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Automated Program Repair (APR) attempts to patch software bugs and reduce manual debugging efforts. Very
recently, with the advances in Large Language Models (LLMs), a rapidly increasing number of APR techniques
have been proposed, significantly facilitating software development and maintenance and demonstrating
remarkable performance. However, due to ongoing explorations in the LLM-based APR field, it is challenging
for researchers to understand the current achievements, challenges, and potential opportunities. This work
provides the first systematic literature review to summarize the applications of LLMs in APR between 2020 and
2024. We analyze 127 relevant papers from LLMs, APR and their integration perspectives. First, we categorize
existing popular LLMs that are applied to support APR and outline three types of utilization strategies for
their deployment. Besides, we detail some specific repair scenarios that benefit from LLMs, e.g., semantic
bugs and security vulnerabilities. Furthermore, we discuss several critical aspects of integrating LLMs into
APR research, e.g., input forms and open science. Finally, we highlight a set of challenges remaining to be
investigated and the potential guidelines for future research. Overall, our paper provides a systematic overview
of the research landscape to the APR community, helping researchers gain a comprehensive understanding
of achievements and promote future research. Our artifacts are publicly available at the GitHub repository:
https://github.com/iSEngLab/AwesomeLLM4APR.

CCS Concepts: • Software and its engineering→ Software testing and debugging.

Additional Key Words and Phrases: Large Language Model, Automated Program Repair, LLM4APR

1 INTRODUCTION
Software bugs are recognized as inevitable and destructive, posing safety issues for users worldwide
and costing billions of dollars in financial losses annually [11, 158]. It is non-trivial and time-
consuming for developers to fix detected software bugs manually [13]. Automated Program
Repair (APR) plays a crucial role in software development and maintenance with the aim of fixing
software bugs without human intervention. Following the foundational work GenProg [80, 157]
in 2009, APR has been extensively investigated over the past decades [43, 106], and researchers
have proposed a variety of APR techniques, including heuristic-based [64, 80, 99, 180], constraint-
based [31, 100, 171, 173], and pattern-based [76, 91, 92] ones. Recently, inspired by the advances of
Deep Learning (DL), an increasing number of learning-based APR techniques have been proposed
that utilize neural network models to automatically learn bug-fixing patterns [18, 66, 84, 85, 96, 144,
176–178, 203, 204]. Thanks to the powerful ability of DL models to learn hidden repair patterns from
massive code corpora, learning-based APR has achieved remarkable performance in the last couple
of years [185], attracting considerable attention from both academia and industry [69, 70, 73].

Authors’ addresses: Quanjun Zhang, quanjun.zhang@smail.nju.edu.cn; Chunrong Fang, fangchunrong@nju.edu.cn; Yang
Xie, serialxy@outlook.com; Yuxiang Ma, 502022320009@smail.nju.edu.cn, State Key Laboratory for Novel Software Technol-
ogy, Nanjing University, Nanjing, China, 210093; Weisong Sun, weisong.sun@ntu.edu.sg, School of Computer Science and
Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798; Yun Yang, yyang@swin.edu.au,
Department of Computing Technologies, Swinburne University of Technology, Melbourne, Australia, 3122; Zhenyu Chen,
zychen@nju.edu.cn, State Key Laboratory for Novel Software Technology, Nanjing University, Nanjing, China, 210093.

ar
X

iv
:2

40
5.

01
46

6v
2 

 [
cs

.S
E

] 
 1

2 
M

ay
 2

02
4

HTTPS://ORCID.ORG/0000-0002-2495-3805
HTTPS://ORCID.ORG/0000-0002-9930-7111
HTTPS://ORCID.ORG/0009-0000-8032-8468
HTTPS://ORCID.ORG/0009-0007-6841-8410
HTTPS://ORCID.ORG/0000-0001-9236-8264
HTTPS://ORCID.ORG/0000-0002-7868-5471
HTTPS://ORCID.ORG/0000-0002-9592-7022
https://github.com/iSEngLab/AwesomeLLM4APR
https://orcid.org/0000-0002-2495-3805
https://orcid.org/0000-0002-9930-7111
https://orcid.org/0009-0000-8032-8468
https://orcid.org/0009-0000-8032-8468
https://orcid.org/0009-0007-6841-8410
https://orcid.org/0000-0001-9236-8264
https://orcid.org/0000-0002-7868-5471
https://orcid.org/0000-0002-9592-7022


1:2 Quanjun Zhang, Chunrong Fang, Yang Xie, Yuxiang Ma, Weisong Sun, Yun Yang, and Zhenyu Chen

Very recently, Large Language Models (LLMs) have been successfully applied to a broad
range of source code-related tasks [149, 187, 195], such as code generation [82, 150, 152, 205], code
summarization [134, 135, 148], and test generation [4, 24, 57, 109, 129]. Benefiting from massive
model parameters and vast training data, LLMs have demonstrated impressive performance and
fundamentally revolutionized the research paradigm in the Software Engineering (SE) commu-
nity. In the domain of APR, beginning with pioneering studies, e.g., TFix [7], CIRCLE [179] and
AlphaRepair [165], the community has witnessed an explosion of repair studies utilizing LLMs,
already achieving considerable advantages and further indicating significant potential for future
research. However, the integration of LLMs within APR is a considerably complex undertaking,
making it difficult for interested researchers to understand existing work. For example, existing
LLM-based APR studies encompass different research perspectives (e.g., empirical [164], techni-
cal [165] and benchmark studies [190]), repair phases (e.g., patch generation [189] and correctness
assessment [186]), repair scenarios (e.g., static warnings [69] and syntax errors [70]), mode archi-
tectures (e.g., encoder-only [188] and decoder-only [101]) and model utilization paradigms (e.g.,
fine-tuning [179], few-shot [109] and zero-shot [189]). Despite ongoing explorations in the field,
the literature currently lacks a detailed and systematic review of the applications of LLMs in APR,
making it challenging for researchers to understand the multitudinous design choices of existing
work and conduct follow-up research.

This Paper. To bridge this gap, our work provides the first systematic literature review on the
deployment of rapidly emerging LLM-based APR studies. Based on this, the community can gain a
comprehensive understanding of the strengths, weaknesses, and gaps in existing LLM-based APR
techniques.We discuss what LLMs are widely adopted in state-of-the-art APR research and how they
are integrated into the repair workflow. We collect 127 relevant papers and perform a systematic
analysis from LLMs, APR, and integration perspectives. From our analysis, we reveal the current
challenges and point out possible future directions for LLM-based APR research. Overall, this work
offers a thorough overview of the ongoing progress within the LLM-based APR community, aiding
researchers in navigating this burgeoning field and advancing toward innovative practices.

Contributions. To sum up, this work makes the following contributions:

• Survey Methodology.We conduct the first systematic literature review with 127 high-quality
APR papers that utilize recent LLMs to address repair challenges from 2020 to April 2024.

• Trend Analysis.Weperform a detailed analysis of selected APR studies in terms of publication
trends, distribution of publication venues, and types of contributions.

• LLMs Perspective. We summarize 46 LLMs utilized to support program repair and provide a
summary of the typical usage and trends of different LLM categories in the APR domain.

• APR Perspective. We describe common repair scenarios that LLMs are applied to, encom-
passing 18 bug types, such as security vulnerabilities and programming problems.

• Integration Perspective.We discuss some key factors, including datasets, input representa-
tions and open science, that impact the performance of integrating LLMs into APR.

• Challenges and Opportunities. We summarize some crucial challenges of applying LLMs in
the APR field, and pinpoint some potential guidelines for future LLM-based APR research.

Paper Organization. Section 2 introduces some basic concepts about APR and LLMs. Then,
according to the contributions listed above, Section 3 lists our research questions (RQs) and the
research methodology to collect papers related to our work. Section 4 investigates the trend and
distribution of LLM-based APR studies. Section 5 summarizes LLMs that are used by existing APR
studies. Section 6 illustrates the primary repair scenarios that LLMs are applied to and provides
a brief description of each work. Section 7 discusses some crucial factors during the integration
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of LLMs and APR, including datasets, input representation, patch correctness, and open science.
Section 8 discusses some challenges and practical guidelines. Section 9 draws the conclusions.

2 BACKGROUND AND RELATEDWORK
2.1 Automated Program Repair
2.1.1 Problem Description. APR, one of the most challenging activities in the SE field, aims to fix
software bugs without human intervention and is regarded as a fundamental aspect of software
automation. For example, in the software development and maintenance process, developers usually
attempt to implement a designed functionality according to requirement specifications and write
test suites to validate its correctness. If all test cases pass, the functionality is deemed correctly
implemented; otherwise, developers must analyze the symptoms of failures and make necessary
modifications to the buggy code snippets to ensure all test cases pass. Formally, given a buggy
program 𝑃 and its corresponding specification 𝑆 that 𝑃 fails to satisfy, APR is defined to find a
minimal transformation 𝑃 ′ of 𝑃 that satisfies 𝑆 . In practice, test cases are usually utilized as the
specification, and in such a typical test-driven repair scenario, APR aims to find a minimal program
variant that passes the available test suite, which contains at least one test case making the original
buggy program 𝑃 does not satisfy.

Buggy
Program

Test Suite
Fault

Localization
Patch

Generation
Patch

Validation

Correct
Program

Candidate
Patch

Suspicious
Elements

Fig. 1. The basic pipeline of automated program repair.

2.1.2 Repair Workflow. Fig. 1 illustrates the typical generate-and-validate workflow of APR, which
is usually composed of three parts. Specifically, for a detected bug, (1) the fault localization
phase identifies suspicious code elements that need to be fixed based on off-the-shelf localization
techniques [160]; (2) the patch generation phase generates program variants (i.e., candidate
patches) via transformation rules [185]; (3) the patch validation phase utilizes available test
suites as the oracle to identify correct patches by dynamic execution [186]. It is important to note
that a candidate patch that successfully passes the available test suite is termed a plausible patch.
However, if such a plausible patch fails to generalize to additional test cases, it is considered an
overfitting patch. Conversely, a plausible patch that remains effective across broader test cases is
recognized as a correct patch, one that is semantically in alignment with patches written manually
by developers.

2.1.3 Repair Techniques. The literature has introduced a multitude of APR techniques to generate
correct patches from various perspectives. Such APR techniques can be categorized into four
categories: (1) heuristic-based APR utilizes genetic programming to explore the search space of
the correct patch, such as GenProg [80], Astor [99], ARJA [180], and SimFix [64]; (2) constraint-
based APR usually focuses on the condition synthesis problem by treating program repair as
a constraint-solving task, such as Nopol [173], Cardumen [100], ACS [171], and Dynamoth [31];
(3) pattern-based APR utilizes pre-defined repair templates that are usually hand-crafted by
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experts to transform buggy code snippets into correct ones, such as TBar [92], FixMiner [76] and
Avatar [91]; (4) learning-based APR treats patch generation as a neural machine translation
task with the advance of DL models, such as Tufano et al. [144], SequenceR [18], CoCoNut [96],
DLFix [84], CURE [66], Recoder [203], DEAR [85], SelfAPR [176], RewardAPR [177], and Tare [204].

Among the four types of APR techniques, learning-based APR has achieved remarkable perfor-
mance by learning hidden bug-fixing patterns automatically from extensive source code databases [185].
Recently, inspired by the success of LLMs in NLP and SE tasks, researchers have increasingly been
utilizing advanced LLMs to address software bugs [164, 165, 188, 189]. Compared with learning-
based APR, such LLM-based APR techniques have demonstrated significantly better performance
and have received growing attention in the community, which is the focus of our work.

