
Preprint. Under review.

NeMo-Aligner: Scalable Toolkit for Efficient Model Align-
ment

Gerald Shen, Zhilin Wang, Olivier Delalleau, Jiaqi Zeng, Yi Dong,
Daniel Egert, Shengyang Sun, Jimmy Zhang, Sahil Jain, Ali Taghibakhshi
Markel Sanz Ausin, Ashwath Aithal, Oleksii Kuchaiev
NVIDIA
{geshen, zhilinw}@nvidia.com

Abstract

Aligning Large Language Models (LLMs) with human values and prefer-
ences is essential for making them helpful and safe. However, building
efficient tools to perform alignment can be challenging, especially for the
largest and most competent LLMs which often contain tens or hundreds
of billions of parameters. We create NeMo-Aligner, a toolkit for model
alignment that can efficiently scale to using hundreds of GPUs for training.
NeMo-Aligner comes with highly optimized and scalable implementations
for major paradigms of model alignment such as: Reinforcement Learning
from Human Feedback (RLHF), Direct Preference Optimization (DPO),
SteerLM, and Self-Play Fine-Tuning (SPIN). Additionally, our toolkit sup-
ports running most of the alignment techniques in a Parameter Efficient
Fine-Tuning (PEFT) setting. NeMo-Aligner is designed for extensibility,
allowing support for other alignment techniques with minimal effort. It is
open-sourced with Apache 2.0 License and we invite community contribu-
tions at https://github.com/NVIDIA/NeMo-Aligner.

1 Introduction

Pre-training large language models on tremendous amounts of unlabelled text has show-
cased promising capabilities (Brown et al., 2020; Zhang et al., 2022). While such unsuper-
vised pre-trained models have achieved impressive results, subsequently aligning models
to follow user instructions is a critical step to tap the capabilities of LLMs for practical use
cases (Sanh et al., 2022; Wei et al., 2022). Attempts based on Supervised Finetuning (Conover
et al., 2023; Köpf et al., 2023; Taori et al., 2023) proved less effective compared to techniques
that also made use of feedback to tune models towards responses that are more helpful and
away from responses that are less so (Bai et al., 2022a; Ouyang et al., 2022; Touvron et al.,
2023; Dong et al., 2023).

Despite the benefits of training models using feedback, these pipelines are notoriously chal-
lenging to get right (Lambert & Calandra, 2023; Zheng et al., 2023b), deterring widespread,
productive adoption outside of select well-resourced organizations. For example, the popu-
lar Proximal Policy Optimization (PPO) variant of Reinforcement Learning from Human
Feedback (RLHF) approach (Ouyang et al., 2022) requires running a complicated pipeline
with four large language models interacting in a complex manner during training. Such
alignment algorithms introduce new system challenges for efficient training that require
re-thinking various aspects of the software stack including model scalability, coordination
among models, and text generation (so-called ”rollout”) within the training loop.

There are existing open source tools for model alignment, most notably HuggingFace
TRL (von Werra et al., 2020), CarperAI trlX (Havrilla et al., 2023) and Microsoft DeepSpeed-
Chat (Yao et al., 2023). These tools provide an excellent starting point with respect to usability
and feature set. However, with NeMo-Aligner we aim to vastly improve performance and
scalability of PPO and other methods especially when it comes to the largest and most
competent models such as Llama 2 70B (Touvron et al., 2023) and beyond.

1

ar
X

iv
:2

40
5.

01
48

1v
1

 [
cs

.C
L

]
 2

 M
ay

 2
02

4

https://github.com/NVIDIA/NeMo-Aligner

Preprint. Under review.

NeMo-Aligner addresses scalability challenges by (I) building upon Megatron-LM (Shoeybi
et al., 2020) with 3D (data, tensor, and pipeline)-parallelism training, (II) having a distributed
approach to Proximal Policy Optimization (PPO) training in RLHF and (III) integrating
PPO inference optimizations based on TensorRT-LLM (NVIDIA, 2023b) during rollout
stage. Combined, these optimizations allow users to efficiently train the largest models over
hundreds of GPUs reducing research iteration time.

NeMo-Aligner optimizes popular alignment techniques including Supervised Finetuning
(SFT), PPO-based RLHF (Ouyang et al., 2022), Direct Preference Optimization (Rafailov
et al., 2023), SteerLM (Dong et al., 2023) and Self-Play Fine-Tuning (Chen et al., 2024). We
briefly outline the background for these techniques in Section 2, followed by an in-depth
exploration of training with each of the techniques in Sections 3, 4, 5, and 6. Finally, we
demonstrate the extensible design of NeMo-Aligner in Section 7.

2 Model Alignment Background

SFT Model
Pretrained

Model
Annotated

Data

1. Supervised
Fine-Tuning

2. Reward Model
Training

+

SFT Model + Preference
Data

Reward
Model

3. Proximal Policy
Optimization

Policy Network
(Actor)

SFT Model
Reward
Model

Policy
Network
(Actor)

Value
Network
(Critic)

+ Prompts +
Trained
Policy
Model

Trainable Weights

Frozen Weights

Dataset

Produce

AND+
Initialize

Figure 1: Training Recipe for RLHF based on Ouyang et al. (2022). Step 1: Annotated Prompt-
Response Data is used to perform Supervised Fine-Tuning on the pre-trained (base) Model.
Step 2: The resulting SFT model is trained with Preference Data to produce a Reward Model.
Step 3: The SFT Model is used to initialize the Policy Network, and the Reward Model is
used to initialize the Value Network – together with input prompts, all four models are used
to train a Policy Model. The SFT model is also used to compute the KL divergence penalty
in Step 3 (not illustrated).

