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Abstract—As mobile networks embrace the 5G era, the interest
in adopting Reinforcement Learning (RL) algorithms to handle
challenges in ultra-low-latency and high throughput scenarios
increases. Simultaneously, the advent of packetized fronthaul
networks imposes demanding requirements that traditional con-
gestion control mechanisms cannot accomplish, highlighting the
potential of RL-based congestion control algorithms. Although it is
feasible to learn RL policies optimized for satisfying the stringent
fronthaul requirements, neural network models’ adoption in
real deployments still poses some challenges regarding real-time
inference and interpretability. This paper proposes a methodology
to deal with such challenges while maintaining the performance
and generalization capabilities provided by a baseline RL policy.
The method consists of (1) training a congestion control policy
specialized in fronthaul-like networks via reinforcement learning,
(2) collecting state-action experiences from the baseline, and (3)
performing deep symbolic regression on the collected dataset. The
proposed process overcomes the challenges related to inference-
time limitations through closed-form expressions that approximate
the baseline performance (link utilization, delay, and fairness), and
which can be directly implemented in any programming language.
Finally, we provide an analysis of the closed-form expressions’
inner workings.

Index Terms—Reinforcement learning, symbolic regression,
congestion control, real-time inference, model interpretability,
fronthaul networks.

I. INTRODUCTION

Emerging 5th Generation Mobile Networks (5G) sparked
the interest in more flexible, adaptable, and cost-efficient
network architectures. Playing a fundamental role in this
context, Centralized Radio Access Networks (C-RAN) [1]
offer flexibility and reduced deployment costs, splitting the
regular radio base stations into the Baseband Unit (BBU) and
the Remote Radio Unit (RRU). With the reduction of RRU
node complexity comes the increasing throughput demands
imposed on the fronthaul links, 50 times higher than backhaul
in some cases [2].

Transitioning from dedicated fiber links (which adopted
Common Public Radio Interface (CPRI) [3] protocol) towards
packetized network deployments (i.e., with statistical multi-
plexing) is one strategy to reach more cost-efficient fronthaul
solutions. However, shifting to a shared infrastructure intro-
duces additional challenges for the transport network: fronthaul
links may experience congestion due to, e.g., aggressive radio
schedulers. Traditional congestion control (CC) algorithms
often face limitations when dealing with low latency and
high throughput demands, leaving the challenge of addressing
congestion control in packetized fronthaul networks.

There has been much exploration regarding using machine
learning techniques for improvements in TCP CC algorithms,
with promising results [4]–[6]. More recently, the interest in-
creased regarding the adoption of deep Reinforcement Learning
(RL) algorithms that learn completely new CC policies from
scratch [7]–[12].

More specifically, the literature is much less abundant in the
scope of packetized fronthaul networks. In this context, RL
approaches have the additional challenge of dealing with very
high-speed (microsecond) control loops, which impose stringent
requirements on the inference time of Neural Network Neural
Network (NN) models. If the inference time is slower than
the minimum Round Trip Times (RTTs), RL agents cannot be
very responsive, which could deteriorate their performance [9].
Another usual concern regarding RL models is their black-box
nature. Their low interpretability hides from the practitioner
the decision-making process, posing questions on how general
the models are, and if they can be broadly trusted.

Overall, those are valid questions, but although RL models
usually perform very well in scenarios similar to those observed
during the training phase (in training distribution), the open
question remains on how to obtain the same guarantee in
scenarios unseen during the training phase [13].

This paper proposes a methodology to circumvent all the
challenges mentioned earlier. First, to deal with performance
issues of general CC, we train a RL baseline policy specialized
in fronthaul-like scenarios. Second, to deal with inference-
time and interpretability issues, we employ deep symbolic
regression to extract closed-form mathematical expressions
(symbolic policies) that approximate the RL baseline behavior.
The resulting symbolic policies are interpretable and at the
same time, easy to implement in any programming language,
which completely overcomes any issues with inference time.
The results show that such policies also closely follow the
overall performance of the RL baseline while matching its
generalization capabilities.