2.2 Large Language Models
2.2.1 Preliminaries. LLMs refer to advanced Artificial Intelligence (AI) models that undergo ex-
tensive pre-training on large text corpora to enhance their capabilities of natural language under-
standing, generation, and interpretation in a human-like manner [197]. Typically, LLMs feature an
enormous number of parameters, far exceeding the scale of traditional DL models, thus enabling
them to assist in a wide range of tasks, such as question answering and machine translation.
In 1986, Rumelhart et al. [127] introduce Recurrent Neural Networks (RNNs), opening up the

possibility of processing sequential data by maintaining a memory of previous inputs in their
internal state. In 1997, Hochreiter et al. [53] introduce an extension of RNNs, namely Long Short-
Term Memory Networks (LSTMs), to address the long-term dependency problem by a cell state and
three types of gates. In 2017, Vaswani et al. [145] introduce Transformers to weigh the importance
of different parts of the input data with the self-attention mechanism, laying the foundation of
LLMs. The evolution from RNNs to LSTMs and then to Transformers represents a trajectory
towards more efficiently handling longer sequences and more complex patterns in data, especially
for tasks involving natural language processing. Particularly, Transformers, with their ability to
manage long-range dependencies more effectively and their suitability for parallel computation,
have become the dominant model architecture in many areas of AI research and application.
LLMs are typically constructed on top of the Transformer architecture mentioned above, em-

ploying a pre-training-and-fine-tuning paradigm. Specifically, these models undergo pre-training to
acquire generic language representations through self-supervised learning on extensive unlabeled
data. Subsequently, they are adapted to various downstream tasks through supervised fine-tuning
using a limited amount of labeled data. Thanks to the advanced model architecture and training par-
adigm, LLMs have led to breakthroughs in various NLP fields, notably with models like BERT [23],
GPT [120], T5 [122], PaLM [20], LLaMA [141], LLaMA2 [142], LLaMA3 [103]. Recently, research
efforts have been rapidly growing in the domain of source code, leading to significant advance-
ments with models like CodeBERT [35], CodeGPT [95], CodeT5 [154], InCoder [37], CodeGen [110],
CodeLlama [125], StarCoder [83]) and StarCoder2 [94].

2.2.2 Model Categories. The literature has seen a variety of LLMs supporting NLP and SE re-
search, which can be categorized into three main categories based on their model architectures. (1)
Encoder-only LLMs, such as CodeBERT [35], GraphCodeBERT [46], train the encoder part of the
Transformer to generate a fixed-dimensional bidirectional representation with Masked Language
Modeling (MLM) and Next Sentence Prediction (NSP). MLM aims to predict the original tokens
that have been randomly masked out, and NSP predicts whether two given sentences actually
follow each other in a text. (2) Decoder-only LLMs, such as CodeGPT [95], train the decoder
part of the Transformer to support auto-regressive tasks with Causal Language Modeling (CLM),
which aims to predict new tokens in a sequence based on previous tokens. (3) Encoder-decoder
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LLMs, such as CodeT5 [154], train both encoder and decoder parts of the Transformer to support
sequence-to-sequence generation tasks with denoising objectives. We will summarize existing
LLMs and how they are leveraged to support program repair in Section 5.1.

2.3 Related Work
In this survey, we systematically collect, summarize, and analyze APR studies empowered with
advanced LLMs. Although our primary focus is the integration of LLMs with APR, given its growing
prominence, there exists some related studies that explore similar aspects of either LLMs or APR.
We clarify the fundamental differences between our work and prior work below.

The first group of related surveys attempts to analyze the applications of LLM more generally
in SE. Zhang et al. [187] provide a detailed summarization of the LLM-based SE research from
two intuitive perspectives: LLMs and their applications in SE. They introduce representative work
across 30 LLMs, 15 pre-training tasks, 16 downstream tasks, and 43 specific code-related tasks.
Besides, Wang et al. [149] provide a review of LLMs in software testing; Fan et al. [32] discuss the
achievements and challenges of LLMs in SE; Hou et al. [55] conduct a systematic literature review
on LLM4SE. However, these works target the whole software engineering/testing workflow rather
than our specific program repair task. They only provide a bird’s-eye view of a limited number of
LLM-based APR papers, while our work provides an in-depth analysis from various perspectives.
Their work indicates that program repair is the most popular scenario in which LLMs are applied
within software engineering. Given the complexity and significance of program repair, we are
motivated to conduct a more in-depth review of APR achievements involving LLMs.
The second group of related surveys attempts to review the achievements of APR. Gazzola et

al. [43] present a survey to organize repair studies, and Monperrus et al. [106] present a bibliography
of behavioral and state repair studies. Both works collect publications up to 2017, hence there is no
overlap with our research as the first LLM-based APR work is published in 2020. The most highly
related work to this paper is Zhang et al. [185], which provides a systematic survey to summarize
the state-of-the-art in the learning-based APR community. However, they mainly focus on DL
models and devote merely a single section to discussing LLM-based APR studies (only five papers),
failing to include the surge of works that emerge during the last two years. In contrast, our work
solely focuses on the technology of LLM applications in the APR community until April 2024,
involving the trend of utilized LLMs, optimization techniques, repair scenarios, and input forms.

3 SURVEY METHODOLOGY
In this section, guided by the principles outlined by Petersen et al. [118] and Kitchenham et al. [74],
we present details of our systematic literature review methodology.

3.1 ResearchQuestions
We attempt to provide a comprehensive overview of recent LLMs’ applications to APR by summa-
rizing the relevant studies and further providing guidelines on the follow-up research. To achieve
this, this systematic literature review answers the following Research Questions (RQs):

• RQ1: What is the trend of APR studies that utilize LLMs?
• RQ2: Which popular LLMs have been applied to support APR?
• RQ3: What repair scenarios have been facilitated by LLMs?
• RQ4: What key factors contribute to the integration of LLMs for APR?
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3.2 Search Strategy
We search and identify primary papers following the “Quasi-Gold Standard” (QGS) [181] method,
which is a common practice to construct a set of known studies for refining search strings by
combining manual and automated search processes. We first conduct a manual search to identify a
set of relevant studies and derive a search string from them, as detailed in Section 3.3. We then utilize
the search string to perform an automated search and employ a series of relatively strict filtering
steps to obtain the most relevant studies, as detailed in Section 3.4. We finally use a snowballing
search to supplement the search results further, as detailed in Section 3.5. Given the abundance of
relevant papers from different research communities, such as SE and AI, this search strategy allows
us to capture the most pertinent papers while achieving greater efficiency than a purely manual
search with a relatively rigorous process. Particularly, we undertake the following five phases to
search for and identify relevant studies.

(1) Search Sources. This phase selects high-quality publication venues for the initial manual
search and well-known digital databases for the subsequent automated search.

(2) QGS Establishment. This phase inspects all papers identified in the manual search and
filters them by inclusion/exclusion criteria.

(3) Search Items. This phase definins search items with domain knowledge and established
QGS.

(4) Paper Collection and Selection. This phase conducts an automated search using the
above search items and filters the collected papers by inclusion/exclusion criteria.

(5) Snowballing Search. This phase conducts a snowballing search to complement the final
search results.

3.3 Search Items
To perform the manual search and establish QGS, we select four top-tier SE conferences (ICSE,
ESEC/FSE, ASE, ISSTA) and two journals (TOSEM and TSE) and search for relevant papers involving
both program repair and LLMs. We manually inspect and identify 25 papers from 2020 to 2024 that
meet our criteria, which then form the basis for constructing QGS. Following prior surveys [151,
174, 185], we divide the search items used for searching papers automatically into two groups: (1)
an APR-related group containing some commonly-used keywords related to program repair; and
(2) an LLM-related group containing some popular keywords related to large language models or
pre-trained models. Besides, as the APR community benefits from well-maintained forums and
real-time updated works, we further refine our search items by concluding some frequent keywords
from three sources: a community-driven website1, a living review of APR by Monperrus [107] and
the most recent learning-based APR survey [185]. Finally, we identify a search string that includes
several LLM-related and APR-related keywords frequently appearing in program repair studies
that use LLMs. The complete set of search keywords is as follows:

(“program repair” OR “software repair” OR “automatic repair” OR “code repair” OR “bug repair”
OR “bug fix” OR “code fix” OR “automatic fix” OR “patch generation” OR “patch correctness”
OR “patch validation” OR “fix generation” OR “code transformation” OR “code edit” OR “fix
error”) AND (“LLM(s)” OR “Large Language Model(s)” OR “Pre-trained” OR “Pretrained” OR
“Pre-training” OR “Pretraining” OR “PLM(s)” OR “(Code)BERT” OR “(Code)T5” OR “(Code)GPT”
OR “Codex” OR “ChatGPT” OR “(Code)Llama” OR “GPT-*” OR “neural” OR “machine” OR “deep”
OR “learning” OR “transformer/transformers” OR “model/models” OR “transfer” OR “supervised”)

1http://program-repair.org/bibliography.html

http://program-repair.org/bibliography.html
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Table 1. Inclusion criteria and exclusion criteria.

Inclusion criteria

① The paper utilizes an LLM in its framework.
② The paper addresses the task of program repair.
③ The paper is accessible with full text.
④ The paper is only written in English.

Exclusion criteria

❶ The paper is fewer than seven pages.
❷ The paper is an old conference version extended to journals with the same authors.
❸ The paper uses repair methods to contribute to LLMs.
❹ The paper is published as an SLR, review, or survey only mentioning the development of LLMs and APR.
❺ The paper is published in a workshop or a doctoral symposium.
❻ The paper is a grey publication, e.g., a technical report or thesis.
❼ The paper falls into the category of short papers, tool demonstrations, and editorials.

Table 2. Checklist of Quality Assessment Criteria (QAC) for LLM-based APR studies.

ID Quality Assessment Criteria

QAC1 Is the LLM adopted as the research subject rather than only as a baseline method?
QAC2 Is the impact of the paper on the APR community clearly stated?
QAC3 Is the contribution of the paper clearly stated?
QAC4 Is the paper published in a high-repute venue?
QAC5 Is the relevant artifact made open source, e.g., datasets?
QAC6 Is there a clear motivation for the paper?
QAC7 Is the implementation of the proposed approach described clearly?
QAC8 Is the experimental setup described in detail, e.g., hyper-parameters and environments?
QAC9 Are the findings clearly supported by experimental results?
QAC10 Are the key contributions and limitations of the study discussed?

It is noteworthy that we also include the list of keywords related to machine/deep learning from
Zhang et al. [185], so as to avoid missing any papers related to our work as much as possible.

3.4 Study Collection and Selection
To perform the automated search, we collect potentially relevant papers by primarily searching
the Google Scholar repository, ACM Digital Library, and IEEE Explorer Digital Library at the end
of April 2024. Once we gather the studies based on our automated search strategy, we proceed
with a filtering and deduplication phase to eliminate papers that do not align with the study
objectives. First, we aim to filter out papers published before 2017, considering that the Transformer
architecture [145], which forms the foundation for LLMs, is introduced in 2017. Second, we remove
duplicate papers, as the same paper might be indexed by multiple databases. Thirdly, we exclude
papers with fewer than seven pages [185] (Exclusion criterion ❶), resulting in a total of 283 papers.
Finally, we manually inspect the titles, abstracts, keywords, and venues of the papers to include
relevant papers, according to our inclusion/exclusion criteria in Table 1, reducing the number of
papers to 241. It is worth noting that, about Exclusion criterion❺, we took into account International
Automated Program Repair Workshop, considering its relevance to the APR field and high-quality
publications. Finally, we perform a full-text inspection to scrutinize the remaining papers and
decide whether they are relevant and high-quality to the LLM-based APR field. Following Wang et
al. [151], we answer ten questions to assess the relevance and quality of included papers, shown
in Table 2. Regarding QAC4, given the nascent nature of this field and the fact that many works,
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Fig. 2. Publication trends of LLM-based APR studies.

particularly those involving recently released LLMs, have not completed the peer review process,
we consider papers from arXiv and select high-quality papers with the quality assessment process,
to make our survey more comprehensive and up-to-date. We obtain 110 papers that are related to
our work.