2.1 Supervised Fine Tuning

Given a pre-trained (also referred to as ”base”) model, supervised fine-tuning (SFT) updates
the base model’s parameters on prompts with expected responses, where the expected
responses might come from expert human annotations (Köpf et al., 2023) or other language
models (Ding et al., 2023). The model is trained to mimic the expected responses given
prompts using the token-level cross-entropy loss. SFT is an important prerequisite step in
Reinforcement Learning from Human Feedback (Ouyang et al., 2022) and Direct Preference
Optimization (Rafailov et al., 2023) because without it, the base model is very unlikely to
generate responses which follow user’s instructions. This step is also sometimes called
behaviour cloning because the model is expected to mimic responses of a human or another
model.

2.2 Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF) was introduced by Christiano et al.
(2017) as a way to avoid manually defined reward functions in Reinforcement Learning.

2

Preprint. Under review.

Instead, a reward model is trained from a dataset of human preferences consisting of pairs
of “chosen” and “rejected” trajectories. The reward model’s loss, derived from the Bradley-
Terry model (Bradley & Terry, 1952), tries to maximize the likelihood that rchosen > rrejected
(i.e., that the predicted rewards are consistent with human preferences). Once the reward
model is trained, it may be used to compute rewards for RL algorithm. Two most common
methods used in RLHF are REINFORCE (Williams, 1992) and Proximal Policy Optimization
(PPO) (Schulman et al., 2017). In NeMo-Aligner we focus on PPO, specifically as described
by Ouyang et al. (2022).

RLHF has been shown to bring significant benefits for model alignment (Ouyang et al., 2022;
Bai et al., 2022a; Touvron et al., 2023) with the typical training recipe being as follows, also
illustrated in Figure 1:

1. From a pre-trained base model, train an initial SFT model as described in Section
2.1.

2. From the SFT model, train a reward model using a dataset of human preferences
made of pairs of “chosen” and “rejected” responses to a set of prompts, follow-
ing Christiano et al. (2017). Typically, we initialize a linear reward model head on
top of the SFT model before training.

3. From the SFT model, train a policy with the online Proximal Policy Optimization
algorithm (PPO, Schulman et al., 2017), with rewards provided by the trained
reward model. Input prompts may not necessarily be the same as those used for
reward model training. A regularization term based on the KL divergence w.r.t. the
SFT model helps prevent the policy from straying too far away from its starting
point and exploiting the “blind spots” of the reward model (Stiennon et al., 2020;
Ouyang et al., 2022). The PPO critic is typically initialized from the reward model.

2.3 Direct Preference Optimization

Direct Preference Optimization (Rafailov et al., 2023) is an offline, off-policy algorithm
that makes use of preference data to directly train an optimal policy without an explicit
reward model. Rather than use a reward model, a reference policy is used to implicitly
derive the reward between a chosen and rejected pair via the Bradley-Terry model. This
is accomplished via the difference in the log probabilities between the chosen and rejected
responses, which is calculated for the optimal and reference policies. This difference is
scaled and then transformed by the sigmoid function to derive the loss. The reference policy
is frozen during training and represents the policy used to generate the chosen/rejected
responses to the given prompts. If the reference policy used to generate the preference
data is not available, it can be approximated by supervised fine-tuning on the prompts and
preferred responses of the preference data.

2.4 SteerLM

SteerLM (Dong et al., 2023) is a model alignment algorithm based on supervised finetun-
ing which avoids use of complex RL methods, similarly to DPO. SteerLM involves three
steps. The first step is to train an Attribute Prediction Model that learns to predict the
values (between 0 and 4 where higher is more) for various semantic aspects of a response
that make responses helpful and safe, such as its correctness and toxicity (Köpf et al.,
2023; Wang et al., 2023). Next, the Attribution Prediction Model can be used to annotate
the various attributes contributing to helpfulness and safety in a diversity of prompt-
response datasets. Finally, these annotated datasets can be used to perform Attribute-
Conditioned Supervised Fine-Tuning where the model learns to generate the response
conditioned on the prompt as well as the annotated attributes formatted into a string, such
as helpfulness:4,correctness:4,toxicity:0. This step teaches the model to discriminate
between responses that are more helpful/safe and those that are less, in a fine-grained
manner for each semantic aspect. At inference time, the prompt can be appended with the
optimal attribute values, as above, to generate the most helpful response.

3

Preprint. Under review.

2.5 Self-Play Fine-Tuning

Self-Play Fine-Tuning (SPIN) (Chen et al., 2024) is a self-play based algorithm, where a
strong model is developed from a weaker model by playing against previous instances of
itself. Starting from an SFT dataset of prompt/response pairs, new responses are generated
from previous iterations of the model. Its policy is then improved by discriminating between
these self-generated responses and the ground truth human-generated SFT responses. This
is accomplished through a preference loss function which is identical to the one used by
DPO (Section 2.3). When SPIN training first starts, we use a copy of the initial policy as
the reference policy in the DPO loss. The self-play “game” is then played for a number of
iterations during which we train the policy as in DPO whilst keeping the reference policy
frozen, and at the end of each iteration we update the reference policy’s weights with those
from the trained policy. During each iteration, we iterate over our SFT training dataset
and use the reference policy to generate responses for each prompt, building a preference
tuple between the ground truth SFT human “chosen” response and the generated “rejected”
response. Once we have these preference tuples for the entire epoch, we update the model
weights via the DPO loss function from these tuples of “(chosen, rejected)” preference pairs.
The model thus implicitly learns to prefer the ground truth SFT responses to those generated
by the previous iteration of itself, which forms the self-play mechanism.