The paper is organized as follows. Section II presents
symbolic regression, RL, and congestion control background.
Section III describes the learning problem, training environment,
network simulation technical aspects, and the methodology
for learning the symbolic policies. Section IV describes the
experiments and results for different network configurations,
and Section V presents our concluding remarks.
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II. BACKGROUND

A. Reinforcement Learning

RL comprises a set of techniques that enable an agent to
learn how to optimally interact with an environment via trial-
and-error. The overall goal is to derive policies that map the
current observed state xt ∈ X ⊆ Rn of a system and produce
actions at ∈ A ⊆ R that maximize the expected cumulative
rewards r : X 7→ R received over time [14].

This paper focuses on RL algorithms suitable to environ-
ments where the action space is continuous. As a representative
example, we describe the Deep Deterministic Policy Gradient
(DDPG) [15], which employs an actor-critic architecture
combining both Q-learning and policy gradient techniques [14].

The actor is a deterministic policy µθ : X 7→ A that,
given a state, outputs actions in a continuous-space, while the
critic is a parameterized Q-value function Qϕ : X ×A 7→ R
that assess the quality of such actions in terms of expected
future rewards. DDPG follows an off-policy strategy which
relies on an experience buffer D = {(xt, at, xt+1, r(xt))i}ℓi=0,
containing action-induced state transitions [16].

To address DDPG shortcomings regarding the overestimation
of Q-values [17], the Twin-Delayed Deep Deterministic Policy
Gradient (TD3) algorithm was proposed [18], introducing: (1)
clipped double Q-Learning, (2) delayed policy updates (and
target networks), and (3) target policy smoothing. TD3 is the
baseline RL agent used for the experiments in this paper.

B. Deep symbolic regression

Given a dataset D = {Xi, yi}, where every Xi ∈ Rn and
labels yi ∈ R, symbolic regression is a supervised learning
procedure that aims at identifying a function f : Rn 7→ R that
minimizes the residual ||f(Xi) − yi||2 and whose form is a
short mathematical expression defined from a set of predefined
tokens. If the dataset D represents the states observed and the
actions taken by an RL policy, then function f is a white-
box approximation of such policy. This type of procedures
are usually referred to as behavioral cloning of the expert
policy [19]. However, depending on the properties of the dataset
and the accuracy of the regression process, the expert RL policy
and the resulting f may show very different capabilities [20].

In this paper, we employ the deep symbolic regression
method proposed by Petersen et al [21]1. The method employs
a neural network controller to represent a distribution over
mathematical expressions defined as a sequence of tokens
in the pre-order of the corresponding expression tree. As an
example, the sequence τ = [+, sin, x1, exp, x2] corresponds to
the expression f(x) = sin(x1) + exp(x2).

Expressions are sampled autoregressively from the probabil-
ity distribution learned by the controller, and they are evaluated
based on how well they match the dataset R(τ, {Xi, yi}). The
controller is then trained to maximize a RL objective based
on Eτ = [R(τ, {Xi, yi})]. As the training progresses, the
controller is able to generate expressions that better match
the dataset [22].

1https://github.com/brendenpetersen/deep-symbolic-optimization

III. METHODOLOGY

A. Network simulations

The network environment is a fronthaul simulation developed
on Network Simulator 3 (NS-3), with additional support to
OpenGym interfaces for RL implemented using ns3-ai [23].
The fronthaul scenario implements a UDP-based constant bit-
rate communication between pairs of senders (DUs) and their
receivers (RUs), which share a bottleneck link in the dumbbell
topology of Figure 1. Senders and receivers are connected to
switches through individual access links; and these switches
exchange packets via the shared communication link. To isolate
the dynamics we want to explore, we assume the access
links have negligible packet losses and sufficient capacity,
so that these impairments are only present in the shared link.
To perform the congestion control on top of the UDP-based
communication, agents are given control of the intersend time
between sent packets, implementing a rate-based congestion
control approach.

Figure 1: Fronthaul network and its NS3 counterpart.

Typically, congestion control algorithms are event-based, in
that they act upon the occurrence of a trigger event, for instance
the reception of an ACK or detection of a lost packet from a
timeout. The RL agent, on the other hand, was implemented
as a time-based algorithm. This allows the agent to observe
the impact an action for a while before a new action is taken.
Therefore, the observation time window is also a simulation
parameter that needs to be defined and influences the overall
performance of the agent [9], [24].