3.5 Snowballing Search
To ensure maximal comprehensiveness of the collected papers, we additionally employ the snow-
balling search [155] to manually incorporate any potential papers that are overlooked during our
previous search process. The snowballing search is a common practice to examine the references
(i.e., backward snowballing) or citations (i.e., forward snowballing) within a list of papers to dis-
cover additional relevant works. Specifically, we scrutinize every reference and citation within
the collected papers to assess their relevance to our research objectives. This meticulous manual
analysis of all potential papers through the entire study selection process ultimately leads to the
inclusion of 127 papers in our survey.

4 RQ1: WHAT IS THE TREND OF APR STUDIES THAT UTILIZE LLMS?
4.1 What are the trends of publication over time?
We analyze the publication trends of APR studies empowered with LLMs between 2020 and
April 2024. Although the Transformer architecture [145] has been proposed in 2017, and the
groundbreaking LLM, BERT [23], has been introduced in 2018, we do not find any studies using
LLMs to fix bugs before 2020. Fig. 2(a) illustrates the number of relevant studies, and we find
that the number of publications from 2020 to 2023 shows a significant increase, with the number
reaching 65 papers in 2023. It should be noted that we collect papers as of April 2024; thus the
number of relevant studies (i.e., 42 papers) in 2024 cannot reveal the overall trend of LLM-based
APR in 2024. We fit the number of publications as a power function to predict the publication
trend in the last four years, and find that the slope of the curve fitting the distribution increases
substantially between 2020 and 2023. Particularly, the coefficient of determination attains the peak
value (𝑅2 = 0.973), estimating that there may be over 90 relevant publications using various LLMs
to solve bug-fixing during 2024. We also calculate the cumulative number of publications as shown
in Fig. 2(b). We perform the same power function fit (𝑅2 = 0.985) and estimate more than 140 papers
by the end of 2024, which indicates that the number of relevant studies using LLMs in APR intends
to experience a strong rise in the future. Overall, utilizing LLMs to address bug-fixing has become a
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prevalent trend since 2020, and huge numbers of studies will adopt LLMs to address the challenges
of APR in the future.

Table 3. Publication venues with LLM-based APR studies.

Acronym Venues Papers Proportion

arXiv N.A. 55 43.31%
ICSE International Conference on Software Engineering 13 10.24%
ESEC/FSE European Software Engineering Conference and International Symposium on Foundations of Software Engineering 9 7.09%
APR International Automated Program Repair Workshop 6 4.72%
ICLR International Conference on earning Representations 5 3.94%
ASE International Conference on Automated Software Engineering 6 4.72%
TOSEM Transactions on Software Engineering Methodology 4 3.15%
TSE Transactions on Software Engineering 3 2.36%
ISSTA International Symposium on Software Testing and Analysis 2 1.57%
AAAI AAAI Conference on Artificial Intelligence 1 0.79%
ACL The Association for Computational Linguistics 1 0.79%
COMPSAC International Computer Software and Applications Conference 1 0.79%
GECCO Genetic and Evolutionary Computation Conference 1 0.79%
ICSME The International Conference on Software Maintenance and Evolution 1 0.79%
MSR International Conference on Mining Software Repositories 1 0.79%
NeurIPS Neural Information Processing Systems 1 0.79%
OOPSLA Conference on Object-Oriented Programming Systems, Languages,and Applications 1 0.79%
PLDI ACM SIGPLAN Conference on Programming Language Design\& Implementation 1 0.79%
PMLR Proceedings of Machine Learning Research 1 0.79%
S&P IEEE Symposium on Security and Privacy 1 0.79%
SIGCSE The ACM Special lnterest Group on Computer Science Education 1 0.79%
SLE ACM SIGPLAN International Conference on Software Language Engineering 1 0.79%
TDSC IEEE Transactions on Dependable and Secure Computing 1 0.79%
TIFS IEEE Transactions on Information Forensics and Security 1 0.79%
WWW Proceedings of the ACMWeb Conference 1 0.79%
Others N.A. 8 6.30%

Total N.A. 127 100.00%

4.2 What is the distribution of the publication venues?
We analyze 127 studies published in various publication venues. Table 3 lists the number of
relevant papers published in each publication venue. We find that 56.69% of papers are published
in peer-reviewed venues, and ICSE and ESEC/FSE are the most popular venues that contain 13
papers, followed by APR (six papers), ICLR (five papers), and ASE (four papers). Besides, the top
popular venues are top-tier conferences and symposiums, and only four journals have at least
one relevant publication, i.e., TOSEM (four papers), TSE (three papers), TDSC (one paper), and
TIFS (one paper). This finding indicates a preference for presenting the latest work at conferences
due to the timeliness of conference proceedings. These collected papers are published in different
research fields, including SE (e.g., TOSEM and ICSE), AI (e.g., NeurIPS, AAAI and ICLR), NLP (e.g.,
ACL), Programming Language (e.g., OOPSLA and PLDI) and Security (e.g., S&P, TDSC and TIFS).
We also find that the remaining 43.31% of papers are non-peer-reviewed and published on arXiv.
This phenomenon can likely be attributed to the rapid emergence of relevant studies in a short
development time. Considering the varying quality levels of such non-peer-reviewed papers, we
conducted a rigorous evaluation to ensure the inclusion of high-quality relevant papers in this
work.

4.3 What is the distribution of the programming languages?
Fig. 3 presents the distribution of different programming languages targeted by existing LLM-based
APR techniques. We find that Java is the most widely utilized programming language, accounting
for 37% of all collected papers, followed by Python (24%) and C (11%). The possible reason lies in
the availability of mature datasets for these languages, which serve as recognized benchmarks
for evaluating repair techniques, such as Defects4J [71], QuixBugs [89], BFP [144], CVEfixes [8],
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Java 37%

Python 24%

C 11%

C++ 8%

JS 7%

C# 3%
Verilog 2%
Solidity 1%
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PHP 1%
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Powershell 1%
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Ruby 1%

Fig. 3. Distribution of LLM-based studies across different programming languages.

Big-Vul [33], and TFix [7]. We also find that LLM-based APR encompasses a broader range of
programming languages compared to traditional APR. For example, our collected papers involve
18 different programming languages in total, whereas learning-based APR techniques are typically
limited to only five languages [185]. Importantly, we notice that some rare languages, previously
overlooked in the APR community, are now being addressed. This broader language adaptability
of LLM-based APR might stem from the inherent capabilities of LLMs to encapsulate general
programming knowledge that can be transferred across multiple languages by fine-tuning [179].
Besides, LLMs’ robust natural language understanding capabilities facilitate the few-shot or zero-
shot repair settings with limited learning samples, which is a significant advantage over DL
models [185] that typically require extensive repair corpora for training. Consequently, LLMs can
efficiently handle lesser-known programming languages, like Verilog [1] and Rust [22], which are
often underrepresented in previous APR research [107]. This phenomenon highlights the promising
prospects and scalability of APR brought about by recent LLMs.

4.4 What are the types of the publication contributions?

Table 4. Categories of four main contributions in collected studies.

Category Description Papers

New Technique or Methodology The study proposes a novel approach to address specific chal-
lenges in the APR community empowered by LLMs. 78

Empirical Study The study explores the performance of LLMs in fixing software
bugs with a quantitative and qualitative analysis. 38

Benchmark The paper introduces a new benchmark specifically designed
to evaluate the fix capabilities of LLMs for various bug types 9

Human Study The study conducts a survey to explore practitioners’ perspec-
tives or experiences of LLMs when fixing software bugs. 2

We categorize collected papers according to their main contributions into four categories: new
technique or methodology, empirical study, benchmark, and human study, as illustrated in Fig. 4.
We find that 78 relevant papers are published, with the aim of proposing a novel repair approach
or framework with LLMs to address various issues in the APR community. Besides, 38 papers
concentrate on conducting empirical studies to explore the actual benefits of LLMs in fixing various
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Fig. 4. Distribution of existing LLMs utilized in APR.

Fine-tuning
37%

Few-shot
15%

Zero-shot
48%

Fig. 5. Distribution of three ways to
utilize LLMs for APR.

bugs, such as the potential of fine-tuning LLMs in vulnerability repair [44, 188]. We further notice
nine relevant studies constructing new benchmarks to evaluate the performance of LLMs and two
papers [44, 102] administering a survey to offer insights into how practitioners or developers think
about and employ LLMs to fix software bugs in practice.

Summary of Results for RQ1

(1) LLMs have shown a booming trend in fixing software bugs, with 127 papers between
2020 and 2024. (2) The number of conference papers employing LLMs for APR significantly
exceeds that of journal papers, with ICSE and TOSEM being the most popular conference
and journal venues, respectively. (3) LLM-based APR papers are published in different
research fields, including SE, AI, and Security. (4) There are 18 programming languages
that LLM-based APR has been applied to, with Java, Python, C, and C++ being the most
frequently targeted. (5) LLMs have been applied to some underrepresented programming
languages, such as Verilog and Rust. (6) The vast majority of collected studies primarily
focus on introducing new techniques and conducting empirical research, while two papers
perform user studies to understand practitioners’ attitudes and experiences regarding
leveraging various LLMs for solving bug-fixing tasks.

5 RQ2: WHICH POPULAR LLMS HAVE BEEN APPLIED TO SUPPORT APR?
5.1 What is the distribution of involved LLMs?
Plenty of LLMs, with millions to billions (even more) of parameters, have been proposed and
adapted to automatically fix software bugs. We analyze all collected papers and summarize 46
relevant LLMs that are already utilized in existing APR studies. Fig. 4 illustrates the variety of
different LLMs and lists the number of times these models have been utilized by prior APR studies.
We only include those LLMs with more than one time in collected papers due to page limitations. As
can be seen from Fig. 4, ChatGPT (37) and GPT-4 (25) from OpenAI are the two most popular LLMs,
followed by CodeT5 (23) and Codex (21). We categorize these LLMs into three groups according to
their architectures: encoder-only, encoder-decoder, and decoder-only LLMs.

5.1.1 Encoder-only LLMs. Encoder-only LLMs denote a category of LLMs that only utilizes the
encoder stack of the Transformer architecture. Typically, these models are pre-trained on a massive
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corpus using a Masked Language Modeling (MLM) task, which is used to learn to predict the identity
of masked words based on their context. In the APR community, prominent models like CodeBERT
(11) [35] and GraphCodeBERT (6) [46] have been investigated in semantic bugs [59, 101, 165, 206]
and security vulnerabilities [188]. As such LLMs only contain an encoder component that is
capable of generating context-aware representations for inputs, they are particularly suited for code
understanding tasks, such as code search, while not directly applicable to code generation tasks,
such as program repair. Thus, in the APR community, as Zhang et al. [188] mention, researchers
may need to integrate a new decoder that initializes from scratch to the pre-trained encoder to
construct an encoder-decoder architecture for patch generation. We also notice such encoder-only
LLMs are utilized to identify patch correctness [79, 137–139, 186, 202], as discussed in Section 7.3.

5.1.2 Enocoder-decoder LLMs. Encoder-decoder LLMs denote a category of LLMs that utilize
both the encoder and decoder stacks of the Transformer architecture, thus inherently suitable for
transforming one sequence into another. Particularly, the encoder takes one sequence as input and
encodes it into a fixed-size hidden state, which effectively captures the semantics and meaning of the
input sequence. Then the decoder processes the hidden state and produces the corresponding output
sequence using attention mechanisms to refer back to parts of the input sequence as needed. Thanks
to the encoder-decoder architecture, such LLMs are particularly suited for code generation tasks in
a sequence-to-sequence learning setting, such as program repair. In the APR community, a mass
of encoder-decoder LLMs have been widely adopted, such as CodeT5 (23) [154], PLBART (10) [2],
UniXcoder (4) [45] and T5 (3) [122]. Similar to traditional learning-based APR [185], such studies
usually treat APR as a natural machine translation (NMT) task by supervised sequence-to-sequence
learning, such as CIRCLE [179], TFix [7], VulRepair [39] and RAP-Gen [153].