3 RLHF (PPO) Training

NeMo-Aligner is designed to support numerous alignment techniques efficiently at ex-
tremely large scales. It does so by building upon Megatron-LM (Shoeybi et al., 2020) and
NeMo (Kuchaiev et al., 2019) to include features such as optimized kernels from Trans-
former Engine (NVIDIA, 2022), distributed fused adam optimizer and 3D parallelism
support. NeMo-Aligner supports the entire RLHF pipeline as introduced by Ouyang et al.
(2022) and described in Section 2.2. The training pipeline is separated into three distinct
stages as illustrated in Figure 1: Supervised Fined Tuning, Reward Model Training, and
Proximal Policy Optimization. The challenges with the pipeline efficiency come primarily
from the Proximal Policy Optimization stage, and this section describes our approach to
tackling these challenges, as summarized in Figure 2.

Figure 2: Optimizations for RLHF training. Optimizations for PPO training and inference
are detailed in Sections 3.1 and 3.2 respectively.

3.1 Distributed Approach to PPO training

The PPO stage requires running training and/or inference on four different models, as
illustrated in Figure 3:

1. PPO Actor (training and inference, initialized from SFT model): The model we want
to fine tune with PPO.

2. Reference Policy (inference only, set to the SFT model): The model to compute the
KL penalty against.

3. PPO Critic (training and inference, initialized from the reward model): Used in PPO
to compute value estimates.

4. Reward Model (inference only) : Provides RL rewards on generated rollout data.

4

Preprint. Under review.

All of these models can be extremely large (e.g. Llama 2 70B), so NeMo-Aligner takes a
distributed approach to PPO training. We allow users to setup PyTriton (NVIDIA, 2022)
servers and clients to communicate across the different models during PPO. These PyTriton
servers make it possible to run the models on different compute clusters, removing the
requirement of having both the critic and actor on the same compute allocation. Naively,
four different servers (i.e. one for each model) would be launched. However, we note that
the reference policy and PPO actor are the same model but with different weights. Therefore,
we combine them into one job and offload the reference policy’s weights to CPU, swapping
them with the actor’s weights for the reference policy inference step. We deploy the same
strategy for the reward model and critic. All communications are done asynchronously,
permitting pipelined critic inference/training with policy inference/training.

We scale compute allocation sizes such that the [reward model inference + critic inference]
≈ [actor sampling + reference policy inference] and [critic train] ≤ [actor train + actor
inference initialization]. This ensures that the pipeline can use available compute capacity
most efficiently.

Figure 3: NeMo-Aligner PPO System Architecture. The PPO Actor is a PyTriton (NVIDIA,
2022) client that sends async requests to the server (PPO critic and reward model) to obtain
the rewards and values of generated rollouts, and to send the training data for the critic.

3.2 Optimizations for PPO rollout

Response generation during the rollout step is the main bottleneck during PPO training.
The generation stage of the actor is composed of multiple forward passes, with one token
generated per forward pass. Therefore, generation stage kernels are generally launch latency
and memory bandwidth bound, meaning that directly reusing the compute optimized
forward pass implementation of the training stage results in very poor performance.

To address these bottlenecks, we implement the generation stage using TensorRT-LLM
(NVIDIA, 2023b), a high-performance LLM deployment framework. TensorRT-LLM in-
tegrates inference optimized kernels and automatic kernel fusion into a TensorRT based
runtime to achieve better performance. At the start of RLHF, the model is passed to TensorRT-
LLM, which takes the model and compiles it into a TensorRT engine; TensorRT-LLM loads
the engine into its runtime and performs generation. The engine contains a copy of the
model weights, while the runtime allocates the memory required by the KV-Cache and
activations. Before and after generation, the engine and runtime are loaded and offloaded
respectively. Because generation has lower memory requirements than training, we reshard
the model to only use tensor parallelism.

On subsequent training steps, the engine must be synced with updated parameter weights
from training. Because generation must wait until the weights are synced, we update the
engine in-place using the TensorRT Refitter (NVIDIA, 2023c) instead of recompiling the
engine which would incur a large overhead.

In addition, we observe that large discrepancies of generation time occur between the fastest
and the slowest data parallel worker during generation due to the differences in response
lengths. To mitigate this, we setup a worker pool to dynamically load balance among data
parallel workers to give workers with shorter generations correspondingly more work.

5

Preprint. Under review.

3.3 Model Training Details and Quality

As a demonstration of practical large-scale RLHF training with NeMo-Aligner, we first
perform SFT on a Llama 2 70B model using a mixture of public and proprietary data, then
train a Llama 2 13B reward model using the Anthropic HH-RLHF dataset (Bai et al., 2022a),
selecting the checkpoint with the lowest validation loss. Subsequently, we perform PPO
using the same dataset.

For each PPO iteration, we set rollout batch size to 512, optimizer batch size to 64, KL
Penalty (β) to 0.005 and temperature to 1. We use constant learning rate of 9e − 7 after 10
warmup steps with the AdamW optimizer. Model was trained for 100 rollout steps, based
on validation performance on heldout validation set done every 4 steps.