B. Learning Problem

The network simulations define a multi-agent scenario where
senders must cooperate in order to maximize link utilization
and fairness while minimizing the RTTs. Here, we assume
a decentralized learning problem where the agents cannot
communicate, and only observe their local performance metrics,
utilities and rewards. Finally, we also assume that all agents
follow the same learned policy.

The observation space is defined by four dimensions X ⊂ R4.
At any timestep t, we define xt

1 as the intersend time, xt
2 as

the average RTT (observed during the current time window),
x3 as the RTT ratio (x2 over the minimum observed RTT),
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and xt
4 as the packet loss ratio (packet losses over the number

of packets sent).
The action space is unidimensional A = [0.8, 1.5], and the

actions at ∈ A are employed to to update the intersend time
as follows xt+1

1 := xt
1/at.

The reward is a linear function of the number of acknowl-
edged packets (ackst), the average round trip time (RTTt),
and packet losses (lossest). We assume all measurements are
first normalized to the same scale by a function η. Since
the reward function is not employed during the evaluation,
the normalization function can rely on information that is
not accessible after training, e.g., the bounds for number of
acknowledged packets (A), RTTs (R), and packet losses (L).

rt = η(ackst, A)− η(RTTt, R)− η(lossest, L) (1)

Equation (1) aims at inducing the trained policies to increase
the transmission rate until the observed RTTs increase or packet
losses occur. Overall, an optimal policy would allow a sender
to discover the highest fair transmission rate that maintains
the RTTs close to the minimum. The above formulation
models congestion control as a decentralized decision-making
problem. It is a harsh environment for learning, due to partial
observability and the inherent non-stationarity of the network
state, but it makes the scenario close to real-world deployments.

C. Deep symbolic regression

Given an expert TD3 policy µθ : X 7→ A, the first step of
learning a closed-form congestion control policy is to collect a
dataset of experiences from µθ in the target environment. Such
experiences are then stored as state-action tuples in a dataset
D = {(xi, ai)}Ni=1, where xi ∈ X are observations from the
current state and ai ∈ A are the respective actions proposed
by the expert policy, ai := µθ(xi).

Such datasets must contain a representative set of experiences.
In congestion control tasks, that means samples representing
scenarios where the transmission rate should be increased,
stabilized, and decreased. To collect samples of such classes,
we employ a simple ϵ-greedy exploration strategy, with ϵ = 0.5,
in which TD3 actions are chosen half of the time, and random
actions chosen otherwise. This simple exploration strategy
eventually leads the simulations to states of high RTT values
and packet losses.

From a data set D, and a set of predefined tokens τ , and a
maximum length ℓ, a symbolic regression task can be specified
whose goal is to learn a closed-form expression capable of
approximating the expert decisions (see Figure 2).

Figure 2: The symbolic regression setup consists of two steps
(1) data collection and (2) deep symbolic regression.

The closed-form expressions (or symbolic policies) that
result from this process, will achieve different performances
depending on their ability to imitate the expert actions in both
in-training and out-training distributions.

IV. EXPERIMENTS AND RESULTS

This section compares the learned closed-form congestion
control policies to an RL baseline. We assess performance
regarding link utilization, packet delay, packet losses, and
fairness. We assess generalization capacity by evaluating
network scenarios not included in the training datasets.

A. Reinforcement learning baseline

The training environment for the TD3 baseline consists of a
set of different network scenarios, defined by their bottleneck
capacity and the number of sender-receiver pairs. We employ
domain randomization over the bottleneck capacity and the
number of sender-receiver pairs [25], according to Table I.

Table I: Network simulation training environment.

Parameter Domain
Bottleneck capacity 1Mbps ≤ C ≤ 2Gbps
Number of senders p ∈ {1, 2}
Access links 20Gbps (overdimensioned)
Switch queue size 100 packets
Simulation duration 3s
Timestep 1ms

The hyperparameters for the TD3 algorithm followed those
employed by [26]. The actor and critic neural networks
architectures as 512× 16× 512, actor learning-rate 1× 10−5,
critic learning-rate 5× 10−5, multi-step learning with n = 5,
and γ = 0.999 (see the reference for more details on this
training setup).

B. Closed-form congestion control policies

The symbolic regression method described in III-C pro-
duces closed-form expressions that approximate the output
label described in the datasets. To stress the generalization
capabilities of such policies, we utilize a minimal set of network
scenarios for data collection, with a single bottleneck capacity
of C = 500Mbps.

