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Abstract

We show that when the Wald-Zoupas prescription is implemented, the resulting charges realize
the BMS symmetry algebra without any 2-cocycle nor central extension, at any cut of future null
infinity. We refine the covariance prescription for application to the charge aspects, and introduce
a new aspect for Geroch’s super-momentum with better covariance properties. For the extended
BMS symmetry with singular conformal Killing vectors we find that a Wald-Zoupas symplectic
potential exists, if one is willing to modify the symplectic structure by a corner term. The resulting
algebra of Noether currents between two arbitrary cuts is center-less. The charge algebra at a
given cut has a residual field-dependent 2-cocycle, but time-independent and non-radiative. More
precisely, super-rotation fluxes act covariantly, but super-rotation charges act covariantly only on
global translations. The take home message is that in any situation where 2-cocycles appears in
the literature, covariance has likely been lost in the charge prescription, and that the criterium
of covariance is a powerful one to reduce ambiguities in the charges, and can be used also for
ambiguities in the charge aspects.
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1 Introduction

Boundaries play an important role in general relativity, turning part of the diffeomorphism gauge
redundancy into a physically relevant symmetry. This is particularly useful for the physics of gravita-
tional waves, to extract observables from the full theory that can be compared with the experiments.
The boundary in this context is future null infinity I , and the symmetry described by the Bondi-van
der Burg-Metzner-Sachs (BMS) group. A unique set of charges and fluxes for this symmetry were
identified a long time ago [1, 2, 3], but only much later they were given an interpretation in terms
of Noether charges and canonical generators for a space-like hypersurface intersecting I [4, 5, 6], see
also [7, 8, 9, 10, 11, 12, 13].

A correct definition of charges should include a realization of the symmetry algebra in terms
of a phase space bracket. For the BMS charges, this property was established in [7], but only for
special asymptotic frames corresponding to round spheres, also known as Bondi frames. For arbitrary
frames, a field-dependent 2-cocyle appears. This is an undesired limitation, because these frames are
physically undistinguishable from the Bondi frames, and there is nothing in the fall-off condition nor
in the universal structure that prefers round spheres to other frames. In this paper we show how this
issue is resolved. Following carefully the Wald-Zoupas prescription one finds charges that coincide
with those of [7] for round spheres, but have an extra term on general frames [12, 13]. This extra
term guarantees that the key Wald-Zoupas requirements of stationarity and covariance are satisfied
on arbitrary frames, and only with this extra term one matches the charges of [1, 2, 3]. Including this
extra term removes the 2-cocycle in every asymptotic frame, and the explicit calculation as well as a
general argument show that there is no residual central extension either.

We also take this opportunity to refine the Wald-Zoupas covariance prescription, and show that it
can be used to discuss covariance of the charge aspects, and not only the charges as surface integrals.
In particular, we propose a new super-momentum aspect alternative to Geroch’s, which gives the
same charges and conservation laws when integrated on cross-sections, but different transformation
properties when not integrated. Specifically, it is exactly background-independent, as opposed to up
to an exact 2-form. The analysis is based on the results of [14] on the relation between Wald-Zoupas
covariance and symmetry algebras, of which this paper provides a longer and more detailed version
including field-dependent diffeomorphisms and non-trivial corner terms, and which can be applied to
any analysis of boundary symmetries.

We also show that having the Barnich-Troessaert bracket realize the algebra without 2-cocycle
means in a precise sense background-independence of the charges. This provides a notion of covariance
that is simple to implement also in radiative spacetimes. In this interpretation and in much of the
analysis a central role is played by the anomaly operator [15, 16, 17, 13], which we advertise as a very
convenient tool to investigate background-independence and covariance in any situation.

En route to these results, we clarify a number of issues relating the covariant description of radi-
ation at I , and the Bondi coordinates language. Among them, the relation between the ‘connection
coordinate’ of [18] and the ‘covariant shear’ of [11]. This includes the relation between the Ashtekar-
Streubel phase space [2] and the super-translation field [11] (also known as super-translation Goldstone
mode). We point out that the latter can be endowed with the interpretation of a ‘bad cut’, and can be
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used to enrich the radiative phase space using it as a coordinate for the late time stationary boundary
conditions. We review old results explaining why the news tensor is in general more complicated
than the time derivative of the shear, and why restricting to round spheres is possible but not al-
ways convenient. We clarify the origin of the complicated transformation laws for the shear, mass
and angular momentum in Bondi coordinates by relating them to the choice of a Lie dragged aux-
iliary vector, to Geroch’s super-momentum, and to the total divergences on the cross sections that
arise when ‘integrating the fluxes’ to obtain the charges. These transformation rules are apparently
sometimes misunderstood in the literature, prompting a discussion of “covariant” modifications. We
explain that there is nothing non-covariant about the transformation rules, and the inhomogeneous
terms that appear should not be removed but are crucial to ensure that the charges realize the algebra
covariantly and without cocycles.

We then turn attention to an extension of the BMS symmetry to non-globally defined conformal
Killing vectors that was also considered in [7]. This extended BMS symmetry (henceforth eBMS)
was proposed in [19, 20] Its additional symmetries are often referred to ‘super-rotations’, and plays
an important role in infra-red problems [21], flat holography [?], and celestial holography [22]. The
situation for the eBMS charge algebra found in [7] is much worse, with the 2-cocycle being non-zero
and field-dependent on every frame. For example the algebra of super-rotations charges evaluated on
the Kerr solution has a 2-cocycle function of the angular momentum. We identify the problem in the
fact that the generalization of Geroch’s tensor to the eBMS symmetry transforms inhomogeneously.
Remarkably, we find that it is possible to remove this 2-cocycle also for eBMS, under the same
assumptions of [7] that the transformations preserve the background asymptotic metric and that
one can integrate by parts on the cross-sections neglecting boundary terms. The key mechanism is
the following: the “offending” field-dependent term in the 2-cocycle contains a triple derivative of a
symmetry parameter that fails to vanish in two distinct situations: if the frame is not a round sphere,
or if one allows non-globally defined vector fields. In the first case, covariance is restored by Geroch’s
tensor. In the latter, one needs a generalization of Geroch’s tensor that was not long ago identitified
in the stress-energy tensor of a conformal field theory [20, 10, 23, 24, 25, 26].

This is not the end of story however. The generalized Geroch tensor is enough to remove the
2-cocycle in the charges and flux algebras, but this is a manifestation of linearized covariance only,
and finite covariance is still broken. This is because covariance of the symplectic potential is now
satisfied only up to a total divergence on the cross sections, as opposed to exactly. This leads to a
breaking of finite covariance because the anomaly operator does not commute with derivatives on the
cross-sections. We then show that by including the super-translation field of [11] it is possible to find
a Wald-Zoupas symplectic potential for eBMS, at the price of modifying the symplectic 2-form by a
corner term. Our proposal is consistent with expression for the total flux proposed in [24, 27], and
generalizes it by providing a local expression for it valid on any region of I and not only on the
whole of I . In spite of this remarkable situation, only the Noether current algebra is covariant. The
algebra of eBMS charges we identify still has a residual 2-cocyle, which is however time-independent.
In particular, it contains only the super-translation field and generalized Geroch tensor, and no longer
the shear.

We use mostly-plus spacetime signature. We denote future null infinity by I . Greek letters are
spacetime indices, lower case latin letters a, b, ... are I indices, and upper case latin letters A,B, ... are
indices for 2d cross-sections of I . In all cases, (, ) denotes symmetrization, 〈, 〉 trace-free symmetriza-
tion, and [, ] antisymmetrization. An arrow under a p-form means pull-back, =̂ means on-shell of the
field equations, and

I

= means an equality valid at I only. For the phase space, we use conventions
ω = dp ∧ dq and {q, p} = 1, and define the canonical generator via action of the vector field on the
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second slot, namely −I
F̂
ω = dF = { · , F}, so to have p̂ = ∂q. With these conventions a Lie symmetry

in a standard conservative system is realized as

IξIχΩ = {Qξ, Qχ} = δχQξ = Q[ξ,χ].

2 Radiation at I

In this Section we review some facts about the description of gravitational radiation at I that would
be important in the following. There are excellent reviews in the literature (e.g. [28, 12]), however
we believe that some of the properties that we will use may not be well appreciated, can be scattered
across the literature and be hard to find. We refer in particular to: the non-trivial relation between the
news and the time derivative of the shear, why Geroch tensor is relevant to compute fluxes between
arbitrary cross-sections even if one starts from a round sphere frame, the identification between the
‘connection coordinate’ of [18] (called ‘relative shear’ in [29]) and the ‘covariant shear’ of [11], and
why care is needed when studying the behaviour of the shear under conformal transformations.

We present our results first in covariant language, and then specialized to the asymptotic expansion
in Bondi coordinates. We hope in this way to be able to communicate to both communities familiar
with each language. We also use of the Newman-Penrose (NP) formalism, for which we choose the
conventions of [30] where all spin coefficients have opposite signs in order to make up for the mostly-
plus signature and preserve the NP equations.

The covariant language is based on Penrose’s conformal completion, whereby I is defined as the
boundary Ω = 0 of the auxiliary manifold with conformal (or ‘unphysical’) metric ĝµν = Ω2gµν . See
[1, 28] for details. While the conformal factor can be chosen arbitrarily, it is very convenient to restrict
it so that I becomes a non-expanding horizon in the conformal spacetime. This can be done looking
at the normal nµ := ∂µΩ and requiring ∇̂µnν

I

=0. Since by the conformal Einstein’s equation this
condition is equivalent to ∇̂µn

µ I

=0, where nµ = ĝµν∂µΩ is the tangent null vector field at I , this
choice of conformal frames is referred to as divergence-free. It will be assumed in the rest of the paper,
together with completeness of I and its topology R × S, where the cross-sections S (also known as
‘cuts’) are 2-spheres. Picking a divergence-free conformal compactification has the consequence that
n is an affine geodetic vector at I , that n2 := ĝµνnµnν = O(Ω2), and that I is a non-expanding
horizon.1 It follows that the pull-back of the conformal spacetime connection defines a unique 3d
connection, Da := ∇̂a. This connection defines the radiative phase space at I [18, 2, 28].2 It also
follows that the induced metric qab := ĝab is time-independent, £nqab = 0, a condition often referred
to as ‘Bondi condition’, and numerous manipulations simplify significantly. Since this restriction can
be done without loss of generality, all asymptotically flat solutions in Penrose’s sense3 share the same
universal structure given by

(qab, n
a) ∼ (ω2qab, ω

−1na), qabn
b = 0, £nω = 0. (2.1)

In other words, there exists a coordinate system in which every solution induces the same metric
and normal vector up to a time-independent conformal transformation. It means that all asymptotic
diffeomorphisms that preserve this universal structure are symmetries, in the same way as isometries

1More precisely, a non-expanding horizon endowed with a canonical extremal weakly isolated horizon structure [29].
2More precisely, the radiative phase space is defined by an equivalence class of connections that removes the dependence

on conformal rescalings of the type Ω′ = (1 + Ωµ)Ω which change the connection but not the background structure
(qab, n

a).
3And also in the weaker sense in which peeling violations in ψ1 are allowed for l > 1[31].
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of the background metric are symmetries for physics in Minkowski spacetime. These are the vector
fields ξ such that

£ξĝab
I

=2αξ ĝab, £ξn
a I

= − αξn
a. (2.2)

The equations (2.2) can also be understood as the requirement that the unphysical metric and normal
to I are left invariant by the combined action of a diffeomorphism plus a conformal transformation
with infinitesimal conformal factor 1 − αξ. The resulting symmetry group is the infinite-dimensional
BMS group SL(2,C) ⋉ RS of Lorentz transformations and super-translations. The difference is that
super-translations can be uniquely identified, as ξ = fn with £nf = 0, whereas to identify a Lorentz
transformation we need to choose a cross-section of I , since there is no unique projector ‘orthogonal’
to n. This step is analogue to choosing an origin in Minkowski space in order to extract a Lorentz
subgroup from the Poincaré group, but with the added difficulty that there is a super-translations’
worth of cuts to choose from, as opposed to a translations’ worth only. The presence of an infinite
number of equivalent Poincaré subgroups of the BMS group can be made explicit if we pick coordinates
(u, xA) on I such that n

I

= ∂u, we can parametrize the solutions to (2.2) as ξ = f∂u + Y A∂A, with
f = T + u

2DAY
A, where T = T (xA) and Y A = Y A(xB) are the symmetry parameters corresponding

respectively to super-translations and conformal Killing vectors (CKV) of the cross-sections, whose
covariant derivative is DA, and which span the (double cover of the proper orthocronous) Lorentz group
SL(2,C). However while T is uniquely defined, Y A refer explicitly to the leaves of the u-foliation. We
also recall that the group of super-translations contains a subgroup of global translations which is
also uniquely defined, however its ‘orthogonal’ complement is not, because there is no natural metric
in this space. Hence the notion of a ‘pure super-translation’, namely a super-translation without
any global translation component, is also not unique but foliation and frame dependent. Super-
translations and rotations of any Lorentz subgroup preserve the conformal frame, whereas boosts
change it. Translations and rotations preserve any given foliation, whereas super-translations and
boosts do not.

It is common in the literature to further restrict the conformal freedom and choose ω so that
the induced metric on cross-sections is a unit round sphere. These special conformal completions
are called Bondi frames (not to be confused with the Bondi condition above). This can always be
done and would not change the symmetry group nor the physics in any way, but it may not be very
convenient in practice, because checking conformal invariance of the physical expressions becomes
more complicated: one cannot do arbitrary conformal transformations but has to take into account
the non-trivial functional dependence that conformal transformations relating round spheres must
have (namely, correspond to Lorentz boosts on the celestial sphere).

While the symmetry group is defined uniquely in terms of the available intrinsic structure at I ,
the covariant phase space requires an embedding of I in the conformal spacetime. It is always possible
to choose coordinates (u,Ω, xA) of the embedding so that n

I

=∂u. Thanks to the Bondi conditions,
these coordinates are affine, in the sense that u is an affine parameter for the null geodesics, and xA

are Lie dragged by n. This means that the whole metric at I is universal, and not just its pull-back:

δĝµν = 0. (2.3)

As a consequence, the first-order extension of the symmetry vector fields is fixed, and the arbitrariness
of their bulk extension starts at O(Ω2) [12].

In the covariant description, the radiative content of the gravitational field is encoded in Ŝab, the
pull-back to I of the unphysical Schouten tensor Ŝµν . However, this tensor depends on the conformal
completion chosen: changing it via Ω → ωΩ does not affect the physics but changes Ŝab. To extract
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the information on the physical radiation one has to get rid of this dependence. The problem was
solved by Geroch [1], who found that there exists a unique kinematical tensor ρab whose behaviour
under conformal transformations matches exactly the one of the pull-back Ŝab. The fact that it is
unique and kinematical means that it can be subtracted off Ŝab without affecting the physical content.
The resulting quantity is the news tensor

Nab := Ŝab − ρab. (2.4)

It is conformally invariant, traceless, and describes the gravitational radiation in an unambiguous way.
Geroch’s tensor is defined on I by four conditions,

ρ[ab] = 0, ρabn
b = 0, D[aρb]c = 0, qabρab = R. (2.5)

Any tensor like ρab whose contraction with na gives zero (the second condition) is called ‘transverse’,
or ‘horizontal’. In the last equation, R is the 2d Ricci scalar, and the fact that ρab is transverse means
that one can use any ‘inverse’ in the equivalence class qab ∼ qab + naXb. These equations imply

Dbρab = ∂aR, Dbρ〈ab〉 =
1

2
∂aR. (2.6)

Furthermore £nρab = 0 from the Bondi condition. From the behaviour of R under conformal trans-
formations (2.1), it follows that

ρ′ab = ρab − 2ω−1DaDbω + 4ω−2DaωDbω − ω−2gabD
cωDcω. (2.7)

We will denote ρ′ − ρ = ∆ωρ, whose linearization for ω = 1 +W is

∆Wρab = −2DaDbW +O(W 2). (2.8)

This conformal transformation matches precisely the one of Ŝab, hence (2.4) is conformally invariant.
To prove that a solution to (2.5) exists, it is enough to choose a Bondi frame, which we denote by

qAB =
◦
qAB with R =

◦
R = 2, because then

ρab =

◦
R
2

◦
qab (2.9)

is manifestly a solution. To prove that is unique is a bit more elaborate, and crucially relies on the
spherical topology of the cross-sections [1]. Once this is established, the solution in an arbitrary
frame is obtained from (2.7). Since ρab is uniquely determined by the background metric qab and the
latter is universal, it is also universal. This may look surprising at first, because BMS boosts induce
a conformal transformation of the frame, and ρab is not conformally invariant. However, the same
uniqueness arguments based on the topology of the sphere lead to [1]

£ξρab = −2DaDbαξ. (2.10)

The key point is that this coincides with a linearized conformal transformation (2.8) with αξ = W .
Hence combining (2.10) with (2.8) so to keep qab invariant as by definition of the BMS symmetry
group, ρab remains also invariant. In other words δξρab = 0, consistently with being universal.

