MANIFOLD WITH INFINITELY MANY FIBRATIONS OVER THE SPHERE

WŁODZIMIERZ JELONEK AND ZBIGNIEW JELONEK

ABSTRACT. We show that the manifold $X = S^2 \times S^3$ has infinitely many structures of a fiber bundle over the base $B = S^2$. In fact for every lens space L(p, 1) there is a fibration $L(p, 1) \to X \to B$.

CONTENTS

1.	Introduction	1
2.	Preliminaries	2
3.	Main Result	3
Ref	References	

1. INTRODUCTION

Let X, F, B be smooth manifold. Consider smooth fibrations $F \to X \to B$. If $X = B = S^1$, then there is infinitely many different fibers F_k such that we have a fibration $F_k \to X \to B$. This suggests that also in higher dimensions we can find manifolds X, which have infinitely many fibrations over S^1 . And indeed Tollefson in [10] found some Seifert manifolds having infinitely many different fiber bundle structures over S^1 . W.P. Thurston in [9] showed that if a hyperbolic 3-manifold with $b_1 > 1$ fibers over S^1 , then it fibers in infinitely many ways.

Later Hilden, Lozano, Montesinos-Amilibia in the paper - [7] considered a certain family of hyperbolic manifolds, obtained as branched covers of the 3-torus. They showed explicitly that each manifold in this family has infinitely many different fibrations over S^1 .

Using Tollesfson example one can find different examples of this type, if N is the Tollesfson example and M any manifold then $N \times M$ has infinitely many fibrations over $S^1 \times M$ (see [1]). However all examples of this type have non simply connected base B. To the best knowledge of the authors there were no examples of a manifold with infinitely many different fibration over a simply connected base B.

There is natural question how many different fibration of this type can exists if the base B is simply connected. Is it possible that the number of different fibration is infinite? Here using ideas from [4], [5] and [6] we show the following:

Theorem 3.3. The manifold $X = S^2 \times S^3$ has infinitely many structures of a fiber bundle over the base $B = S^2$. In fact for every lens space L(p, 1)there is a fibration $L(p, 1) \to X \to B$, p = 1, 2, ...

2. Preliminaries

We start with two definitions.

Definition 2.1. Let $X \subset \mathbb{CP}^n$ be an algebraic variety. We assume \mathbb{CP}^n to be a hyperplane at infinity of \mathbb{CP}^{n+1} . Then by an algebraic cone $\overline{C(X)} \subset \mathbb{CP}^{n+1}$ with base X we mean the set

$$\overline{C(X)} = \bigcup_{x \in X} \overline{O, x},$$

where O is the center of coordinates in $\mathbb{C}^{n+1} \subset \mathbb{CP}^{n+1}$, and $\overline{O, x}$ means the projective line which goes through O and x. By an affine cone C(X) we mean $\overline{C(X)} \setminus X$. By the link of C(X) we mean the set $L = \{x \in C(X) : ||x|| = 1\}$.

Definition 2.2. The three-dimensional lens spaces L(p;q) are quotients of the sphere S^3 by \mathbb{Z}/p -actions. More precisely, let p and q be coprime integers and consider S^3 as the unit sphere in \mathbb{C}^2 . Then the \mathbb{Z}/p -action on S^3 generated by the homeomorphism

$$(z_1, z_2) \mapsto (e^{2\pi i/p} z_1, e^{2\pi i q/p} z_2)$$

is free. The resulting quotient space is called the lens space L(p;q).

It is well known that

$$H_k(L(p,q),\mathbb{Z}) = \begin{cases} \mathbb{Z}, & k = 0, 3\\ \mathbb{Z}/p\mathbb{Z}, & k = 1\\ 0, & \text{otherwise} \end{cases}$$

3

3. Main Result

Let W_k denotes the Veronese embedding of degree k of \mathbb{CP}^1 into \mathbb{CP}^k given by $\psi([z_0, z_1]) = [z_0^k : z_0^{k-1} z_1 : ..., z_0 z_1^{k-1} : z_1^k]$. Let $n \ge 2$ and consider the varieties $X_k = \phi(W_k \times \mathbb{CP}^1) \subset \mathbb{CP}^{n_k}$, where $\phi : \mathbb{CP}^k \times \mathbb{CP}^1 \to \mathbb{CP}^{n_k}$, $\phi([z_0 : z_1 : ... : z_k], [w_0, w_1]) = [z_0 w_0 : z_0 w_1 : z_1 w_0 : z_1 w_1, ... : z_k w_0 : z_k w_1]$ is the Segre embedding. Consider the affine cone $C(X_k)$. Let L_k be the link of this cone. We have

Theorem 3.1. All manifolds L_k are diffeomorphic to $S^2 \times S^3 = X$.