Following this setup, we collected three different datasets
using different numbers of sender-receiver pairs p, here denoted
as Dp=1, Dp=2, and Dp=1,2 = Dp=1 ∪ Dp=2. Each dataset
contains experiences from 5 seconds NS3 simulations.

Each dataset is input to a deep symbolic regression method,
which aims to produce closed-form expressions of maximum
length ℓ = 32 tokens. The set of available tokens is limited to
τ = {+,−,×,÷, cos}. After a fixed amount of time, all runs
were stopped, and the best-ranked expression was chosen for
the evaluation experiments, which we describe below.



πDp=1,2 = cos

x2 +
2x2

x1

x3
3+
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+ x2

 (SP1)

πDp=1 = − x3

x3 +

x1x3
x2
2

+x3

x2x3

+
cos

(
x2

x1

)
x2
3

(SP2)

πDp=2 = cos

(
x2x3 (x2x3 + x2 + 2x3 + x4)

x1 + x2
2x3x4 + x2x2

3

)
(SP3)

For reference, x1, x2, x3, x4 stands for inter-send time, RTT,
RTT ratio, and packet loss ratio. It is worth noticing that SP1
and SP2 have ignored the information about packet losses, i.e.,
x4. This is an indication that to approximate the actions in the
dataset, such variable was not essential.

Another intriguing characteristic is the presence of tokens
such as cos, whose relevance was identified in preliminary
experiments. It introduces a non-linearity that showed benefits
in most of the evaluated regression settings.

C. Performance Evaluation

Here we compare the performances of TD3 and the symbolic
policies SP1, SP2, and SP3. We design a two-phase set of
experiments, where Phase I identifies the most promising
symbolic policy in short simulations, and Phase II performs
more expensive simulations against the TD3 baseline (Table II).

Table II: Evaluation settings.

Parameter Phase I (1s) Phase II (20s)
C ∈ (Mbps) 250, 500, 1000 250, 500, 1000
p ∈ {1, 5, 10, 15, 20} {1, 5, 10, . . . , 35, 40}

The different bottleneck capacities induce network scenarios
with different RTT ranges, while the number of senders impacts
the network dynamics. An optimal agent would maintain high
link utilization (close to 100% of the bottleneck capacity),
average RTTs close to the minimum, and zero packet losses
while guaranteeing fair bandwidth shares for each flow. It is also
desirable that the trained policies generalize well to a superset
of the scenarios seen during training. Therefore, the results
here contain simulations with as many as 40 sender-receiver
pairs, much more than those observed during training.

To get overall performance picture, we normalized and
aggregated all the measurements. Additionally, since there
were never packet losses, we only include plots for RTT, Jain
fairness index and link utilization.

Figure 3a summarizes the results of Phase I. The results
illustrate performance in two scenarios, those close to the
training distribution and those far from it. In the first scenario,
we highlight the case of p = 1, that belongs to the training
distribution of SP1 and SP2 but not for SP3, where SP3 reached
the worst results overall. Conversely, in scenarios with p ≥ 5
that are out of the training distribution for all symbolic policies,
we observe a more stable behavior.

Overall, SP1 and SP3 performed better than SP2 in terms
of RTT, which relates to the fact that they are also more

conservative regarding link utilization. We choose SP1 to go
for Phase II.

(a) Phase I.

(b) Phase II.

Figure 3: Performance results of Phases I and II.

Figure 3b summarize the Phase II results of SP1 against
TD3. Regarding RTT and link utilization, we observe an
interesting pattern in which SP1 performance deteriorates
slower than TD3 as p increases. This is an impressive result
that provides evidence for high generalization capacity of the
symbolic policies. Regarding the Jain fairness index, all the
policies variances increased very similarly with p. Regarding



Figure 4: Contours of simplified SP1 for C = 1000Mbps.

link utilization, we again see a slower deterioration of SP1
performance when compared to TD3.

D. Analysis and visualization

We turn now to a brief investigation on the symbolic policy’s
ability to cope with different scenarios and network conditions.
Due to space constraints, we focus only on SP1 and a few
examples that illustrate our main points. Furthermore, we
work around the challenges introduced by a four-dimensional
observation space with convenient slices, as will be explained
in the next paragraphs.