Following Jiang et al. (2023); Tunstall et al. (2023), we use MT-Bench (Zheng et al., 2023a)
to evaluate the performance of the trained RLHF Model. The resulting model achieves
a performance of 7.59 on MT-Bench, which is substantially higher than 6.86 achieved by
Llama 2 70B Chat (Touvron et al., 2023). We have openly released this model alongside its
training resources on Huggingface for reproducibility but avoid mentioning links here to
maintain anonymity. For reproducibility, we release the SFT blend1, reward model2, and
RLHF-ed model3 publicly.

3.4 Scalability

No. of compute nodes (Actor + Critic) 8 + 2 16 + 4 32 + 8

Time per step in seconds (std.) ↓
Overall 187.6 (13.770) 111.4(8.904) 69.9 (2.583)

Train 32.8 (0.161) 19.4 (0.040) 13.1 (0.038)
Rollout 154.9 (13.917) 91.9 (8.912) 56.8 (2.554)

- Response generation 110.2 (14.107) 61.9 (8.511) 33.5 (2.447)
- Log-probs calculation 28.8 (0.006) 14.9 (0.021) 8.2 (0.009)
- TensorRT Refit 12.1 (0.131) 11.8 (0.203) 11.8 (0.151)
- Critic wait 0.1 (0.002) 0.1 (0.001) 0.1 (0.001)

Relative speed up (vs. 8 + 2 node setup) ↑
Overall 1x 1.68x 2.68x

Train 1x 1.69x 2.50x
Rollout 1x 1.69x 2.73x

- Response generation 1x 1.78x 3.29x
- Log-probs calculation 1x 1.93x 3.51x

Table 1: Effects of scaling training across different number of compute nodes for Llama 2
70B actor and Llama 2 13B critic on Rollout batch size of 512 and BF16 precision following
Section 3.3. Nodes are 8*H100-80GB-SXM connected with intra-node NVLink (NVIDIA,
2023a) and inter-node Infiniband (NVIDIA, 2024) interconnects. Time per step calculated
based on mean of 5 steps after the first step, as the first step incurs substantial time for
TRT-LLM Engine Building. Further training configuration details are in Table 5.

To demonstrate the scaling efficiency of NeMo-Aligner, we repeat identical training setups
from Section 3.3, with i. 8 actor nodes + 2 critic nodes, ii. 16 actor nodes + 4 critic nodes and
iii. 32 actor nodes + 8 critic nodes respectively. As shown in Table 1, overall time per step
reduces correspondingly, achieving a 1.68x speed up between 8+2 nodes and 16+4 nodes as
well as a 2.68x speed up when further scaling to 32+8 nodes. The speed up in overall time
per step is contributed by speed ups in both the Train and Rollout stages, demonstrating the
effective optimization that NeMo-Aligner has done for both stages.

1https://huggingface.co/datasets/nvidia/sft datablend v1
2https://huggingface.co/nvidia/NV-Llama2-13B-RLHF-RM
3https://huggingface.co/nvidia/NV-Llama2-70B-RLHF-Chat

6

https://huggingface.co/datasets/nvidia/sft_datablend_v1
https://huggingface.co/nvidia/NV-Llama2-13B-RLHF-RM
https://huggingface.co/nvidia/NV-Llama2-70B-RLHF-Chat

Preprint. Under review.

The scaling of Train stage is sublinear (1.69x and 2.50x respectively when nodes double
and quadruple) due to number of micro-batches per data parallel rank decreasing as node
count increases. Because all pipeline stages must complete before the optimizer is called
in pipeline parallel models, we incur an overhead to fill and drain the pipeline that is
independent of the number of micro-batches (Shoeybi et al., 2020). Therefore, decreasing
the number of micro-batches per data parallel rank increases the proportion of the train step
spent in filling and draining the pipeline, where GPU utilization is poor.

Within the Rollout stage, the steps for Response generation and Log-probs calculation scales
well with the number of nodes, achieving a 1.78x/3.29x and 1.93x/3.51x speed up when
scaling to twice and four times the number of nodes respectively. This is because scaling up
the number of actor nodes proportionally increases the number of data parallel workers for
each step, which can evenly share the work.

On the other hand, the TensorRT Refit step within the Rollout stages takes a constant amount
of time (11.8-12.1 seconds) irrespective of the number of compute nodes, as the inplace
engine sync time is dominated by time spent reloading the engine. As a result, as the
number of nodes increases from 8+2 to 32+8, the time taken by Tensor Refit as a proportion
of the Rollout stage increases from 7.81% to 20.8%. Finally, async communications between
the Actor and the Critic models result in the additional time taken to wait for the Critic
model to be inconsequential (0.1 seconds), suggesting the effectiveness of having async
non-blocking calls between actor and critic models in the PPO pipeline.

No. of compute nodes (Actor + Critic) 32 + 16 64 + 32

Time per step in seconds (std.) ↓
Overall 147.0 (26.720) 90.1 (14.167)

Train 21.2 (0.865) 15.1 (0.299)
Rollout 125.8 (26.010) 75.0 (13.916)

- Response generation 95.8 (26.274) 51.9 (14.182)
- Log-probs calculation 14.8 (0.010) 8.1 (0.008)
- TensorRT Refit 12.3 (0.281) 11.7 (0.162)
- Critic wait 0.1 (0.002) 0.1 (0.014)

Relative speed up (vs. 32 + 16 node setup)↑
Overall 1x 1.63x

Train 1x 1.40x
Rollout 1x 1.68x

- Response generation 1x 1.85x
- Log-probs calculation 1x 1.83x

Table 2: Effects of scaling training on 32 Actor node + 16 Critic node and 64 Actor node + 32
Critic node for Llama 2 70B actor and Llama 2 70B critic on Rollout batch size of 1024 and
BF16 precision. Nodes are 8*H100-80GB-SXM connected with intra-node NVLink (NVIDIA,
2023a) and inter-node Infiniband (NVIDIA, 2024) interconnects. Time per step calculated
based on mean of 5 steps after the first step, as the first step incurs substantial additional
time for TRT-LLM Engine Building. Further training configuration details are in Table 5.