5.1.3 Decoder-only LLMs. Decoder-only LLMs denote a category of LLMs that utilize only the
decoder stack of the Transformer architecture. Decoder-only LLMs are typically pre-trained using
a causal language modeling (CLM) objective, learning to predict the next word in a sentence
based on the preceding words. These models are specifically designed for generating sequences
of text autoregressively, i.e., producing one token at a time and using what has been generated
so far as context for subsequent tokens. In the APR community, decoder-only LLMs are the most
popular and widely used group, compared with encoder-only and encoder-decoder LLMs. Notable
repair applications of decoder-only LLMs include GPT-series models (e.g., GPT-1 [120], GPT-
2 [121], GPT3 [14], GPT-3.5 [112], ChatGPT [113], and GPT-4 [114]), some open-sourced models,
(e.g., CodeGPT [95], GPT-Neo [10], GPT-NeoX [9], GPT-J [147], InCoder [37], CodeGen [110],
CodeLLaMA [125] and StarCoder [83]), as well as some closed-source models (e.g., Codex [16]
in Fan et al. [34] and CEDAR [109]). The emergence of decoder-only LLM-based APR studies is
primarily due to two reasons. The first reason is that these models can naturally perform program
repair from a few examples or simple instructions without any fine-tuning. The second reason is
the recent surge in decoder-only LLMs, marked by the introduction of commercial products by
leading Internet companies, such as ChatGPT and GPT-4 by OpenAI.

5.2 What approaches are employed to optimize LLMs for program repair?
LLMs typically acquire general knowledge from extensive datasets. Thus, a fundamental research
issue arises when integrating off-the-shelf LLMs with APR: how to adapt general-propose LLMs to
the specific program repair task. Fig. 5 displays the prevalence of three common adaptation strategies
in LLM-based APR research: fine-tuning, few-shot learning, and zero-shot learning. Our findings
indicate that zero-shot learning, employed in 48% of the studies, is the most popular approach,
suggesting a trend towards using LLMs as-is for program repair tasks. Meanwhile, fine-tuning is
utilized in 37% of the cases, followed by few-shot learning at 15%.
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5.2.1 Fine-tuning. Fine-tuning refers to a process where LLMs are further trained on a smaller,
task-specific dataset. This is an intuitive way to allow LLMs to adjust their weights and biases
through supervised learning, enabling them to perform as expected on new tasks that are similar to,
but not exactly the same as, those they were initially trained on. In the APR community, fine-tuning
is widely utilized during the early emergence of LLMs with millions of parameters, such as T5 and
CodeT5, as it can significantly improve performance on the target program repair task without the
need to train an LLM from scratch.

We summarize the existing APR studies via fine-tuning LLMs into three stages. First, researchers
directly regard program repair as a downstream task by specific datasets, such as fine-tuning
T5 [7], CodeT5 [39], CodeBERT [101], and GPT-2 [77]. Second, researchers utilize more advanced
fine-tuning strategies for better performance. For example, CIRCLE utilizes continual learning to
repair multiple languages with a single model, and RAP-Gen [153] utilizes retrieval-augmented
generation to guide patch search space. Recently, Zirak et al. [206] empirically explore the domain
shift problem in APR with two LLMs, i.e., TFix and CodeBERT, and three fine-tuning methods, i.e.,
Full-Fine-Tuning, Tuning-With-Light-Weight-Adapter-Layers, and Curriculum-Learning. Third,
researchers conduct empirical studies to explore the actual fix capabilities of various LLMs in
different repair scenarios. For example, Zhang et al. [188] fine-tune five LLMs to repair C/C++
security vulnerabilities, Wu et al. [161] involve four LLMs in Java vulnerabilities, and Jiang et
al. [65] consider four LLMs on Java semantic bugs.

5.2.2 Few-shot Learning. Few-shot learning refers to the ability of LLMs to learn or adapt to new
tasks with a very limited amount of data—often only a few examples. This is an effective way
to use examples to help LLMs understand the targeted task and generate appropriate responses
without any explicit retraining or fine-tuning. In the APR community, few-shot learning is usually
utilized and impressive in LLMs, particularly with billions of parameters, as it requires LLMs’
powerful ability to generalize from very limited data. Researchers typically provide LLMs with a
small number of repair examples directly in the input prompt and require LLMs to generate correct
patches. For example, Nashid et al. [109] construct effective prompts by retrieving similar repair
demonstrations for CodeX, and Xia et al. [164] provide LLMs with examples from the same buggy
project to learn the coding style.

5.2.3 Zero-shot Learning. Zero-shot learning takes the concept of few-shot learning even further
by requiring LLMs to perform program repair without any explicit examples. This is a recently
popular way to query LLMs to perform a variety of unseen tasks, where LLMs are given a task
description and must use their pre-existing knowledge and understanding to generate a response
or solution. In the APR community, zero-shot rapidly emerges following the advent of LLMs with
record-breaking parameters, exemplified by ChatGPT, as it requires a powerful foundation model
to perform human-like chats.
There are two typical development routes that utilize LLMs for program repair in a zero-shot

learning setting. The first one is cloze-style repair, i.e., reframing program repair as a cloze-style
task, and then invoking LLMs to predict partially correct code with the help of repair patterns,
such as AlphaRepair [165], GAMMA [189], FitRepair [163] and Repilot [156]. The second one is
conversational-based repair, i.e., constructing complex prompts with various valuable infor-
mation (e.g., buggy code, failure diagnostics, even execution feedback), and then chatting with
LLMs to generate correct patches, such as Pearce et al. [116], TypeFix [117], RustAssistant [22],
Zhang et al. [190], Prenner et al. [119], Sobania et al. [133], and Napoli et al. [108]. Such repair routes
usually require LLMs capable of processing long-text prompts and human-like conversations, thus
predominantly employing powerful LLMs with billion-level parameters, like ChatGPT and GPT-4.
Besides, zero-shot gets rid of training datasets, thus generalizing to various repair scenarios where
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Fig. 6. Distribution of LLM-based APR papers across different bug types.

gathering training data is challenging or impossible, such as hardware bugs [1], DL programs [15]
and crash bugs [30].

Overall, fine-tuning, which uses supervised learning to adapt LLMs more closely to the specifics
of program repair, becomes popular with the emergence of early million-parameter-level models
like CodeT5. Few-shot learning demonstrates LLMs’ capability to generalize from a few examples,
popular with the emergence of subsequent billion-parameter-level models like Codex. Zero-shot
learning showcases LLMs’ capability to tackle the program repair task without any prior direct
exposure to training or examples, particularly with the emergence of recent models with tens or
hundreds of billions of parameters like ChatGPT and GPT-4.

Summary of Results for RQ2

(1) We summarize 46 different LLMs already utilized to fix bugs, and these LLMs can be
classified into three categories based on model architectures, i.e., encoder-only, encoder-
decoder, and decoder-only. (2) Decoder-only LLMs are the most frequently utilized model
architecture, and four of the top popular LLMs are decoder-only models. (3) ChatGPT,
GPT-4, CodeT5, and Codex are the most popular LLMs in existing LLM-based APR studies,
utilized 37, 25, 23, and 21 times, respectively. (4) We summarize three typical ways of
leveraging the vast knowledge encapsulated in LLMs for the specific program repair task,
i.e., fine-tuning, few-shot, and zero-shot.

6 RQ3: WHAT REPAIR SCENARIOS HAVE BEEN FACILITATED BY LLMS?
In this section, we conduct a comprehensive analysis of the utilization of LLMs in various repair
scenarios. We categorize 18 existing repair scenarios addressed with LLMs, following the taxonomy
from Monperrus et al. [107] and Zhang et al. [185], including semantic bugs, syntax bugs, and
static warnings. Fig. 6 presents the distribution of repair studies across different repair scenarios
that LLMs are applied to. We find that semantic bugs triggered by test suites have attracted the
highest attention from the LLM-based APR research, constituting approximately 48% of the total
research volume. This phenomenon is also observed in traditional learning-based APR [185], and is
mainly driven by well-known benchmarks, such as Defects4J [71]. Security vulnerabilities account
for about 14% of the research proportion, highlighting the significance of LLMs in addressing
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cybersecurity challenges. The third highest number of studies is observed in the programming
problems domain, constituting approximately 9% of the total research volume. We also find a
growing interest in rare bug types that are usually ignored by prior work, such as static warnings
(7%), syntax errors (6%), and hardware bugs (3%). This underscores that, thanks to LLMs’ general
knowledge gleaned from vast amounts of data, researchers have begun to explore repair scenarios
not previously addressed in prior works.

6.1 Semantic Bugs
Semantic bugs refer to logical errors in a syntactically correct program when the code does not
do what the programmer intends, even though it may compile and run without syntax errors.
Considering that the majority of LLM-based APR studies are concentrated in the semantic bug
field, we summarize these representative studies based on three ways of using LLMs.

6.1.1 Repair with Fine-tuning. As early as 2021, Drain et al. [29] introduce DeepDebug, which learns
to fix bugs in Java methods mined from real-world GitHub repositories through fine-tuning BART
on the BFP [144] dataset. In 2022, Yuan et al. [179] propose CIRCLE, an LLM-basedmulti-lingual APR
framework by fine-tuning a pre-trained T5 with continual learning. Particularly, CIRCLE utilizes
a difficulty-based rehearsal strategy to achieve lifelong learning without access to all historical
data and elastic regularization to resolve catastrophic forgetting. CIRCLE is the first approach to
repair multiple programming language bugs with a single repair model in the continual learning
setting. Hao et al. [49, 50] propose APRFiT by fine-tuning CodeT5 and GraphCodeBERT with a
curricular learning framework. In 2023, RAP-Gen [153] further improves the repair performance of
fine-tuning LLMs via a retrieval-augmented generation framework. RAP-Gen first utilizes a hybrid
patch retriever to search for a relevant fix pattern from an external codebase, and utilizes Codet5 as
the foundation model to synthesize candidate patches with the augmented inputs, i.e., the retrieved
fix pattern and original buggy code. Recently, Silva [131] escalate the parameters of fine-tuned
LLMs to the billion level, and propose RepairLLaMA based on CodeLlama-7B. RepairLLaMA utilizes
a parameter-efficient fine-tuning technique called LoRA to train repair adapters with appropriate
code representations.

6.1.2 Repair with Few-shot Learning. In few-shot learning, LLMs take a prompt as input , which
contains natural language instructions, a few examples of task demonstration, and a query, and
generate an output. In 2023, Nashid et al. [109] propose a CEDAR, retrieval-based prompt selection
approach for several code generation tasks, including program repair. CEDAR first automatically
retrieves bug-fixing demonstrations relevant to the buggy code based on embedding or frequency
similarity, and creates prompts to query Codex to generate correct patches in a few-shot learning
manner. Meanwhile, Do et al. [27] conduct a preliminary study with ChatGPT and Galpaca-30b (a
variant of LLaMA) by using a few-shot example generation pipeline.

6.1.3 Repair with Zero-shot Learning. Unlike the above fine-tuning-based APR work, which relies
on high-quality bug-fixing code pairs, some approaches are proposed to directly leverage off-the-
shelf LLMs without any training. Such approaches attempt to generate patches in a zero-shot
setting and can be categorized into two types, namely cloze-style APR and conversation-style APR.