Geroch’s tensor plays a crucial role in turning many frame-dependent statements into conformally-
invariant ones. For instance, super-translations contain a unique subgroup of global translations, which
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on a Bondi frame can be identified as the l = 0, 1 modes of T , namely as the solutions to D〈aDb〉T = 0.
This equation is however not conformally invariant, and it is only valid on Bondi frames. In arbitrary
frames, it is replaced by

(

D〈aDb〉 +
1

2
ρ〈ab〉

)

T = 0. (2.11)

Its conformal invariance can easily be checked using (2.7) and the fact that T has conformal weight 1.
In the literature the news is often presented in terms of (the time variation of) an asymptotic shear,

in order to give it a more intuitive geometric meaning. This relation however requires introducing
additional structure, because while the news is a unique covariant tensor, an asymptotic shear refers
to a foliation of I . In Bondi coordinates there is a natural foliation given by the level sets of the
coordinate u, and we will come back to it. An alternative way to talk about shear without fixing a
specific foliation is to introduce an auxiliary null vector l such that l ·n I

= − 1 (also known as ‘rigging’
vector). We require l to be hypersurface orthogonal on I , so that it is equivalent to a choice of
foliation. It then defines a projector on the space-like cross-sections (‘cuts’) of I , which we denote
γµν := ĝµν +2n(µlν) ≡ 2m(µm̄ν). Notice that γab = qab and that γΩµ = 0 = γΩµ hence γµν has the same

content as γab, and provides a choice of ‘inverse’ for the induced metric that annihilates the auxiliary
null form l. The shear and expansion of this arbitrary foliation associated with l are

σµν := γρ〈µγ
σ
ν〉∇̂ρlσ, θ := γµν∇̂µlν . (2.12)

They are related to (the pull-back of) the gradient of l by

Dalb = γcaγ
d
b ∇̂cld − laτb = σab +

θ

2
qab − laτb, (2.13)

where
τa := £nla, τ · n = τ · l = 0. (2.14)

The time-dependence of the connection can be computed using the fact that the conformal metric’s
Weyl tensor vanishes at I , giving

[£n,Da]lb = R̂aρσbn
ρlσ =̂

1

2
Ŝab =

1

2
(Nab + ρab). (2.15)

Then using the relation between the Schouten tensor and the normal n provided by the Einstein’s
equation, one can prove that

Nab = 2£nσab − 2(D〈a + τ〈a)τb〉 − 2l(a£nτb) − ρ〈ab〉, (2.16)

which is the general relation between the news and the shear.
The general formula (2.16) is not very common in the literature, because ρ〈ab〉 and τa can be set

to zero choosing specific background structures, without affecting the physics nor the symmetries.
It is however instructive to appreciate the role of the various extra terms, as well as the logic that
goes behind the specific restrictions one may choose. The key point is that the shear depends on
two background structures: the conformal factor, and the choice of l. The freedom to change l is an
internal Lorentz transformation belonging to n’s little group, which we’ll refer to as class-II following
[32]:

l → l + ām+ am̄+ |a|2n, m → m+ an, s ∈ C. (2.17)
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This is a 2-real-parameter family a priori, but we restrict it requiring l to remain hypersurface or-
thogonal. Changing l within this class we change the foliation to which σab makes reference, so the
first term in (2.16) is not class-II invariant. But the τa terms in (2.16) are also not invariant under
(2.17), and their transformation compensates the transformation of σab, so that the whole expression is
class-II invariant. Concerning the conformal factor, under (2.1) we have l → ωl, so £nσab is invariant.
However τa → τa + ∂a lnω, hence the τa terms are not invariant: their transformation compensates
the transformation of ρ〈ab〉, so that the whole expression is conformally invariant.

Having clarified this, let’s see what happens when these background terms are simplified. As
mentioned above, one could limit the conformal frames to be round spheres only, namely ‘Bondi
frames’. Then ρ〈ab〉 = 0, as (2.9) shows. In other words, if we restrict the conformal transformations

to those that preserves round spheres, Ŝ〈ab〉 is conformally invariant, and Geroch’s tensor is only
needed to remove the trace part. Alternatively, one could choose to work with Lie-dragged auxiliary
vectors only, then τa = 0. To see what this means, let’s fix coordinates so that n

I

= ∂u. Then the class
of hypersurface-orthogonal auxiliary vectors Lie-dragged by this n describes all foliations that differ
from the level sets of u by a super-translation only. With this choice, (2.16) reduces to [3]

Nab = 2£nσab − ρ〈ab〉, (2.18)

or in terms of NP scalars, N = − ˙̄σ − 1
2b, where σ := −mambσab and b := m̄am̄bρab is the inscrutable

notation used in [3] for the spin-2 weighted projection of Geroch’s tensor.4 To check conformal
invariance of this expression, one has to be careful, because transforming l → ωl does not preserve
τa = 0. The solution is to add a a class-II transformation with a = −ω−1£mũ, where ũ = ωu:

l → l′ = ωl − ∂Aũ dx
A +

1

2ω
∂Aũ∂

Aũ n. (2.19)

This rule for the conformal transformation preserves τa = 0. Using it in the shear, we get

σab → σ′ab = ωσab − u
(

D〈aDb〉ω − 2ωD〈a lnωDb〉 lnω
)

. (2.20)

The inhonomogeneous terms can be recognized as 1
2uω∆ωρ〈ab〉, hence Geroch’s tensor in (2.18) makes

the expression conformally invariant in the subset of Lie-dragged l’s. Finally if one chooses both
Bondi frames and Lie dragged l, then Nab = 2£nσab, or in terms of NP scalars, N = − ˙̄σ. Conformal
invariance of this expression requires one to transform l homogeneously, hence a non-trivial τa must be
included if the conformal factor does not preserve round spheres. This is for instance the set up used
in the review [12]. We prefer to use a set up in which we fix τa = 0, because it provides a simplification
of many formulas that can be done without any loss of generality, at the small price that the news is
given by (2.18) and not just the time derivative of the shear. It is furthermore the set up that arises
naturally when working in Bondi coordinates, as we will review in the next Section.

As discussed above, restricting to τa = 0 means considering only shears adapted to foliations
related by a super-translation, on a fixed conformal frame. This has an important consequence for
the flux-balance laws, because some of the charge aspects depend on the shear, and thus require a
choice of cross section in order to be defined. If the initial and final cross section considered belong
to the same u foliation, then we can use the same Lie-dragged l to describe them. But if they don’t,
namely they differ by a super-translation, then the foliation linking them is described by a non-Lie
dragged l. This problem can be dealt with in two different ways. The first is to stick with the non-Lie

4Possibly b for Bob?
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dragged l, and explicitly map the symmetry parameters and charge aspects of the final cross-section
to those of the initial cross-section, which can be done using a BMS transformations. This is for
example what is done in [9, 33]. But there is a more elegant alternative, which is due to Dray [34]:
One can change frame so that the two cross sections belong now to the same u foliation. With this
trick, the symmetry parameters and charge aspects are the same on both cross sections, but one is in
general no longer working on a round sphere. See Appendix A.1 for details. In summary, we have seen
two convenient reasons to not limit the conformal compactifications to be only round spheres: first,
checking conformal invariance is simpler; second, it is possible to write the flux between two arbitrary
cross-sections using charges described by a Lie dragged l.

The transformation (2.19) can be easily generalized to include an arbitrary super-translation of
the foliation that l is orthogonal to. This is done replacing ũ = ωu with

ũ = ω(u+ T ), (2.21)

where T (xA) is the super-translation. The ensuing transformation of the shear is

σab → σ′ab = ωσab − (u+ T )
(

D〈aDb〉ω − 2ωD〈a lnωDb〉 lnω
)

− ωD〈aDb〉T. (2.22)

The same transformation rule is also studied in [10], using the Newman-Penrose formalism. For later
purposes, we note here the linearization of (2.22), with ω = 1 +W and T assumed small and same
order of W ,

σ′ab = σab +Wσab −D〈aDb〉(T + uW ). (2.23)

The formulas (2.13) and (2.15) make it clear that the connection Da = ∇̂a describes both the
news and the shear. To elaborate further on this relation, one can use the auxiliary rigging vector to
define a Newman-Penrose basis at I (and there only, we do not require the vectors (l, n) to be null
everywhere). Taking l hypersurface-orthogonal implies that the spin coefficient ρ is real, the Bondi
condition implies that the real part of the spin coefficient γ vanishes and that the spin coefficient τ
describes the non-Lie dragging τa. All the NP quantities refer to the conformal metric, but to simplify
the notation we don’t mark them with hats, and furthermore we will remove the traditional ◦ that
stands for leading order terms at I , with the understanding that all NP symbols used here refer to
the leading order asymptotic quantities. In the Newman-Penrose basis

ψ3 =
1

2
m̄aDbNab = ðN, ψ4 = −¨̄σ. (2.24)

Here N = 1
2m̄

am̄bNab is the spin-weighted projection of the news tensor, and ð (‘eth’) is the 2d
covariant derivative on spin-weighted NP scalars. It appears because Nabn

b = 0 hence the divergence
effectively reduces to a 2d covariant derivative on the cross-sections. ‘ð-calculus’ is very convenient
for many manipulations, but can be freely traded for a tensorial notation via

ð(mam̄bψab) = mam̄bmc
Dcψab, (2.25)

where the 2d covariant derivative is

Daψb := γcaγ
d
bDcψd = (Da + la£n)ψb, ψan

a = 0. (2.26)

This equation also shows that the 3d derivativeDa acts universally on transverse (or ‘horizontal’) fields,
namely in a way independent of the radiation. The two derivatives coincide on time-independent fields,
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as well as when pull-backs on cross-sections are involved. This is what happens in the first equality
of (2.24), where the divergence is taken with respect to γab.5 Since there is no constant tensor on I ,
(2.24) don’t have zero modes and we conclude that the news tensor is equivalent to knowing ψ3 and
ψ4.

Concerning the shear, its two components can be split into an ‘electric’ and a ‘magnetic’ part, with
the latter super-translation invariant. The magnetic part is related to the news and Im(ψ2) via [35]

Im(ψ2) = Im
(

ð̄
2σ − σ ˙̄σ

)

= Im

(

(

ð̄
2 +

b

2

)

σ + σN

)

= −1

4
ǫab

(

(DaDc +
1

2
ρac)σ

c
b +

1

2
Nacσ

c
b

)

, (2.27)

where in the second equality we used (2.18), and in the third equality ǫab := −2im[am̄b]. It is customary
to strengthen the non-radiative conditions requiring Im(ψ2) = 0 on top of N = 0,6 implying

ǫab
(

DaDc +
1

2
ρac

)

σcb = 0, (2.28)

namely a ‘purely electric’ shear. The connections associated with non-radiative spacetimes are called
vacuum solutions in the radiative phase space. We conclude that in any given conformal frame, the
(equivalence class of the) connection determines the news and the shear, or equivalently Im(ψ2), ψ3, ψ4

and the electric part of the shear, and that a vacuum connection depends only on the electric part of
the shear.

It is useful to make this dependence more explicit. If we specialize (2.15) to a vacuum connection
◦
D we find [£n,

◦
Da]lb =̂

1
2ρab, and since £nρab = 0, we conclude that for a Lie-dragged l,

◦
D〈alb〉 =

◦
σab =

1

2
uρ〈ab〉 − cab. (2.29)

To determine the time-independent field cab, we impose the vacuum condition (2.28). The differential
operator annihilates Geroch’s tensor (it is ‘purely electric’), and the general solution is

cab =

(

D〈aDb〉 +
1

2
ρ〈ab〉

)

u0, £nu0 = 0, (2.30)

or mambcab = (ð2 + 1
2b)u0 in NP language. This is the same operator that appears in (2.11), since T

is time independent. It has a four-dimensional kernel, given on round spheres by the l = 0, 1 spherical
harmonics. Since cab is entirely determined by a free function on the sphere, it can be always set to
zero with a super-translations. Once it is set to zero, it remains so for the 4-parameter family of zero
modes, namely the global translations. This is the 4-parameter family of shear-free cross-sections,
namely the famous ‘good cuts’. The solution (2.29) with cab given by (2.30) determines any vacuum
shear as a function of a choice of origin in the radiative phase space, namely σ = 0 for the chosen l,
and a choice of ‘bad cut’ u0 = u0(x

A).

5This is only true for first derivatives, for instance for second derivatives we have

DaDbf = DaDbf + (Dalb + 2l(aDb) + lalb£n)£nf

and
DaDbσ

ab = DaDbσ
ab + σabσ̇

ab
.

6Non-radiative spacetimes so defined possess a unique preferred Poincaré subgroup of the BMS group [36].
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More in general, the split into electric and magnetic parts of an arbitrary shear can be parametrized
in terms of two time-dependent functions Φ and Ψ of conformal weight 1, via

◦
σab −

u

2
ρ〈ab〉 = (D〈aDb〉 +

1

2
ρ〈ab〉)Φ + ǫ〈a

c(Db〉Dc +
1

2
ρb〉c)Ψ. (2.31)

This formula reduces to the standard Helmholtz decomposition on round spheres (but which is not
conformally invariant, hence the need of Geroch’s tensor in the general formula). For vanishing news
the functions are time-independent. Then the purely-electric part Φ is the one that can be set to
zero with a super-translation, and the purely-magnetic one Ψ is set to zero adding Im(ψ2) = 0 to the
definition of non-radiative.

Given a general connection and a vacuum connection parametrized by u0, we define the relative
shear

Sab := (D〈a −
◦
D〈a)lb〉 = σab −

◦
σab = σab −

u

2
ρab +

(

D〈aDb〉 +
1

2
ρ〈ab〉

)

u0. (2.32)

Applying (2.22) we see that it is invariant under super-translations, and it transforms homogeneously
with weight 1 under conformal transformations. Namely

Sab → S ′
ab = ωSab. (2.33)

The relative shear provides a potential for the news, since

Nab = 2£nSab. (2.34)

The quantity Sab is precisely the ‘covariant shear’ of [11], there obtained from a gBMS coordinate
transformation of Minkowski in Cartesian coordinates, here derived in a coordinate independent way
from the connection description of I [18]. It is closely related to the ‘connection coordinate’ of [18]

(denoted relative shear in [29]), where however
◦
σ is taken as a choice of origin fixed once and for all,

as opposed to a variable choice of vacuum.
The relative shear is convenient to encode temporal boundary conditions on the radiation. We

require stationarity in the far future, which we impose asking that the connection goes to a vacuum
state:

lim
u→∞

Nab =
1

u1+ε
, lim

u→∞
Im(ψ2) =

1

uε
, ε > 0. (2.35)

If we now pick a specific vacuum state
◦
σ, and we use it in the definition of the relative shear, we can

rewrite the boundary conditions as
lim
u→∞

Sab = 0. (2.36)

In other words, we enlarge the radiative phase space with a corner datum u0, which represents all
possible late times vacuum boundary conditions, and parametrize this enlarged phase space with the

relative shear (2.32) satisfying (2.36) where now δu0 (equivalently δ
◦
σ) parametrizes the directions

corresponding to the different boundary conditions.

