpone trip departure times beyond their originally
requested times, to reduce congestion caused by route overflows and thus minimize the fleet’s travel
time.

We model the road network within which the fleet operates as a directed graph G = (V,A). The
nodes V represent trip origins, destinations, and road intersections, while the arcs A are the road
segments connecting these nodes. Given a set of trips R, let a quadruple (pr, er, ℓr, σ̄r) define a trip
r ∈ R, with pr denoting the sequence of arcs composing the trip’s fixed route through the network,
er being the earliest departure from the trip’s origin, ℓr being the latest acceptable arrival at the
destination, and σ̄r being the maximum staggering time applicable to trip departure.

A trip r on arc a incurs a travel time τ ra (f
r
a) that is the sum of a free-flow travel time τa and a

congestion-induced delay, which we determine by the number of AMoD trips f r
a on arc a when trip

5

6

r starts traversing the arc.1 We model such a congestion-induced delay as a piece-wise linear, non-
decreasing, and convex function, resulting in a travel time over each arc such as that represented in
Figure 1. Without loss of generality, the total travel time encountered by trip r on arc a can thus
be written as

τ ra (f
r
a) = τa +max

k∈K
{0, µk

a · (f r
a − f̂k

a)}, (2.1)

where τa > 0, µk
a > 0 and f̂k

a > 0

Remark 1. Two comments are in order. First, while other congestion models exist, e.g., simpler
capacity models (Estandia et al. 2021) or more accurate microscopic models (Levin et al. 2017),
we believe that our approach to modeling congestion provides a good balance between accuracy
and computational complexity that is appropriate for the mesoscopic nature of our study. In this
respect, it is important to remark that, while in mesoscopic studies, the relation between travel
time and congestion is often taken to be a fourth-order polynomial (see, e.g., US Bur. Public Roads
1964), our approach not only approximates such a function in a computationally convenient way,
but it also allows to accommodate other, potentially different, relations. Second, when detecting
the congestion level for a vehicle entering the arc, we ignore whether the other vehicles have just
begun traversing the arc or are nearing completion. We believe that the resulting trade-off between
slightly overestimating congestion and deriving a tractable model is reasonable for the scope of our
study.

In this setting, a solution π is a vector with a departure time for each trip r. As we assume no
vehicle idles once its trip has started, this information suffices to determine both the time as well
as the number of vehicles f r

a encountered by every vehicle when entering arc a of its route pr. In
turn, this sequence determines the travel times over all arcs and, thus, the trips’ arrival times.

We require a solution π to satisfy the following constraints, which we collect in the feasible set Π:

τ ra (f
r
a)

τa
µ1
a

µ2
a

f r
af̂1

a f̂2
a

Figure 1: Travel time of trip r on arc a as a function of the number of AMoD trips fr
a .

1 Note that our formulation easily allows to consider the background presence of non-AMoD traffic, see Section 4
for details.

6

7

i) The departure time of each trip r must occur after er.

ii) The departure time of each trip r can only be staggered for a maximum amount of time σ̄r.

iii) The departures in π must ensure that the arrival at the destination of each trip r occurs before
ℓr.

In this work, we seek a solution π⋆ ∈ Π that minimizes the total fleet travel time, i.e., the sum of
the travel times each trip incurs over all arcs of its path

min
π∈Π

Z(π) =
∑
r∈R

∑
a∈pr

τ ra (π), (2.2)

where, with slight abuse of notation, we explicitly denote the fact that the travel time τ ra encountered
on arc a by trip r depends on the entire vector of departure times.

Finally, while (2.2) describes the offline version of the problem we will consider, one can easily
transform this offline setting into an online problem by discretizing time and taking decisions on
batches of trips that arrive in the system according to a point process. In our numerical studies, we
will comment on the difference between the maximum potential of staggering identified by solving
the offline problem and the improvement attained by solving its online counterpart.

3. Methodology

The staggered routing problem as introduced in Section 2 is NP-hard, which we show in Appendix A.
This motivates us to develop an efficient matheuristic that allows to solve large-scale instances in
the following. First, we introduce a MILP that allows us to obtain solutions for Problem (2.2) in
Section 3.1. Towards this goal, we first introduce a basic model that uses an indicator function
to quantify the aggregated flow, before we elaborate on how to model the respective indicator
constraints efficiently. Second, we present a matheuristic that combines our MILP with a local
search scheme to solve large real-world instances in Section 3.2. Finally, Section 3.3 adapts the
previously developed algorithm to solve the online counterpart of our problem in a rolling-horizon
fashion.

3.1. Mixed integer linear program

Our objective is to formulate (2.2) as a MILP. Towards this goal, note that minimizing the total
travel time is equivalent to minimizing the congestion-induced delay as we have no control over the
arcs’ free-flow travel times τa. With this in mind, we perform an epigraphic reformulation of the
objective function which we achieve by introducing xra and requesting that xra ≥ µk

a · (f r
a − f̂k

a) for
all arcs, trips, and k ∈ K. To represent the entry time of trip r on arc a on its path, we introduce
the continuous variable sra. Further, we let δr(a) denote the successor arc of arc a on route pr, and

¯
ar, ār denote the first and last arcs of trip r, respectively. Finally, we let Ra denote the set of all

7

8

trips that transit through arc a. Then, problem (2.2) can be written as:

min
∑
r∈R

∑
a∈pr

xra, (3.1a)

s.t.

xra ≥ µk
a ·

(
f r
a − f̂k

a

)
, ∀k ∈ K, r ∈ R, a ∈ pr (3.1b)

sra′ = sra + τa + xra, ∀r ∈ R, a ∈ pr \ ār, a′ = δr(a) (3.1c)

f r
a =

∑
r′∈Ra\{r}

I(sr
′

a ≤ sra < sr
′

a + τa + xr
′

a), ∀r ∈ R, a ∈ pr (3.1d)

er ≤ sra ≤ er + σ̄r, ∀r ∈ R, a =
¯
ar (3.1e)

sra + τa + xra ≤ ℓr, ∀r ∈ R, a = ār (3.1f)

xra, s
r
a, f

r
a ≥ 0. ∀r ∈ R, a ∈ pr (3.1g)

Our objective (3.1a) jointly with constraints (3.1b) minimizes the total delay over all trips and
arcs. Constraints (3.1c) propagate forward the time at which trip r enters arc a along its route
pr, while constraints (3.1d) calculate the number of vehicles encountered by each trip r on arc a.
This is achieved using an indicator function I(·), which is set to one if trip r enters arc a when r′

is traversing the same arc. Constraints (3.1e)-(3.1f) ensure that the start times and drop-off times
meet the requirements. Constraints (3.1g) state the variable domains.

To convert the latter model into a MILP, we replace the indicator function in Constraints (3.1d)
with big-M constraints that replicate its logic. To do so, we introduce binary variables αr,r′

a , βr,r′
a

and γr,r
′

a for each pair of distinct trips (r, r′) traversing the same arc, whose logic is as follows:

αr,r′
a =

0, if sra < sr
′

a

1, otherwise
βr,r′
a =

0, if sra ≥ sr
′

a + τa + xr
′

a

1, otherwise
γr,r

′
a =

0, if αr,r′
a + βr,r′

a < 2

1, otherwise

We enforce this logic and therefore evaluate f r
a by replacing constraints (3.1d) with the following:

sra − sr
′

a + ε ≤M1 · αr,r′
a , ∀a ∈ A, r, r′ ∈ Ra, r ̸= r′ (3.1h)

sr
′

a − sra ≤M2 · (1− αr,r′
a), ∀a ∈ A, r, r′ ∈ Ra, r ̸= r′ (3.1i)

sr
′

a + τa + xr
′

a − sra ≤M3 · βr,r′
a , ∀a ∈ A, r, r′ ∈ Ra, r ̸= r′ (3.1j)

sra − sr
′

a − τa − xr
′

a + ε ≤M4 · (1− βr,r′
a), ∀a ∈ A, r, r′ ∈ Ra, r ̸= r′ (3.1k)

γr,r
′

a − αr,r′
a − βr,r′

a ≥ −1, ∀a ∈ A, r, r′ ∈ Ra, r ̸= r′ (3.1l)

2γr,r
′

a − αr,r′
a − βr,r′

a ≤ 0, ∀a ∈ A, r, r′ ∈ Ra, r ̸= r′ (3.1m)

f r
a =

∑
r′∈Ra\{r}

γr,r
′

a ∀a ∈ A, r ∈ Ra (3.1n)

8

9

where ε is a small constant and Mi are sufficiently large numbers.2 First, observe that the resulting
program is indeed a MILP. However, this formulation presents significant computational challenges
due to the number of big-M constraints required to check if a given pair of vehicles travels simul-
taneously on the same arc. Specifically, each constraint in (3.1h)-(3.1m) needs to be repeated for
all pairs of trips that transit through each given arc. This formulation results, unfortunately, in
prohibitive solution times, even for modest problem sizes, as the continuous relaxation used in the
solution of the MILP performs poorly. To enhance computational efficiency, we leverage the problem
structure to identify and remove as many redundant big-M constraints as possible in the following.