Proof. This result follows from a more general result [4], however for the convenience of the reader we give here a direct proof of this fact (which is slightly simpler than this in [4]). By construction, X_k is the union of projective lines $X_k = \bigcup_{a \in W_k} \phi(\{a\} \times \mathbb{P}^1)$. This means that the projective cone $\overline{C(X_k)}$ is the union of planes which have the line $\phi(\{a\} \times \mathbb{P}^1)$ at infinity and go through the point O = (0, ..., 0). Thus the link L_k , of this cone is a union of 3-spheres S^3 . In fact using the Ehresmann Theorem, it is easy to observe that this link is a sphere bundles over $W_k \cong S^2$ with the projection being the composition of the projection $p : \mathbb{CP}^{n_k+1} \setminus \{0\} \to \mathbb{CP}^{n_k}$ and the projection $q : W_k \times \mathbb{CP}^1 \to W_k$. From the homotopy sequence

$$0 = \pi_2(S^3) \to \pi_2(L_k) \to \pi_2(S^2) = \mathbb{Z} \to \pi_1(S^3) = 0 \to \pi_1(L_k) \to \pi_1(S^2) = 0,$$

we get $\pi_1(L_k) = 0$ and by the Hurewicz theorem $H_2(L_k, \mathbb{Z}) = \pi_2(L_k) = \mathbb{Z}$. Note that $H_2(S^2 \times S^3) = \mathbb{Z}$. Since $w_1(S^2), w_1(S^3)$ and $w_2(S^2), w_2(S^3)$ vanish by the Whitney Product Theorem the Stiefel-Whitney class $w_2(S^2 \times S^3) =$ $\sum_{i=0}^2 w_i(S^2) \times w_{2-i}(S^3) = 0$. Hence by the Smale-Barden classification (see [2]) it is enough to prove that $w_2(L_k) = 0$.

Let $\pi: L_k \to \mathbb{CP}^1 \times \mathbb{CP}^1 = B$ be the Hopf fibration. Let $E = \ker d\pi$. Then E is a one dimensional (real) vector subbundle of TL_k . Let us introduce on L_k a Riemannian metric g and let $F = E^{\perp}$. Then $d\pi: F \to TB$ induces the isomorphism of fibers: $d\pi: F_x \to TB_{\pi(x)}$. We will show that F is isomorphic to π^*TB . For a $X \in T_{\pi(x)}B$ let $X_x^* \in F_x \subset T_xL_k$ be a vector such that $d\pi(X^*) = X$. The isomorphism is $\Phi: \pi^*TB \to F$ given on a fiber π^*TB_x as $\Phi(X) = X_x^*$. Hence $TL_k = E \oplus \pi^*(TB)$ and $w_2(L_k) = w_2(F) + w_1(F) \cup \pi^*w_1(B) + \pi^*w_2(B)$.

Since $w_1(S^2)$ and $w_2(S^2)$ vanish, by the Whitney Product Theorem, it follows that $w_1(B) = \sum_{i=0}^{1} w_i(S^2) \times w_{1-i}(S^2) = 0, w_2(B) = w_2(S^2 \times S^2) =$ $\sum_{i=0}^{2} w_i(S^2) \times w_{2-i}(S^2) = 0$, which implies $w_2(L_k) = 0$. **Theorem 3.2.** Let $W \subset \mathbb{CP}^n$ be a smooth rational curve of degree d. Let C(W) be an affine cone with base W. Then the link L of this cone at 0 is diffeomorphic to the lens space L(d, 1).