2.1 Bondi asymptotic expansion and anomalies

Let us now specialize the above covariant formulas to the Bondi expansion. One advantage of it is
that it makes computing the action of the BMS transformations on the asymptotic fields completely
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straightforward. We denote the Bondi coordinates (u, r, xA) with r the area radius, and assume
standard BMS fall-off conditions. We then have

guu = −R
2

+
2M

r
+O(r−2), gur = −1− 2β

r2
+O(r−3), β := − 1

32
CABCAB, (2.37a)

guA = −UA +
2

3r
(JA + ∂Aβ − 1

2
CABU

B), UA := −1

2
D

BCAB, (2.37b)

gAB = r2qAB + rCAB +O(1). (2.37c)

We take Ω = 1/r as conformal factor, then the only non-vanishing components of the unphysical
metric ĝµν := Ω2gµν at I are ĝΩu = 1 and ĝAB = qAB, namely

ĝµνdx
µdxν

I

=2dudΩ + qABdx
AdxB . (2.38)

The background 2d metric qAB is universal, δqAB = 0, we denote DA its covariant derivative, and
RAB = 1

2qABR its Ricci tensor. The coordinates (u, xA) on I define a foliation associated with
retarded time, and n

I

= ∂u. The volume form is ǫI = du ∧ ǫS where ǫS = inǫI is the area 2-form of
the cross-sections. From the Bondi condition £nqab = 0, hence also £nǫI = 0 and dǫS = 0. The
embedding makes u an affine parameter for I , and we have n2 = 1

2RΩ2 +O(Ω3).
The dynamical fields are M,JA and CAB . The first two are related to the mass and angular

momentum aspects, see below. They are determined by the asymptotic Einstein’s equations via

Ṁ = −1

8
ĊABĊ

AB +
1

4
DADBĊ

AB +
1

8
D

2R, (2.39)

J̇A = DAM +
1

2
D

B
D[ADCCB]

C +
1

4
CAB

DBR+
1

2
D

B(Ċ[B
CCA]C)−

1

4
ĊBCDAC

BC . (2.40)

The definition of JA corresponds to the choice (1, 1) in the parametrization of [37], and it is related
to [7] and [9] respectively by

JA = NBT
A − ∂Aβ = NFN

A + 2∂Aβ +
1

2
CABU

B , (2.41)

or equivalently

guA = −UA +
2

3r
(NBT

A − 1

2
CABU

B) = −UA +
2

3r
(NFN

A + 3∂Aβ). (2.42)

The field CAB is related to the shear of the u foliation by

σab = −1

2
CAB δ

A
a δ

B
b , (2.43)

and in terms of (2.12) it corresponds to l = −du, which is manifestly hypersurface-orthogonal and Lie
dragged by n. An explicit calculation of the unphysical Schouten tensor gives

Ŝab = −δAa δBb ĊAB +
R
2
qab. (2.44)

Recalling the properties of the Geroch tensor listed earlier, the only non-vanishing components of the
news tensor are

NAB = −ĊAB − ρ〈AB〉, (2.45)
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in agreement with the general formula (2.16).
The solutions to (2.2) in the Bondi coordinates (u, xA) read ξ = f∂u + Y A∂A, where as before

f = T + u
2DAY

A, and T = T (xA) and Y A = Y A(xB) are the symmetry parameters corresponding
respectively to super-translations and conformal Killing vectors of the 2-sphere associated with the u
foliation. T and u have conformal weight 1, and Y has conformal weight 0. Since we have fixed the
coordinate gauge freedom in the bulk, we can also fix the bulk extension of the symmetry vector fields,
asking that they preserve the Bondi coordinates. This includes preserving the affine embedding, hence
(2.3) is satisfied. The result is

ξ = f∂u + Y A∂A +Ω(ḟ∂Ω − ∂Af∂A)−
1

2
Ω2(D2f∂Ω − CAB∂Bf∂A) +O(Ω3). (2.46)

Notice that ξ is field-dependent starting at second order. It satisfies

2lν∇(µξν) = ∇νξ
ν lµ, (2.47)

where lµ := −∂µu. It can be recognized as the Tamburino-Winicour condition for the extension [38].
To write the action of the symmetries on the dynamical fields, we use the covariant phase space.

We follow the notation of [17] where δ is the exterior derivative, IV the internal product with a vector
field V , and δV = IV δ+δIV the field-space Lie derivative. Together with their spacetime counterparts
(d, iv ,£v), they define a bi-variational complex with [d, δ] = 0 (the opposite sign convention is used
in [6]). The field-space vector field corresponding to a diffeomorphism is Vξ =

∫

d4x£ξφ
δ
δφ

and we
use δVξ

= δξ for short. We also use the anomaly operator ∆ξ := δξ − £ξ − Iδξ [15, 16, 17, 13]. It
measures the breaking of covariance, namely discrepancies between δξ and the spacetime Lie derivative
£ξ that can be introduced in the presence of background structures, gauge-fixing, and field-dependent
diffeomorphisms.

The action of a BMS transformation in the covariant phase space then corresponds to a transfor-
mation δξ where ξ is a symmetry vector field. To compute it, we have to take into account the presence
of two background fields that are used in the asymptotic expansion: the conformal factor Ω, and the
foliation of I provided by the Bondi time u, and which is used to define the shear. If we see Ω and
u as part of a coordinate system, also the remaining xA coordinates are part of the background, but
they are not needed to be included in the list of background fields because none of the quantities used
makes reference to a specific choice for them. Let us denote the background fields collectively with η.
They are universal, hence δη = 0 and δξη = 0. For the dynamical fields, here just the metric, we have
by definition δξgµν = £ξgµν . It follows that for a generic scalar functional F (gµν , η) that depends on
both dynamical and background fields, like M,J,C, q above, there is a discrepancy between the field
space and spacetime Lie derivatives:

δξF := F (gµν +£ξgµν , η) − F (gµν , η) =
∂F

∂gµν
£ξgµν = £ξF +∆ξF, (2.48)

where

∆ξF = (δξ −£ξ)F = −∂F
∂η

£ξη (2.49)

is the anomaly. It coincides with the definition in the previous paragraph because we are only acting
on field-space scalars hence Iδξ is trivial regardless of whether δξ = 0 or not. From the definition
(2.48), we see that the action of δξ can be computed writing £ξgAB = r2δξqAB + rδξCAB +O(1) etc.,
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and using (2.37) and (2.46) one finds (see e.g. [11, 39, 13])

δξ qAB = (f∂u +£Y − 2ḟ)qAB = 0, (2.50a)

δξ CAB = (f∂u +£Y − ḟ)CAB − 2D〈ADB〉f (2.50b)

= −fNAB + (£Y − ḟ)CAB − 2(D〈ADB〉 +
1

2
ρ〈AB〉)f,

δξM = (f∂u +£Y + 3ḟ)M − 1

2
DAN

AB
DBf +

1

4
∂u(C

AB
DADBf), (2.50c)

δξ JA = (τ∂u +£Y + 2ḟ)JA + 3M∂Af +
1

8
NBCC

BC
DAf − 1

2
CC
ANBCD

Bf (2.50d)

+
3

2
D[AD

CCB]CD
Bf +

1

4
DA

(

CBC
DBDCf

)

+
1

2
D〈ADB〉fDCC

BC

+
1

4
CABD

B
D

2f +
1

8
ρBCC

BC
DAf − 1

2
CC
Aρ〈BC〉D

Bf.

The second equality in (2.50a) follows from the Bondi condition and the restriction of the Y ’s to
be CKVs, hence

D〈AYB〉 = 0 (2.51)

for any 2d metric. It shows that the symmetry can be understood as the requirement that the
unphysical metric is left invariant by the combined action of a diffeomorphism plus a compensating
conformal transformation. Taking two derivatives of (2.51) we find (D2 +R)DY = −£YR. If qAB is
a round sphere, this equation reduces to (D2 + 2)DY = 0 implying that DY has l = 1 modes only.
This in turns implies that

D〈ADB〉DY = 0 (2.52)

on round spheres. Switching back to arbitrary frames, we conclude that

(D〈ADB〉 +
1

2
ρ〈AB〉)uDCY

C = 0 (2.53)

for a globally defined CKV. Notice that u is needed here to make the equation conformally invariant.
This is the operator Dρ in Bondi coordinates, and we have thus seen that it annihilates both global
translations and boosts. The second line of (2.50b) uses (2.45), and allows us to see that only (non-
global) super-translations induce a inhomogeneous transformation on the shear. This also implies that
a BMS transformation cannot induce a magnetic shear, but only an electric one.

Let us now talk about the anomalies and their meaning. The background fields are Ω and u,
namely the choice of conformal compactification and of foliation of I . The anomaly ∆ξΩ = −ḟΩ
measures the conformal weight 1 of Ω, and ∆ξu = −T − ḟu measures its conformal weight 1 as well
as its “super-translation weight” 1, namely the fact that the foliation is not invariant under super-
translations. Similarly for the conformal metric, the anomaly is ∆ξĝab = −2ḟ ĝab and picks up its
conformal weight 2. The list of anomalies for the purely background fields is

∆ξΩ = −ḟΩ, ∆ξu = −T − ḟu, (2.54)

∆ξnµ = −ḟnµ, ∆ξǫS = −2ḟ ǫS, ∆ξǫI = −3ḟ ǫI .

The minus signs in these expressions are conventional, and follow from the definition (2.49). What we
learn from this analysis is that the symmetry group is large enough to probe the background, making
the anomaly operator an effective tester of background independence. More precisely, boosts change
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the conformal frame hence test conformal invariance, and super-translations change the foliation hence
test foliation independence. The limitation of testing background independence in this way is that
the transformations of the background are limited to those generated by a symmetry, as opposed to
arbitrary change of conformal factor and of foliation. [The anomaly operator can be used to compute
the dependence of the fields on background structures in a convenient way. The restriction is that this
is done not by arbitrary changes of the background, but by those changes which are allowed by the
symmetry vector fields. It is therefore the presence of respectively boosts and super-translations in
the symmetry that allows the anomaly operator to be sensitive to the conformal and super-translation
weights. ] This difference shows up if we look at the anomaly of the symmetry vector fields, which is
not zero even though from its definition (2.2), we see that ξ is manifestly conformally invariant and
foliation independent. To compute its anomaly, we first observe that it is a purely background field
at I , hence δχξ

I

=0. Then

∆χξ = −£χξ +O(Ω) = −[χ, ξ] +O(Ω). (2.55)

The anomaly of the vector fields is nothing but their Lie algebra. This fact will play an important
role below, making the anomaly operator a convenient tool to study covariance of charges and fluxes.
It is also useful for later purposes to single out two sub-cases of (2.55). The general expression for the
commutator in a given affine foliation is

[ξ, χ] = (Tξ ḟχ + Yξ[fχ]− (ξ ↔ χ))∂u + [Yξ, Yχ]
A∂A. (2.56)

For ξ = ξT := T∂u a pure super-translation,

∆χξT = [ξT , χ] = ξT ′ , T ′ = ḟχT − Y A
χ ∂AT, (2.57)

which we can interpret as the conformal and super-translation weights of the vertical component of
the symmetry vector field (namely of T if seen as a vector component and not a scalar, otherwise only
the second term would be present). In particular, two super-translations commute. For ξ = ξY :=
uḟ∂u + Y A∂A a (cross-section-dependent) Lorentz transformation,

∆χξY = [ξY , χ] = ξY ′ + ξf ′ , Y ′ = [Y, Yχ], f ′ = Y A∂Afχ − ḟTχ − uY A
χ ∂Aḟ . (2.58)

In particular for χ = χT a pure super-translation

∆χT
ξY = [ξY , χT ] = ξT ′ , T ′ = Y A∂AT − ḟT, (2.59)

which makes it manifest why the notion of Lorentz subgroup of the Lorentz group is cross-section
dependent: acting with a super-translation changes the cross-section and the Lorentz symmetry vector
is shifted by a super-momentum contribution. For the angular momentum piece ḟ = 0 and the shift
is by Y A∂AT only.

To extract the anomaly contribution in (2.50), we first observe that qAB and CAB can be seen as
the only non-zero components of transverse tensors qab and Cab on I . This also explains why these
functionals do not depend on a specific choice of xA coordinates, and the only relevant background
fields are Ω and u. For transverse tensors, the Lie derivative reduces to £ξ = f∂u + £Y in Bondi
coordinates. Therefore from the definition (2.49) we have

∆ξ qAB = −2ḟ qAB, (2.60a)

∆ξ CAB = −ḟCAB − 2D〈ADB〉f. (2.60b)
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The first is again the anomaly of the conformal metric that we already know. More interesting is the
anomaly of the shear, which recalling that σAB = −1

2CAB , can be rewritten as

∆ξ σAB = −ḟσAB + D〈ADB〉f. (2.61)

Comparing (2.61) to (2.23) we see that the anomaly of CAB computes its behaviour under super-
translations and conformal transformations, including both its conformal weight and the inhomoge-
neous term, with the specification that conformal transformations are to act on l as in (2.19) and
not homogeneously. The reason for this is that Cab is not any shear, but specifically the shear of the
u-foliation, hence its anomaly follows from the behaviour of u→ u′ under conformal transformations
and changes of foliation, which is such that du → du′ is still Lie-dragged. In other words, both na

and la are background fields, hence ∆ξτa = −£ξτa preserves a vanishing τa. We also notice for later
purposes that

∆ξ C
AB = 3ḟCAB − 2D 〈A

D
B〉f, ∆ξ(C

ABǫI ) = −2D 〈A
D

B〉fǫI . (2.62)

Let us recover also the behaviour (2.33), because it will be instructive about the transformation

properties of the super-translation/bad-cut field u0. The transformation of a vacuum shear
◦
CAB can

be deduced from (2.50b) setting the news to zero,

δξ
◦
CAB = (£Y − ḟ)

◦
CAB − 2(D〈ADB〉 +

1

2
ρ〈AB〉)f. (2.63)

Using then (2.29), (2.30) and the universality of both qAB and ρAB , we have that

δξ
◦
CAB = 2(D〈ADB〉 +

1

2
ρ〈AB〉)δξu0. (2.64)

Comparing the two equations above we conclude that

δξu0 = £Y u0 − T − u0ḟ = £Y u0 − f |u0 . (2.65)

Notice that it implies ∆ξu0 = −f |u0 in agreement with its conformal and super-translation weights.
Hence for the relative shear (2.32) we have

δξSab = £ξSab − ḟSab, ∆ξSab = −ḟSab, (2.66)

consistently with the geometric analysis of the previous section. The relative shear can also be written
as

Cab := Cab + (u− u0)ρ〈ab〉 − 2D<aDb>u0 = −2Sab, (2.67)

to match the notation of [11].
The transformation (2.65) was posited in [11], in order to obtain the homogeneous transformation

of (2.32). Our derivation clarifies that (2.65) does not need to be posited, but follows from the fact
that u0 parametrizes a vacuum shear, and that a vacuum shear is not a new degree of freedom, its
transformation follows from the symplectic structure on the radiative phase space of [18]. It thus also
clarifies that the super-translation/bad-cut field u0 is not a new degree of freedom but rather part of
the initial (or final) conditions for the gravitational field.
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We insisted that the transformation rule (2.50b) is the appropriate one for a shear associated with
an affine foliation. In the covariant description recalled earlier one can use a general shear associated
with an arbitrary l. In this case the transformation law is [18, 29]

δξσab = [£ξ,D〈a]lb〉 + 2l〈aDb〉ḟ . (2.68)

It is instructive to see how it reduces to (2.50b) when l is Lie dragged. This was shown in [12], and
we report a slightly streamlined version of the proof in Appendix A.

Finally let’s look at the news tensor. First, from [∂u, δξ ] = 0 and [∂u,∆ξ] = −ḟ∂u, we have

δξ ĊAB = (f∂u +£Y )ĊAB − 2D〈ADB〉ḟ , ∆ξ ĊAB = −2D〈ADB〉ḟ . (2.69)

To understand the meaning of the anomaly of ĊAB, observe that it vanishes for a globally defined
CKV on round spheres but not otherwise. This means that identifying non-radiative spacetimes as
constant shear, σ̇ = 0, is not a conformally invariant notion in general, but only if the conformal
transformations are restricted to preserve round spheres. This can be confirmed looking at (2.20): the
trace-less part of Geroch tensor remains zero if the conformal transformation preserves round spheres.

Let us see how the anomaly of Ċ on arbitrary frames is compensated by Geroch’s tensor. Since
ρab is transverse and time independent, it can be obtained as pull-back of a 2d tensor on a given
cross-section. In particular, in Bondi coordinates, the only non-vanishing components of ρab are ρAB,
and using the explicit parametrization (2.46) we obtain αξ = ḟ and (2.10) becomes

£ξρAB = −2DADB ḟ . (2.70)

It is also universal, namely δρab = 0 and therefore δξρab = 0. It follows that

∆ξ ρAB = 2D〈ADB〉ḟ . (2.71)

Therefore
∆ξNAB = −∆ξ(ĊAB + ρ〈AB〉) = 0. (2.72)

The news tensor is anomaly free, which is nothing but the statement that it is foliation independent
and conformally invariant, as we already know. Yet one should appreciate the facility with which
∆ξ allows us to deduce these properties in a fixed coordinate system and in a fixed conformal frame.
It remains to discuss the meaning of the anomalies of M and JA. We postpone this discussion to
Section 3.4 below, after we have explained their relation to the charges.

To summarize, the anomalies computed by ∆ξ in this Section measure the loss of covariance caused
by the background dependence on foliations or on the conformal factor, as induced by a diffeomorphism
thanks to the fact that we identified these background structures with coordinates. Lack of foliation-
independence and/or conformal invariance can of course be studied independently of ∆ξ, but we would
like to advertise the anomaly operator as a very convenient tool to do it. First, it systematizes and
generalizes the analysis, making it an algebraic and straightforward operation, and equally adaptable to
whatever the background fields are, see e.g. the different (albeit related) case of arbitrary null surfaces
[40]. Second, the analysis of whether something is foliation independent and conformal invariant can
be done in a fixed coordinate system. This should be quite a convenient advantage for that large part
of the community that prefers to do calculations in explicit coordinate systems, as opposed to using
only covariant and geometric quantities, and we will see it explicit examples of it in the next Sections.
There is also a third advantage. Notice that the structure of the anomalies is the same for BMS,
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eBMS, gBMS and BMSW: only the numerical value changes, given respectively by ḟ = 1
2DY with Y A

a CKV globally defined, non-globally defined, an arbitrary vector, and finally ḟ =W (xA) an arbitrary
function on the sphere. Therefore quantities that anomaly-free under the BMSW group are foliation-
independent and invariant under arbitrary conformal transformations respecting the Bondi condition.
This offers a very convenient technical tool: instead of imposing BMS covariance only, which needs
to be supplemented by an independent test of conformal invariance if one is not restricting attention
to Bondi frames, one can get both BMS covariance and general conformal invariance at once using
the anomaly operator for the BMSW. This does not mean changing the symmetry group: we keep
the same universal structure, and the symmetry group is still BMS. The way we are using BMSW
transformations is not as symmetries but as canonical transformations, in order to test covariance
and conformal invariance in one go. In other words we study background independence under BMSW
transformations. A similar approach to BMSW transformations was considered also in [10], in the
broader context of also relaxing the Bondi condition.