A key observation is that not every distinct pair of trips traversing the same arc may influence
each other’s travel time, largely because each trip is constrained by specific time windows. However,
the original problem formulation introduced in Section 2 only defines these windows for each entire
trip, not for individual arcs. Based on these trip-specific time windows, our approach constructs
arc-specific time windows to identify trips that, by traversing the arc simultaneously, may incur a
delay.

We then leverage these bounds to build a representation of the problem on a multidigraph, in
which parallel arcs represent identical road segments, but each arc is associated with either a set of
potentially conflicting trips, i.e., trips that may influence each other’s travel time and thus contain
conflicting arcs, i.e., arcs on which trip induced congestion may arise, or trips that will not delay
each other, containing only non-conflicting arcs. This differentiation allows us to apply big-M
constraints selectively, focusing only on conflicting arcs and relevant trip pairs, thereby significantly
reducing the number of big-M constraints appearing in the MILP. Additionally, we explore methods
to merge or exclude non-conflicting arcs from the model, further minimizing its complexity and the
computational overhead of the local search method discussed later in the section.

In the rest of this section, we will proceed as follows. In Section 3.1.1, we detail how to determine
arc-specific time windows for each trip. In Section 3.1.2 and 3.1.3, we detail how we derive the
multigraph representation introduced above. Building upon this, we are finally able to reduce the
number of big-M constraints needed by our MILP model in Section 3.1.4.

3.1.1. Determining arc-dependent time windows

To distinguish trips that may conflict from trips that do not, we construct upper and lower bounds
on the entry and exit times for each given arc on a trip. At a high level, the goal is to make these
bounds as tight as possible while ensuring that every feasible solution satisfies them, which allows
to reduce the number of big-M constraints.

Specifically, we let
¯
era, ēra represent the earliest and latest entry time of trip r in arc a. Similarly,

we use
¯
ℓra, ℓ̄ra to represent earliest and latest exit times. Note, however, that knowledge of the

earliest entry time
¯
era and latest exit time ℓ̄ra for all arcs on a trip suffices to reconstruct also the

2 Note that the use of a small constant ε is necessary. Indeed, in its absence, given a pair of distinct trips
(r, r′) jointly traversing arc a, for sra being equal to sr

′
a , setting αr,r′

a to either zero or one would satisfy Con-
straints (3.1h)-(3.1i). Details on our choice of Mi can be found in Section 3.1.4.

9

10

other quantities, i.e., the latest entry and the earliest exit over all the arcs on that trip. In fact, by
continuity, the latest entry on an arc ēra must equal the latest exit from the previous arc on that
trip, while the earliest exit from an arc

¯
ℓra must equal the earliest entry on the subsequent arc on

that trip. This is the case for all arcs in the trip except for the very first and last arc. For the first
arc a =

¯
ar, we set the latest entry as ēra = er + σ̄r, while for the last arc a = ār we determine the

earliest exit by letting the vehicle travel in free flow through that arc so that
¯
ℓra =

¯
era + τa.

Thus, in the following, we focus on determining only the earliest entry
¯
era and the latest exit

ℓ̄ra times. The idea is to initialize these quantities by propagating the earliest entry times over
subsequent arcs on a trip as if vehicles were traveling in free-flow, starting from the earliest departure
er at the first arc. Similarly, for the latest exit times, which we propagate backward over preceding
arcs on a trip, starting from the latest arrival at the last arc ℓr. In a second phase, we then refine and
tighten these time windows by bounding the minimum and maximum congestion encountered by
each trip over its arcs. We now describe both of these steps in further detail and refer to Algorithm 1
for a formal overview of the approach.

Initialization. For each trip, we set the earliest entry time
¯
era for its first arc equal to the earliest

departure time of the trip. We then calculate the earliest entry times for the subsequent arc by
adding the nominal travel time of the preceding arc, that is

¯
erδr(a) = ¯

era + τa for all a ∈ pr \ ār. For
each trip, we set the latest exit time ℓ̄ra for its last arc equal to the latest arrival time of the trip ℓr.
We then calculate the latest exit time for the preceding arc by subtracting the nominal travel time
of the arc, that is ℓ̄ra = ℓ̄rδr(a) − τδr(a) for all a ∈ pr \ ār.

We then construct a queue whose elements are the tuples indexed by (a, r), i.e., arc and trip, and
sort such queue based on the smallest earliest entry times. We then process, in order, one element of
the queue at a time to update its earliest entry and latest exit time. First, we describe the method
for updating time windows. Following that, we detail how employing a priority queue results in
tighter bounds compared to an unsorted approach.

Updating earliest entry times. Given an element (a, r), we now update, i.e., move forward in
time, the earliest entry times on arcs subsequent to a to tighten the time windows. Towards this
goal, we compute the minimum conflicts that trips r inevitably incur on arc a and denote it with

¯
f r
a . This quantity can be determined by leveraging the existing time windows as

¯
f r
a =

∑
r′∈Ra\{r}

I(
¯
era > ēr

′
a ∧ ēra <

¯
ℓr

′
a).

Algorithm 1 Compute arc-specific time windows
Input: Set of trips R
1: Q,

¯
e, ℓ̄,

¯
x← initialize(R)

2: while Q is not empty do
3: (a, r)← Q.pop() ▷ Extract tuple with highest priority.
4:

¯
e,

¯
x← updateEarliestEntryTimes(a, r)

5: ℓ̄← updateLatestExitTimes(a, r)
6: LB← getInitialLowerBound(

¯
x)

7: return (
¯
e, ℓ̄,LB)

10

11

We denote
¯
xr
a as the delay that r incurs on arc a in presence of

¯
f r
a . As the earliest entries on arcs

subsequent to a are surely delayed by
¯
xr
a, we update

¯
era′ ← ¯

era′ + ¯
xr
a for every arc a′ ∈ pr such that

¯
era′ > ¯

era.

Updating latest exit times. To update the latest exit time ℓ̄ra, we determine the maximum
number of conflicts, f̄ r

a , that a trip r can encounter on arc a. A simple counting argument reveals
that this is equal to the number of other trips r′ ∈ Ra whose time windows [

¯
er

′
a , ℓ̄

r′
a] intersect

[
¯
era, ē

r
a]. We then update the latest exit time from arc a based on the latest entry in such arc and

the maximum number of conflicts computed, that is, ℓ̄ra ← min(ℓ̄ra, ē
r
a + τ ra (f̄

r
a)).

Computing an initial lower bound. We conclude Algorithm 1 by calculating an initial lower
bound LB, which already allows evaluating the quality of a solution π. After finalizing the computa-
tion of arc-dependent time windows, the initial lower bound results from summing up the minimum
delays that trips unavoidably incur on each arc:

LB =
∑
r∈R

∑
a∈pr ¯

xr
a.

The priority queue. The priority queue, organized by ascending earliest entry times
¯
era, improves

upon an unsorted approach to processing the sequence of the time window for two main reasons:

i) Processing pair (a, r) enables us to tighten both the earliest entry times for arcs after a in r’s
route, as well as the latest exit time from a. In this context, proceeding in an ascending order
aligns with this forward-looking update mechanism.

ii) Ordering by
¯
era allows to tighten the maximum number of conflicts f̄ r

a . As seen above, r may
conflict with r′ on a if [

¯
era, ē

r
a] overlaps with [

¯
er

′
a , ℓ̄

r′
a]. At the time the algorithm processes pair

(a, r), the forward-looking update logic highlighted in point i) ensures
¯
era, ¯

er
′

a and ēra to be as
tight as possible. Nevertheless, ℓ̄r′a may or may not be as tight as possible, depending on the
following case distinction:

1) If
¯
era >

¯
er

′
a , the algorithm processed r′ before r on a. Thus, ℓ̄r′a is as tight as possible

consequent to the update logic of point i).

2) If
¯
era <

¯
er

′
a , r is processed before r′. Although ℓ̄r

′
a is not as tight as possible, the determi-

nant for overlap is
¯
er

′
a , which is as tight as possible.

Note that changes to a trip’s earliest entry time can disrupt the queue’s ordering. To address this,
we maintain the queue’s priorities to ensure that tuples are processed in an ascending time sequence.

Discussion. Notice that our current method tends to overestimate the worst-case delay by fo-
cusing solely on the bounds related to the specific arc under consideration. We do not dynamically
adjust these bounds based on changing scenarios across consecutive arcs. This conservative ap-
proach might not capture the interplay of delays across arcs. As the scalability of the approach
largely hinges on the tightness of departure bounds, addressing this limitation through a dynamic
bound adaptation process presents a promising direction for future research.

11

12

Still, one can iterate the bounding procedure multiple times to achieve more precise bounds. This
can be achieved by populating Q with newly computed earliest departure bounds. This iterative
approach continues until no further modifications in the bounds are observed.