System scalability also needs to be considered under the context of the problem requirements.
The training setup in Section 3.3 has a 70B Llama 2 Actor, 13B Llama 2 Critic as well as a
Rollout batch size of 512. Such a setup limits the effective demonstration of our system
scaling beyond 32 + 8 nodes as there is not enough work to be meaningfully shared across
more data parallel workers. Therefore, we modify the setup slightly to use a 70B Llama 2
Critic and a Rollout batch size of 1024 in Table 2 in order to measure the system performance
when the requirements are higher. We use more nodes for the critic with the corresponding
number of actor nodes (i.e. 32 + 16 instead of 32 + 8) because the critic is larger (70B vs.
13B) and hence require more compute to run effectively. Table 2 shows that the increased
requirements of the training job allows it to meaningfully scale to 64 + 32 node (with 768
H100 GPUs total) for various stages within PPO.

7

Preprint. Under review.

3.5 What contributes to system performance?

To better understand the importance of each aspect of NeMo-Aligner’s PPO system design,
we conduct ablation studies by removing one aspect at a time and measuring the overall
time per step as shown in Table 3. We find that TensorRT-LLM Integration is the most critical
component for high system performance, without which PPO will take nearly seven times
as long for each step. This is followed by using TensorRT Refit to avoid TensorRT-LLM
engine recompiling (1.46x), the use of async requests between actor and critic models (1.29x)
and finally load-balancing of data parallel workers during generation using a worker pool
(1.08x).

Time per step Time relative to
in seconds (std.) ↓ Optimal RLHF setup ↓

Optimal RLHF Setup 187.6 (13.8) 1x
- TensorRT-LLM Integration 1305.9 (160.9) 6.96x
(i.e. using NeMo Generate)
- TensorRT Refit 278.6 (7.8) 1.46x
- Async Requests 241.4 (16.6) 1.29x
- Worker Pool 203.1 (20.6) 1.08x

Table 3: Ablation studies on training Llama 2 70B actor and Llama 2 13B critic on Rollout
batch size of 512 with 8 Actor nodes and 2 critic nodes. Nodes are 8*H100-80GB-SXM
connected with intra-node NVLink (NVIDIA, 2023a) and inter-node Infiniband (NVIDIA,
2024) interconnects. Time per step is calculated based on mean of 5 steps after the first step,
as the first step incurs substantial additional time for TRT-LLM Engine Building.

4 DPO Training

We follow the Zephyr-7B-Beta (Tunstall et al., 2023) training recipe, a model trained with
SFT and DPO. Briefly, SFT was first performed on Mistral-7B (Jiang et al., 2023) using the
Ultrachat dataset (Ding et al., 2023). Model was then further trained with DPO using the
Ultrafeedback dataset (Cui et al., 2023). For SFT, we used a constant learning rate of 2e − 5,
global batch size of 512, and trained the model for 3 epochs. For DPO training, we used
KL regularization coefficient of 3e − 4, global batch size of 512 and a cosine learning rate
schedule with peak LR of 1e − 7, minimum LR of 1e − 8, 50 warmup steps, and max. 300
steps. We obtain slighter better MT-Bench scores than those reported by Tunstall et al. (2023)
for both the final model (7.60 vs 7.34) and the SFT-only initial model (6.77 vs 6.64).

5 SteerLM Training with LoRA

Low Rank Adaptation (Hu et al., 2021) enables fine-tuning large language models in a more
efficient and cost-effective manner. Supported for various alignment techniques within
NeMo-Aligner, LoRA is applied to SteerLM training following the training recipe by Wang
et al. (2023) using the Llama 2 70B model as well as the HelpSteer (Wang et al., 2023) and
Open Assistant datasets (Köpf et al., 2023). Specifically, we applied LoRA to all attention
layers, with a rank of 32. We used global batch size of 128, constant learning rate of 1e − 5
after 10 warmup steps with the AdamW optimizer, and trained for 3 epochs. As shown in
Table 4, applying LoRA to SteerLM training with BF16 can reduce the minimum number
of 80GB GPUs required from 32 to 8. With the same number of GPUs, LoRA achieves a
5× speedup compared to full-parameter fine-tuning, while maintaining comparable model
performance: MT-Bench 7.43 vs. 7.54, which is within noise level for this benchmark (Jiang
et al., 2023).

As we increase the number of GPUs used for LoRA training, the relative throughput
(measured in samples per second) improves almost proportionally, as shown in Figure 4.
This shows that NeMo-Aligner can effectively distribute and parallelize the workload across
a large number of GPUs with minimal overhead and diminishing returns.

8

Preprint. Under review.

Full-Param LoRA

trainable params 70B 89M
min # 80GB GPUs required 32 8
Relative speed (sample/GPU/s) 1× 5×
MT-Bench 7.54 7.43

Table 4: Comparison of Full-Parameter and LoRA SteerLM following training recipe by
Wang et al. (2023).