2.2 Finite BMSW transformations and finite covariance

To operator ∆ξ measures the linearized anomalies. The finite version is obtained performing finite
conformal transformations and finite changes of foliation acting only on the background fields and not
on the physical metric, in agreement with (2.49). More precisely, inverse transformations, because
of the sign convention used in (2.49). So for instance the finite anomaly of the conformal metric is
simply

ĝ′µν = ω−2ĝµν . (2.73)

Because we have identified the background fields with coordinates η = (Ω = 1/r, u), changing them in a
way compatible with the universal structure can be done computing a finite symmetry transformation
on the coordinates. As explained at the end of the previous Section, we can allow for arbitrary (time-
independent) conformal transformations if we use finite BMSW transformations, instead of BMS ones
alone. The subset of BMSW transformations made of arbitrary super-translations and conformal
transformations is

Ω → Ω′ = ωΩ, u→ u′ = ũ− Ω

2ω
∂Aũ∂

Aũ, xA → x′A = xA − Ω

ω
qAB∂B ũ, (2.74)

where
ũ := ω(u+ T ), £nω = 0. (2.75)

The remaining part of the BMSW group is arbitrary Diff(S) coordinate transformations on the cross
sections, and it is not needed since the functionals considered only depend on specific choices of Ω and
u but not of xA. For more details on finite BMSW transformations, see [41, 42]. The O(Ω) in (2.74)
is fixed requiring preservation of the affine embedding, namely

2dudΩ + Ω2gABdx
AdxB → 2du′dΩ′ +Ω′2gABdx

′Adx′B = ω2(2dudΩ + qABdx
AdxB), (2.76)

so that the full conformal metric is rescaled under a finite anomaly transformation, and not just
its induced part. The O(Ω) term is not needed to compute the anomalies of fields on I , but it is
useful if one looks at spacetime embeddings, like (2.76). Another example where it is useful is the
transformation of l (2.19), which can be obtained starting from l = −du and acting with (2.74).
The part proportional to n can only be seen embedding l in spacetime (which is done requiring it to
be null), and arises from the O(Ω) terms of (2.74). It is nice to include it because it allows us to
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understand (2.19) as a class-II transformation of the tetrad. It is however irrelevant to compute the
finite anomaly of the shear, which is well defined without embedding. The transformation of the shear
of the u foliation under (2.74) reproduces (2.22), or equivalently in terms of Cab,

C ′
ab = ω

(

Cab + 2(u+ T )(ω−1D〈aDb〉ω − 2D〈a lnωDb〉 lnω) + 2D〈aDb〉T
)

. (2.77)

The finite anomaly is obtained with the inverse transformation, namely switching (ω, T ) → (ω−1,−T ).
We can go back to the linearized anomaly taking ω = 1+W with W ≪ 1 and T ≪ 1, and identifying
W = ḟ we obtain

∆ξCab = −ḟCab − 2D〈aDb〉f, (2.78)

namely (2.60b) in arbitrary coordinates on I . We have thus completed the proof that the anomaly
(2.60b) measures the dependence of CAB on the background fields Ω and u, by computing its change
under a change of u foliation and conformal factors as generated by a BMSW transformations, namely
change of foliations by a super-translation and arbitrary conformal transformations. We could have
restricted this analysis to BMS transformations only, it would have given the same class of foliation
changes, but a smaller class of conformal transformations, restricted to preserving round spheres.
With the same calculation one can show that (2.67) has finite anomaly Cab → ωCab. It then follows
from (2.34) that the news has vanishing finite anomaly, in agreement with being conformally invariant
and super-translation invariant.

3 BMS flux and charge algebra

We start by recalling the results of [4, 5, 6, 7]. The covariant phase space is constructed equipping the
solution space of a field theory at given boundary conditions with a symplectic 2-form current ω = δθ,
where the symplectic potential current θ is read from the on-shell variation of the Lagrangian 4-form,
via δL =̂ dθ. By Noether theorem, jξ := Iξθ− iξL =̂ dqξ is on-shell exact in a general covariant theory,
for any diffeomorphism ξ. As a consequence, the Hamiltonian 1-form is also exact,

−Iξω =̂ d(δqξ − qδξ − iξθ). (3.1)

We restrict attention to vacuum general relativity in metric variables. We can take for θ the standard
Einstein-Hilbert symplectic potential, in which case qξ is the Komar 2-form,

θ =
1

3!
θµǫµνρσ dx

ν ∧ dxρ ∧ dxσ, θµ =
1

8π
gρ[σδΓµ]

ρσ, qξ = − 1

32π
ǫµνρσ∇µξνdxρ ∧ dxσ, (3.2)

in units G = c = 1. We then have

−Iξω =̂ − 1

32π
ǫµνρσ

[

(δ ln
√−g)∇ρξσ + δgρα∇αξ

σ + ξρ
(

∇αδg
ασ + 2∇σδ ln

√−g
)

− ξα∇ρδgσα
]

dxµ ∧ dxν . (3.3)

For the application of this formula to BMS symmetries, we consider a hyperbolic space-like hyper-
surface Σ with a single boundary at future null infinity I , denoted S, with the sphere topology.
Integrating ΩΣ :=

∫

Σ ω endows Σ with a phase space of partial Cauchy data, which include radiation
as well as the ‘Coulombic data’, like M and JA in Bondi coordinates. Integrating ΩN :=

∫

N ω on a re-
gion N of I between to partial Cauchy slices endows N with the radiative phase space of connections
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(namely news and shear) that we reviewed in the previous Section, and does not contain Coulombic
data. The result of [7] in Bondi coordinates is

−IξΩΣ =̂ δQBT
ξ −FBT

ξ , (3.4)

where7

QBT
ξ =

1

8π

∮

S

(2fM + Y AJA)ǫS , FBT
ξ = − 1

32π

∮

S

fĊABδC
ABǫS , (3.5)

and we used
iξǫI = fǫS. (3.6)

The notation follows the previous Sec. 2.1, and coincides with [7] except for the Lorentz aspect
(which includes angular momentum and center of mass), which is related to the NBT

A used in [7]
by JA = NBT

A + 1
32∂A(C

BCCBC). The reason for the change becomes clear once we express the aspect
in the Newman-Penrose notation described in the previous Section (see also [41]). We have in fact

mAJA = −
(

ψ1 + σðσ̄ +
1

2
ð(σσ̄)

)

, (3.7)

which coincides with the integrand of the Dray-Streubel formula [3]. We also point out that

mANFN
A := mA

(

JA +
1

4
CABDCC

BC +
1

16
∂A(C

BCCBC)

)

= −ψ1, (3.8)

which is the angular momentum aspect denoted NA in [9] and used in [43]. The Newman-Penrose
expression for M is

M = −
(

ψ2 + σ ˙̄σ +
1

2

(

ð
2σ̄ − cc

)

)

= −Re(ψ2 + σ ˙̄σ), (3.9)

and coincides with the integrand of Geroch’s supermomentum [1] (see expression in [3]), but only
on round spheres. This discrepancy will be crucial below to understand the origin of the 2-cocycle.
We remark that it concerns only the mass aspect, whereas (3.7) matches [3] on any frame. For
completeness we also report the non-integrable term in coordinate-independent form,

FBT
ξ = − 1

8π

∮

S

f£nσabδσ
abǫS = − 1

4π

∮

S

fRe(σ̇δσ̄)ǫS . (3.10)

The right-hand side of (3.4) contains a field-space exact (“integrable”) piece, and a non-exact
(“non-integrable”) piece. This split is clearly arbitrary, as integrable terms can be freely moved to the
non-integrable piece. Once a split −IξΩΣ =̂ δQξ −Fξ is chosen, the integrable piece provides a surface
charge Qξ that acts as canonical generator on the subset of the phase space where the non-integrable
piece Fξ vanishes. The split also determines the flux-balance law dqξ =̂Fξ satisfied by the charges.
This makes it clear that a useful requirement for the split is that both Fξ and Fξ vanish around
solutions satisfying some notion of stationarity, otherwise it would be hard to relate the generator to
physical observables. For the charges (3.5) one finds the following flux,

QBT
ξ [S2]−QBT

ξ [S1] =̂FBT
ξ := − 1

32π

∫ S2

S1

(

ĊABδξC
AB + ∂AR∂Af + CAB

DADBDY
)

ǫI , (3.11)

7The calculation [7] is done using the expression of [6] for the Hamiltonian 1-form, which differs from (3.1) and (3.3)
by a term ǫµνρσg

ραδgαβ∇
(σξβ), but this extra term vanishes in the limit.
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with δξC
AB given in (2.50b). Accordingly, the charges are conserved if the time derivative of the shear

vanishes and if we restrict attention to Bondi frames, since then R is constant and (2.52) holds for
globally defined CKVs. These conditions are met by all non-radiative asymptotically flat spacetimes
in Bondi frames [1]. They are however not met by non-radiative spacetimes in arbitrary frames in
which qAB is not a round sphere. In this case none of the three terms vanishes: the news is not
the time derivative of the shear, ∂AR 6= 0, and (2.52) does not hold. We thus have a failure of the
stationarity condition, namely a non-zero flux in spite of the absence of radiation.

Another important requirement for the split is that the prescribed charges should realize the
symmetry algebra. This is a non-trivial property, because dω =̂ 0 guarantees that the symplectic two-
form is independent of Σ only in the absence of radiation, and the symmetries moving the corners of
Σ don’t correspond to Hamiltonian vector fields. In general, two symmetries ξ and χ give

IξIχΩΣ = δχQξ − IχFξ 6= δχQξ. (3.12)

It was then proposed in [7] to define a bracket with the non-integrable term subtracted off,

{Qξ, Qχ}∗ := δχQξ − IξFχ = IξIχΩΣ + IχFξ − IξFχ. (3.13)

The second equality shows that {, }∗ reduces to a Poisson bracket for the subspace with vanishing
non-integrable term Fξ. Applying this definition to (3.5) one finds [7]

{QBT
ξ , QBT

χ }∗ =̂QBT

Jξ,χK +KBT

(ξ,χ), (3.14)

where

KBT

(ξ,χ) =

∮

S

kBT

(ξ,χ), kBT

(ξ,χ) =
1

32π

[

fξ
(

CAB
DADBDCY

C
χ + ∂Afχ∂AR

)

− (ξ ↔ χ)
]

ǫS, (3.15)

and Jξ, χK := [ξ, χ] − δξχ + δχξ is the modified Lie bracket needed to describe the algebra of field-
dependent diffeomorphisms [7], here due to the choice of Tamborino-Winicour extension (2.46) (the
standard bracket is enough if one restricts attention to the vector fields on I only). The algebra is
thus realized, but only up to the 2-cocycle KBT. It is field-dependent, hence not a central extension.
This is problematic, because it hinders the interpretation of the charges as canonical generators even
when Fξ vanishes, and also makes it hard to find representations for quantization. It motivates the
search for a different split, whose charge prescription gives an algebra free of field-dependent cocycles.
A partial answer to this question was given in [44] in the more general context of the generalised BMS
symmetry [45, 11], where a split was found so that the cocycle vanishes at least in the limit u→ −∞,
but not for arbitrary cross sections of I . We now show that it is possible to remove the cocycle for
arbitrary cross-sections of I .

As shown in [16, 17, 39, 46], a 2-cocycle signals the presence of non-covariant terms in the charge
prescription. To understand the origin of this loss of covariance, we begin by observing that the
cocycle (3.15) vanishes on Bondi frames, since then R is constant and (2.52) holds. These are the
same conditions that give a vanishing flux in non-radiative spacetimes, hence the presence of the
cocycle is related to the failure of the stationarity condition. The fact that the cocycle vanishes on
Bondi frames but not otherwise is a first hint that it is unphysical, because there is nothing that
distinguishes these frames in the BMS fall-off conditions (one should not confuse the fact that BMS
transformations preserve round spheres with preferring them). A second hint comes from the results of
[17], where it was shown that the lack of covariance, or anomaly, in the choice of symplectic potential
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contributes to the cocycle of Noether charges, and of [39], where (3.15) was indeed reproduced as a
purely anomaly contribution. We are now going to show that this cocycle is in fact a consequence
of having selected a symplectic potential which satisfies the Wald-Zoupas requirements of covariance
and stationarity only on round spheres. In other words, the split is not invariant under arbitrary
(time-independent) conformal transformations. Replacing it with the correct potential that satisfies
these requirements on arbitrary frames produces a modification of the charges whose algebra has no
cocycle.

The split (3.5) can be associated to a specific choice of symplectic potential. To see which one, we
take the limit to I of (3.2). This gives for the pull-back

θ = θBT − δbBT, (3.16)

where

θBT = − 1

32π
ĊABδC

ABǫI , bBT =
1

16π

(

2M − 1

2
DADBC

AB − 1

8
ĊABC

AB
)

ǫI . (3.17)

Using (3.6), we see that

FBT
ξ =

∮

S

iξθ
BT. (3.18)

The calculation of the charges is slightly more subtle, because of the term qδξ [13, 29]. This was
absent in the original derivation [5], where it was assumed that δξ = 0. This assumption is supported
by the fact that the BMS algebra is a universal property of asymptotically flat metrics. And indeed,
the vector fields on I are field-independent. The problem though is that the limit to I of the Komar
2-form depends on the second and even third order of the extension, as remarked already in [47].
This brings in the field-dependence of the Tamburino-Winicour extension (2.46), which thanks to its
property of preserving bulk Bondi coordinates is the customary choice in a large part of the literature,
e.g. [48, 45, 9, 11, 37, 24, 39, 46, 27, 49, 50]. The term qδξ is thus crucial to remove the spurious
contribution to δqξ introduced by the field dependence of the extension. Explicitly, the pull-back at
I of the Komar 2-form gives

qξ =
1

16π

[

f

(

2M +
1

4
DADBC

AB +
1

8
ĊABC

AB

)

+ 2Y AJA

]

ǫS, (3.19)

up to a total divergence that vanishes upon integration on the cross-section. The latter includes
divergent terms that while not contributing to the charges,8 make the limit sensitive to the subleading
terms of ξ. Indeed, qδξ is non-zero in spite of δξ = O(Ω2), and given by [13]

qδξ = δsξ, sξ := − 1

64π
CAB

DADBfǫS, (3.20)

up to a total divergence. Adding up according to (3.1) we recover the result (3.4), and in the process
we learn that

QBT
ξ =

∮

S

qBT
ξ , qBT

ξ = qξ + iξb
BT − sξ =

1

8π
(2fM + Y AJA)ǫS , (3.21)

8The divergent terms are no longer total divergences for the weaker fall-off conditions relevant for the gBMS [11, 24, 46],
BMSW [39] and RBS [51] extensions of the asymptotic symmetries, and make renormalization of the symplectic potential
necessary.
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up to a total divergence. The spurious contribution (3.20) has the structure of a soft term, hence
missing it would change the behaviour of the charges, for instance spoiling basic properties such as
vanishing in Minkowski for any symmetry parameter. The care required in dealing with the extra
term qδξ is of course not needed if one starts directly from the expression (3.3), where it is already
subtracted out.9 However (3.3) hides the role of the symplectic potential, and it is important to our
considerations below to have identified that the BT charges are associated to the choice of symplectic
potential (3.17).

Furthermore, (3.21) allows us to derive the flux of the charges using Noether’s theorem. That
requires though the extra step of identifying (3.21) as an improved Noether charge. This can be done
observing that

sξ = ∆ξc, c = − 1

8π
βǫS , (3.22)

from which it follows that
qBT
ξ = qξ + iξℓ

BT − Iξδc, (3.23)

up to a closed 2-form. Here ℓBT = bBT + dc and sξ = iξdc − Iξδc [13]. Then the Noether current
formula [17, 46] dqBT

ξ =̂ Iξθ
BT −∆ξℓ

BT leads to (3.11).

3.1 Wald-Zoupas prescription and covariance of the current algebras

In this Section we review some aspects of the Wald-Zoupas prescription that we’ll need below: first,
how ambiguities in the charges are dealt with, and its extension to non-trivial corner shifts. We
then present the new results of [14] relating the Wald-Zoupas covariance and the cocycle, and finally
propose a refinement of the Wald-Zoupas procedure to fix residual ambiguities.