Cloze-style APR leverages the pre-training objective (e.g., model language modeling) of LLMs
to predict correct code tokens with the help of repair patterns. In 2022, Xia et al. [165] introduce
AlphaRepair, a cloze-style APR tool to directly query LLMs to generate patches in a zero-shot
learning setting. AlphaRepair first replaces the buggy line with a mask line and queries CodeBERT
to fill the mask line to generate candidate patches. Furthermore, FitRepair [163] is a more advanced
cloze-style APR approach based on CodeT5 and the plastic surgery hypothesis. FitRepair utilizes
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knowledge-intensified fine-tuning and repair-oriented fine-tuning to help CodeT5 learn the buggy
project-specific knowledge and the cloze-style task knowledge, respectively. FitRepair then retrieves
relevant identifiers with static analysis, which are fed into fine-tuned CodeT5 to generate candidate
patches. Similarly, Repilot [156] improves the cloze-style APR AlphaRepair with a completion
engine. Repilot builds an interaction between LLMs and a completion engine to generate more
valid patches by first pruning away infeasible tokens suggested by LLMs and then completing
the token based on the suggestions provided by the completion engine. GAMMA [189] further
explores the potential of using LLMs to generate patches in a zero-shot learning scenario with a
list of well-summarized fix templates. Particularly, GAMMA attempts to address the donor code
retrieval issue of traditional template-based APR (e.g., TBar [92]) and regards patch generation
as a fill-in-the-blank task by querying LLMs to predict the correct code for masked tokens in a
pre-defined fix pattern. Unlike the cloze-style APR, Ribeiro et al. [123] frame the APR problem as a
code completion task and apply CodeGPT to fix bugs from ManySStuBs4J [72].

Conversation-style APR leverages the powerful natural language and programming language
understanding capabilities of LLMs to generate patches iteratively using test failure information.
In 2023, Xia et al. [166, 167] propose ChatRepair, the first conversation-driven APR approach
that interleaves patch generation with instant feedback to perform APR in a dialogue manner.
ChatRepair constructs prompts with test failure information and queries ChatGPT to generate
correct patches from previously incorrect and plausible patches. However, ChatRepair mainly relies
on negative feedback (i.e., failure information derived from failing tests) to guide the conversations,
which may not always offer specific and adequate prompts for an effective repair. Thus, Kong et
al. [75] introduce ContrastRepair, which includes positive feedback from passing tests to supplement
the negative feedback. Given a buggy program and a failing test case, ContrastRepair generates a
similar passing test case by making minimal modifications to the failing test case. ContrastRepair
then constructs a contrastive pair to LLMs, allowing them to better pinpoint the root cause of
the bug and generate accurate patches. In the above conversation-style APR scenarios, LLMs take
a prompt containing some tokens about buggy code as the input and infer the following tokens
about patches as the output. During the conversations, all tokens in the input prompt and output
answer consume the computational and financial costs, such as $0.06 per 1k input tokens and $0.03
per 1k generated tokens for GPT-4. To reduce the computational cost of ChatRepair, Hidvegi et
al. [52] propose CigaR, a token-efficiency LLM-based APR approach that concentrates on token cost
minimization of ChatGPT. CigaR designs three prompts to help ChatGPTminimize the overall token
cost with previous responses, including (1) an initiation prompt to initialize the repair process,
(2) an improvement prompt to refine partial patches, avoiding discarding potentially valuable
patches, and (3) a multiplication prompt builds upon the already generated plausible patches to
synthesize more plausible patches with diversity maximization. Unlike previous work relying on
a fixed prompt template, RepairAgent [12] treats ChatGPT as an agent capable of autonomously
planning and executing actions to generate patches by using dynamic prompts and a state machine
to select suitable tools.

6.1.4 Empirical Study. In addition to the above novel techniques, researchers have conducted
numerous empirical studies to explore the capabilities of LLMs in fixing semantic bugs. As early as
2021, Mashhadi et al. [101] preliminarily evaluate the performance of fine-tuning CodeBERT for
fixing Java bugs from ManySStuBs4J. Lajko et al. [77] empirically fine-tune GPT-2 to automatically
generate candidate patches for JavaScript bugs. Prenner et al. [119] investigate CodeX in fixing
QuixBugs with a zero-shot setting and Sobania et al. [133] utilizes a more powerful LLM ChatGPT
with prompt engineering to generate patches for QuixBugs. In 2023, Horvath et al. [54] explore the
impact of model architectures and program representations, involving two popular programming
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languages, i.e., Java and JavaScript, three different code representations, i.e., raw text, command
sequences, and ASTs, and four LLMs, i.e., T5, CodeT5, RoBERTa, and GPTNeo. Meanwhile, Zhao et
al. [198] conduct a comprehensive investigation into the effective utilization of LLMs for repairing
code review bugs, involving two LLMs (i.e., ChatGPT and GPT-4) in a zero-shot learning manner,
and six LLMs (InCoder, CodeT5+, CodeFuse, LLaMA, CodeGen-2, CodeLLaMA) in a fine-tuning
manner. Recently, inspired by the phenomenon that grammatical errors in natural language can be
fixed by round-trip translation, i.e., translating sentences to another intermediate language and
then back, Ruiz et al. [126] investigate to what extent the RTT pipeline can fix bugs in code in a
zero-shot fashion. The comprehensive study involves eight LLMs: PLBART, CodeT5, TransCoder,
SantaCoder, InCoder, StarCoderBase, GPT-3.5, and GPT-4, and four APR benchmarks: Defects4J-v1.2,
Defects4J-v2.0, QuixBugs, and HumanEval-Java.
Furthermore, more comprehensive empirical studies are published in top-tier SE conferences.

Xia et al. [164] conduct an comprehensive study to explore the performance of LLMs in program
repair, involving nine LLMs from two categories (i.e., infilling and generative models), and five
datasets across three programming languages. They explore three ways to use LLMs for patch
generation: complete function generation, correct code infilling, and single-line generation. Mean-
while, Jiang et al. [65] empirically explore the fixing capabilities of ten variants from four LLMs
under zero-shot and fine-tuning settings, involving four Java benchmarks. They also construct a
new benchmark, HumanEval-Java, which none of the LLMs has seen during training to address the
data leakage issue. Huang et al. [61] conduct an empirical study on fixing capabilities of LLMs in
the fine-tuning paradigm, involving five LLMs, three programming languages, and three repair
scenarios.

6.2 Security Vulnerabilities
A software vulnerability refers to a flaw, bug, or weakness in the design, implementation, op-
eration, or management of software. When exploited, vulnerabilities can lead to unauthorized
access, manipulation, or disruption of the software’s intended functionality. In 2022, Fu et al. [39]
propose VulRepair, an LLM-based automated program repair approach by fine-tuning CodeT5
with vulnerability datasets. Furthermore, in 2023, considering that a vulnerable function only
contains a few core elements that need to be fixed, Fu et al. [38] propose VQM, an LLM-based
automated vulnerability repair approach that leverages VIT-based approaches for object detection
to help CodeT5 focus more on vulnerable code areas during patch generation. Inspired by the
relationship between semantic bugs and security vulnerabilities, Zhang et al. [188] propose an
enhanced LLM-based vulnerability framework based on transfer learning, demonstrating superior
performance against VulRepair. In 2024, Zhou et al. [201] propose VulMaster, a CodeT5-based
approach to address several limitations of VulRepair, i.e., (1) handling lengthy vulnerable code by
the Fusion-in-Decoder framework; (2) capturing the structure of the vulnerable code by AST; and
(3) understanding the expert vulnerability knowledge by the CWE system. De et al. [21] leverage
Quantized Low-Rank Adaptation (QLoRA) [86] to fine-tune two advanced 7-billion-parameter
LLMs, i.e., CodeLlama [125] and Mistral [104], to fix C vulnerabilities.

Empirical Study. Pearce et al. [116] evaluate the performance of LLMs in repair vulnerabilities
in a zero-shot manner, involving five commercially available black-box and two open-source
LLMs. They particularly investigate the potential of designing prompts that query LLMs to patch
vulnerable code. Furthermore, Zhang et al. [188] conduct an empirical study investigating the
performance of fine-tuning LLMs for vulnerability repair, involving five LLMs from three categories,
two C vulnerability datasets and more than 100 trained LLMs, which is the largest set to date. They
also explore the potential of ChatGPT in repairing security vulnerabilities in a zero-shot manner.
Similarly, Wu et al. [161] explore the fixing capabilities of five LLMs in a zero-shot manner and four
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LLMs in a fine-tuning manner on two real-world Java vulnerability datasets. Recently, Le et al. [78]
conduct a preliminary study of ChatGPT and Bard in detecting and fixing security vulnerabilities
in JavaScript programs.

6.3 Static Warnings
Static warnings refer to automated alerts generated by static tools that examine code to identify
potential errors, inefficiencies, or security vulnerabilities without executing the program. In 2021,
Berabi et al. [7] introduce TFix, which is considered a pioneer in incorporating LLMs into APR.
Inspired by T5, TFix formulates the program repair problem as a text-to-text task on code sequence,
i.e., given a coding error as text, predicting a new text as the patch. TFix is particularly fine-tuned
from T5with a high-quality dataset consisting of 100k bug-fixing pairs across 52 error types detected
by a static analyzer, ESLint. Similar to RAP-Gen [153], InferFix [69] employs a retrieval-augmented
generation manner to fine-tune LLMs for program repair, i.e., (1) utilizing a retriever to search for
semantically equivalent bugs and corresponding fixes from an external codebase, and (2) fine-tuning
LLMs on supervised bug-fixing datasets with prompts augmented via adding retrieved similar fixes.
However, RAP-Gen targets semantic bugs while InferFix repairs static errors detected by the static
analyzer Infer; and RAP-Gen utilizes CodeT5 while InferFix has a significantly larger model Codex
with 12 billion parameters. Recently, Wadhwa et al. [146] present CORE to resolve code quality
issues flagged by static analysis tools. CORE utilizes ChatGPT as the proposer LLM to generate
candidate code revisions and GPT-4 as the ranker to rank the candidate revisions before presenting
them to the developer. Alrashedy et al. [5] introduce FDSP to resolve repair security vulnerabilities
detected by a static code analysis tool, Bandit [6], in a self-debugging manner.

In addition to the above technical papers, Kim et al. [73] empirically investigate the performance
of TFix in fixing errors from industrial Samsung Kotlin projects detected by a static analysis tool
SonarQube. Mohajer et al. [105] conduct a more comprehensive study of LLMs in the static code
analysis domain, and propose SkipAnalyzer, an LLM-based powered tool to perform three related
tasks: detecting bugs, filtering false positive warnings, and patching the detected bugs.

6.4 Syntax Errors
Syntax errors refer to parsing mistakes that occur when code does not follow the rules or grammar
of the programming language, such as invalid statements and expressions. These errors are detected
by the compiler or interpreter during the parsing phase before the program is executed. Ahmed et
al. [3] propose SYNSHINE to fix syntax errors by pre-training and fine-tuning RoBERTa with
compiler diagnostics. RustAssistant [22] utilizes GPT-3.5 and GPT-4 to fix Rust compilation errors
with prompt engineering. RING [70] is a multilingual syntax error repair approach powered by
Codex and few-shot learning and is proven promising in six different languages. PCR-Chain [62]
attempts to resolve fully-qualified names and fix last-mile syntax errors based on ChatGPT and
Chain-of-Thought Prompting.

6.5 Type Errors
Type errors occur when an operation or function is applied to an object of an inappropriate type.
This indicates that the operation expects a certain data type but receives another, thus leading
to an exception. These errors are prevalent in dynamically typed languages such as Python and
JavaScript, which do not allow operations that are inherently impossible with the given data types.
In 2024, Chow et al. [19] construct PyTyDefects, a dataset consisting of 2,766 type error-fix pairs
from 176 GitHub repositories. They also introduce PyTy, a T5-based repair technique that fine-
tunes the off-the-shelf LLM TFix with PyTyDefects for fixing type errors in Python. Unlike the
fine-tuning-based approach PyTy, TypeFix [117] is a prompt-based repair approach for Python
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type errors in a zero-shot manner. Similar to GAMMA, TypeFix queries LLMs to generate patches
by filling the masks in code prompts using fix templates. However, TypeFix distinguishes itself
by automatically mining these templates through a hierarchical clustering algorithm, rather than
relying on predefined ones in GAMMA. Furthermore, Ribeiro et al. [124] present Mentat, a type
error repair technique for OCaml programs powered by GPT-3. Mentat first analyzes the source code
to generate contextually relevant prompts, then exploits GPT-3’s advanced language understanding
and generation capabilities to produce potential patches.