3.1.2. Calculating conflicting sets

After determining arc-specific time windows for all trips, we proceed by calculating conflicting sets
Sia, i.e., sets containing pairs of trips that can incur delay by conflicting. To do so, we define for
each arc a a set Pa that contains all pairs of distinct trips belonging to Ra that might potentially
conflict:

Pa := {(r, r′) ∈ Ra ×Ra | r ̸= r′ ∧ [
¯
era, ē

r
a] ∩ [

¯
er

′
a , ℓ̄

r′
a] ̸= ∅}.

By construction, Pa contains all tuples representing potential conflicts between trips that utilize a.
Still, within Pa, distinct subsets of tuples built on trips that do not appear in any other subset
may emerge. This separation enables us to identify subsets of trips that may conflict with each
other but not with other trips utilizing arc a. To isolate these dependencies, we split Pa into
subsets of maximal size such that each subset contains only tuples formed from trips exclusive to
that particular subset, ensuring that no trip is included in more than one subset. Technically, we
partition Pa into n sets P i

a of maximal size that satisfy the following conditions:

i) The subsets P i
a are pairwise disjoint and their union constitutes the entire set Pa, i.e., Pa :=⋃n

i=1 P i
a and P i

a ∩ P
j
a = ∅ for all i ̸= j.

ii) For any subset P i
a containing more than one pair, it holds that for each pair (r, r′) ∈ P i

a, there
exists another pair (r′′, r′′′) ∈ P i

a such that the intersection of their components is non-empty:
{r, r′}∩{r′′, r′′′} ≠ ∅. If no such pair (r′′, r′′′) exists, then (r, r′) constitutes a singleton subset
in the partition.

With P i
a containing all tuples relative to a subset of trips, we can finally identify those trips that

may incur a delay. According to Equation (2.1), this is the case when the number of conflicts that
a trip in P i

a has, i.e., the number of trips traversing an arc at the same time, exceeds the first
threshold f̂1

a , beyond which it is not possible to travel on arc a at free-flow speed. Then, we can
tighten the maximum number of conflicts f̄ r

a by counting the number of pairs in P i
a in which a trip

r appears as the first element. Accordingly, we filter our partition of P i
a to derive conflicting sets

Sia, each containing trips that may induce delay, as:

Sia :=
{
(r, r′) ∈ P i

a | f̄ r
a ≥ f̂1

a

}
.

3.1.3. Multigraph representation

After identifying all conflicting sets, we aim to modify our original graph G towards a multigraph
representation. This allows us to maintain Constraints (3.1h)-(3.1n) at a minimum. Figure 2 shows
an example of our graph modification that consists of two steps:

12

13

(a) Original graph G (b) G expanded by conflicting arcs (c) Non-conflicting arcs processing

Figure 2: Schematic representation of the graph transformation process upon identification of con-
flicting sets: (a) initial graph structure. (b) expansion with conflicting arcs (dashed lines).
(c) result of merging sequences of non-conflicting arcs and removing unused arcs. The
merging process involves removing the central node and replacing its incident arcs with
non-conflicting arcs with the original arcs’ cumulative length.

in the first step, we transition to a multigraph by adding a parallel arc for each conflicting set;
in the second step, we sparsen our graph by removing arcs that are no longer used and merging
sequences of conflict-free arcs.

Step 1: For each conflicting set Sia, we add a conflicting arc â as a parallel arc to its original
counterpart a. This arc shares the characteristics of a, i.e., it has the same start point, endpoint,
nominal travel time, and capacity. After adding a conflicting arc â, we modify the routes that
belong to the trips contained in Sia by replacing the original arc a with the respective conflicting
arc â, such that all trips that share a potential conflict traverse the same conflicting arc.

Let the set of conflicting arcs be Â ⊂ A. After Step 1, only trips that cannot induce delay on an
arc a will still use arc a ∈ A \ Â. Accordingly, we will refer to trips that utilize only arcs a ∈ A \ Â
as non-conflicting trips and to the respective arcs as non-conflicting arcs. We remove trips from R
that traverse only non-conflicting arcs.

Step 2: To sparsen our arc set, we aim to merge as many non-conflicting arcs as possible. We
combine sequences of non-conflicting arcs in trip routes into single arcs, which we add to A. Each
new arc starts at the origin of the first arc in the sequence and ends at the destination of the last
arc, and its length equals the sum of the lengths of all arcs in the sequence. We update accordingly
the routes pr in which such sequences appear. Finally, we remove arcs from A that do not appear
in any trip’s route and update Ra for every arc in A accordingly.

3.1.4. Tightened Big-M constraints

The remaining task involves updating the definition of Constraints (3.1h)-(3.1m) as follows:

Constraints (3.1h)− (3.1m), ∀a ∈ Â, (r, r′) ∈ Pa

thereby applying these constraints exclusively to conflicting arcs, Â, and to each pair of trips that
might conflict and potentially cause delays.

To minimize the Mi constants in the remaining big-M constraints, we leverage the time windows
obtained with Algorithm 1. For any pair of trips (r, r′) within Pa, where a belongs to the set of

13

14

conflicting arcs Â, we extract the following relationships from Constraints (3.1h)− (3.1k):

M1 ≥ max(sra − sr
′

a + ε) = max(sra)−min(sr
′

a) + ε = ēra − ¯
er

′
a + ε, ∀a ∈ Â, (r, r′) ∈ Pa

M2 ≥ max(sr
′

a − sra) = max(sr
′

a)−min(sra) = ēr
′

a − ¯
era, ∀a ∈ Â, (r, r′) ∈ Pa

M3 ≥ max(sr
′

a + τa + xr
′

a − sra)

= max(sr
′

a + τa + xr
′

a)−min(sra) = ℓ̄r
′

a − ¯
era, ∀a ∈ Â, (r, r′) ∈ Pa

M4 ≥ max(sra + τa + xra − sr
′

a + ε)

= max(sra + τa + xra)−min(sr
′

a) + ε = ℓ̄ra − ¯
er

′
a + ε. ∀ a ∈ Â, (r, r′) ∈ Pa

3.2. Matheuristic

We develop a matheuristic incorporating our MILP into a local search scheme to find good solutions
for large real-world instances. While this matheuristic is not guaranteed to find an optimal solution,
it leverages the MILP from Section 3.1 and can thus detect an optimal solution if encountered.
Algorithm 2 shows a high-level pseudo-code of our matheuristic. After creating an initial solution π

that is agnostic to staggering, we apply a local search to improve it by staggering its trip departures.
We then aim to further improve π by iterating between our MILP and our local search: whenever
we find a new incumbent by solving the MILP, we stop and improve this incumbent with our
local search. Once the local search terminates, we feed its final solution back to warmstart the
MILP. Our matheuristic stops either when the MILP certifies optimality of π, i.e., Z(π) = LB, or
after a maximum time η elapsed. Note that even if the MILP cannot certify optimality within the
computational time limit, our matheuristic has the advantage of providing a lower bound to indicate
the quality of π. In the remainder of this section, we detail our construction routine to obtain an
initial solution (Section 3.2.1) before we describe our local search (Section 3.2.2).

3.2.1. Constructing initial solutions

To construct an initial solution π, we set its departure time variables sra, delay variables xra and
conflict counting variables f r

a to infinity. We then sort the trip-specific earliest departures er of
every trip r into a priority queue Q and initialize an empty set Ta for each arc a to track when each
trip completes the traversal of a. Then, we construct an initial solution iteratively:

i) We start by extracting the departure time sra with the highest priority from Q.

Algorithm 2 Matheuristic
Input earliest departure times e, initial lower bound LB, time limit η

1: π ← constructSolution(e)
2: π ← localSearch(π)
3: while time elapsed ≤ η do
4: LB, π ← solveMILP(LB, π)
5: if Z(π) = LB then
6: return π
7: π ← localSearch(π)
8: return π

14

15

ii) We then set f r
a = |{t ∈ Ta | sra < t}|, that is the number of trips that have not completed their

traversal of arc a by time sra, and update xra = maxk∈K{0, µk
a · (f r

a − f̂k
a)}.

iii) Finally, we add the time in which the arc traversal is completed, which is sra + xra + τa, to Ta
by setting Ta = Ta ∪ (sra + xra + τa). If a is not the last arc of route pr, we insert sra + xra + τa

into Q.

We repeat these steps until Q is empty.
Note that once we obtained a feasible solution, it is possible to compute values for the MILP’s

binary variables αr,r′
a , βr,r′

a and γr,r
′

a with a support function checking their activation conditions as
introduced in Section 3.1.

3.2.2. Local search

Our local search aims to iteratively remove conflicts based on a priority queue, aiming to first resolve
conflicts that induce the largest delays. Let the tuple (r, r′, a) index the conflict that r has with
r′ on arc a. Given a conflict (r, r′, a), we resolve it by either shifting r backward or r′ forward in
time without violating the trips’ time windows. In this context, we compute additional quantities
for each conflict, utilizing the relations shown in Figure 3. Specifically, consider a conflict (r, r′, a)

with sra < sr
′

a . We then compute the time overlap ∆ between r and r′, which denotes how much
staggering we need to apply to resolve the conflict. Formally:

∆ = sra + τa + xra − sr
′

a + ε.