Changes in the split can be controlled by shifts of the symplectic potential θ → θ̄ = θ + δℓ − dϑ.
The Wald-Zoupas prescription aims at selecting a possibly unique, preferred θ̄ imposing basically two
physical requirements.10 The first is ‘stationarity’, namely θ̄ = 0 on special solutions. One could take
this to mean existence of a translational time-like Killing vector, but general relativity admits solutions
without it and with gravitational waves, so this is too restrictive. While it is not known how to identify
gravitational radiation in general (meaning in a background independent and gauge invariant way),
the situation simplifies in the presence of physical boundary, where one can posit boundary conditions
that allow an unambiguous identification of gravitational radiation. In the context of this paper
the boundary is I . The chosen boundary conditions are those that define the universal structure
associated with the BMS group, and these allow one to identify non-radiative asymptotically flat
spacetimes as solutions with vanishing news, as discussed in the previous Section.11 In the following
we will often refer to these non-radiative spacetimes as the ‘stationary’ solutions, meant in this general
sense and not in the sense of admitting a time translation Killing vector. As a consequence, one looks
for the preferred θ̄ only for the pull-back at the physical boundary,

θ = θ̄ − δℓ+ dϑ. (3.24)

9It is also not needed if one constructs the charges ‘integrating’ the fluxes as opposed to bootstrapping them from
the Komar formula, see discussion in [29].

10On top of more technical requirements such as local and analytical behaviour on the fields, which we take for granted.
11Other examples of boundaries at which one can successfully apply the Wald-Zoupas prescription include arbitrary

null hypersurfaces [52, 40, 53] and non-expanding horizons [54], and some extensions of the BMS symmetry [51]. See
[13] for a study of the most general circumstances under which the prescription is applicable.
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Choosing the split after pull-back may introduce a dependence on the background structures used
to define the boundary conditions, and this would spoil the physical applications. To avoid this, the
second crucial requirement is covariance, namely θ̄ should be independent of any background structure.
This can be stated as ϕ∗θWZ[φ, δφ; η] = θWZ[ϕ∗φ, δ(ϕ∗φ); η] for a diffeomorphism ϕ that corresponds
to an asymptotic symmetry, and reduces to

δξ θ̄ = £ξθ̄ (3.25)

at the linearized level. This property can be equivalently interpreted as stating that the symplectic
potential should be invariant when the transformation acts on the background fields only. In the case of
the BMS group this property includes limited conformal transformations that preserve round spheres.
If one wants to allow for arbitrary (time-independent) conformal transformations, it should be added
as an additional requirement on top of (3.25) (see e.g. [12]). However as we have explained in the
previous Section, arbitrary conformal invariance can be studied computing the anomalies associated
with the BMSW group. In doing so we are not changing the universal structure, and the symmetry
group remains the BMS group. We are merely using BMSW as an auxiliary group to test arbitrary
conformal transformations.

The original Wald-Zoupas prescription made the additional requirement that no corner term ϑ
was needed, so that we can actually write

θ = θ̄ − δb. (3.26)

This guarantees that the symplectic 2-form current defined on I by θ̄ is the same as the one defined
by θ given by (3.2). It was listed as ‘condition 0’ in [13] (with covariance and stationarity being
conditions 1 and 2). The inclusion of ϑ is compatible with the field equations and with the Wald-
Zoupas prescription, but introduces various additional subtleties, especially in the way ambiguities
are dealt with. Let us first discuss the consequences of covariance assuming (3.26). If a θ̄ satisfying
(3.25) is found in the class (3.26), one can define charge aspects q̄ξ via

δdq̄ξ : =̂− Iξω + diξ θ̄ = δIξ θ̄. (3.27)

From this it follows that
dq̄ξ =̂ ̄ξ := Iξθ̄, (3.28)

up to a field-space constant. This can be removed requiring that the Noether current ̄ξ vanishes on a
reference solution amongst the stationary ones, for instance Minkowski spacetime. The idea is that this
be enough for it to vanish on every stationary solution. Otherwise, the stationary condition satisfied
by the symplectic potential would not guarantee charge conservation. Then, integrating (3.28) on a
region ∆I delimited by two cross sections S1 and S2, we obtain the flux-balance laws

Q̄ξ[S2]− Q̄ξ[S1] =̂Fξ :=

∫

∆I

Iξ θ̄. (3.29)

Given the right-hand side of (3.29), the charges can be explicitly computed ‘integrating the fluxes’
using the Einstein’s equations. This is the procedure used for BMS charges in [2, 34, 29]. The charges
so defined are not unique, but ambiguous up to a constant in time,

Q̄ξ → Q̄ξ +Xξ, £nXξ = 0. (3.30)
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This ambiguity was resolved in [2, 34, 29] first arguing that the only time-independent and background-
independent quantities that can be constructed out of the radiative phase space are also universal,
and then requiring that all charges vanish on the reference solution. The Wald-Zoupas paper used a
different way to fix the same ambiguity. If condition 0 holds, replacing (3.26) in (3.1) gives

−IξΩΣ =̂

∮

S

δ(qξ + iξb− sξ)− iξ θ̄. (3.31)

Here we assumed that all field dependence in ξ comes from the extension of the symmetry vectors
fields, as is the case for BMS, so that iδξb = 0 and qδξ = δsξ , see (3.20). Then dω =̂ 0 implies

Q̄ξ[S2]− Q̄ξ[S1] =

∮ S2

S1

qξ + iξb− sξ, (3.32)

up to a field-space constant. The idea is then to fix (3.30) requiring

Q̄ξ =

∮

S

qξ + iξb− sξ, (3.33)

and the field space constant as before via the reference solution. If all background fields are time
independent, (3.33) fixes both ambiguities at once. The relation (3.33) can be understood as an
instance of the improved Noether charge formula [55, 56]

Q̄ξ =

∮

S

q̄ξ =

∮

S

qξ + iξℓ− Iξc, (3.34)

where the boundary Lagrangian is ℓ = b+ dc and sξ = iξdc− Iξδc [13]. In other words, one can use a
corner improvement of the type allowed by condition 0 to get rid of the extension dependence of the
Komar 2-form. From this perspective, satisfying (3.28) requires ∆ξℓ = 0.

This procedure shows via (3.31) that the charges can be also interpreted as canonical generators
for the phase space on Σ, albeit in the following weak sense: They are proper canonical generators
for a symmetry ξ ∈ TS, whereas for a symmetry ξ that moves the corner it is a canonical generator
only (for arbitrary perturbations) around the non-radiative solutions. On the other hand, the fluxes
(3.29) provide canonical generators for all symmetries on the radiative phase space on ∆I [29]. For
BMS, this procedure gives the same unique set of charges that are found with the ‘integrating the
fluxes’ procedure. A practical convenience of the Wald-Zoupas procedure is that one can determine
the charges starting from knowledge of the Komar 2-form and its limit to I .

We have discussed the charge ambiguity (3.30) and how it can be fixed. There is a considerably
larger ambiguity in the charge aspects. As we see from (3.28), the aspects q̄ξ are defined up to the
addition of a closed 2-form on I ,

q̄ξ → q̄ξ + xξ, dxξ = 0. (3.35)

Since the cohomology is not trivial, xξ needs not be exact, and this is what gives rise to the charge
ambiguity (3.30), with Xξ =

∮

S
xξ. More precisely, since the charges are integrals on the cross-sections,

is only the non-exact part of xξ after pull-back on the cross-sections that is relevant to the charge
ambiguity. Its time independence follows from12

£nxξ = dinxξ ⇒ £nxξ = DAx
A
ξ ǫS. (3.36)

12And we assume £n

∮

S
xξ =

∮

S
£nxξ which should be guaranteed by smoothness of the fields and S.
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The larger ambiguity in the aspects includes a non-trivial time dependence, provided it reduces to a
total divergence on the cross sections. Since the charges are defined as integrals on cross-sections, it
is tempting to assume that their aspect 2-forms does not have time components, namely that we can
write

qξ = qSξǫS , (3.37)

for some scalar quantity qSξ . In this case the ambiguity reduces to £nxξ = 0, since £nǫS = £nǫI = 0.
Not all aspects are of this type, however. It is also important to add that the aspect ambiguity
cannot be fixed à la Wald-Zoupas using the symplectic structure on Σ and the ‘Komar bootstrap’.
The reason for this is that one needs to integrate dω =̂ 0 in order to obtain a relation between the
charges. In other words, removing the integral in (3.33) gives an equivalence only up to an arbitrary
total divergence on the cross sections. It follows that even if the charges are uniquely fixed at the end
of the procedure, there is still freedom to add time-dependent closed 2-forms to the aspects, provided
their time variation is an exact 2-form.

At the end of the day, stationarity and covariance of the symplectic potential have secured two
important properties for the charges: they are conserved on non-radiative spacetimes, and are related
to canonical generators (in the weak sense for the phase space on Σ, and their fluxes in the general
sense for the phase space on ∆I ). Notice also that this prescription for the charges corresponds to
a ‘split’ in which the same quantity θ̄ determines both the non-integrable term and the charge flux,
a property which is not true for a generic split. A comparison of properties for a generic split and a
Wald-Zoupas one is summarized in Table 1.

A new result relevant for us is that the covariance (3.25) of the preferred symplectic potential also
guarantees that the Noether currents (3.28) realize the symmetry algebra free of any field-dependent
2-cocycle [14]. We now review it, providing more details than it was possible in the letter. The
first step to prove this is to use the commutator [δχ − £χ, Iξ ] = IJξ,χK, which together with (3.25)
immediately implies

(δχ −£χ)̄ξ = ̄Jξ,χK. (3.38)

This equation is interesting in its own right: It means that the only background-dependent part of
the current comes from the symmetry vector fields, see (2.55), hence it has an intuitive meaning of
covariance.

The second step is to define a current bracket similar to the Barnich-Troessaert bracket (3.13),

{̄ξ, ̄χ}∗ := IξIχω̄ + d(iξIχθ̄ − iχIξ θ̄) =̂ (δχ −£χ)̄ξ = ̄Jξ,χK. (3.39)

The last equality follows from (3.38), and shows that the algebra is realized covariantly and without
any field-dependent 2-cocycle. There is no central extension either, but this is (obviously) not a
consequence of covariance, but rather of the fact that we assumed that the Noether currents satisfy
the stationarity condition. If this is violated, namely we admit a non-vanishing field-independent term
−āξ on the right-hand side of (3.28), it would result in a central extension −āJχ,ξK on the right-hand
side of (3.39). It follows from (3.39) that the algebra of fluxes between any two cross sections is also
covariant, namely free of 2-cocycles, and furthermore center-less,

{Fξ , Fχ}∗ = δχFξ −
∮ S2

S1

iχ̄ξ = FJξ,χK. (3.40)

This equation also shows that the flux algebra is sensitive to the dissipation at the initial and final
cuts.
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There are also strong implications for the charge algebra. Integrating (3.39) on ∆I we obtain
the difference of two Barnich-Troessaert brackets (3.13) associated with the two cuts, and from the
right-hand side we learn that this difference gives a center-less realization of the algebra. It follows
that the only 2-cocycle allowed by the Wald-Zoupas split is time-independent:

{Q̄ξ, Q̄χ}∗ := δχQ̄ξ − IξF̄χ = IξIχΩ̄Σ + IχF̄ξ − IξF̄χ =̂ Q̄Jξ,χK + K̄(ξ,χ), £nK̄(ξ,χ) = 0. (3.41)

In this result we assumed that the charge ambiguity (3.30) has been fixed à la Wald-Zoupas matching
the canonical generators on Σ, so to match the definition of the Barnich-Troessaert bracket. While
this result still allows in principle for a field-dependent 2-cocycle, it is severely constrained. It cannot
for instance depend on the shear, unlike (3.15).

Whether the residual 2-cocycle can also be removed is not controlled by the covariance of the
symplectic potential, but may be granted by the boundary conditions. For instance, if all time-
independent and background-independent admissible terms are also universal, then the cocycle is
reduced to a central extension. And if there are none, it vanishes. This is what will see below happens
for the BMS charges. For the sake of a general discussion, let us suppose that a cocycle is present, and
ask whether there are ambiguities left that can be used to try to remove it. Being time-independent,
it can be directly affected by the charge ambiguity (3.30). If this ambiguity has been fixed as above
and the Wald-Zoupas potential is unique, this possibility is ruled out. The only option left in this
case would be to to relax condition 0 and allow corner improvements in the symplectic 2-form. The
bottom line is that Wald-Zoupas covariance guarantees a covariant realization of the current algebra,
and reduces the allowed cocycle in the charge algebra to be time-independent. Additional conditions
are needed to remove the residual charge cocycle.

We remark that the matching of flux and non-integrable term is crucial for the correct interpretation
of the Barnich-Troessaert bracket, because it is only in this case that it correctly reproduces the
standard action on non-radiative spacetimes, namely

{Q̄ξ , Q̄χ}∗ = δχQ̄ξ. (3.42)

The Barnich-Troessaert bracket can also be interpreted as a precise definition of charge anomaly, since

∆χQ̄ξ :=

∮

S

∆χq̄ξ = {Q̄ξ, Q̄χ}∗. (3.43)

This allows us to say that covariance of the charge algebra, namely δK̄(ξ,χ) = 0, really means that the
only background dependence of the charges is through the symmetry vector fields. Our analysis shows
that this is a meaningful and unambiguous statement also for radiative solutions, hence it generalizes
(3.42) to the full phase space.

In the BMS case, the background fields are ξ, Ω and the foliation u, or equivalently the Lie-dragged
l. These fields are affected by a BMS transformation, and the anomaly operator computes this action
without touching the physical fields. This is why we can use it to test background-independence. On
the other hand, notice that in (3.43) we are not changing the cross section: £χ acts on the integrand
only. Accordingly, the choice of cross section is taken to be a physical input, and not part of the
background whose dependence is measured by the anomaly operator. It should be indeed clear that
two different cross sections S and S′ contain different information about the physics, since there can
be radiation between S and S′. The distinction can be made clearer if we write the full functional
dependency of the charges as Q̄ξ[S; g,Ω, l]. Then the meaning of the covariance (3.43) is (linearized)
independence from Ω and l, but not from S or ξ:

Q̄ξ′ [S; g,Ω
′, l′] ≃ Q̄ξ[S; g,Ω, l] + ∆χQ̄ξ[S; g,Ω, l] = Q̄ξ[S; g,Ω, l] + Q̄[ξ,χ][S; g,Ω, l]. (3.44)
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Since a decomposition of ξ into super-translations and Lorentz makes necessarily reference to a choice
of cross-section, this formula (and more precisely its finite version) allows one to map the charges on
a given cross-section to the charge expression one would use for a different cross section.

A second important remark is that knowledge of the charges is not enough in order to compute
the bracket and check their covariance: one needs to know the Noether current ̄ξ =̂ dq̄ξ as a 3-form.
In fact, terms in the Noether currents which are total divergences on the cross sections drop out of
the charges (and the fluxes), but contribute to their transformation laws because in general

[£ξ,DA] 6= 0, (3.45)

even if it is true that [£ξ, d] = 0. This is because the pullback operator does not commute with £ξ

if ξ is not tangent to the cross section. We find that such terms typically vanish in the non-radiative
case, hence this subtlety is not present in the simpler notion of non-radiative covariance (3.42).

A related implication is that in general also

[∆ξ,DA] 6= 0. (3.46)

This means that it is crucial to require covariance of the symplectic potential as a 3-form as in
(3.25), and not only up to total divergences on cross-sections. Otherwise linearized covariance would
not imply full covariance, since the successive action of ∆ξ needed to study finite covariance would
produce anomalies which are not total divergences.

Finally, let us discuss the covariance of the charge aspects. Covariance of the currents (3.38)
implies that

(δχ −£χ)q̄ξ = q̄Jξ,χK + c̄(ξ,χ), dc̄(ξ,χ) = 0. (3.47)

If we integrate over a cross-section we recover the Barnich-Troessart bracket (3.41), and identify the
time-independent cocycle with K̄(ξ,χ) =

∮

S
c̄(ξ,χ). Notice though that c̄(ξ,χ) is not necessarily anti-

symmetric: We are only guaranteed that its integral is, thanks to the relation between the bracket
and the symplectic 2-form. From this perspective, the necessary condition for covariant charges is
that the pull-back of c̄(ξ,χ) on the cross-sections is a total divergence, up to a field-space constant,13

c̄(ξ,χ) = DAc̄
AǫS + C(ξ,χ), δC(ξ,χ) = 0. (3.48)

One can then ask whether it is possible to obtain an even stronger property, namely covariance of
the charge aspects. It is natural to define covariance of the aspects as the requirement that δc̄(ξ,χ) = 0,
or the even stronger

(δχ −£χ)q̄ξ = q̄Jξ,χK. (3.49)

In situations in which there is a residual ambiguity of adding closed 2-forms to the charge aspects,
requiring their covariance offers a finer way to fix it. In the notation used above, one can use any
residual freedom in ϑe to attempt setting c̄(ξ,χ) to zero, up to a field-space constant (Assuming that
it is already a total divergences on the cross-sections so that covariance of the charges is obtained,
otherwise this would be a pointless exercise). This goes a step beyond what can be achieved with the
standard Ashtekar-Streubel or Wald-Zoupas prescriptions, that only deal with the charges and not
the aspects. This is a very strong requirement, and there is little guarantee that it can be achieved.