In line with previous work on visualizing such models [26],
Figure 4 presents contours of the output of SP1, remapped to
action space A. The axes are “Intersend ratio” and “RTT ratio”.
Indeed, it is possible to rewrite SP1 in terms of a minimum
RTT c (primarily defined by link speeds in the topology):

f(iratio, rttratio) = n(πDp=1,2(iratio · c, rttratio · c, rttratio)), (2)

where x1 = iratio · c is the observed packet intersend time and
x2 = rttratio · c is the observed RTT, in terms of x3 = rttratio,
and n(·) simply converts the [-1,1] range to A.

With Eq. (2), we can interpret the horizontal axis of Figure 4
as the agent’s offered load – normalized to the minimum RTT
of the network –, where a value of 0.5 would signify sending
2 packets of data per round-trip time, and a value of 4.0 would
denote a much less “aggressive” sender that issues a single
packet of data every four round-trip times. This can be easily
translated to a bit-rate, e.g. in Mbps, if the data packets are
of the same size. In the vertical axis, one can explore several
network conditions via the observed RTT ratio, with a value of
1.0 signifying empty queues in the forward and reverse paths
and a value of 2.0 denoting double the minimum RTT.

We draw attention to the 1.0 contour line in Figure 4, which
indicates that the offered load should not be changed. Above
that, the darker regions on higher RTT ratio values have outputs
that increase the intersend time, lowering the offered load;
whereas the brighter yellow regions on higher intersend ratios
indicate that agents with presumably small offered loads can
increase them more dramatically than agents whose packets
leave more frequently. We note that the heatmap for a scenario
with a 100-Mbps bottleneck is very similar, indicating that this
“fairness” behavior is also present on more capacity-limited
scenarios, though we elide that figure due to space constraints.

Figure 5: Span of SP1 policy values over the cosine domain.

It is not immediately clear what benefits the introduction of
a cosine function brings to the policy’s performance. With this
in mind, we investigate SP1’s output with respect to several
intersend ratio values, with slices across different RTT ratios
and bottleneck link speeds (as defined by a minimum RTT).

This is depicted in Figure 5, where the simplified SP1 is
plotted against the [0,2π] domain of the cosine function. In this
figure, the intersend ratio varies in the [0.2,10.0] range, and we
artificially separate the dots from each slice vertically, for ease
of understanding. One can see that, for the rttratio = 1.0 slice,
i.e. no queueing in the network, most of the actions are in the
“Increase load” region though, understandably, this behavior
becomes less prominent as the bottleneck link capacity gets
smaller. In general, this figure illustrates that the policy adapts
its output for different scenarios and conditions by evaluating
different regions of its underlying non-linear functions.

As an extension of Figure 5, we plot below the new intersend
ratio values an agent would employ after evaluating the SP1
policy – unlike the previous figures, the no-change region
in Figure 6 is the dashed x = y line. Once more, we draw
attention to the similarity in the outputs for scenarios with very
different capacities, and the general trend of avoiding excessive
load in extremely limited scenarios.

V. CONCLUSIONS

Recent results have shown that specialized Reinforcement
Learning (RL) congestion control policies are effective alterna-
tives in cases where traditional algorithms do not perform well.
However, the deployment of NN models comes with challenges
regarding performance, inference time, and generalization
guarantees. In the context of ultra-low-latency packetized
fronthaul networks, for example, a low inference time is a
hard requirement that might restrict the applicability of certain
policies in the real world.



Figure 6: New intersend ratio for several bottleneck scenarios.

This paper proposed and evaluated the use of deep symbolic
regression for overcoming inference time challenges while
enabling model interpretability and maintaining reasonable
generalization capabilities. We trained a fronthaul-specific
congestion control policy via RL, and then employed deep
symbolic regression on small state-action datasets collected
from the RL baseline experiences. This process produced
closed-form symbolic policies whose output approximates the
actions output by TD3.

The results confirmed that the resulting closed-form policies
could maintain a performance very similar to that of RL
baseline both in- and out-distribution of training data, which
means significant generalization capabilities. Additionally they
resolve any eventual issue with inference time since they can
be directly implemented in any programming language.
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