Proof. Note that L is a principal circle bundle over the sphere. By [3] (see Theorem 2.1, Theorem 2.2 and Theorem 2.3) the group of such bundles is cyclic and generated by $S^3 = L(1,1)$. Moreover, $pS^3 = S^3/G_p$, where $G_p = \mathbb{Z}/(p)$. Hence L is diffeomorphic to some pS^3 , which is the lens space L(p,1). By [5], Thm. 3.5 we have $H^2(L,\mathbb{Z}) = \mathbb{Z}/d$. On the other hand by [8], point 11, the space L is a rational homology 3-sphere, in particular $H_1(L,\mathbb{Z})$ is a torsion group. Since the torsion part of $H_1(L,\mathbb{Z})$ coincides with the torsion part of $H^2(L,\mathbb{Z})$ we have $H_1(L,\mathbb{Z}) = \mathbb{Z}/(d)$. Hence p = dand L = L(d, 1).

Theorem 3.3. The manifold $X = S^2 \times S^3$ has infinitely many structures of a fiber bundle over the base $B = S^2$. In fact for every lens space L(p, 1)there is a fibration $L(p, 1) \to X \to B$, p = 1, 2, ...

Proof. Let W_k denote the Veronese embedding of degree k of \mathbb{CP}^1 into \mathbb{CP}^k . Let $n \geq 2$ and consider the varieties $X_k = \phi(W_k \times \mathbb{CP}^1) \subset \mathbb{CP}^{n_k}$, where ϕ is the Segre embedding. Consider the affine cone $C(X_k)$. Let L_k be the link of this cone. By construction, X_k is the union of projective rational curves $X_k = \bigcup_{a \in \mathbb{CP}^1} W_k \times \{a\}$. This means that the affine cone $C(X_k)$ is the union of cones $\bigcup_{a \in \mathbb{CP}^1} C(W_k \times \{a\})$. Thus by Theorem 3.2 the link L_k of this cone is a union of lens spaces L(k, 1). In fact using the Ehresmann Theorem, it is easy to observe that this link is a bundle over $\mathbb{CP}^1 \cong S^2$ with the projection being the composition of the projection $p : \mathbb{CP}^{n_k+1} \setminus \{0\} \to \mathbb{CP}^{n_k}$ and the projection $q : W_k \times \mathbb{CP}^1 \to \mathbb{CP}^1$. Consequently L_k is a L(k, 1) bundle over S^2 . By Theorem 3.1 this finishes the proof.

References

- [1] Alcaraz, J., Ph.D-dissertation, UNIVERSITY OF CALIFORNIA RIVERSIDE, 2022.
- [2] Barden, D.; Simply connected five-manifold, Ann. of Math. 82 (1965), no. 2, 365-385.
- [3] Blair, D.E., Riemannian Geometry of Contact and Symplectic Manifolds, Second Edition, Progress in Mathematics Volume 203, Birkhäuser (2010).
- [4] Birbrair, L.; Fernandes, A.; Sampaio, J. E. and Verbitsky, M. Multiplicity of singularities is not a bi-Lipschitz invariant. Math. Ann., vol. 377 (2020), 115-121.
- [5] Bobadilla, J.F. de; Fernandes, A. and Sampaio, J. E. Multiplicity and degree as bilipschitz invariants for complex sets. Journal of Topology, vol. 11 (2018), 958-966.

- [6] Fernandes, A, Jelonek Z., Sampaio J. E., Bi-Lipschitz equivalent cones with different degrees, arXiv:2309.07078.
- [7] Hilden, H.M., Lozano, M.T., Montesinos-Amilibia, J.M., On hyperbolic 3-manifolds with an infinite number of fibrations over S¹. Math. Proc. Cambridge Philos. Soc. 140 (2006), no. 1, 79-93
- [8] Kollar, J., *Links of complex analytic singularities*. In: Surveys in Differential Geometry XVIII. International Press of Boston, (2013), 157–192.
- [9] Thurston. W, A norm for the homology of 3-manifolds, Memoirs of the American Mathematical Society, 59(339):99–130, 1986.
- [10] Tollefson. J., 3-manifolds fibering over S¹ with nonunique connected fiber, Proc. Amer. Math.Soc. 21 (1969), 79–80.

(Włodzimierz Jelonek) Katedra Matematyki Stosowanej, Politechnika Krakowska, Warszawska 24, 31-155 Kraków, Poland.

E-MAIL: wjelon@pk.edu.pl

(Zbigniew Jelonek) INSTYTUT MATEMATYCZNY, POLSKA AKADEMIA NAUK, ŚNIADECKICH 8, 00-656 WARSZAWA, POLAND.

E-MAIL: najelone@cyf-kr.edu.pl