Clearly, ∆ = ϕ = ρ indicates the required backward shift ϕ for r and the required forward shift ρ

for r′ to resolve the conflict by staggering just one of the two trips. However, shifting a trip by ∆

may cause time window violations. Therefore, we limit ϕ and ρ to their feasible counterparts, ϕf

and ρf. These values represent the maximum backward and forward time shifts applicable without
violating the time window of each trip. Formally, ϕf reads:

ϕf = min(sr − er,∆),

∆

τa

τa

ϕf

ρf

sra sr
′

a

xr
′

a

r

r′

(a) Conflict metrics

τN
a

τN
a

sra − ϕf sr
′

a + ρf

r

r′

(b) Backward and forward shifts

Figure 3: Figure (a) illustrates the quantities computed in the local search for resolving a conflict
(r, r′, a), where r′ incurs delay xr

a. It illustrates the time overlap ∆, the feasible backward
shift ϕf, and forward shift ρf. Figure (b) depicts trips r and r′ post the application of these
shifts, resulting in conflict resolution and the consequent elimination of the arc delay.

15

16

while ρf reads:

ρf = min(σ̄r′ − (sr
′ − er

′
),∆),

with sr denoting the starting time of a trip r.

Based on these quantities, Algorithm 3 provides the pseudocode for our local search: given an
initial solution π, we sort conflicts into a priority queue Υ, thus ordering conflicts based on their
induced delay in decreasing order (l.1). We then process Υ until it is empty (l.2). In each iteration,
we pop the first conflict from Υ (l. 3) and compute ρf, ϕf, and ∆ as defined above (l. 4). Only if
the sum of ρf and ϕf allows to compensate ∆ (l.5), we resolve the conflict (l.6). If this leads to an
improved solution (l.7), we update our solution (l.8) as well as our priority queue (l.9) since new
conflicts may arise. If the conflict cannot be resolved, we directly proceed with the next item in
Υ without updating π or Υ. In the remainder of this section, we elaborate on constructing and
evaluating a neighborhood to create a new solution that resolves a conflict.

While our local search follows a rather simple greedy repair selection based on conflict severity, its
complexity lies in efficiently evaluating a neighborhood, i.e., computing the impact of resolving one
conflict on all other trips’ departure times. In the best case, resolving a conflict induces changes only
in arc entry times for the conflicting trips, while in the worst case, resolving a conflict can lead to a
very large cascade of changes in other trip departures. Algorithm 4 shows how we efficiently update
our solution when resolving a conflict: we first apply a minimum staggering to the departures of
r and r′. When staggering a trip departure time to resolve a conflict, we insert a corresponding
tuple (r, a), consisting of the trip’s index r and its route’s first arc a into a priority queue Q, which
we use to maintain trips that require recalculating arc entry times due to the applied staggering.
We sort the tuples in Q in ascending order based on their start times sra (l.1). After resolving the
initial conflict, we start processing trips in Q (l.3) by checking whether the trip’s updated departure
time sra creates a change in the arc entry times of another trip r′ (l.4). In this case, we insert
r′ into Q. If inserting r′ into Q invalidates a further propagation of arc entry times for trip r –
i.e., if sr′a < sra, which disrupts the order of our priority queue – we reinsert sra into Q and restart
evaluating Q (l. 5&6). If sra does not induce changes in other trips, we recursively propagate the
change in trip r’s arc entry times on subsequent arcs until a change arises (l.7–l.13).

Algorithm 3 Local Search
Input: solution π

1: Υ← identifyConflicts(π)
2: while Υ is not empty do
3: (r, r′, a)← Υ.pop()
4: ρf, ϕf,∆← analyzeConflict(r, r′, a)
5: if ρf + ϕf ≥ ∆ then
6: π̄ ← resolveConflict(π, r, r′, ρf,∆)
7: if Z(π̄) < Z(π) then
8: π ← π̄
9: Υ← identifyConflicts(π̄)

10: return π

16

17

Algorithm 4 resolveConflict
Input: solution π, trips r and r′, feasible forward shift ρf, time overlap ∆

1: Q← staggerDepartures(r, r′, ρf,∆)
2: while Q is not empty do
3: (r, a)← Q.pop()
4: r′, xr

a ← updateSolution(r, a)
5: if r′ ̸= false then
6: Q← insertTrips(r, r′, a)
7: else
8: while r′ = false do
9: srδr(a) ← sra + τa + xr

a

10: a← δr(a)
11: r′, xr

a ← updateSolution(r, a)
12: if r′ ̸= false then
13: Q← insertTrips(r, r′, a)
14: return π

Our overall update ends once Q is empty and all arc entry times have been correctly adjusted.
To conclude this section, we detail how we stagger departure times, check for solution changes, and
maintain the priority queue.

staggerDepartures(r, r′, ρf,∆) : To resolve a conflict, we need to shift either r or r′ or both
in time by ∆. Clearly, it is desirable to shift only one of these trips in time to keep the number of
newly arising conflicts and entry time changes at a minimum. Accordingly, we proceed as follows
to resolve a conflict:

1. If ρf ≥ ∆ we adjust sra ← sra +∆ and push (r, a) into Q.

2. If a conflict cannot be resolved by shifting only trip r in time, i.e., ρf < ∆, we stagger both
trips such that sra ← sra + ρf and sr

′
a ← sr

′
a − (∆− ρf) and push (r, a) as well as (r′, a) into Q.

updateSolution(r, a): After staggering trips to resolve a conflict, we need to update the arc
entry times of these trips as well as the arc entry times of all other trips that might be affected by
the change. To do so, we first compute the number of conflicts f r

a that arise for the respective trip
and arc as:

f r
a =

∑
r′∈Ra\{r}

I(sr
′

a ≤ sra < sr
′

a + τa + xr
′

a),

which subsequently allows us to update the corresponding delay as:

xra = max
k∈K
{0, µk

a · (f r
a − f̂k

a)}.

We can then check whether a new conflict arises or an existing conflict gets resolved between r and
some other trip r′ due to the updated entry time of r. If either is the case, we return the index of
trip r′; otherwise, we return a false flag to indicate that no new conflict was induced or resolved
by staggering r.

insertTrips(r, r′, a): If we detect a new conflict between r and r′, we add (r′, a) to Q. Here,
we need to account for the following two cases: if sra < sr

′
a , changes induced in r′ do not affect

17

18

r. It suffices to push (r′, a) into Q. However, if sr′a < sra, changes in r′ affect r, which invalidates
preceding updates made to r. In this case, we additionally push (r, a) back to Q to ensure valid arc
entry time updates upon the algorithm’s termination.

3.3. Online algorithm

While we discussed our matheuristic for a static problem setting, we can straightforwardly apply it
to an online problem setting where trips enter the system over time, e.g., following a point process.
In this context, we focus on batched decision-making, which allows us to apply our matheuristic in
a rolling-horizon fashion.

Specifically, we divide the static time horizon into n ∈ {1, . . . , N} distinct epochs, each spanning
a fixed time interval of size ∆t. Before a new epoch n starts, we then take a staggering decision for
all requests that entered the system after the last decision taken, collected in a set Rn, formally:

Rn := {r ∈ R | (n− 1) ·∆t ≤ er < n ·∆t}. ∀n ∈ {1, . . . , N}

We can then compute a solution πn for the respective batch of requests by running our matheuristic
with a suitable time limit η.

Algorithm 5 shows how we apply our matheuristic in such a rolling horizon setting: we iterate over
all epochs (l.2), each time focusing on the respective request setRn (l.3), and calculating the relative
earliest departure times vector en, and a lower bound for epoch n as described in Sections 3.1.1-3.1.3
(l.4).

For each epoch, we compute a solution πn by running our matheuristic (l.5). Afterward, we can
fix this solution for all trips in Rn. Still, we need to identify trips that span multiple epochs to
identify all conflicts in future epochs during preprocessing. To do so, we collect such trips in a set
RT , formally:

RT := {r ∈ Rn | sra′ > n ·∆t},

with a′ being the last arc of route pr. Note that after the respective adjustments, trips in RT can
also conflict with trips being in Rn but not in RT . Maintaining those trips by incorporating them

Algorithm 5 Online algorithm
Input Set of trips R, number of epochs N , time limit η

1: RT ← ∅; RD ← ∅
2: for n ∈ {1, . . . , N} do
3: Rn ← getTripsEpoch(R)
4: en,LB← preprocess(Rn,RT ,RD)
5: πn ← matheuristic(en,LB, η)
6: if n < N then
7: RT ← getTransferTrips(πn)
8: RD ← getDummyTrips(πn,RT)

9: π ← (πn)n∈{1,...,N} ▷ Vector of epoch solutions
10: π ← getSolution(π) ▷ Solution for every trip in R
11: return π

18

19

directly in RT poses a computational overhead in the matheuristic, as it necessitates the inclusion
of additional conflicting trips to accurately calculate their arc entry times.