13Therefore, as for the current, we allow the existence of central charges, thus we want a charge satisfying δ(δχ −

£χ)Qξ = δQJξ,χK. By doing this, the covariance condition is set on one form in the field space, similarly to the conditon
(δξ −£ξ)θ̄ necessary for ensuring the covariance of the currents.

28



Already achieving (3.43) with vanishing cocycle or field-space constant is to be considered a non-
trivial success. A word of caution is also due. While (3.47) is a natural definition since it captures
the intuitive notion of covariance as background-independence, it does not translate to a realization
of the algebra in terms of a bracket à la Barnich-Troessaert, because it is not antisymmetric.

3.2 Corner improvements

Let us see what happens if we relax condition 0, and allow a non-field-space exact corner term ϑ as in
(3.24). This is motivated for instance by systems in which a θ̄ satisfying stationarity and covariance,
or even finiteness, cannot be found otherwise [57, 55, 24, 58, 46, 13, 27]. The main technical difference
in dealing with this case is that we cannot work with the original symplectic 2-form, since now
ω̄ = δθ̄ = ω − δdϑ. The symplectic current ω̄ is only defined at I , but we can define a symplectic
2-form associated with ω̄ on any space-like Σ as long as it has a single boundary at I . To do so, we
need first to fix the ambiguity in ϑ, which follows from its definition (3.24) and is given by

ϑ→ ϑ+ ϑe, dϑe = 0. (3.50)

We fix this ambiguity prescribing ϑe. It amounts to define the preferred symplectic potential via

θ
I

= θ̄ − δℓ+ dϑ. (3.51)

That is, (3.24) without the pull-back. Once we have done this, we take an arbitrary extension of ϑ in
the bulk, and define

Ω̄Σ :=

∫

Σ
(ω − dδϑ) = ΩΣ −

∮

S

δϑ. (3.52)

This expression is independent of the choice of extension of ϑ. On the other hand, it is affected by
the ambiguity (3.50): Changing ϑe changes Ω̄Σ by a constant in time.

Having a new symplectic 2-form affects the Wald-Zoupas procedure as follows. The charge defini-
tion is now

δdq̄ξ : =̂− Iξω̄ + diξ θ̄ = δIξ θ̄. (3.53)

The Noether currents (3.28) and flux-balance laws (3.29) are still the same, but the relation to the
canonical generators at Σ is changed to

−IξΩ̄Σ = −IξΩΣ +

∮

S

δξϑ− δIξϑ =̂

∮

S

δ(qξ + iξℓ− sξ − Iξϑ)− iξ θ̄ + (δξ −£ξ)ϑ. (3.54)

The corner anomaly that appears here is restricted by the covariance and stationarity to be constant
in time. To prove this, we use first dω̄ =̂ 0 and (3.53) to deduce that

∮ S2

S!

δ(qξ + iξℓ− sξ − Iξϑ) + (δξ −£ξ)ϑ = δ

∮ S2

S1

q̄ξ = δ

∫

∆I

Iξ θ̄. (3.55)

Then (3.28) and the improved Noether charge formula (3.34) (applied with ℓ′ = ℓ+dc and ϑ′ = ϑ+δc)
imply that

£n

∮

(δξ −£ξ)ϑ = 0 ⇒ £n(δξ −£ξ)ϑ = DAC
A
ξ ǫS , (3.56)

for some CA
ξ .
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Even if time-independent, such a corner anomaly is problematic. It cannot be field-space exact,
otherwise we would still satisfy condition 0. Therefore it cannot be reabsorbed in the charge. We can
still fix the charge ambiguity requiring as before

Q̄ξ =

∮

S

qξ + iξℓ− sξ − Iξϑ, (3.57)

but now the relation of the charges to the canonical generators is spoiled, since

−IξΩ̄Σ =̂

∮

S

δq̄ξ − iξ θ̄ + (δξ −£ξ)ϑ. (3.58)

This problem can be avoided if the covariant θ̄ corresponds to a ϑ that is also covariant, at least up
to a total divergence. This is where the ambiguity ϑe can turn out to be useful. The discrepancy is
in fact guaranteed to be time-independent, see (3.56), therefore it may be possible to remove it using
the ambiguity in the charges, or equivalently in adding ϑe. Once this is done (if it can be done), the
only residual ambiguity is that the final covariant ϑe may not be unique. If this happens, it cannot
be fixed using (3.58), and an independent prescription would be required. One way to do so is to look
at the cocycle, which may still be present even if (3.56) holds. If this is the case, then we have the
additional freedom to play with ϑe ambiguity within the anomaly free class to try to remove it.14 If
there is no cocycle, it may be possible to restrict this remaining ambiguity requiring covariance of the
aspects, and not only of the charges.

The relation (3.43) between the charge anomalies and the Barnich-Troessaert bracket requires
(3.58). If there is an anomalous corner term as in (3.1), then the bracket has to be modified (in order
to be anti-symmetric) to

{Q̄ξ, Q̄χ}∗ := IξIχΩ̄Σ + IχF̄ξ − IξF̄χ = δχQ̄ξ − IξF̄χ +

∮

S

Iχ∆ξϑ =̂ Q̄Jξ,χK + K̄(ξ,χ), (3.59)

with a cocycle that is still time-independent thanks to the covariance of the symplectic potential. We
thus see that an anomalous ϑ is responsible for both spoiling the relation to the canonical generators
and introducing a cocycle.

We remark that all results of this Section are valid also for field-dependent diffeomorphisms. One
should however distinguish two very different situations in which these can arise. First, as field-
dependence of the arbitrary bulk extension of a boundary symmetry. This is for instance the case
of the BMS and eBMS symmetries, see (2.46). In this context Iδξ matters for the bulk θ, but has
trivial action on quantities defined intrinsically at I such as θ̄. It may still be useful to keep Jξ, χK
so to be able to use 4d Lie brackets, but field-dependence can be forgotten altogether if one restricts
attention to the boundary, and writes only the 3d boundary Lie bracket. This is what was done in
[14], to keep the presentation as focused as possible. A very different situation occurs if there is an
actual field-dependence of the symmetry parameters, for instance if the boundary conditions are not
universal but field-dependent. The technical difference is that δξ is not a symmetry vector field in
the first situation, whereas it is in the second. One may then consider two inequivalent definitions of
covariance: (δξ −£ξ)θ̄ = 0 as before, or ∆ξθ̄ = (δξ−£ξ− Iδξ)θ̄ = 0. This second option is weaker, and
does not guarantee that (3.53) is exact: that has to be an additional requirement, and its minimal

14One could also do this within condition 0, namely if the charges related to IξΩΣ are not covariant, one can consider
modifications adding a ϑe satisfying dϑe = 0, which would only act on the ambiguity (??) while preserving the matching
to the canonical generators.
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Quantity Generic split Wald-Zoupas split

Symplectic flux θ′ = θ + δℓ′ − dϑ′ θ̄ = θ + δℓ̄− dϑ̄

Non-integrable term Fξ =
∮

iξθ
′ +∆ξθ

′ + Iδξθ
′ Fξ =

∮

iξ θ̄

Noether current jξ := Iξθ
′ −∆ξℓ

′ ̄ξ := Iξ θ̄

Charge flux Fξ :=
∫

jξ Fξ :=
∫

̄ξ

Current 2-Cocycle arbitrary absent

Charge 2-Cocycle arbitrary time-independent

Table 1: Comparing an arbitrary split with a Wald-Zoupas split, defined both by (3.24) where θ is the standard

EH potential, but the second additionally satisfies (3.25) and the stationary condition. The 2-cocycles refer to

the brackets (3.39) and (3.13).

form is Iδξ θ̄ =̂ dZ for some Z, see discussion in [40]. Then covariance of the symmetry algebra can also
be obtained, but one has to define the bracket subtracting two additional terms,

{̄ξ , ̄χ}′∗ := IξIχω̄ + d(iξIχθ̄ − iχIξ θ̄) + Iδχξ θ̄ − Iδξχθ̄ =̂ (δχ −£χ)̄ξ − ̄δξχ = ̄Jξ,χK. (3.60)

This definition is however less satisfactory in our opinion, because there is no guarantee that the
fluxes are canonical generators in the dense subset of the radiative phase space with vanishing news
at the initial and final cross-sections. For these reasons it seems to us that even in the case of field-
dependent symmetries (which is not relevant for the rest of this paper), one should insist on (3.25) as
the definition of covariance, and not ∆ξ θ̄ = 0.

If (3.43) is satisfied the resulting charges satisfy all the properties that one may look for: they
are conserved on solutions satisfying the stationarity condition, coincide with canonical generators
for arbitrary perturbation around the stationary solutions, and provide an anomaly-free realization
of the symmetry algebra, namely no cocycle in the Barnich-Troessaert bracket. If furthermore one
proves that the prescription is unique, then the problem of associating charges to a given spacetime
symmetry is completely solved. This turns out to be the case for the BMS charges, for which a unique
prescription satisfying all these properties exists. We now show how this viewpoint improves on the
split (3.5) and leads to a prescription in which both current algebra and charge algebra are free of
cocycles. We then discuss how one can go one step beyond and select charge aspects with covariant
properties.

3.3 Covariant BMS charges

Let us now go back to the Barnich-Troessaert split (3.4). As we have seen, it corresponds to a
symplectic potential θBT that is covariant and stationary on round spheres. Hence the Barnich-
Troessaert charges (3.4) are valid Wald-Zoupas charges, provided one restricts attention to Bondi
frames. It follows that if we want to remove the cocycle in general, all we need is to do is to pick
a symplectic potential that is covariant and stationary on arbitrary frames, and not only on round
spheres. As pointed out in [13], this is achieved adding and subtracting the term 1

32π δ(ρABC
AB) in

(3.16), so that ĊAB is replaced with NAB as in (2.45). Namely, we write

θ = θBT − δbBT = θBMS − δbBMS, (3.61)
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where now

θBMS := θBT + δℓG =
1

32π
NABδC

ABǫI , bBMS := bBT + ℓG, ℓG := − 1

32π
ρABC

ABǫI , (3.62)

and
qBMS
ξ = qBT

ξ + iξℓ
G (3.63)

up to a closed 2-form. The new symplectic potential is manifestly stationary for non-radiative space-
times on arbitrary frames, and its covariance and conformal invariance follow from (2.72) and (2.62),
so that (δξ −£ξ)θ

BMS = 0. It is also easy to check that it matches the one given by Wald and Zoupas
[5], here specialized to Bondi coordinates and for a shear associated with the u-foliation. To see that,
recall that in their expression, Wald and Zoupas use Ashtekar’s ‘connection coordinate’ [18], which as
explained in the previous Section is a relative shear with the vacuum fixed once and for all; in other

words, with δ
◦
σ = 0. Therefore δCAB = δCAB , and the equivalence follows.

The associated charge split is

QBMS
ξ =

1

8π

∮

S

(2fMρ + Y AJA)ǫS , FBMS
ξ =

1

32π

∮

S

fNABδC
ABǫS , (3.64)

where now

Mρ :=M − 1

8
ρABC

AB = −Re(ψ2 − σN) (3.65)

coincides with (the pull-back of) Geroch’s super-momentum (3.65) on arbitrary frames and not only
on round spheres. The Lorentz charge (3.7) picks up a similar shift through the boost dependence
in f . The charges (3.64) are defined up to a field-space constant, which is fixed uniquely to zero by
the requirement that all charges vanish in Minkowski spacetime.15 The expression in NP language
is useful in the sense that it does not make reference to explicit coordinates for I , and we can also
rewrite in the same way the non-integrable piece,

FBMS
ξ = − 1

16π

∮

S

fNabδσ
abǫS =

1

4π

∮

S

fRe(Nδσ)ǫS . (3.66)

The flux of the charges can be computed from (3.28), giving

QBMS
ξ [S2]−QBMS

ξ [S1] =̂FBMS
ξ = − 1

16π

∫

Nabδξσ
abǫI . (3.67)

The charge flux FBMS and the non-integrable term FBMS have the same functional dependence in
any frame, in agreement with the Wald-Zoupas prescription described earlier, and unlike for the split
(3.5). Furthermore FBMS

ξ with δξσ
ab given by (2.50b) matches the Ashtekar-Streubel flux [2] with

σab the shear of the u-foliation. We conclude that imposing covariance and stationarity on every
frame modifies the split used in [7] and leads to the result of [5], namely charges given by Geroch and
Dray-Streubel’s expressions, with flux given by the Ashtekar-Streubel expression.

Let us now see how the modification in the split also removes the cocycle. To that end, we insert
the relations (3.62) and (3.63) in the Barnich-Troessaert bracket (3.13),

{QBMS
ξ , QBMS

χ }∗ := δχQ
BMS
ξ − IξFBMS

χ = QBMS

Jξ,χK +KBT

(ξ,χ) +

∮

S

iξ∆χℓ
G − iχ∆ξℓ

G, (3.68)

15 This is not manifest for the Lorentz part. It relies on integration by parts, and the properties (2.28) of a vacuum
shear and (2.51) of the symmetry vector fields.
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where we used the fact that iδξℓ
G = 0. The anomaly of ℓG is given by [13]

∆ξℓ
G = − 1

32π
(CAB

DADBDCY
C
ξ + 2ρAB

D〈ADB〉fξ)ǫI . (3.69)

It can be computed with the formulas in Sec. 2.1, and relies crucially on (2.10). The term with CAB

cancels the one coming from the cocycle (3.15). The second term in (3.69) can be integrated by parts,
and using 2DBρ〈AB〉 = ∂AR we see that it cancels the second term of the cocycle. In other words, the
contribution from the anomaly of ℓG in (3.68) matches precisely the cocycle (3.15) up to an integration
by parts, and therefore

∆χQ
BMS
ξ = {QBMS

ξ , QBMS
χ }∗ = QBMS

Jξ,χK. (3.70)

It implies from the definition of the Barnich-Troessaert bracket that in non-radiative spacetimes we
recover that standard coadjoint orbits δχQ

BMS
ξ = QBMS

Jξ,χK.

We conclude that adding the boundary Lagrangian ℓG makes the symplectic potential covariant
and stationary on arbitrary frames, and removes the 2-cocycle. Furthermore, the calculation shows
that there is no central extension either, since every term of the original cocycle (3.15) is removed,
including the field-independent ones. The absence of central extensions can also be argued for on more
general grounds. In fact the only allowed central extension by the covariance requirement would be a
universal quantity that must furthermore be foliation independent and conformal invariant, a linear
and anti-symmetric function of ξ and χ, and not a total divergence. Inspection of the quantities at
disposal should convince the reader that there isn’t any such term. It also follows that the Ashtekar-
Streubel flux provides a covariant realization of the algebra between any two cross-sections of I , in
agreement with the general results of the previous section:

δχF
BMS
ξ = FBMS

Jξ,χK +

∮ S2

S1

iχIξθ
BMS ⇔ {FBMS

ξ , FBMS
χ }∗ = FBMS

Jξ,χK. (3.71)

In the above calculation we used the anomaly operator ∆ξ, which is a very convenient tool for the
covariant phase space. But the removal of the cocycle is just a consequence of covariance, and can be
proved without any reference to the anomaly operator. For completeness, we do so in Appendix B with
a calculation along the lines of [7]. In the same Appendix we also explain the cocyle’s removal from the
perspective of the improved Noether charge construction and anomalies of its boundary Lagrangian,
along the lines of [39].

The charges and fluxes can be conveniently split in super-momentum and Lorentz using the
(foliation-dependent) parametrization (2.46) of the symmetry vector fields. Specializing ξ = ξT := T∂u
with obtain the super-momentum charge

QBMS
T =

1

4π

∮

S

TMρǫS = − 1

4π

∮

S

TRe(ψ2 − σN)ǫS , (3.72)

with flux

QBMS
T [S2]−QBMS

T [S1] =̂ − 1

32π

∫
(

TNABNAB + 2NAB(DADB +
1

2
ρAB)T

)

ǫI , (3.73)

and whose transformation under a BMS symmetry χ can be read from (3.70) to be:

{QBMS
T , QBMS

χ }∗ = QBMS

[ξT ,χ] = QBMS
T ′ , T ′ = ḟξT − Yξ[T ]. (3.74)
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For ξ = ξY := u
2DY ∂u + Y A∂A we have the Lorentz charge

QBMS
Y =

1

8π

∮

S

Y A(JA − u∂AMρ)ǫS = − 1

4π

∮

S

Re

(

Ȳ

(

ψ1 + σðσ̄ +
1

2
ð(σσ̄)

)

+ uðMρ

)

, (3.75)

with flux

QBMS
Y [S2]−QBMS

Y [S1] =̂ − 1

64π

∫

(

uDY NABNAB +NAB(DY CAB − 2£Y CAB)
)

ǫI , (3.76)

and transformation law

{QBMS
Y , QBMS

χ }∗ = QBMS

[ξY ,χ] = QBMS
Y ′ +QBMS

f ′ , Y ′ = [Y, Yχ], (3.77)

f ′ = Y [fχ]−
1

2
DY Tχ − u

2
Yχ[DY ].

In writing the Newman-Penrose version of (3.75) we defined Y := mAY
A and usedXAY

A = 2Re(XȲ ).
The Newman-Penrose expressions require a choice of auxiliary vector l, which is here l = −du. The
fluxes split into ‘hard’ and ‘soft’ contributions, defined respectively as the part quadratic and linear
in the news. The super-momentum flux (3.73) has the additional property of being purely ‘hard’
for global translations, and in particular strictly negative for the energy (T = 1) in the presence of
radiation, which is Bondi’s famous result. Notice the role played by Geroch’s tensor in order to make
the last two statements valid in arbitrary frames.