6.6 Programming Problems
This type of bug refers to incorrect solutions to programming problems from competition plat-
forms, such as LeetCode. In 2022, Zhang et al. [182] propose MMAPR to repair both syntactic
and semantic mistakes from introductory Python programming through Codex and few-shot
learning. Fan et al. [34] systematically evaluate whether repair techniques can fix the incorrect
solutions produced by LLMs in LeetCode contests. Similarly, Liu et al. [93] analyze the correctness
of ChatGPT-generated code in Java and Python for 2,033 programming tasks from LeetCode and
query ChatGPT to mitigate incorrect code with different prompts. Recently, Zhang et al. [190] em-
pirically evaluate the performance of ChatGPT in fixing incorrect submissions from programming
problems. Similar studies are conducted by Haque et al. [51] and Tian et al. [140]. Ishizue et al. [63]
combine two LLMs (i.e., ChatGPT and GPT-4) with Refactory [58] to fix programming assignment
problems. They leverage LLMs to repair programs with syntax errors and those that Refactory
fails to repair. Recently, Zhao et al. [196] explore how LLMs, including ChatGPT, StarCoder, and
CodeLlama, perform in repairing student assignments from higher-level programming courses.
They construct a student assignment dataset named Defects4DS, which contains 682 submissions
from 4 programming assignments, and introduce a repair framework named PaR, which generates
patches by selecting peer solutions to create prompts.

6.7 Performance Bugs
Performance bugs refer to inefficient code snippets that do not interfere with functionality but
lead to unnecessary time and resource consumption. Garg et al. [41] propose DeepDev-PERF,
the first LLM-based approach to repair performance bugs for C# applications by fine-tuning the
BART model. Building upon DeepDev-PERF, RAPGen [42] further enhances the repair process
through prompt engineering, which demonstrates superior efficiency over traditional intensive
fine-tuning methods. RAPGen retrieves relevant instructions from a knowledge base, constructs
an input prompt tailored to the specific bug, and then uses Codex to generate the optimized code.
This approach is similar to CEDAR [109] yet uniquely leverages prompt engineering to achieve
more effective and resource-efficient solutions.

6.8 Hardware Bugs
APR is well-explored in the software domain, while the research is less mature for hardware
description languages, such as Verilog. Ahmad et al. [1] empirically explore the potential of LLMs
to repair security-relevant bugs in hardware designs. They leverage prompt engineering to query
Codex, ChatGPT, GPT-4, and CodeGen for 15 security-related bugs from 10 CWEs. Inspired by the
retrieval-augmented generation, Tsai et al. [143] introduce RTLFixer, a framework to fix Verilog
syntax errors with LLMs and iterative prompting. RTLFixer formulates an input prompt to query
GPT-4 to generate the correct code. RTLFixer then utilizes error logs from the compiler and
human guidance from a retrieval database as feedback to perform an interactive debugging loop
until all errors are resolved. Yao et al. [175] from Huawei focus on the domain of chip design and
propose HDLdebugger, an LLM-assisted hardware description language debugging framework. This
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framework encompasses data generation through reverse engineering, a search engine to enhance
the retrieval-augmented generation, and a fine-tuning approach to train retrieval-augmented LLMs.
Similarly, Fu et al. [40] focus on the hardware design iteration process and introduce LLM4SECHW,
an LLM-based hardware debugging framework. LLM4SECHW constructs a hardware debugging-
oriented dataset from open-source hardware projects and fine-tunes a suite of hardware domain-
specific LLMs capable of automatically reading hardware designs and fixing bugs.

6.9 Smart Contracts
Smart contracts are self-executing contracts on a blockchain network with the terms of the agree-
ment directly written into code. In 2023, Napoli et al. [108] conduct a preliminary study to explore
the capabilities of ChatGPT in fixing vulnerable smart contracts with 143 vulnerable Solidity codes.
In 2024, Zhang et al. [184] introduce ACFIX, a GPT-based approach to repair access control vulner-
abilities in smart contracts based on static code slicing and Chain-of-Thought Prompting. ACFIX
mines common AC practices for major categories of code functionality. These practices form a
knowledge base that guides LLMs in repairing code with analogous functionalities.

6.10 Misc Repair Types
We summarize other repair scenarios that are covered in fewer than two papers as follows.

Crash Bugs. Crash bugs are considered critical issues as they might cause unexpected program
behaviors and termination. Du et al. [30] conduct the first investigation into ChatGPT’s capability to
resolve real-world crash bugs, particularly code-related and environment-related ones. They design
different prompts and propose IntDiagSolver, an interaction approach that involves continuous
interaction with LLMs.

APIMisuse. Zhang et al. [192] conduct an empirical study to explore the performance of learning-
based APR techniques on API misuse repair, involving nine LLMs with millions of parameters under
a fine-tuning setting, i.e., CodeBERT, GraphCodeBERT, CodeGPT, PolyCoder-160M, PolyCoder-0.4B,
CodeTrans, PLBART, CodeT5 and UniXcoder.

Web UI. Xu et al. [172] conduct the first feasibility study on integrating traditional Web UI test
repair techniques with ChatGPT for enhancingWeb UI test repair. They first utilize traditional repair
approaches to generate a preliminary list of candidate-matched elements and employ ChatGPT to
execute a global matching to select the best-matched element further.
Translation Bugs. Code translation refers to the process of converting source code from a

source language into another language without changing the original program’s functionality or
logic. Pan et al. [115] present a large-scale empirical study to investigate the ability of LLMs for
code translation across five different languages, including C, C++, Go, Java, and Python. They
provide a bug taxonomy of unsuccessful translations from 15 categories and five groups, and design
an iterative translation bug repair approach to fix unsuccessful translations from LLMs with a set
of heuristics for prompt crafting.
Test Repair. Yaraghi et al. [128] introduce TARGET, an LLM-based approach to repair broken

test cases by treating test repair as a language translation task. They first construct TARBENCH, a
comprehensive benchmark containing 45,373 broken test repairs across 59 open-source projects.
They then fine-tune off-the-shelf LLMs (i.e., PLBART, CodeGen and CodeT5+) to generate correct
test code with essential code context.
Motion Planning Algorithm. In the automated vehicles scenario, notion planners refer to

algorithms that are responsible for computing a viable path for the vehicle to travel from an initial
state to a designated goal region within a predefined time frame.

Lin et al. [90] introduce DrPlanner, the first automated framework that utilizes GPT-4 to diagnose
and repair motion planners. DrPlanner first designs a structured prompt to describe the planners
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using both natural and programming languages. DrPlanner then queries GPT-4 to repair generate
algorithms with continuous diagnostic feedback in a closed-loop manner.

Software Formal Proof. Formal software verification aims to validate the correctness of software
properties. First et al. [36] introduce Baldur, an LLM-based approach to automate the generation and
repair of whole formal proofs. Baldur leverages two versions of Minerva [81], which is pre-trained
on a mathematics corpus based on the PaLM [20]: one with eight billion parameters and another
with 62 billion parameters. Baldur first fine-tunes a generation model to synthesize whole proofs
for theorems on a proof dataset, and then fine-tunes a repair model based on the proof assistant’s
error messages to repair incorrectly generated proofs.
Github Issue. Unlike most prior work [16], which evaluates LLMs in fixing self-contained

problems, such as programming problems, Jimenez et al. [68] explore the potential of LLMs to
resolve GitHub issues in a realistic software engineering setting. Given an issue (such as a bug report
or a feature request) submitted to popular GitHub Python repositories, they fine-tune CodeLlama-7B
and CodeLlama-13B to generate a patch that passes the unit and system tests.
Code Review Refinement. Guo et al. [48] conduct the first empirical study to explore the

potential of ChatGPT in code review, specifically focusing on automated code refinement based
on existing code reviews. They leverage prompt engineering to compare ChatGPT with CodeRe-
viewer [87] using two datasets: an established one named CodeReview [87] and a newly introduced
one named CodeReview-New. They also design several strategies to improve the performance of
ChatGPT, such as using more advanced models.

Summary of Results for RQ3

Overall, we observe that LLMs have been applied in a wide array of repair scenarios in the
literature, involving 18 bug types. In some common scenarios dominated by traditional APR,
such as semantic bugs, researchers continue to invest substantial efforts in investigating the
application of LLMs. Besides, thanks to LLMs’ general knowledge learned from all possible
Internet data, LLM-based APR has been extended to some rare scenarios that are previously
unexplored, such as hardware bugs and Web UI.

7 RQ4: WHAT KEY FACTORS CONTRIBUTE TO THE INTEGRATION OF LLMS FOR
APR?

7.1 What sources of datasets are used to evaluate LLM APR studies?
Benchmarking is crucial for evaluating the performance of APR techniques, fundamentally shaping
the direction of development within the research community. For example, Defects4J [71] has been
the common practice over the last decade, facilitating a standard comparison scenario to understand
the strengths and weaknesses of proposed approaches and guiding researchers towards addressing
the most pressing challenges in the field. We identify a total of 78 benchmarks from all collected
studies and present the benchmarks utilized more than once in Fig. 7.

We find that Defects4J [71] (28 papers) is the most popular benchmark, followed by QuixBugs [89]
(20 papers) and BFP [144] (12 papers), all of which are existing benchmarks from previous APR
studies. This phenomenon is reasonable, as existing benchmarks are usually well-constructed
and have been inspected and utilized by the community, making them the preferred choice for
evaluating new APR techniques. For example, a mass of LLM-based APR techniques are evaluated
with existing popular benchmarks, such as CIRCLE [179], AlphaRepair [165], and GAMMA [189].

Besides, we notice some newly constructed benchmarks in LLM-based APR, such as TFix [7] (six
papers), HumanEval-Java [65] (five papers), and Pearce et al. [116] (two papers). We summarize
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Fig. 7. Distribution of publications across datasets.

Prompt Input 52%

Raw Input 18%

Conversation-Style Input
18%

Mask Input 9%

Structure-Aware Input 3%

Fig. 8. Distribution of publications across
input forms.

these new benchmarks into three categories. The first category dataset is tailored for rare repair
scenarios. As discussed in Section 6, LLMs have been used in a variety of scenarios, some of which
have not been considered by previous work, leading to a gap in relevant benchmarks. As a result,
with the advent of LLM-based APR techniques, researchers have also developed corresponding
new datasets, such as TFix [7] for static warnings, DeepDev-PERF [41] for performance bugs, Du et
al. [30] for crash bugs, and Zhang et. al [192] for API misuse. The second category dataset attempts
to address the limitations of previous benchmarks. For example, considering BFP [144] lacking test
suites, FixEval [51] offers a collection of unit tests for a large-scale of competitive programming
problems and is evaluated with PLBART and CodeT5. The third category of datasets is designed to
address the issues unique to LLMs, particularly the data leakage problem. For example, Jiang et
al. [65] create a new evaluation benchmark, HumanEval-Java, that has not been seen by LLMs
during pre-training. Zhang et al. [190] extensively explore the data leakage issue of ChatGPT in
the APR domain and introduce EvalGPTFix, a new benchmark from competitive programming
problems after the training cutoff point of ChatGPT. DebugBench [140] is a follow-up of EvalGPTFix
with a larger scale and more diverse types of bugs. DebugBench contains 4,253 buggy programs
from the LeetCode community, covering four major bug categories and 18 minor types in C++,
Java, and Python. Similarly, ConDefects [162] contains 1,254 Java faulty programs and 1,625 Python
faulty programs from the online competition platform AtCoder. These collected programs are
produced between October 2021 and September 2023 to address the data leakage issue for LLM-
based APR approaches. Different from the aforementioned benchmarks derived from programming
problems[47], Silva et al. [132] introduce GitBug-Java, a reproducible benchmark comprising 199
recent Java bugs. These bugs are extracted from the 2023 commit history of 55 notable open-source
repositories to mitigate the risk of data leakage.