To mitigate this overhead, we identify all conflicts (r, r′, a) in πn, where r is part of RT , r′ is
not, and a is included in pr. For each identified conflict, we generate an artificial trip r′ with pr

′

consisting solely of the arc a, er′ being the arc entry time of the conflicting trip sr
′

a , ℓr′ matching
the time in which the conflicting trip completes the arc traversal, and σ̄r′ being zero to preclude
any staggering time decisions by the algorithm. We maintain these dummy trips in a separate set
RD and take them into account in future epochs.

4. Design of Experiments

We used Python 3.9.10 and Gurobi 10.0.1 to build and solve the MILP model. To implement
our matheuristic, we used C++ to implement the local search and integrated it into the Python
framework via pybind11 (Jakob et al. 2017). We performed all experiments on an Intel(R) i9-9900
CPU, 3.1 GHz, with 56 GB of RAM.

To create a realistic case study, we use the New York taxi data set (NYC Taxi & Limousine
Commission 2015) and focus on the area of Manhattan in New York City.

Road network. We extract the Manhattan road network from the OpenStreetMap dataset to
obtain a network with 7782 arcs and 3213 nodes (OpenStreetMap 2024). Studying staggered routing
on this raw network remains challenging as it requires checking conflicts for a large number of arcs.
To decrease the number of arcs while preserving the length of the shortest paths within the network,
we use contraction hierarchies (cf. Geisberger et al. 2008), a well-known reduction technique for
online routing, to contract the road network graph. We employ iterative node contractions that
merge arcs while preserving the shortest routes between the remaining nodes. The efficiency of this
contraction hinges on the order in which nodes are processed. We first contract nodes with the
smallest edge difference - a metric capturing the difference between the number of shortcuts added
at the time of node contraction and the number of incident arcs. Here, we adopt the lazy update
approach of Geisberger et al. (2008) to reduce edge difference recalculations and enhance efficiency.

Trip data. We obtain trips R from the NYC taxi dataset, collected in January 2015 (NYC
Taxi & Limousine Commission 2015), which contains taxi trips’ origins, destinations, and departure
times. We determine trip routes by selecting the shortest route connecting the nearest network nodes
to the origin and destination with the minimum number of arcs. Trip start times er correspond to
the taxi ride’s start times provided in the dataset. We assign trip deadlines ℓr as the time of arrival
at the destination in the uncontrolled scenario plus a relative quota equal to 25% of the route’s
nominal travel time plus a fixed tolerance of 30 seconds for each trip. We calculate the maximum
allowable departure time shift σ̄r as a percentage ςMAX of the total nominal travel time required to
traverse the route pr. Unless specified differently, we set this percentage to 10%.

Parameterization. We set the nominal travel times τa assuming vehicles traveling at 20 kilome-
ters per hour, which approximates the average traffic speed recorded in New York City downtown

19

20

in 2022 (Pishue 2023). As we focus on the impact and control of a large AMoD fleet, we assume
a baseload of traffic that is out of the operator’s control and adjust arc capacities ca accordingly
to account for potential congestion induced by the AMoD fleet. Specifically, we consider two sce-
narios: first, a LC scenario, which reflects a setting in which the exogenous traffic in the system is
uncongested, and the AMoD fleet may induce congestion in case of inefficient operations. Second, a
HC scenario in which the exogenous traffic already encounters congestion that might be amplified
by the AMoD fleet operations. To create these scenarios, we calibrate the residual capacities to
accommodate one AMoD trip every 15 seconds for the LC scenario and 30 seconds for the HC
scenario. This is done by setting, respectively, arc capacities as ca = τa/15 and ca = τa/30 and
rounding the resulting value to its nearest integer. To calibrate the arc travel time function, we
considered a single non-flat piece, a maximum flow at which it is possible to travel the arc under
free-flow conditions equal to f̂a = ca, and a slope equal to µa = 0.5·τa

ca
.

Instances. To create our instances, we sampled 5000 trips between four and five p.m. over 31
days, sorting them by start time. To gauge their complexity, we compute the uncontrolled solution
for each instance both in the LC and HC scenarios and calculate its corresponding total delay Z̄, the
number of conflicting arcs |Â|, and the maximum number of trips traversing the same conflicting
arc |Râ|MAX. Table 1 summarizes the characteristics of these instances, detailing their minimum,
maximum, and average values. The total fleet delay in the HC scenario is roughly ten times greater
than in the LC scenario. Additionally, there is a consistent rise in the number of conflicting arcs
between scenarios, with an increase of approximately 1000 arcs. However, the difference in the peak
number of trips per conflicting arc is relatively modest between scenarios, averaging an increase of
eight trips.

5. Results

In the following, we discuss the findings of our numerical studies. First, we analyze our matheuristic
performance for both an idealized offline setting as well as a myopic online setting in Section 5.1.
We then proceed with a fine-grained analysis in Section 5.2 before discussing the trade-off between
congestion-related delay reduction and trip departure time shifts in Section 5.3.

Table 1: Minimum, maximum, and average values of the total delay in the uncontrolled solution Z̄,
the number of conflicting arcs |Â|, and the maximum number of trips traversing the same
conflicting arc |Râ|MAX for low congestion (LC) and high congestion (HC) instances.

LC HC

Min Max Avg Min Max Avg

Z̄ [min] 54 133 82 348 1005 577
|Â| 1400 2489 1971 2496 3660 3165
|Râ|MAX 52 161 102 76 161 110

20

21

5.1. Algorithmic performance

Figure 4 shows the distribution of the delay reduction Θ obtained when using our matheuristic
compared to the uncontrolled setting for both the LC and HC scenario. We report the delay
reduction obtained when using our matheuristic in a full-information offline scenario (OFF) to
obtain an upper bound on the staggered routing performance. Additionally, we report the delay
reduction obtained when using our matheuristic in a rolling-horizon fashion in an online scenario
(ON) to quantify the benefit of staggering in a real-world setting. For further technical discussions,
we refer the readers to Appendix C. We used a time limit of two hours to compute the offline
solutions while limiting the computation of the rolling horizon solutions to six minutes, which
equals the length of an epoch.

Focusing on the offline delay reduction, we observe a median delay reduction of 99% and a
minimum reduction of 80% for the LC scenario, which shows that our matheuristic allows us to
mitigate at minimum 80% of the fleet-induced congestion in an initially uncongested system. For
the HC scenario, we observe a delay reduction within 50% and 80%, with a median reduction of
66%, which shows that our matheuristic effectively reduces fleet-induced congestion even in a setting
where the system is already congested by exogenous traffic.

Result 1 (offline performance). In a full information setting, staggered routing allows for an average
delay reduction of 94% and 66%, respectively, for an LC and HC scenario.

Focusing on the improvement potential in an online decision-making setting, we observe an average
delay improvement of 90% and 56% for the LC and HC scenario when applying our matheuristic
in a naive rolling horizon fashion. The observed performance difference of ten percentage points

0 20 40 60 80 100

OFF

ON

Θ[%]

60 80 100 120

OFF

ON

Θ[min]

(a) LC Scenario

0 20 40 60 80 100

OFF

ON

Θ[%]

300 400 500

OFF

ON

Θ[min]

(b) HC Scenario

Figure 4: Distribution of the relative and absolute delay reduction Θ over all instances for a full
information offline scenario (OFF) and a rolling-horizon online scenario (ON).

21

22

between our naive online algorithm and the full information bound remains surprisingly small in
both LC and HC scenarios and points to the fact that even a temporally local staggering of trips
allows for the reduction of a significant share of congestion-related delay. At the same time, it points
to the potential of developing a more sophisticated prescriptive online algorithm that might obtain
a performance close to the full information bound.

Result 2 (online performance). In a rolling horizon setting, staggered routing allows for an average
delay reduction of 90% and 56%, respectively, for an LC and HC scenario.

5.2. Fine-grained analysis.

To deepen our understanding of the impact of staggered routing, Figure 5 shows a distribution over
arcs that exhibit a certain cumulative delay within the LC or HC scenario. We detail this distribution
for the arc-based delay resulting in an uncontrolled setting (UNC) in which no staggering is applied,
when solving the offline full information setting (OFF), and when solving an online rolling horizon
setting (ON). Note that we exclude arcs that do not exhibit any congestion in either of these settings
to focus the distributions on congestion effects. Figure 6 complements this analysis by showing the
spatial distribution of trips incurring delay on certain arcs.