The covariance property guarantees that the charges inherit the specific properties of the BMS
algebra consistently. For instance, a generic BMS transformation acts homogeneously on the super-
momentum as in (3.74), but inhomogeneously on the Lorentz charges, with a shift by a super-
momentum term determined by the parameter Tξ of the transformation, as in (3.77). This is the
well-known ‘super-translation ambiguity’ of angular momentum. It is a direct consequence of the
BMS algebra, specifically the fact that there is no preferred Lorentz subgroup of the BMS group in
radiative spacetimes, and the Dray-Streubel charge (3.75) correctly captures this feature. Another fea-
ture that stands out is that any two super-translation charges commute. This brings to the forefront
that the l-dependence of the charges leads to different behaviour under super-translations: invariance
for the super-momentum, and a shift by a super-momentum for the Lorentz charge.

In concluding this Section, we remark that integrating by parts was crucial to remove the cocycle.
This suggests that even though the Wald-Zoupas split (3.64) has achieved covariance of both Noether
currents and charges, the question is still open for the aspects. This is what we would like to address
next. To do so, let us first review some properties of the charges, which will also be useful to understand
the role of total divergences and to explain the anomalies of M and JA.

3.4 Understanding the anomalies of M and JA

We have identified a covariant Noether current for the BMS symmetries, given by

jBMS
ξ = − 1

16π
Nabδξσ

abǫI =̂ dqBMS
ξ . (3.78)
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Let us analyse separately its T and Y components. Using (2.45) and (2.50b) for a pure super-
translation we can rewrite the T -current as

jBMS
T =

1

32π
NABδTC

ABǫI = − 1

32π
(ĊAB + ρ〈AB〉)(T ĊAB − 2DADBT )ǫI

=
1

32π

[

T (−ĊABĊAB + 2DADBĊAB + D
2R)− TρABĊAB

+ 2DA(Ċ
AB∂BT − TDBĊ

AB + ρ〈AB〉
DBT − 1

2
TD

AR)
]

ǫI

=̂
1

4π
(TṀρ − DAV

A
(N,T ))ǫI =

1

4π
∂u

(

TMρ + DAV
A
(C+uρ,T )

)

ǫI .. (3.79)

In the second equality we integrated by parts, and in the third we used the Einstein equation
(2.40) and the short-hand notation

V A
[F,f ] :=

1

4
(F 〈AB〉

DBf − fDBF
〈AB〉). (3.80)

This calculation shows explicitly how one can obtaining the charges ‘integrating the fluxes’ as advo-
cated in [2], there performed in arbitrary coordinates and here specialized to Bondi coordinates. That
is, we are able to rewrite the current as an exact 3-form using the Einstein’s equations, and in the
process we introduce ‘Coulombic’ degrees of freedom such as M that are not present in the flux. The
result can be written as

jBMS
T =̂

1

4π
DaP

a
T ǫI =

1

4π
dPT , (3.81)

where

P a
T =

(

TMρ,
1

4

(

TDBN
AB −NAB

DBT
)

)

. (3.82)

This quantity coincides with Geroch’s super-momentum [1], in Bondi coordinates and with l = −du.
Its Hodge dual defines the 2-form PT := 1

2P
a
T ǫI abcdx

b ∧ dxc, whose pull-back on the cross sections
gives P u

T ǫS = TMρǫS, confirming what previously stated for (3.9) and (3.65). Accordingly,

qBMS
T = PT + xξ, (3.83)

where the integration constant xT leads to the ambiguities (3.30) and (3.35), and if we restrict it to be
a total divergence it will affect only the aspects. Let us fix xT = 0 for now, which is consistent with
the BMS charges (3.72), and come back to this point and the uniqueness of charges and aspects later.

This analysis shows thatM is a component of a vector, and this observation allows us to understand
the reason for the complicated inhomogeneous terms in its transformation law (2.50c). These terms
have a structure similar to the angular components of PT , therefore they capture the mixing of u
and A components of this vector when we change reference system by a BMS transformation. The
statement can be made precise if we compute the anomaly of PT . For the time component we find

∆χP
u
T = (δχ −£χ)P

u
T = TδχMρ − χa∂a(TMρ) + P a

T ∂aχ
u

= 3ḟχTMρ + (T ḟχ − Y A
χ ∂AT )Mρ −

1

4
DA(TN

AB
DBfχ). (3.84)

The first term will compensate the anomaly of the volume form, see (2.54), and the second term can
be recognized as the covariant transformation law P u

[ξT ,χ], see (2.57).
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For the angular components, which we remark match PA
T = −V A

(N,T ), we find

∆χP
A
T =

1

4
(δχ −£χ)(TDBN

AB −NAB
DBT ) = 3ḟχP

A
T + PA

[ξT ,χ] +
1

4
∂u(TN

AB
DBfχ). (3.85)

Adding up gives

∆χPT = P[ξT ,χ] + divǫS , v :=
1

8
TNAB

DBfχ∂A. (3.86)

If we integrate on the cross-sections we find the covariant transformation law (3.74). Since PT

provides a good aspects for the BMS charges, this is a consistency check of the charge algebra. It
further shows that there is nothing ‘non-covariant’ with the transformation law of M , it is precisely
what one needs in order for M to be the time component of a covariant BMS super-momentum
vector. Hence there is no need to change the definition of mass aspect, as sometimes considered in
the literature.16

Geroch’s super-momentum satisfies a covariance property that is actually stronger than (3.74).
It transforms covariantly not only when integrated on cross-sections, but on every two-dimensional
compact region of I +, thanks to the fact that the anomaly of its aspect is an exact form. Covariance
of Geroch’s super-momentum means that its background dependence comes only from the symmetry
vector field, and it is conformally invariant and l-independent, precisely as proved in [1]. Conformal
invariance is actually easy to show simply counting conformal weights, but l-independence (namely
foliation independence when l is restricted to be hypersurface orthogonal) is not. Our calculation
based on the anomaly operator provides an independent proof of it, albeit in the restricted setting in
which l is changed not arbitrarily but as the effect of a BMS(W) transformation, namely within the
hypersurface-orthogonal and Lie-dragged class. The exact 2-form anomaly in (3.86) means that only
the charge is l-independent, and not the aspect, again in agreement with [1].

The formula (3.86) allows us to comment also on the covariance properties of PT as an aspect.
First, we see that the anomaly is not anti-symmetric, hence we cannot interpret the aspect anomaly
as a bracket. Second, it is field-dependent, and vanishes on non-radiative spacetimes. Hence Geroch’s
aspect satisfies our definition of aspect covariance (3.49) on non-radiative spacetimes. In general
spacetimes it is covariant only under rotations, and not under super-translations and boosts. The
reason for this can actually be can be understood since the latter change the foliation hence the
Lie-dragged l.

The fact that the super-momentum is independent of l has an important consequence. It makes it
possible to capture its covariance without making explicit reference to its angular components. The
key for this trick is the last equality of (3.79). The angular components are total time derivatives,
hence they can be reabsorbed in the time component. This allows us to define the super-momentum
charge aspect

qBMS
T :=

1

4π
(TMρ + DAV

A
(C+uρ,T ) + xT )ǫS , ∂uxT = 0. (3.87)

It gives the same super-momentum charges as PT . As aspects, they are related by the ambiguity
(3.35) with Xξ = 0 and

xT = i£nV ǫI − DAV
AǫS , V A = V A

(C+uρ,T ), dPT = 4πdqBMS
T . (3.88)

The formula (3.87) is given for constant u cross-sections, but since any cross-section of I can be
written as constant u in some BMS coordinate system, it leads to covariant charges. As an aspect

16For instance the alternative charge prescription of taking Re(ψ2) alone as mass aspect will fail to be covariant beyond
non-radiative spacetimes.
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though, it has different covariance properties than PT . Let us compute its anomaly explicitly, since it
will also offer a complementary understanding of the anomaly of M . First, from (2.50c) we have

∆χMρ = 3ḟχMρ −
1

2
DAN

AB
DBfχ − 1

4
NAB

DADBfχ. (3.89)

The eye-catching factor of 3 occurs simply because the area 2-form and the symmetry parameter T
also have non-trivial conformal weights, see (2.54) and (2.57). Including them to obtain (a piece of)
the actual aspect, we find

∆χ(TMρǫS) = (∆χT )MρǫS + T

(

ḟχMρ −
1

2
DAN

AB
DBfχ − 1

4
NAB

DADBfχ

)

ǫS

= [ξT , χ]
uMρǫS − T

(

1

2
DAN

AB
DBfχ +

1

4
NAB

DADBfχ

)

ǫS . (3.90)

These steps are quite straightforward, but we believe it is instructive to see how the pieces add
up together towards the expected covariant transformation law. The remaining step concerns the
inhomogeneous terms. Comparing (3.89) to (2.50c) we see that the shift from M to Mρ eliminates the
inhomogeneous terms that would not vanish for non-radiative spacetimes in arbitrary frames. What
remains is still not a total divergence. This may look surprising since the other terms in (3.87) are total
divergences. The answer is in the non-commutativity (3.45) and (3.46), which means that we need
non-total divergences in order to be able to remove the anomaly contribution of the total divergences
in (3.87).

Explicitly, we have

[∆χ,DA]V = V̇DAfχ, (3.91)

[∆χ,DA]V
A = V̇ A

DAfχ − 2V A
DAḟχ, (3.92)

[∆χ,DA]V
AB = V̇ AB

DAfχ − 4V AB
DAḟχ. (3.93)

The rest of the calculation confirms this mechanism, and we obtain

∆χq
BMS
T = qBMS

JξT ,χK + c̄(ξT ,χ). (3.94)

Here

cBMS

(ξT ,χ) =
1

8π
DA

(

TDBD
AB
ρ Tχ −DAB

ρ TχDBT
)

ǫS , (3.95)

and we used the shorthand notation

Dρ
ab := D

〈a
D

b〉 +
1

2
ρ〈ab〉. (3.96)

Since it is a total divergence, it vanishes upon integration on the cross sections and we recover
(3.74): The charges satisfy a covariant symmetry algebra, without central extension. As an aspect on
the other hand it is still non covariant, but with a different anomaly than PT . It is field-independent,
and vanishes for global translations.

Coming back to δξM , its inhomogeneous terms guarantee (3.43), which requires computing iχdq̄ξ
and terms that are total divergences are no longer so after the interior product. In the non radiative
case the Noether current vanishes, hence this issue is no longer relevant. Indeed the transformation of
the mass boils down to the simple δχMρ = £YχMρ + 3ḟχMρ, or equivalently the manifestly covariant
δχ(TMρǫS) = £Yχ(TMρǫS) + [ξT , χ]

uMρǫS .
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Conversely, (3.87) provides a definition of ‘super-translation-covariant’ mass aspect, in the sense
of (3.94), and as opposed to M or Mρ alone.17 Notice that the required total divergences can only be
deduced using the procedure of integrating the fluxes, and not through the ‘Komar bootstrap’. This
is because as explained in Section 3.1, there is no relation between the total divergence found in (3.87)
and the one that is obtained keeping track of total divergences in the Komar 2-form and the shifts iξℓ
and sξ.

Any hope that the two match through some unforeseen mechanism appears to be ruled out by an
explicit calculation, which we do not report here.

The complicated transformation law (2.50d) of JA can be explained in a similar manner. The Y
part of the Noether current is

jBMS
Y =

1

32π
NABδY C

ABǫI

= − 1

32π
(ĊAB + ρ〈AB〉)(uḟ ĊAB + (£Y + 3ḟ)CAB − 2uDADB ḟ)ǫI . (3.97)

The procedure to obtain the charge integrating the flux is considerably more complicated than the
one for the super-momentum. One has to first integrate by parts to turn the ĊABĊ

AB term into the
Einstein equation (2.39) for Ṁ , just like we did above. Then, one has to integrate by parts a large
number of times in order to reconstruct the Einstein equation (2.40) for J̇A, and in the process take
into account the CKV identity (2.51) and related identities for higher order derivatives. The result
will be of the form

jBMS
Y =̂

1

8π
DaJ

a
Y ǫI =

1

8π
dJY , (3.98)

where
Ju
Y = Y A(JA − uDAMρ). (3.99)

The angular components of this covariant vector are the raison d’etre for the inhomogeneous terms in
the transformation law of JA. We did not attempt to compute them, and we content ourselves with
the indirect proof obtained from the removal of the Barnich-Troessaert cocycle in (3.77). The long
calculation proving (3.98) was successfully completed in [34], using the Newmann-Penrose formalism.
Unfortunately total divergences were discarded, and therefore only (3.99) was obtained. This is
sufficient to prove that the fluxes integrated to the Dray-Streubel’s charges. To know also the angular
components JA

Y , one has to redo the calculation of [34] keeping track of all total divergences (As
explained above, it is not possible to shortcut this calculation by deducing the total divergences from
the limit of the Komar 2-form). For the (brave!) reader interested in determining them, let us point
out that one should not expect them to be total time derivatives. This special property made sense
for the super-momentum because it is related to its covariant transformation law (3.74), and to the
l-independence of Geroch’s super-momentum. But any Lorentz charge necessarily refers to a cross
section since the notion of Lorentz subgroup does. Consistently, the covariant transformation law

17As a side comment, notice that if we restrict to round spheres and to global translations,

q
BMS

T =
1

4π
T

(

M −
1

4
DADBC

AB

)

ǫS .

It was suggested in [59, 60] to take this expression as super-momentum aspect for any T , because it has the interesting
feature of a ‘purely hard’ flux. This option would however violate covariance, which as we see from (3.87) requires
additional terms. Remarkably, it turns out that if one improves the Ashtekar-Streubel symplectic form by a corner term,
then there exists a related expression that is covariant, and maintains its ‘hard-flux’ property [61].
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(3.77) means that when we change cross section, a super-momentum shift is required. The shift would
be unnecessary if it were possible to capture the covariant transformation law simply adding a total
divergence to the u component.

3.5 A new covariant super-momentum aspect

Let us come back to the question of uniqueness of the charges and their aspects, starting with the
former. The Wald-Zoupas procedure of matching the ΩΣ calculation gave us directly (3.64) up to
a field-space constant which is removing by the requirement that all charges vanish in Minkowski.
Therefore the charges are unique (but not the aspects). With the procedure of integrating the fluxes,
one can use the fact that all time-independent quantities in the radiative phase space are also universal.
Therefore the ambiguity (3.30) can be removed by the same requirement that the charges all vanish
in Minkowski, and this singles out (3.64) again. Notice that the property is only valid for the charges
and not for the aspects, see footnote 15, which are therefore left ambiguous at this stage. If one does
not want to use the reference solution, or if there isn’t any obvious one standing out, then it is possible
to address the ambiguity requiring covariance of the charges. In the BMS case at hand this argument
gives the same answer (3.64). In fact, the only quantities that can be added to it without spoiling
covariance are conformal invariant and foliation-independent, and in order to be time independent
they can only be built out of the universal fields (qab, n

a, ρab) (plus ξa which can enter via Iξ since
[£n, Iξ] = 0), e.g.

∮

DYRǫS . A moment of reflection shows that this is not possible, hence the charges
are unique.

A separate discussion is necessary for the vacuum shear, and more precisely for the bad cut mode
u0. This is not well defined in the whole phase space, but only in the non-radiative subset of vacua.
Therefore it does not change the above argument about universality in the radiative phase space. On
the other hand, we have introduced in Section 2 an enlarged radiative phase space, adding precisely u0
as corner datum, representing the (late) time boundary condition. The enlarged phase space contains
a non-universal and time-independent quantity, hence the above argument no longer applies, and u0
can be used to construct new charges. We can now distinguish two different situations, depending on
whether we impose condition 0 or not. If we allow for non-trivial corner terms it is indeed possible to
find alternative covariant charges. This investigation will be reported elsewhere [61]. For this paper
we maintain the original Wald-Zoupas prescription at least for BMS, hence condition 0. Then the
only allowed ambiguity comes from a ϑ with dϑ = 0, hence xξ = FǫS with Ḟ = 0, meaning that
F = F (qab, n

a, ρab, u0). But u0 here is the only quantity which is not super-translation invariant,
hence it necessarily breaks covariance. The only way to use this ambiguity and preserve covariance of
the charges is thus to restrict F to be a total divergence. It follows that the charges are untouched, and
their uniqueness is preserved also in the enlarged phase space with the Ashtekar-Streubel symplectic
structure. On the other hand, we can use the ambiguity in F to change the aspects. Since the aspects
were not covariant to begin with, it is interesting to ask whether there exists a ϑ that improves their
covariance. The answer is affirmative for the super-momentum aspect.