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300Re
la

tiv
e

Th
ro

ug
hp

ut
 (S

am
pl

e/
Se

co
nd

)

Number of GPUs

Scalability of LoRA-SteerLM

Ours Upper bound

Ours

Linear Scaling

Figure 4: Relative throughput of LoRA applied to SteerLM training as the number of GPUs
increases.

6 SPIN Training

We recreate the Zephyr-7B-Beta (Tunstall et al., 2023) SFT model via SPIN instead of SFT
as formulated by Chen et al. (2024). We start with the Mistral-7B base model (Jiang et al.,
2023) and perform SPIN training following Chen et al. (2024). However, we make a few
departures from their methodology, in that we do not inject generations from the previous
iteration into the current iteration (which would double the dataset size every epoch), and
we only train for a single iteration, with 1 epoch per iteration. Additionally, we use a random
subset of only 50k samples from Ultrachat200k (Ding et al., 2023) rather than the entire
dataset, and use AdamW instead of RMSProp. Our learning rate is 5e − 7 with 400 total
steps, 40 warmup steps, and this LR is then decayed to 1e − 7 for the last 100 steps using
cosine annealing. Global batch size is 64, weight decay is 0.0, and the KL regularization
coefficient is 0.1, as per Chen et al. (2024). Using this approach, we achieve an MT-Bench
score of 7.04 which exceeds the 6.64 of Zephyr-7B-Beta using SFT (Tunstall et al., 2023), as
well as the 6.78 of the 3-iteration SPIN model (Chen et al., 2024).

7 Framework Extensibility

We design NeMo-Aligner with extensibility in mind, allowing users to easily modify al-
gorithms in spite of the complexities of distributed training. We do so using the trainer
abstraction, which encourages re-use of existing trainer methods across various steps and
approaches. The extensibility of NeMo-Aligner allows variants of DPO to be integrated with
minimal code changes, including the Identity Preference Optimization (Azar et al., 2023), the
Conservative DPO (Mitchell, 2023), and the Kahneman-Tversky Optimization (Ethayarajh
et al., 2023). Furthermore, other model alignment techniques such as Constitutional AI
(Bai et al., 2022b), Rejection Sampling (Touvron et al., 2023), and Self-Rewarding Language
Models (Yuan et al., 2024) are also being incorporated into NeMo-Aligner, facilitated by the
framework design.

9

Preprint. Under review.

8 Conclusion

Modern model alignment techniques, especially those based on Reinforcement Learning,
pose complex optimization challenges with respect to system implementation. We create
and open-source NeMo-Aligner to allow AI researchers and practitioners to efficiently
experiment with LLM alignment by utilizing all available compute in a scalable way. Our
framework consistently scales well when training large models with more compute. As
this is our initial release, we expect this scaling to only improve with future versions.
Additionally, we support SFT, PPO, DPO, SteerLM in a parameter-efficient manner using
LoRA for compute-limited settings. As an Apache 2.0 licensed open-source codebase,
NeMo-Aligner can make alignment research more efficient and accessible.

Acknowledgements

We would like to thank many teams at NVIDIA who contributed towards enabling NeMo-
Aligner, especially the NeMo, TRT-LLM and TensorRT teams.

References

Mohammad Gheshlaghi Azar, Mark Rowland, Bilal Piot, Daniel Guo, Daniele Calandriello,
Michal Valko, and Rémi Munos. A general theoretical paradigm to understand learning
from human preferences. arXiv preprint arXiv:2310.12036, 2023.

Yuntao Bai, Andy Jones, Kamal Ndousse, Amanda Askell, Anna Chen, Nova DasSarma,
Dawn Drain, Stanislav Fort, Deep Ganguli, Tom Henighan, Nicholas Joseph, Saurav
Kadavath, Jackson Kernion, Tom Conerly, Sheer El-Showk, Nelson Elhage, Zac Hatfield-
Dodds, Danny Hernandez, Tristan Hume, Scott Johnston, Shauna Kravec, Liane Lovitt,
Neel Nanda, Catherine Olsson, Dario Amodei, Tom Brown, Jack Clark, Sam McCandlish,
Chris Olah, Ben Mann, and Jared Kaplan. Training a helpful and harmless assistant with
reinforcement learning from human feedback, 2022a.

Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy
Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, et al. Constitu-
tional ai: Harmlessness from ai feedback. arXiv preprint arXiv:2212.08073, 2022b.

Ralph A. Bradley and Milton E. Terry. The rank analysis of incomplete block designs — I.
The method of paired comparisons. Biometrika, 39:324–345, 1952.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla
Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini
Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen,
Eric Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,
Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020.

Zixiang Chen, Yihe Deng, Huizhuo Yuan, Kaixuan Ji, and Quanquan Gu. Self-play fine-
tuning converts weak language models to strong language models, 2024.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.
Deep reinforcement learning from human preferences. In I. Guyon, U. Von Luxburg,
S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (eds.), Advances in
Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Mike Conover, Matt Hayes, Ankit Mathur, Xiangrui Meng, Jianwei Xie, Jun Wan, Sam Shah,
Ali Ghodsi, Patrick Wendell, Matei Zaharia, and et al. Free dolly: Introducing the world’s
first truly open instruction-tuned llm, 2023. URL https://www.databricks.com/blog/
2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm.