Clearly, the HC scenario exhibits a significantly higher cumulative delay on arcs as the existing
exogenous congestion in the system reinforces the congestion induced by the AMoD fleet. However,
we observe in both the LC and the HC scenarios that staggering trip departures allow us to mitigate
a significant share of the congestion induced by the AMoD fleet. Specifically, our matheuristic
removes congestion completely for approximately 6500 and 10000 arcs in the LC and HC scenarios,

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

100

101

102

103

104

Ea[min]

O
bs

er
va

ti
on

s UNC
OFF
ON

(a) LC Scenario

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

101

102

103

104

Ea[min]

O
bs

er
va

ti
on

s UNC
OFF
ON

(b) HC Scenario
Figure 5: Distribution of the arc-based cumulative delay (Ea) over all instances for the uncontrolled

(UNC), offline full information (OFF), and online rolling horizon (ON) settings.

22

23

UNC OFF

Ω
a

0

20

50

70
ON

(a) LC Scenario

UNC OFF

Ω
a

0

30

90

120
ON

(b) HC Scenario

Figure 6: Spatial distribution of the number of trips per arc that experience congestion (Ωa) in the
uncontrolled (UNC), offline (OFF), and online (ON) settings for both the LC and HC
scenarios.

independent of whether we apply it in an offline or online setting. Interestingly, the differences
between the offline and online settings arise for the remaining mildly congested arcs for which the
online algorithm does not succeed in anticipating temporal interdependencies.

Figure 6 shows the spatial distribution of the number of trips per arc that experience delay
in the respective settings. As can be seen, only a few local congestion effects remain in the LC
scenario when comparing the offline and online solutions after staggering to the uncontrolled setting.
Contrarily, some main roads exhibit a decreased but still significant congestion in the HC scenario.

Result 3 (congestion reduction). Staggered routing increases the number of uncongested arcs,
respectively, for LC and HC scenarios by 6841 and 10479 when comparing the full information
solutions and 6483 and 9524 when comparing the naive online solutions against the uncontrolled
solutions.

5.3. Sensitivity analyses

Clearly, the improvement potential of staggered routing depends on the amount of staggering allowed
for each trip and constitutes a trade-off between passenger convenience, i.e., modifying a customer’s
departure time up to a certain threshold and obtaining a system optimum from a total congestion
perspective. For this analysis, we focus on the full information setting for one single instance to
discuss the maximum improvement potential of the respective trade-off. To analyze this trade-off,
we ignore our basic setting and vary the maximum amount a trip’s departure can be staggered
within ςMAX ∈ {0%, . . . , 25%} of its nominal travel time with a step width of 2.5 percentage points.
Here, ςMAX = 0% equals the uncontrolled setting discussed in the preceding subsections.

Figure 7 highlights the resulting trade-off by showing the dependency of the total accumulated
delay Z(π) and the distribution of realized trip departure shifts σr in dependence of the maximum

23

24

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25
0

20

40

ςMAX[%]

Z(
π
)

[m
in

]

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

0

2

4

ςMAX[%]

σ
r
[m

in
]

(a) LC Scenario

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25
0

200

400

ςMAX[%]

Z(
π
)

[m
in

]

0 2.5 5 7.5 10 12.5 15 17.5 20 22.5 25

0

2

4

ςMAX[%]

σ
r
[m

in
]

(b) HC Scenario

Figure 7: Trade off between realized trip departure times shifts σr, the total system delay Z(π), and
the maximum possible shift of a trip’s departure relative to its length ςMAX for both the LC
and HC scenario.

possible trip departure shift ςMAX, which indicates the maximum possible departure shift relative to
each trip’s length. We report results for both the LC and HC scenarios. As can be seen, we observe
diminishing returns for delay reduction when increasing ςMAX in both scenarios but at different
scales. While it is possible to entirely mitigate the average cumulative delay in the LC scenario
with any ςMAX ≥ 7.5%, the HC scenario shows a plateau of an average cumulative delay of around
65 minutes for ςMAX ≥ 20.0%. Remarkably, mitigating the entire delay in the LC scenario with
maximum realized departure time shifts below two minutes is possible when choosing ςMAX = 7.5%.
Choosing a higher ςMAX solely leads to higher departure time shifts. In the HC scenario, we observe
increasing realized departure time shifts when increasing ςMAX while yielding a decreasing overall
delay in the system. Surprisingly, the realized departure time shifts remain mostly below six minutes
even for high ςMAX; only two outliers exhibit a shift of six minutes.

Result 4 (LC scenario trade off). In the LC scenario, a maximum trip departure shift of 7.5%
relative to each trip’s length allows to mitigate delays induced by the AMoD fleet entirely at the
price of shifting any trip departure by at most two minutes.

Result 5 (HC scenario trade off). In the HC scenario, we observe a decreasing cumulative delay at
the price of increasing realized trip departure times when increasing ςMAX. Still, the realized trip
departure times remain, except from two outliers at most six minutes even for high ςMAX.

24

25

In conclusion, our results show that there is a trade-off between allowing higher maximum and
realized departure time shifts and reducing delay in the system. However, a significant delay re-
duction can be obtained by accepting reasonable departure shifts between two and six minutes for
both a system that comprises solely fleet-induced congestion (LC scenario) and a system that is
already congested and incurs additional congestion induced by the AMoD fleet (HC scenario). In
this context, it’s important to recognize that while adjusting the departure time of a trip might not
be preferable for a passenger, it nevertheless does not compromise the passenger’s primary objective
of reaching their destination punctually. This is because, independently of the ςMAX parameteriza-
tion, alterations to the departure time are only permissible as long as the trip finishes within the
designated time window.

6. Conclusion

We studied the impact of staggered routing, i.e., delaying the departure of trips as long as a trip’s
prefixed arrival time will not be exceeded to reduce local congestion bottlenecks when operating an
AMoD fleet. We formalized the underlying planning problem in a full information offline setting
as a MILP. We leveraged this MILP to devise an efficient matheuristic that can be used to solve
large-scale full information offline instances, while at the same time being amenable to be used
in a rolling-horizon online setting. We applied this matheuristic to a real-world case study for
the Manhattan area in New York City. We compared the impact of staggered routing for both a
full-information bound computed in an idealized offline setting and for the solution obtained in a
rolling-horizon online setting against an uncontrolled case in which staggering is not allowed.

Our results show that in low-congestion scenarios, i.e., scenarios in which only the AMoD fleet
induces congestion but the system without the fleet would remain uncongested, staggering trip
departures allow to mitigate on average 94% of the induced congestion in a full information setting.
While not reaching this full information bound, our naive rolling horizon approach still allows us
to reduce 90% of the induced congestion in the LC scenario. In high-congestion scenarios, i.e.,
scenarios in which the system already encounters exogenous congestion and the AMoD fleet induces
further congestion, we observe an average reduction of 66% as the full information bound and an
average reduction of 56% in our online setting. Surprisingly, we show that these reductions can be
reached by shifting trip departures at a maximum of two minutes in the LC scenario and by six
minutes in the HC scenario, still preserving each trip’s desired arrival time.

Our work presents a first step towards leveraging staggered routing in AMoD systems to reduce
congestion. Specifically, we anticipate two fruitful avenues for future research. First, focusing on ef-
ficient solution methodologies that solve large-scale instances with high solution quality. Our paper
represents a first step in this direction. Still, one may improve upon our results by finding better
lower bounds and further enhancing algorithmic components tailored to the respective problem set-
ting. Second, developing prescriptive online algorithms to apply staggered routing in practice. Our
myopic rolling-horizon implementation already shows a significant improvement potential, giving

25

26

hope to achieve even better performance with a more sophisticated online algorithm incorporating
a learning-based prescriptive element.

Acknowledgements

The work of Antonio Coppola, Gerhard Hiermann, and Maximilian Schiffer was supported by the
Deutsche Forschungsgemeinschaft (DFG) - Project number 449261765 (BalSAM). The work of Dario
Paccagnan was supported by the EPSRC grant EP/Y001001/1, funded by the International Science
Partnerships Fund (ISPF) and UKRI.

References

Alonso-Mora, J., Wallar, A., & Rus, D. (2017). Predictive routing for autonomous mobility-on-demand systems with
ride-sharing. In International Conference on Intelligent Robots and Systems (IROS). IEEE.

Arnott, R., de Palma, A., & Lindsey, R. (1990). Economics of a bottleneck. Journal of Urban Economics, 27 ,
111–130.

Bahrami, S., & Roorda, M. J. (2020). Optimal traffic management policies for mixed human and automated traffic
flows. Transportation Research Part A: Policy and Practice, 135 , 130–143.

Bang, H., & Malikopoulos, A. A. (2022). Congestion-aware routing, rebalancing, and charging scheduling for electric
autonomous mobility-on-demand system. In 2022 American Control Conference (ACC) (pp. 3152–3157).

Enders, T., Harrison, J., Pavone, M., & Schiffer, M. (2023). Hybrid multi-agent deep reinforcement learning for
autonomous mobility on demand systems. arXiv:2212.07313 [cs.LG]. doi:10.48550/arXiv.2212.07313.