7.2 What input forms are software bugs transformed into when utilizing LLMs?
Thanks to the powerful natural language understanding capabilities of LLMs, the inputs of LLM-
basedAPR contain rich information, thusmore complex than that of traditional APR techniques [185].
We summarize various input forms into five categories according to their data types. As illustrated
in Fig. 8, we find 52% of collected papers leverage prompt engineering to feed LLMs with bug-fixing
information, and 18% utilize a conversational-style representation to provide dynamic information.
We also find only 18% of LLM-based APR studies adopt raw bug-fixing inputs in a manner similar
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to traditional DL/ML models [185]. We will discuss the five input representations utilized by LLMs
as follows.

❶Raw Bug-fixing Input. Similar to most traditional learning-based APR, this type of input
regards APR as an NMT task, which translates a sentence from one source language (i.e., buggy
code) to another target language (i.e., fixed code). Such representation directly feeds LLMs with
the buggy code snippet and has been typically employed to train LLMs with supervised learning
in semantic bugs [28, 101, 206] security veulnerabilities [39, 188], and static warnings [73]. For
example, Zhang et al. [188] investigate the performance of three bug-fixing representations (i.e.,
context, abstraction, and tokenization) to fine-tune five LLMs for vulnerability repair.

❷Prompt Input. This type of input incorporates more information to the buggy code. The
prompt concatenates different input components with some prefixed prompt, thus effectively bridg-
ing the gap between pre-trained tasks and the APR downstream task. For example, CIRCLE [179]
utilizes manually-designed prompt template to convent buggy code and corresponding context into
a unified fill-in-the-blank format. Particularly, they utilize “Buggy line:” and “Context:” to denote
the buggy and contextual code, and they utilize “The fixed code is:” to query a T5-based model to
generate candidate patches according to the previous input. Besides, TFix [7], Zirak et al. [206] and
Kim et al. [73] represent all valuable information about the bug as a single piece of text, including
bug type, bug message, bug line, and bug context. Furthermore, InferFix [69] and RAP-Gen [153]
construct prompts by retrieving relevant repair examples from an external codebase.

❸Mask Input. This type of input masks the buggy code and queries LLMs to fill the masks
with the correct code tokens. Unlike the above input forms, the mask input reformulates the
APR problem as a cloze-style task and directly leverages LLMs’ pre-training objectives in a zero-
shot setting. AlphaRepair [165] is considered the first work to demonstrate the potential of mask
inputs, and researchers have proposed various follow-ups to better perform mask prediction for
patch generation, such as GAMMA [189] with well-summarized repair patterns, FitRepair [163]
with the plastic surgery hypothesis, Repilot [156] with a completion engine, as well as empirical
studies [65, 164].

❹Conversation-Style Representation This type of input further extends the prompt input
with feedback-driven chats like humans. Conversation-style representation contains more complex
information, such as dynamic execution results, while iteratively improving generated patches
through multiple rounds of dialogue. For example, Sobania et al. [133] conduct an early explo-
ration into the feasibility of leveraging ChatGPT’s conversational capabilities for program repair,
motivating some follow-ups [167, 190].

❺Structure-Aware Input. This type of input represents source code as syntactic structures, such
as Abstract Syntax Trees (ASTs). For example, Horvath et al. [54] utilizes RoBERTa and GPTNeo to
encode ASTs for program repair. Besides, VulMaster [201] utilizes the AST as part of its input to
capture the structural aspects of the vulnerable code.

7.3 How are LLMs used to support patch correctness?
Test-overfitting has recently been the focus of APR research due to the mainstream test-driven
generate-and-validate repair workflow in the community. Particularly, after candidate patches are
generated, the developer-written test suites are utilized as the oracle to validate the correctness of
patches, and the passing patches are returned to developers. However, as an incomplete specification,
test suites only describe a part of the program’s behavioral space, resulting in plausible yet overfitting
patches without fixing bugs. Thus, developers need to spend enormous effort filtering out overfitting
patches manually, even resulting in a negative debugging performance [136, 193]. Researchers
have proposed various automated patch correctness assessment (APCA) techniques to identify
whether a plausible patch is overfitting or not, so as to improve the quality of returned patches.
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For example, PATCH-SIM [170] assesses the correctness of patches by calculating the similarity of
dynamic execution traces. PATCH-SIM is acknowledged as a foundational work in the APCA field,
providing crucial guidance for the development of follow-up works, particularly learning-based or
LLM-based ones [185].

Table 5. A summary of existing APR studies using LLMs to predict patch correctness.

Year Study LLMs Repository

2020 Tian et al. [137] BERT https://github.com/TruX-DTF/DL4PatchCorrectness
2022 Quatrain [139] BERT https://github.com/Trustworthy-Software/Quatrain
2023 Tian et al. [138] BERT https://github.com/HaoyeTianCoder/Panther
2023 Invalidator [79] CodeBERT https://github.com/thanhlecongg/Invalidator
2023 PatchZero [202] StarCoder N.A.
2024 APPT [186] BERT, CodeBERT, GraphCodeBERT https://github.com/iSEngLab/APPT

Table 5 presents existing APCA studies involving LLMs. We summarize them into three stages.
❶LLMs as Feature Extractor. In 2020, Tian et al. [137, 138] empirically explore the performance

of code embeddings via representation learning models in reasoning about patch correctness.
Following the similarity-based pipeline from PATCH-SIM, they first calculate the similarities of
patched and buggy code snippets based on code embeddings, and then predict patch correctness
with a binary classifier. They consider four embedding models, including re-trained (i.e., Doc2vec,
code2vec and CC2vec) and pre-trainedmodels (i.e., BERT), which is the first APCA study empowered
with LLMs. Recently, Le et al. [79] propose Invalidator, to assess the correctness of patches via
semantic and syntactic reasoning. Similar to Tian et al. [137], they utilize CodeBERT to extract
code features and train a classifier for prediction. Unlike the above studies calculating similarities
of patches, Tian et al. [139] formulate APCA as a question-answering (QA) problem and propose
Quatrain. Quatrain first utilizes CodeBERT to encode bug reports and patch descriptions and trains
a QA model for prediction.

❷Fine-tuning LLM-based APCA. In 2024, Zhang et al. [186] propose APPT, equipped with
BERT as the encoder stack, followed by an LSTM stack and a deep learning classifier. Unlike previous
studies [137, 138] limiting BERT to extract features without benefiting from training, APPT further
fine-tunes LLMs in conjunction with other components as a whole pipeline to fully adapt it
specifically for reasoning about patch correctness. APPT is implemented with BERT by default and
is also proven generalizable to other advanced LLMs, such as CodeBERT and GraphCodeBERT.

❸Zero-shot LLM-based APCA. In 2023, Zhou et al. [202] propose PatchZero to explore the
feasibility of LLMs in predicting patch correctness with a zero-shot setting. PatchZero directly
queries LLMs to generate the next token about patch correctness (i.e., a token either “correct” or
“overfitting”) based on previous tokens, which is similar to LLMs’ original pre-training objective.

7.4 How are LLMs utilized to facilitate both code generation and program repair?
Compared with traditional APR approaches [185] that usually employ heuristics or neural networks
to generate a multitude of patches in one go, LLMs can iteratively refine the generated patches
based on the outcomes of dynamic execution. As mentioned in Section 5.2, the iterative patch
generation capabilities brought by LLMs have facilitated the emergence of conversational-based
repair techniques [22, 108, 116, 117, 119, 133, 190]. In addition to conversational-based repair, we
have identified some efforts that improve code generation performance by repairing LLM-generated
code with feedback, referred to as self-repair. Different from conversational-based repair, which
utilizes feedback for patch generation, self-repair approaches leverage LLMs to identify code errors

https://github.com/TruX-DTF/DL4PatchCorrectness
https://github.com/Trustworthy-Software/Quatrain
https://github.com/HaoyeTianCoder/Panther
https://github.com/thanhlecongg/Invalidator
https://github.com/iSEngLab/APPT


A Systematic Literature Review on Large Language Models for Automated Program Repair 1:25

implemented by themselves via investigating execution results and explaining the generated code.
Such self-repair approaches integrate code generation and program repair, which can be considered
a further step toward automated programming.

Table 6. A summary of existing studies that use APR to boost code generation.

Year Study LLMs Repository

2023 AgentCoder [60] GPT-3.5,GPT-4,Claude,PaLM N.A.
2023 Self-Edit [183] InCoder,CodeGen,Codex https://github.com/zkcpku/Self-Edit
2024 Self-Debugging [17] ChatGPT,GPT-4,Codex,StarCoder N.A.
2024 Zheng et al. [199] CodeLLaMA,DeepseekCoder https://github.com/OpenCodeInterpreter/OpenCodeInterpreter
2024 CYCLE [26] CodeGen,StarCoder https://github.com/ARiSE-Lab/CYCLE_OOPSLA_24
2024 LDB [200] StarCoder,CodeLLaMA,GPT-3.5 https://github.com/FloridSleeves/LLMDebugger
2024 Olausson et al. [111] GPT-3.5,GPT-4,CodeLLaMA https://github.com/theoxo/self-repair
2024 Hu et al. [56] GPT-4 N.A.

Table 6 presents some LLM-based studies that leverage program repair to boost code generation.
Self-Edit [183] represents the first attempt to adopt a neural code editor that takes both the generated
code and error messages as inputs to improve the code quality on the competitive programming
task. Self-Edit is evaluated with both fine-tuned models (i.e., PyCodeGPT, GPT-Neo, CodeGen,
GPT-Neo, InCoder, GPT-J) and prompt-based LLMs (i.e., InCoder, CodeGen, Codex). Chen et al. [17]
from DeepMind propose Self-Debugging to teach LLMs to debug their own predicted code via
few-shot prompting, including Codex, ChatGPT, GPT-4 and StarCoder. There also exist some similar
self-repair studies, including OpenCodeInterpreter [199], Cycle[26], LDB [200], SelfEvolve [67],
Self-Refine [98], Hu et al. [56], AgentCoder [60]. Recently, Olausson et al. [111] conduct an empirical
study to investigate the ability of CodeLlama, GPT-3.5, and GPT-4 to perform self-repair in code
generation. They find that self-repair is not a panacea for code generation challenges, as existing
LLMs often fail to provide reliable, accurate, and valuable feedback on why the code is incorrect.