10

https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm

Preprint. Under review.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie,
Zhiyuan Liu, and Maosong Sun. Ultrafeedback: Boosting language models with high-
quality feedback. arXiv preprint arXiv:2310.01377, 2023.

Ning Ding, Yulin Chen, Bokai Xu, Yujia Qin, Zhi Zheng, Shengding Hu, Zhiyuan Liu,
Maosong Sun, and Bowen Zhou. Enhancing chat language models by scaling high-quality
instructional conversations. arXiv preprint arXiv:2305.14233, 2023.

Yi Dong, Zhilin Wang, Makesh Sreedhar, Xianchao Wu, and Oleksii Kuchaiev. SteerLM:
Attribute conditioned SFT as an (user-steerable) alternative to RLHF. In Houda Bouamor,
Juan Pino, and Kalika Bali (eds.), Findings of the Association for Computational Linguistics:
EMNLP 2023, pp. 11275–11288, Singapore, December 2023. Association for Computational
Linguistics. doi: 10.18653/v1/2023.findings-emnlp.754. URL https://aclanthology.
org/2023.findings-emnlp.754.

Kawin Ethayarajh, Winnie Xu, Dan Jurafsky, and Douwe Kiela. human-centerred loss
functions (halos). https://github.com/ContextualAI/HALOs/blob/main/assets/report.
pdf, 2023.

Alexander Havrilla, Maksym Zhuravinskyi, Duy Phung, Aman Tiwari, Jonathan Tow, Stella
Biderman, Quentin Anthony, and Louis Castricato. trlX: A framework for large scale
reinforcement learning from human feedback. In Proceedings of the 2023 Conference on
Empirical Methods in Natural Language Processing, pp. 8578–8595, Singapore, December
2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.530.
URL https://aclanthology.org/2023.emnlp-main.530.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh
Chaplot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile
Saulnier, Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut
Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023.

Oleksii Kuchaiev, Jason Li, Huyen Nguyen, Oleksii Hrinchuk, Ryan Leary, Boris Ginsburg,
Samuel Kriman, Stanislav Beliaev, Vitaly Lavrukhin, Jack Cook, Patrice Castonguay,
Mariya Popova, Jocelyn Huang, and Jonathan M. Cohen. Nemo: a toolkit for building ai
applications using neural modules, 2019.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi-Rui Tam, Keith
Stevens, Abdullah Barhoum, Nguyen Minh Duc, Oliver Stanley, Richárd Nagyfi, Shahul
ES, Sameer Suri, David Glushkov, Arnav Dantuluri, Andrew Maguire, Christoph Schuh-
mann, Huu Nguyen, and Alexander Mattick. Openassistant conversations – democratiz-
ing large language model alignment, 2023.

Nathan Lambert and Roberto Calandra. The alignment ceiling: Objective mismatch in
reinforcement learning from human feedback, 2023.

Eric Mitchell. A note on DPO with noisy preferences & relationship to IPO. https://
ericmitchell.ai/cdpo.pdf, 2023.

NVIDIA. PyTriton: Framework facilitating NVIDIA Triton inference server usage in Python
environments, 2022. URL https://github.com/triton-inference-server/pytriton.

NVIDIA. TransformerEngine, 2022. URL https://github.com/NVIDIA/TransformerEngine.

NVIDIA. NVLink. https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/, 2023a.

NVIDIA. TensorRT-LLM. https://github.com/NVIDIA/TensorRT-LLM, 2023b.

NVIDIA. TensorRT Refitter. https://docs.nvidia.com/deeplearning/tensorrt/api/
python api/infer/Core/Refitter.html, 2023c.

11

https://aclanthology.org/2023.findings-emnlp.754
https://aclanthology.org/2023.findings-emnlp.754
https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf
https://github.com/ContextualAI/HALOs/blob/main/assets/report.pdf
https://aclanthology.org/2023.emnlp-main.530
https://ericmitchell.ai/cdpo.pdf
https://ericmitchell.ai/cdpo.pdf
https://github.com/triton-inference-server/pytriton
https://github.com/NVIDIA/TransformerEngine
https://blogs.nvidia.com/blog/what-is-nvidia-nvlink/
https://github.com/NVIDIA/TensorRT-LLM
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Refitter.html
https://docs.nvidia.com/deeplearning/tensorrt/api/python_api/infer/Core/Refitter.html

Preprint. Under review.

NVIDIA. Infiniband. https://www.nvidia.com/en-us/networking/products/infiniband/,
2024.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob Hilton,
Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder, Paul F Chris-
tiano, Jan Leike, and Ryan Lowe. Training language models to follow instructions with
human feedback. In S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh
(eds.), Advances in Neural Information Processing Systems, volume 35, pp. 27730–27744. Cur-
ran Associates, Inc., 2022. URL https://proceedings.neurips.cc/paper files/paper/
2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Stefano Ermon, Christopher D. Manning, and
Chelsea Finn. Direct preference optimization: Your language model is secretly a reward
model, 2023.