Estandia, A., Schiffer, M., Rossi, F., Luke, J., Kara, E. C., Rajagopal, R., & Pavone, M. (2021). On the interac-
tion between autonomous mobility on demand systems and power distribution networks—an optimal power flow
approach. IEEE Transactions on Control of Network Systems, 8 , 1163–1176.

Gammelli, D., Yang, K., Harrison, J., Rodrigues, F., Pereira, F. C., & Pavone, M. (2021). Graph neural network
reinforcement learning for autonomous mobility-on-demand systems. In 2021 60th IEEE Conference on Decision
and Control (CDC) (pp. 2996–3003). IEEE.

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies: Faster and simpler hierarchical
routing in road networks. In C. C. McGeoch (Ed.), Experimental Algorithms (pp. 319–333). Springer Berlin
Heidelberg.

Houshmand, A., Wollenstein-Betech, S., & Cassandras, C. G. (2019). The penetration rate effect of connected and
automated vehicles in mixed traffic routing. In 2019 IEEE Intelligent Transportation Systems Conference (ITSC)
(pp. 1755–1760).

Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., & Pavone, M. (2018). Data-driven model predictive control
of autonomous mobility-on-demand systems. In 2018 IEEE International Conference on Robotics and Automation
(ICRA) (pp. 1—-7). IEEE Press.

Jacquillat, A. (2022). Predictive and prescriptive analytics toward passenger-centric ground delay programs. Trans-
portation Science, 56 , 265–298.

Jahn, O., Möhring, R. H., Schulz, A. S., & Stier-Moses, N. E. (2005). System-optimal routing of traffic flows with
user constraints in networks with congestion. Operations research, 53 , 600–616.

Jakob, W., Rhinelander, J., & Moldovan, D. (2017). pybind11 – seamless operability between c++11 and python.
URL: https://github.com/pybind/pybind11.

Jalota, D., Paccagnan, D., Schiffer, M., & Pavone, M. (2023). Online routing over parallel networks: Deterministic
limits and data-driven enhancements. INFORMS Journal on Computing , 35 , 560–577.

Jiao, Y., Tang, X., Qin, Z. T., Li, S., Zhang, F., Zhu, H., & Ye, J. (2021). Real-world ride-hailing vehicle repositioning
using deep reinforcement learning. Transportation Research Part C: Emerging Technologies, 130 , 103289.

Jungel, K., Parmentier, A., Schiffer, M., & Vidal, T. (2023). Learning-based online optimization for autonomous
mobility-on-demand fleet control. arXiv:2302.03963 [math.OC]. doi:10.48550/arXiv.2302.03963.

26

http://dx.doi.org/10.48550/arXiv.2212.07313
https://github.com/pybind/pybind11
http://dx.doi.org/10.48550/arXiv.2302.03963

27

Köhler, E., Langkau, K., & Skutella, M. (2002). Time-expanded graphs for flow-dependent transit times. In Algo-
rithms—ESA 2002: 10th Annual European Symposium Rome, Italy, September 17–21, 2002 Proceedings 10 (pp.
599–611). Springer.

Levin, M. W. (2017). Congestion-aware system optimal route choice for shared autonomous vehicles. Transportation
Research Part C: Emerging Technologies, 82 , 229–247.

Levin, M. W., Kockelman, K. M., Boyles, S. D., & Li, T. (2017). A general framework for modeling shared autonomous
vehicles with dynamic network-loading and dynamic ride-sharing application. Computers, Environment and Urban
Systems, 64 , 373–383.

Levy, J. I., Buonocore, J. J., & Von Stackelberg, K. (2010). Evaluation of the public health impacts of traffic
congestion: a health risk assessment. Environmental health, 9 , 1–12.

Li, M., Qin, Z., Jiao, Y., Yang, Y., Wang, J., Wang, C., Wu, G., & Ye, J. (2019). Efficient ridesharing order
dispatching with mean field multi-agent reinforcement learning. In The World Wide Web Conference WWW ’19
(pp. 983—-994). New York, NY, USA: Association for Computing Machinery.

Li, Z.-C., Huang, H.-J., & Yang, H. (2020). Fifty years of the bottleneck model: A bibliometric review and future
research directions. Transportation Research Part B: Methodological , 139 , 311–342.

Liang, E., Wen, K., Lam, W. H., Sumalee, A., & Zhong, R. (2021). An integrated reinforcement learning and cen-
tralized programming approach for online taxi dispatching. IEEE Transactions on Neural Networks and Learning
Systems, 33 , 4742–4756.

Liu, Y., & Samaranayake, S. (2022). Proactive rebalancing and speed-up techniques for on-demand high capacity
ridesourcing services. IEEE Transactions on Intelligent Transportation Systems, 23 , 819–826.

Narayanan, S., Chaniotakis, E., & Antoniou, C. (2020). Shared autonomous vehicle services: A comprehensive review.
Transportation Research Part C: Emerging Technologies, 111 , 255–293.

NYC Taxi & Limousine Commission (2015). TLC Trip Record Data. URL: https://www1.nyc.gov/site/tlc/about/tlc-
trip-record-data.page.

Oh, S., Seshadri, R., Azevedo, C. L., Kumar, N., Basak, K., & Ben-Akiva, M. (2020). Assessing the impacts of
automated mobility-on-demand through agent-based simulation: A study of singapore. Transportation Research
Part A: Policy and Practice, 138 , 367–388.

OpenStreetMap (2024). URL: https://www.openstreetmap.org.

Paccagnan, D., & Gairing, M. (2023). In congestion games, taxes achieve optimal approximation. Operations Research.
(Ahead of Print).

Patriksson, M. (2015). The traffic assignment problem: models and methods. Courier Dover Publications.

Pavone, M. (2015). Autonomous mobility-on-demand systems for future urban mobility. In Autonomes Fahren:
Technische, rechtliche und gesellschaftliche Aspekte (pp. 399–416). Berlin, Heidelberg: Springer Berlin Heidelberg.

Pigou, A. (1920). The economics of welfare. London, Macmillan.

Pishue, B. (2023). 2022 INRIX Global Traffic Scorecard . Technical Report INRIX.

Rossi, F., Iglesias, R., Alizadeh, M., & Pavone, M. (2020). On the interaction between autonomous mobility-on-
demand systems and the power network: Models and coordination algorithms. IEEE Transactions on Control of
Network Systems, 7 , 384–397.

Rossi, F., Zhang, R., Hindy, Y., & Pavone, M. (2018). Routing autonomous vehicles in congested transportation
networks: structural properties and coordination algorithms. Autonomous Robots, 42 , 1427–1442.

Roughgarden, T. (2005). Selfish routing and the price of anarchy volume 74. MIT press.

Ruch, C., Lu, C., Sieber, L., & Frazzoli, E. (2020). Quantifying the efficiency of ride sharing. IEEE Transactions on
Intelligent Transportation Systems, 22 , 5811–5816.

Sadeghi Eshkevari, S., Tang, X., Qin, Z., Mei, J., Zhang, C., Meng, Q., & Xu, J. (2022). Reinforcement learning
in the wild: Scalable RL dispatching algorithm deployed in ridehailing marketplace. In Proceedings of the 28th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining KDD ’22 (pp. 3838—-3848). New York,
NY, USA: Association for Computing Machinery.

Salazar, M., Lanzetti, N., Rossi, F., Schiffer, M., & Pavone, M. (2019). Intermodal autonomous mobility-on-demand.
IEEE Transactions on Intelligent Transportation Systems, 21 , 3946–3960.

Skordilis, E., Hou, Y., Tripp, C., Moniot, M., Graf, P., & Biagioni, D. (2021). A modular and transferable rein-
forcement learning framework for the fleet rebalancing problem. IEEE Transactions on Intelligent Transportation
Systems, 23 , 11903–11916.

27

https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www1.nyc.gov/site/tlc/about/tlc-trip-record-data.page
https://www.openstreetmap.org

28

Sriskandarajah, C., & Ladet, P. (1986). Some no-wait shops scheduling problems: Complexity aspect. European
Journal of Operational Research, 24 , 424–438. Flexible Manufacturing Systems.

Tang, X., Qin, Z. T., Zhang, F., Wang, Z., Xu, Z., Ma, Y., Zhu, H., & Ye, J. (2019). A deep value-network based
approach for multi-driver order dispatching. In Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining KDD ’19 (pp. 1780—-1790). New York, NY, USA: Association for Computing
Machinery.

Tsao, M., Iglesias, R., & Pavone, M. (2018). Stochastic model predictive control for autonomous mobility on demand.
In 2018 21st International Conference on Intelligent Transportation Systems (ITSC) (pp. 3941–3948).

US Bur. Public Roads (1964). Traffic assignment manual for application with a large, high speed computer volume 2.
Washington, DC: US Gov. Print. Off.

Vickrey, W. S. (1969). Congestion theory and transport investment. The American Economic Review , (pp. 251–260).
Xu, Z., Li, Z., Guan, Q., Zhang, D., Li, Q., Nan, J., Liu, C., Bian, W., & Ye, J. (2018). Large-scale order dispatch in

on-demand ride-hailing platforms: A learning and planning approach. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining KDD ’18 (pp. 905––913). New York, NY, USA:
Association for Computing Machinery.