7.5 How often do the collected LLM-based APR papers provide publicly available
artifacts?

Open science plays a crucial role in advancing scientific progress through principles of transparency,
reproducibility, and applicability. Given the benefits, the SE community has been actively promoting
open science principles and encouraging all researchers to share their artifacts, thereby bolstering
the reliability of research findings. In this section, we investigate the extent to which the analyzed
papers make their artifacts publicly accessible.
We find that 80 studies provide the replication packages in their papers, accounting for 62.99%

(80/127) of all collected studies. Among 78 studies that propose novel LLM-based APR approaches,
which is the largest contribution type in Table 4, we find that 53.85% (42/78) of them fail to make
their artifacts publicly available. This makes it difficult for researchers to validate experimental
findings, conduct quantitative comparisons with existing studies, and build follow-ups instead of
reinventing the wheels. Considering that some papers have not been published, we then focus on
top-tier SE venues, i.e., ICSE, ASE, FSE, ISSTA, TSE and TOSEM, and identify 86.84% of papers
(33/38) make related artifacts publicly open, indicating a high-quality commitment to reproducibility
in high-quality papers. Besides, some studies only provide datasets or train models without source
code or essential instructions. Overall, open science is a critical challenge in advancing LLM-based
APR research development because many factors, such as datasets, data pre-processing methods,
source code, hyper-parameters, and documents, may lead to the reproducibility of studies. Therefore,
we hope that researchers in the LLM-based APR community can provide high-quality open-source
artifacts for convenient reproduction.

https://github.com/zkcpku/Self-Edit
https://github.com/OpenCodeInterpreter/OpenCodeInterpreter
https://github.com/ARiSE-Lab/CYCLE_OOPSLA_24
https://github.com/FloridSleeves/LLMDebugger
https://github.com/theoxo/self-repair
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Summary of Results for RQ4

(1) We summarize 78 different datasets that are utilized to benchmark LLMs in fixing bugs.
(2) Defects4J, QuixBugs, BFP, CVEfixes, and Big-Vul are most frequently adopted in the
LLM-based APR. (3) We categorize the input forms within all collected papers into five
groups: raw bug-fixing input, prompt input, mask input, conversation-style input, and
structure-aware input. (4) Prompt input is the most frequently used form in applying LLMs
to program repair, indicating that designing effective prompts is particularly important for
leveraging LLMs’ natural language processing capabilities. (5) We summarize some studies
that leverage LLMs to predict patch correctness. (6) 62.99% of all collected papers have made
their artifacts open source, and the ratio increases to 86.84% for top-tier SE publications.

8 CHALLENGES & OPPORTUNITIES OF LLM-BASED APR
Our study reveals the following crucial challenges and practical guidelines for future LLM-based
APR work.

APR as a Part of Fully Autonomous Programming. As mentioned in Section 2, existing APR
approaches operate under a “near-correct assumption”, which posits that experienced programmers
are capable of writing programs that are almost correct, requiring only minimal modifications to
rectify bugs and ensure compliance with all test cases. This assumption has long served as the
foundation for APR research development. However, the evolution of LLMs and their application
in programming suggests a future where APR can transcend its traditional boundaries, moving
towards a more holistic approach in conjunction with fully autonomous programming. In this
context, APR can be reimagined not only just as a tool for correcting minor coding errors, but as
an integral component of a self-correcting, self-improving system that iteratively enhances the
quality of automatically generated code. Fortunately, we have observed initial explorations into
combining repair with programming, yet these efforts are far from sufficient. For example, Fan et
al. [34] employ LLMs to fix buggy solutions generated by themselves, and recent studies [167, 190]
iteratively refine auto-generated code with dynamic execution.
In the future, the opportunities presented by integrating APR with fully autonomous program-

ming are vast [97]. First, it is flexible to implement collaborative Human-AI Programming tools [88],
where the initial code is written by developers and continuously optimized and repaired by LLMs.
Particularly for complex problem-solving, LLMs suggest innovative solutions that had not been
considered by human programmers. This partnership could accelerate development cycles, reduce
the burden of debugging on human developers, and lead to more creative and effective solutions.
Second, the general knowledge inherent in LLMs endows them with the capability to support
multiple downstream tasks, which opens up the possibility of bridging the gap between code
generation, testing, debugging, and fixing. For example, fault localization is a precondition of patch
generation, while patch validation can reflect the accuracy of fault localization, making these takes
interconnected. Thus, it is promising to explore the capabilities of LLMs in these connected tasks
using real-time feedback within a unified framework.
More Attention about Repair Costs of LLMs.. As mentioned in Section 5.1, the literature

tends to employ the growing size of LLMs to achieve better performance, such as from T5-250M
in CIRCLE to Codex-12B in InferFix. This trend is reasonable as Xia et al. [164] demonstrate
that larger models typically generate more correct patches for software bugs. However, APR,
being a task highly relevant to humans, the millions, billions and even trillions of parameters
pose significant challenges in the development workflow. First, training LLMs with billions (or
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even more) of parameters is a highly time-consuming and resource-intensive process. The GPU
resources required for such training are often prohibitively expensive, making them inaccessible
for many researchers in both academic and industrial settings. For example, in Section 5.2, we
observe that most fine-tuning-LLM-based APR studies utilize CodeT5/T5 or similar-sized models,
except for InferFix from Microsoft, which fine-tunes Codex. However, InferFix is proposed by
the world-leading technology company Microsoft and trained with industrial-grade hardware,
i.e., 64 32-GB-V100-GPUs. Second, despite the increased likelihood of generating correct patches
with larger models, the patch generation time cost also increases. For example, Jiang et al. [65]
demonstrate PLBART takes 0.70–0.89 seconds on average to generate a correct patch, CodeGen,
although fixing more bugs than PLBART with more parameters, requires 3.64–13.88 seconds on
average to generate a correct patch. Third, the increase in patch generation time further compresses
the time available for patch validation, as developers need to spend more time waiting for the
model to complete its inference. For example, Shi et al. [130] demonstrate that the vast storage and
runtime memory consumption, coupled with high inference latency, make these LLMs prohibitive
for integration in modern IDEs, especially on resource-constrained or real-time terminal devices.

In the future, to address the first challenge, it is promising to explore the potential of parameter-
efficient fine-tuning approaches on APR, such as prefix-tuning and low-rank adaptation [25]. To
address the second challenge, researchers can optimize the size of LLMs without significantly com-
promising their performance, such as model pruning, quantization, and knowledge distillation [130].
To address the third challenge, we recommend boosting patch validation with advanced strategies,
such as mutation testing [168], or utilizing LLMs to rank candidate patches before validation.
Human Study with LLMs. As summarized in Section 6, with the introduction of LLMs, APR

has achieved groundbreaking progress in terms of the number of correctly fixed bugs in popular
benchmarks, exemplified by the advancements on Defects4J-1.2 from 64 bugs by CIRCLE, to 74
bugs by AlphaRepair, and 82 bugs by GAMMA. The progress prompts us to consider whether
LLMs have indeed facilitated improvements in real-world debugging and how LLM-based APR has
broader implications for developers’ daily activities. Previous research [159, 191] highlights the
potential pitfalls of developing APR tools without adequate feedback from developers, which could
compromise their effectiveness in real-world deployment. However, there remains a significant
gap in our understanding of how software engineers tackle software problems in practical settings,
including their use of dedicated debugging tools and their expertise in debugging techniques.
Thus, in the future, researchers should conduct human studies to gain deeper insights into the

maturity and reliability of LLM-based APR tools in terms of human factors. Possible directions
are to investigate whether LLMs can assist developers in reducing the debugging cost, such as
fixing more bugs, accelerating the bug-fixing process, and handling more complex bugs. Besides,
it would be valuable to investigate developers’ perceptions and interactions with LLMs based on
their practical experiences and established debugging practices.
Exploring More and Rare Repair Scenarions. As summarized in Section 6, we observe

that most existing LLM-based APR studies are concentrated on a limited number of bug types,
particularly semantic bugs. However, there exist some rare repair scenarios that benefit less from
LLMs, such as hardware bugs (one paper) and concurrency bugs (zero paper). The key challenge
lies in insufficient training data from which LLMs can learn.
We suggest that future work concentrates on three possible directions to broaden the scope of

LLM applications for more repair scenarios, such as software requirement [169] and fuzzing [194].
First, transfer learning is an effective training approach for rare scenarios. We can first fine-tune
LLMs with abundant data in a source scenario and then utilize a small amount of data to transfer
the acquired knowledge to a target scenario. The source and target scenarios should have similar
data distributions. For example, Zhang et al. [188] demonstrate that transferring learning from
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bug-fixing can improve the vulnerability repair performance of five LLMs by 9.40% on average.
Second, it is promising to utilize the cloze-style APR with repair patterns to generate patches
for rare scenarios. Unlike fine-tuning, which requires a substantial amount of labeled data, this
approach directly leverages expert domain knowledge (such as pre-defined patterns) to guide the
general pre-trained knowledge of LLMs. Besides, for scenarios not previously encountered by LLMs,
researchers can employ unlabeled data in the target scenario to learn the data distribution of the
project or language under test in an unsupervised learning setting. Third, in-context learning and
prompt engineering are feasible solutions for directly querying billion-parameter LLMs to generate
correct code in a target scenario, given that these models are immensely large and encompass
virtually all data available on the Internet.

Integration with Off-the-Shelf APR. As mentioned in Section 6, researchers typically utilize
LLMs as core backbones to design novel repair approaches in an end-to-end setting, such as
sequence-to-sequence learning [7, 179]. Parallelly, the community has seen some explorations
treating LLMs as components integrated into existing repair workflow. These studies attempt
to boost the capabilities of off-the-shelf APR approaches instead of proposing new techniques.
For example, CURE [66] combines GPT and CoCoNut [96] to capture code syntax for the APR
task. Built on top of DLFix [84], DEAR [85] attempts to fix multi-hunk, multi-statement bugs by
fine-tuning BERT to learn fixing-together relationships among statements, i.e., identifying if two
statements are needed to be fixed together or not. Recently, GAMMA [189] integrates LLMs into the
traditional template-based APR TBar by querying LLMs to generate masked code tokens instead of
retrieving donor code from local files. These efforts demonstrate the potential of integrating LLMs
with off-the-shelf APR techniques, yet there is currently a lack of more in-depth work in this area.

In the future, researchers could attempt to combine LLMs with more traditional APR techniques.
For example, it is promising to utilize LLMs to help SMT solvers generate patches for constraint-
based APR, or feed search algorithms with LLM-generated potential patches to build search space
for heuristic-based APR. Besides, domain-specific repair techniques can benefit from the powerful
code-understanding capabilities of LLMs, thus extending to a broader range of repair scenarios.
For example, we can design fix templates for specific scenarios, such as static warnings, and then
utilize the general knowledge contained in LLMs to generate correct patches.
Data Leakage Issue. As highlighted in Section 7.1, Zhang et al. [190] identify that existing

repair benchmarks have been inadvertently included in the pre-training data of popular LLMs, such
as ChatGPT, through web scraping and other methods. For example, ChatGPT is able to enumerate
all projects within Defects4J [71], one of the most popular APR benchmarks. Researchers [189] can
ascertain the exposure for open-source LLMs by inspecting pre-training data against benchmarks.
It is significantly more challenging with more powerful black-box LLMs due to a lack of training
details. However, as preliminary explorations, they are mainly limited in the quantity of involved
bugs and the variety of bug types. For example, all of them are created from programming problems
with only small-scale or medium-scale buggy solutions, without delving into large-scale, real-
world projects that encompass complex API calls, such as Defecst4J [71]. More importantly, data
leakage issues in other repair scenarios, such as security vulnerabilities and API misuse, continue
to be overlooked. There may be overlaps among datasets across different repair scenarios, such as
Defects4J, which also serves as a source for a subset of the API misuse dataset [192]. Overall, the
risk of data leakage introduces bias into the benchmarking of existing work, necessitating urgent
efforts from researchers to mitigate it.
We recommend that future work can be conducted in the following two directions. First, it

is crucial to construct a large-scale benchmark free from data leakage that contains real-world
projects so as to evaluate the actual fix capabilities of LLMs in a more practical debugging scenario.
Commercial closed-source software, real-time updated programming websites, or manually written
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programs may serve as potential data sources. Second, considering the variety of bug types that
LLMs have been applied to, researchers need to consider and attempt to address the data leakage
risk when conducting related studies.

9 CONCLUSION
Automated Program Repair (APR) tackles the long-standing challenge of fixing software bugs
automatically, thus facilitating software testing, validation, and debugging practices. Very recently,
Large Language Models (LLMs) have brought significant changes to the APR domain, already
yielding impressive progress and further demonstrating a promising future in follow-up research.
In this paper, we provide a systematic literature review of existing LLM-based APR techniques from
LLMs, APR and their integration perspectives We summarize popular LLMs, typical utilization
strategies, and repair scenarios. We also discuss some crucial factors, such as input forms and
self-debug metrics, within the LLM-based APR community. Finally, we outline several challenges,
such as data leakage issues, and suggest potential directions for future research.
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