Victor Sanh, Albert Webson, Colin Raffel, Stephen H. Bach, Lintang Sutawika, Zaid Alyafeai,
Antoine Chaffin, Arnaud Stiegler, Teven Le Scao, Arun Raja, Manan Dey, M Saiful Bari,
Canwen Xu, Urmish Thakker, Shanya Sharma Sharma, Eliza Szczechla, Taewoon Kim,
Gunjan Chhablani, Nihal Nayak, Debajyoti Datta, Jonathan Chang, Mike Tian-Jian Jiang,
Han Wang, Matteo Manica, Sheng Shen, Zheng Xin Yong, Harshit Pandey, Rachel Bawden,
Thomas Wang, Trishala Neeraj, Jos Rozen, Abheesht Sharma, Andrea Santilli, Thibault
Fevry, Jason Alan Fries, Ryan Teehan, Tali Bers, Stella Biderman, Leo Gao, Thomas
Wolf, and Alexander M. Rush. Multitask prompted training enables zero-shot task
generalization, 2022.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms, 2017.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri, Patrick LeGresley, Jared Casper, and
Bryan Catanzaro. Megatron-lm: Training multi-billion parameter language models using
model parallelism, 2020.

Nisan Stiennon, Long Ouyang, Jeff Wu, Daniel M. Ziegler, Ryan Lowe, Chelsea Voss, Alec
Radford, Dario Amodei, and Paul Christiano. Learning to summarize from human
feedback. In Proceedings of the 34th International Conference on Neural Information Processing
Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran Associates Inc. ISBN 9781713829546.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin,
Percy Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following
llama model. https://github.com/tatsu-lab/stanford alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas
Blecher, Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude
Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman
Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura,
Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning
Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew
Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan Schelten, Ruan Silva,
Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross Taylor,
Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat
models, 2023.

Lewis Tunstall, Edward Beeching, Nathan Lambert, Nazneen Rajani, Kashif Rasul, Younes
Belkada, Shengyi Huang, Leandro von Werra, Clémentine Fourrier, Nathan Habib,
Nathan Sarrazin, Omar Sanseviero, Alexander M. Rush, and Thomas Wolf. Zephyr:
Direct distillation of lm alignment, 2023.

12

https://www.nvidia.com/en-us/networking/products/infiniband/
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/b1efde53be364a73914f58805a001731-Paper-Conference.pdf
https://github.com/tatsu-lab/stanford_alpaca

Preprint. Under review.

Leandro von Werra, Younes Belkada, Lewis Tunstall, Edward Beeching, Tristan Thrush,
Nathan Lambert, and Shengyi Huang. Trl: Transformer reinforcement learning. https:
//github.com/huggingface/trl, 2020.

Zhilin Wang, Yi Dong, Jiaqi Zeng, Virginia Adams, Makesh Narsimhan Sreedhar, Daniel
Egert, Olivier Delalleau, Jane Polak Scowcroft, Neel Kant, Aidan Swope, and Oleksii
Kuchaiev. Helpsteer: Multi-attribute helpfulness dataset for steerlm, 2023.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan
Du, Andrew M. Dai, and Quoc V. Le. Finetuned language models are zero-shot learners,
2022.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8:229–256, 1992.

Zhewei Yao, Reza Yazdani Aminabadi, Olatunji Ruwase, Samyam Rajbhandari, Xiaoxia
Wu, Ammar Ahmad Awan, Jeff Rasley, Minjia Zhang, Conglong Li, Connor Holmes,
Zhongzhu Zhou, Michael Wyatt, Molly Smith, Lev Kurilenko, Heyang Qin, Masahiro
Tanaka, Shuai Che, Shuaiwen Leon Song, and Yuxiong He. DeepSpeed-Chat: Easy, Fast
and Affordable RLHF Training of ChatGPT-like Models at All Scales. arXiv preprint
arXiv:2308.01320, 2023.

Weizhe Yuan, Richard Yuanzhe Pang, Kyunghyun Cho, Xian Li, Sainbayar Sukhbaatar, Jing
Xu, and Jason Weston. Self-rewarding language models, 2024.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam
Shleifer, Kurt Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and
Luke Zettlemoyer. Opt: Open pre-trained transformer language models, 2022.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, et al. Judging llm-as-a-judge with
mt-bench and chatbot arena. arXiv preprint arXiv:2306.05685, 2023a.

Rui Zheng, Shihan Dou, Songyang Gao, Yuan Hua, Wei Shen, Binghai Wang, Yan Liu, Senjie
Jin, Qin Liu, Yuhao Zhou, Limao Xiong, Lu Chen, Zhiheng Xi, Nuo Xu, Wenbin Lai,
Minghao Zhu, Cheng Chang, Zhangyue Yin, Rongxiang Weng, Wensen Cheng, Haoran
Huang, Tianxiang Sun, Hang Yan, Tao Gui, Qi Zhang, Xipeng Qiu, and Xuanjing Huang.
Secrets of rlhf in large language models part i: Ppo, 2023b.

A Appendix

No. of compute nodes (Actor + Critic) Tensor Parallel Pipeline Parallel Data Parallel

8 + 2 8 + 4 4 + 1 2 + 4
16 + 4 8 + 4 4 + 1 4 + 8
32 + 8 8 + 4 4 + 1 8 + 16
32 + 16 8 + 8 2 + 2 16 + 8
64 + 32 8 + 8 2 + 2 32 + 16

Table 5: Parallelism settings for scaling experiments.

13

https://github.com/huggingface/trl
https://github.com/huggingface/trl

	Introduction
	Model Alignment Background
	Supervised Fine Tuning
	Reinforcement Learning from Human Feedback
	Direct Preference Optimization
	SteerLM
	Self-Play Fine-Tuning

	RLHF (PPO) Training
	Distributed Approach to PPO training
	Optimizations for PPO rollout
	Model Training Details and Quality
	Scalability
	What contributes to system performance?

	DPO Training
	SteerLM Training with LoRA
	SPIN Training
	Framework Extensibility
	Conclusion
	Appendix