Zardini, G., Lanzetti, N., Pavone, M., & Frazzoli, E. (2022). Analysis and control of autonomous mobility-on-demand
systems. Annual Review of Control, Robotics, and Autonomous Systems, 5 , 633–658.

Zhang, L., Hu, T., Min, Y., Wu, G., Zhang, J., Feng, P., Gong, P., & Ye, J. (2017). A taxi order dispatch
model based on combinatorial optimization. In Proceedings of the 23rd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining KDD ’17 (pp. 2151—-2159). New York, NY, USA: Association for
Computing Machinery.

Zhang, W., & Guhathakurta, S. (2017). Parking spaces in the age of shared autonomous vehicles: How much parking
will we need and where? Transportation Research Record , 2651 , 80–91.

Zhou, M., Jin, J., Zhang, W., Qin, Z., Jiao, Y., Wang, C., Wu, G., Yu, Y., & Ye, J. (2019). Multi-agent reinforcement
learning for order-dispatching via order-vehicle distribution matching. In Proceedings of the 28th ACM International
Conference on Information and Knowledge Management CIKM ’19 (pp. 2645—-2653). New York, NY, USA:
Association for Computing Machinery.

28

29

Appendix A Hardness Proof

To prove the hardness of the staggered routing problem as defined in Section 2, we utilize the
hardness result for the three machines job shop scheduling problem with unit processing times
and no-wait constraints (J3-UPT-NWT) with makespan (the maximum completion time of a job)
minimization as objective, which is NP-hard (Sriskandarajah & Ladet 1986).

Theorem 1. The staggered routing problem is NP-hard.

Proof We begin by defining instances for J3-UPT-NWT and for the staggered routing problem:

Definition 1. Let I be an instance of the J3-UPT-NWT with m = 3 machines and jobs Ji, with
i = 1, . . . , n, where each job comprises N(Ji) operations that each require one unit of processing
time and must be executed continuously from start to finish. The operations are allocated to specific
machines, and the order in which machines are visited may vary among different jobs. Each machine
can process a maximum of one job at a time. The J3-UPT-NWT seeks for a job schedule S, i.e., the
starting times s(Ji) of the first operation of each job Ji, that minimizes the schedule’s makespan D.

Definition 2. Let I ′ be an instance of the staggered routing problem with n trips as defined
in Section 2. Trips must proceed along their routes without interruption within designated time
windows. The travel time for a trip along an arc is influenced by the number of trips on the arc at
the specific time the trip enters the arc. If the number of trips on the arc falls below a predefined
arc-specific threshold capacity, the trip proceeds at the nominal travel time designated for that arc.
Conversely, exceeding this threshold triggers a delay, as detailed in Equation (2.1). The objective of
the staggered routing problem is to find the trip departures sra that minimize the total travel time.

Given these definitions, we prove the hardness of the staggered routing problem by contradiction.

Assumption 1. It exists an algorithm A that finds a feasible solution for every instance of the
staggered routing problem in polynomial time.

Step 1: Consider an instance I ′ that comprises n trips traversing m = 3 arcs, where at least
two trips have different routes. The earliest possible departure time for trips is set to zero, with
no restrictions on the staggering of departures. All trips must finish by time D. Each arc has a
nominal travel time and a threshold capacity of one; exceeding this threshold on any arc introduces
an infinite delay.

Step 2: Instance I ′ can be transformed in polynomial time to an instance I as follows: the route
of each trip corresponds to a job to be executed without interruptions from start to finish. The act
of traversing the arcs within a trip’s route mirrors the operations within a job. These operations are
executed by a dedicated machine (an arc), each with a unit processing time (equivalent to nominal
travel time), and concurrent processing of operations on the same machine is prohibited (otherwise,
one incurs infinite delay). The latest arrival times translate to the schedule’s makespan under
consideration. Finally, the departure times from the arcs on a route correspond to the scheduling
times of the job operations.

29

30

Step 3: Observe that selecting the job’s starting times in instance I to decide whether a schedule
S of makespan of D exists is equivalent to finding feasible trip departure times in instance I ′, such
that we obtain a polynomial-time transformation from the respective staggered routing problem
instance instance to an equivalent J3-UPT-NWT instance. Then, if A can find a feasible solution
in polynomial time for I ′, it can also find a feasible solution for I within polynomial time. However,
finding a solution for I in polynomial time is impossible unless P = NP, contradicting Assumption 1.
Accordingly, there exists at least one instance of the staggered routing problem that cannot be solved
in polynomial time. □

Appendix B Table of Variables in the MILP

Table 2: Table of Variables in the MILP.

Variable Description

R Set of all trips r ∈ R
A Set of all arcs a ∈ A
Ra Subset of R, set of trips traversing arc a

pr Route of trip r

δr(a) Arc succeeding a on route pr

¯
ar First arc of pr

ār Last arc of pr

xr
a Delay on arc a for trip r

µk
a Slope of the k-th segment of arc a travel time function.
τa Nominal travel time for arc a

fr
a Number of vehicles encountered by trip r on arc a

f̂k
a Flow value at which the k-th segment of arc a travel time function begins.
sra Departure time of trip r on arc a

er Earliest possible departure time for trip r

ℓr Latest possible arrival time for trip r

σ̄r Maximum staggering applicable to trip’s r departure
αr,r′
a , βr,r′

a , γr,r′
a Logical variables checking concurrent presence of trips (r, r′) on arc a

ε Small constant
Mi Large constant

Appendix C Optimality Gaps

Figures 8–10 show the distribution of the optimality gap (Figure 8), the absolute value of the lower
bound (Figure 9), and the distance between the upper bound and the lower bound (Figure 10) for
both the LC scenario and the HC scenario, obtained when running our matheuristic with a time
limit of two hours.

Focusing on the relative optimality gaps in Figure 8, we observe a bipolar distribution in which
optimality gaps accumulate either around 0% or around 100% for the LC scenario. For the HC
scenario, all relative optimality gaps range between 90% and 100%. At first sight, these optimality

30

31

0 20 40 60 80 100

∆[%]

(a) LC scenario

0 20 40 60 80 100

∆[%]

(b) HC scenario

Figure 8: Distribution of the optimality gap ∆ [%] over all instances.

0.00 0.05 0.10 0.15 0.20 0.25

LB [min]

(a) LC scenario

5 10 15 20 25

LB [min]

(b) HC scenario

Figure 9: Distribution of the absolute value of the lower bound LB [min] over all instances.

0 5 10 15 20

∆[min]

(a) LC scenario

100 150 200 250 300 350 400 450

∆[min]

(b) HC scenario

Figure 10: Distribution of the distance between the upper and lower bound UB-LB [min] over all
instances.

gaps look anything but satisfying in terms of algorithmic performance, but unravel as follows at
second sight: as our objective is to minimize the total congestion-related delay in the system, a
trivial lower bound on our objective value is an objective value of zero. Clearly, our problem bears
a huge degree of symmetry, which leads to weak lower bounds that cannot be significantly improved
in our MILP formulation, see Figure 9. In such cases, an absolute distance of even a few minutes
of delay left in the system can create a large optimality gap.

To support our claim that our matheuristic finds good solutions, we compare these optimality
gaps to the delay reductions shown in Figure 4. In fact, a comparison to the uncontrolled solution
provides more insights compared to a lower bound comparison: relating Figure 4 to Figure 8, it
becomes obvious that the maximum improvement potential to reduce delay remains at 20% and 50%
respectively for the LC and HC scenarios, although the optimality gap distribution shows values up
to 100%.

31

32

Remark 2 (lower bound). When minimizing the total congestion-related delay in a staggered
routing setting, the relative optimality gap is an uninformative indicator of solution quality due to
the nature of the objective function and the problem’s weak lower bounds.

In this context, Figure 10 reports the difference between the solutions found and the lower bound,
indicating that our matheuristic founds good solutions despite large optimality gaps. Specifically,
we observe an average distance between the upper (UB) and lower (LB) bound of 6 and 193 minutes
for the LC and HC scenarios. As the instances exhibit an average delay of 82 min and 577 min
respectively in an uncontrolled setting, the absolute distance between the upper and lower bound
appears rather small, indicating that our matheuristic effectively reduces congestion via staggering.

32

	Introduction
	Contribution
	Technical challenges and our approach.
	Related work
	Roadmap

	Problem setting
	Methodology
	Mixed integer linear program
	Determining arc-dependent time windows
	Calculating conflicting sets
	Multigraph representation
	Tightened Big-M constraints

	Matheuristic
	Constructing initial solutions
	Local search

	Online algorithm

	Design of Experiments
	Results
	Algorithmic performance
	Fine-grained analysis.
	Sensitivity analyses

	Conclusion
	Appendix Hardness Proof
	Appendix Table of Variables in the MILP
	Appendix Optimality Gaps