To that end, we consider the following corner improvement:

ϑ = − 1

8π
DA[(DBD

AB
ρ u0)δu0 −DAB

ρ u0DBδu0]ǫS , dϑ = 0. (3.100)

with

(δξ −£ξ)ϑ =
1

8π
DA

[

δu0DBD
AB
ρ Tξ −DAB

ρ TξDBδu0
]

ǫS. (3.101)
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It satisfies condition 0, and does not change the charges nor the Noether currents, so their covariance
is preserved. It only changes the aspects, which now read

q̄BMS
T = qBMS

T +
1

4π
xT ǫS =

1

4π
(TMρ + DAV

A
[C,T ])ǫS , xT = −2DAV

A
[∆ρu0,T ]ǫS = −4πIξT ϑ. (3.102)

In other words, the role of the corner improvement is to fix the integration constant in the potential
of the news to be given by the bad cut boundary condition, hence turning the shear appearing in the
aspect (3.87) into the relative (or ‘covariant’) shear (2.67). Computing the algebra we find

∆χq̄
BMS
ξ = q̄BMS

Jξ,χK, (3.103)

for any BMS symmetry ξ. We find it quite remarkable that this is possible. We refer to this new
aspect as Goldstone-improved super-momentum aspect.

Of course, l’appetito vien mangiando and one may wonder whether it is possible to similarly improve
the Lorentz aspect. We did not succeed in doing so, and we believe it is not possible because of the
usual argument that cross-section dependence of any Lorentz subgroup is an unavoidable property of
any covariant charge, hence its aspect needs to carry this background-dependence.

4 Extended BMS flux and charge algebra

We turn now to examine whether it is possible to satisfy the Wald-Zoupas conditions on charges
and fluxes for the extended BMS (eBMS) symmetry. The fall-off conditions on the metric are the
same as in the BMS case, but one allows non-globally defined CKVs. The non-globally defined CKVs
are referred to collectively as ‘super-rotations’, even though they include both ‘rotation-like’ and
‘boost-like’ components. The presence of singularities in the vector fields changes the topology of the
cross sections, allowing punctures on the sphere. This in turns allows one to pick a conformal frame
corresponding to cross sections with a flat metric, and R = 0 (everywhere except at isolated points
corresponding to the punctures). Being of constant curvature, this frame can be thought of as a special
case of ‘Bondi frame’. Since the symmetry vector fields are still CKVs, (2.51) is valid, and we can
still assume that δqab = 0 namely that the background metric is universal. However, (2.52) does not
hold for non-globally defined conformal vector fields. Therefore the charge prescription (3.17) fails to
satisfy the stationarity and covariance conditions in every frame, whether of constant curvature or
not, and this manifests itself in the field-dependent 2-cocyle (3.15).

To address these issues, we can still follow Geroch’s lead and observe that the Schouten tensor,
or equivalently the (time derivative of the) shear of a Lie-dragged l, are not conformally invariant,
hence we should improve the symplectic potential introducing the news tensor (2.4). But recall that
the sphere topology is crucial to prove that ρab is unique. If the topology is not that of a sphere, it is
easy to see that for each given conformal completion there are infinitely many solutions to Geroch’s
conditions. This is the main novelty of eBMS, see Appendix C for details. The new degrees of
freedom in Geroch’s tensor can be interpreted in terms of a conformal field theory for which ρab is
the stress-energy tensor [20, 23, 10, 11, 24, 26, 27].18 As ρab is now neither unique nor universal, its
behaviour under diffeomorphisms and conformal transformations is decoupled, leading to a non-trivial
transformation rule under the eBMS symmetry group,

δξρAB = £ξρAB + 2DADB ḟ 6= 0. (4.1)

18In these references, this generalization of Geroch’s tensor is sometimes denoted still ρab as in here, sometimes Nvac

ab ,
sometimes Tab in reference to the conformal field theory.
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This is the expression in Bondi coordinates, for an arbitrary qAB . If we specialize to the flat metric,
whose components can be taken to be qzz = 0 and qzz̄ = 1 in complex coordinates, then Y z is
meromorphic and Y z̄ anti-meromorphic, and (4.1) reads δξρzz = £ξρzz + ∂3zY

z. The right-hand
side vanishes for super-translations, but not for super-rotations. If the latter are restricted to be
globally defined CKVs, then we expect it to vanish as well as to recover the BMS result. To see this,
we distinguish two cases. If we make the restriction to globally defined CKVs assuming the sphere
topology, then ρAB is unique and the result follows from the original Geroch’s analysis. If we do it with
the punctured sphere topology, then ρAB is no longer unique, but there is a choice that guarantees
that the right-hand side vanishes in every frame, and this is given by the special solution ρAB = 0 on
the flat frame, see App. C.1 for a proof. In other words, there is always a preferred ρAB for globally
defined CKVs, given by Gerch’s tensor on the sphere topology, and by a conformal transformation of
the trivial tensor on the punctured sphere.

Concerning the transformation rules of the background and dynamical fields, we can still use (2.50),
with the proviso that we allow for non-globally defined CKVs. An implication of this is that super-
rotations create magnetic shear (because (2.52) does not hold), hence extending the Christodoulou-
Klainerman conditions [62]. Remarkably, the anomaly of the non-universal version of Geroch tensor
ρAB is still the same expression (2.71) that we had for BMS.19 As a consequence, (2.72) still holds: the
news tensor is conformally invariant in eBMS just as it was in BMS, in spite of different transformation
rules for δξρab and δξNab.

This observation suggests to look for a Wald-Zoupas charge prescription following the same idea
we used in the BMS case, namely we add and subtract the term 1

32π δ(ρABC
AB) to (3.16) in order

to turn ĊAB into NAB . This leads to he same charges (3.64), but there is a catch: The symplectic
potential picks up an additional contribution due to the non-universality of ρab,

θBMS =
1

32π
(NABδC

AB − CABδρAB)ǫI . (4.2)

The new contribution can also be read from the Noether current associated with the same charges. In
fact dqBMS

ξ contains a term £ξρAB , which goes into reconstructing the flux NABδξC
AB. Except that

in the eBMS case in order to do so we have to use (4.1) and this leads precisely to the extra piece
CABδξρAB , in agreement with (4.2).

The first term of (4.2) is perfectly covariant, but the second one only up to a total divergence on
the cross sections:

(δξ −£ξ)θ
BMS =

1

16π
DA(δρ

AB
DBf)ǫI . (4.3)

This follows from (2.71) and
D

BδρAB = δDAR = 0, (4.4)

which still holds in spite of the non-universality of ρab. The linearized non-covariance (4.3) vanishes
upon integration (One may question the validity of this statement in a context in which singularities
in the vector fields are allowed, but it is the assumption taken in [7] and which we follow here).
Therefore the flux satisfies the linearized covariance condition, but the symplectic potential 3-form
and the Noether current do not. and this is enough to have a cocycle-free flux algebra: (4.2) satisfies
(3.71). In fact, even the charge algebra is center-less: on can follow the same steps of (3.68), and even
though (4.2) has an extra piece and δξρab 6= 0, the fact that the anomaly is still given by (2.71) is

19There is an analogy to what happens to qAB in going from BMS to more general symmetries such as gBMS or
BMSW: the rule δξqAB changes, but the background dependence is still the same, and so is ∆ξqAB .
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enough to achieve (3.70). In other words, the BMS charges satisfy a covariant algebra even if ρab is
not universal!

We are now in a position to clarify the origin of the 2-cocycle found in [7] for the eBMS symmetry.
It comes from having neglected the contribution of Geroch’s tensor, which as in the BMS case, it
removes both terms of (3.15). One may have thought that choosing a flat metric and assuming
an initial ρab = 0, Geroch’s contribution would be irrelevant to the charge algebra, similarly to what
happens in the BMS case if we stick to Bondi frames. The reason why this is not the case is that eBMS
transformation (4.1) is not homogeneous. Hence keeping ρab = 0 is not consistent when computing the
algebra, and this is why a breaking of covariance appears, in the form of the 2-cocycle of [7]. Having
clarified this and exhibited an eBMS charge algebra free of cocycles, it may come as a disappointment
the fact that (4.2) is actually not a valid Wald-Zoupas potential for eBMS. The reason is that we have
a non-trivial commutator (3.46), hence the property (4.3) is not sufficient to have covariance under
finite conformal transformations. This can be explicitly checked using the finite transformation rules
(2.77) and (C.4) for the shear and Geroch tensors.

The non-covariant term CABδρAB also spoils the stationarity condition. However, since it depends
on time only through the shear, stationarity can be restored up to a corner term:

− 1

32π
CABδρABǫI = − 1

32π
(u− u0)NABδρ

ABǫI + dϑ, (4.5)

where

ϑ = − 1

32π

(

(u− u0)C
AB +

u

2
(u− 2u0)ρ

〈AB〉
)

δρABǫS, (4.6)

and u0 = u0(x
A) is a constant of integration. We are thus led to relax condition 0 and consider the

new symplectic potential

θeBMS := θBMS − dϑ =
1

32π
(NABδC

AB − (u− u0)NABδρ
AB)ǫI . (4.7)

It is manifestly stationary. How about its covariance? A term like uNABδρ
AB depends on the foliation,

hence it cannot be covariant. This is where the integration constant u0 plays a key role. We take it to
be charged under conformal transformations and super-translations like u, hence ∆ξu0 = −f |u0. This
means that it transforms precisely like (2.65), hence we can identify it as the super-translation field
(aka super-translation Goldstone aka bad-cut field) corresponding to the boundary condition defined
by the relative shear (2.32), and ∆ξ(u−u0) = −ḟ(u−u0). One can then easily verify that (4.7) is fully
covariant, at both linearized and finite level. In other words, allowing for an integration constant in
(4.5) and endowing it with the interpretation of a vacuum connection at late times, we have made the
expression independent of the foliation. We have thus been able to identify a Wald-Zoupas potential
for eBMS! Before discussing its uniqueness, let us add a few remarks.

Finding a Wald-Zoupas potential for eBMS has required two new ingredients with respect to
the BMS case: (i) enrich the radiative phase space to include a vacuum connection as corner data
representing late time boundary conditions, and (ii) relax what we referred to as condition 0 of the
Wald-Zoupas paper and allow a change of symplectic structure by a corner term. The new symplectic
current is

ωeBMS = ω − dδϑ =
1

32π
(δNABδC

AB − δ[(u − u0)NAB ]δρ
AB)ǫI . (4.8)

It is not defined in the spacetime bulk but only at I , since it depends on the ‘edge modes’ ρab and
u0. Its integral over Σ is however well-defined. Therefore while the symplectic current is not defined
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on the phase space Σ, the symplectic 2-form is. The fact that covariance may be restored using fields
defined only at the boundary is consistent with the Wald-Zoupas philosophy, and very much at the
root of the edge modes approach to gauge symmetries in the presence of boundaries [63].

The corresponding Noether currents are

jeBMS
ξ = Iξθ

eBMS =
1

32π

(

NABδξC
AB − (u− u0)NABδξρ

AB
)

ǫI =̂ dqeBMS
ξ , (4.9)

with

qeBMS
ξ = qBMS

ξ − Iξϑ = qBMS
ξ +

1

32π

(

(u− u0)C
AB +

u

2
(u− 2u0)ρ

〈AB〉
)

δξρ
ABǫS , (4.10)

up to a closed 2-form. This gives the same super-translation charges and fluxes (3.72), the only
modification occurs for super-rotations. It follows from the results of [14] recalled above that these
Noether currents provide a center-less realization of the eBMS symmetry algebra via (3.39). It can be
verified explicitly with a calculation similar to the one of (3.68).

In order to integrate the current over all of I , one needs the fall-off conditions

lim
u→∞

Nab =
1

u2+ε
, (4.11)

which are stronger than the Ashtekar-Streubel ones (2.35). In other words, the eBMS symmetry can
be made covariant locally or over all of I , but in the latter case only with respect to a smaller set of
solutions than the BMS symmetry. Integrating (4.9) over all of I and assuming (4.11) gives a result
consistent with [24, 27]. Our analysis thus strengthens the proposal of these papers, by showing that
their total flux satisfies the Wald-Zoupas conditions, and furthermore that it can be obtained from
a local 3-form which also satisfies the Wald-Zoupas conditions. As a consequence not only the total
flux on I , but also the flux between two arbitrary cuts of I provides a center-less realization of the
eBMS algebra.

Finally, let us talk about the uniqueness of (4.7). The question is whether there exist exact forms
in field space or in (the boundary of) spacetime that can be added without spoiling covariance and
stationarity requirements. These requirements eliminate most terms that one can write down. Some
options remain, for instance δ[(u−u0)NABN

ABǫI ] or d[(u−u0)NABδC
ABǫS]. These however contain

second derivatives in time, hence they are ruled out for the same reason they are ruled out in the
standard BMS analysis, namely the analyticity requirement that the equivalence class of symplectic
potentials should be compatible with the second-order nature of the field equations. The only allowed
second-order derivatives on a null boundary are then purely spatial or mixed time-space, but not
purely temporal. This argument eliminates the examples above, and barring unforeseen terms, we
believe that the eBMS Wald-Zoupas symplectic potential we have found is unique.

4.1 Uniqueness of the eBMS charges

Let us now look at the charges (4.10). Since they come from a covariant flux, the only possible cocyle
in their Barnich-Troessaert bracket is time-independent. An explicit calculation gives

KeBMS

(ξ,χ) = − 1

16π

∮

S

(

u0 δξρAB(D
〈A

D
B〉 +

1

2
ρ〈AB〉)TχǫS − (ξ ↔ χ)

)

ǫS. (4.12)

It is time-independent and furthermore non-radiative, depending only on the background metric and
on the edge modes. Since the edge modes are not universal however, it is not a simple central extension,
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hence it signals a lack of covariance of the charges. If we look more closely, we see that the cocyle
vanishes for globally defined CKV, but also for super-rotations if we consider global translations. We
thus have a covariant charge algebra of super-rotations with global translations, but not between
arbitrary eBMS transformations.

The cocycle is proportional to u0, so it vanishes for the boundary condition u0 = 0. But there
is nothing physical nor covariant about this value, which depends on an arbitrary choice of origin in
the vacuum sector of the radiative phase space. Since the initial charges had no cocycle, (4.12) comes
entirely from the corner improvement, which is in fact anomalous,

(δξ −£ξ)ϑ =
1

16π
[uD〈ADB〉Tξδρ

AB +
1

2
u2D〈ADB〉ḟξδρ

AB − u0(D〈ADB〉 +
1

2
ρ〈AB〉)Tξδρ

AB ]ǫS . (4.13)

Integration on the cross section removes the time dependence, in agreement with the general argument
(3.56), and we obtain

KeBMS

(ξ,χ) =

∮

S

Iξ(δχ −£χ)ϑ− Iχ(δξ −£ξ)ϑ. (4.14)

Next, we ask if the charges are unique, and if not, whether there is an alternative free of cocycle. The
ambiguity in the charges is the usual freedom of adding a time-independent function, which can be
parametrized by the freedom of adding a time-independent corner term,

ϑ→ ϑ+ ϑe, dϑe = 0, Ω̄Σ → Ω̄Σ − δ

∮

S

ϑe. (4.15)

In this way, the new charge is automatically consistent with the canonical generator on Σ. For instance,
one could try to remove the relative factor 1/2 in (4.10) which prevents replacing the shear CAB with
the covariant shear CAB . However this factor is necessary for the integration by parts in time (4.5).
A simple example would be adding

ϑe = − 1

64π
u20ρ

〈AB〉δρABǫS , (4.16)

leading to the new corner potential

ϑ1 = ϑ+ ϑe = − 1

32π
(u− u0)

(

CAB +
1

2
(u− u0)ρ

〈AB〉

)

δρABǫS . (4.17)

It gives rise to the same Wald-Zoupas symplectic potential (4.7), and the new charges

qeBMS
ξ = qBMS

ξ − Iξϑ = qBMS
ξ +

1

32π
(u− u0)

(

CAB +
1

2
(u− u0)ρAB

)

δξρ
ABǫS . (4.18)

They may appeal aesthetically more than (4.10). But the extra shift actually worsen the covariance.
The cocycle becomes

KeBMS1

(ξ,χ) = − 1

16π

∮

S

u0

(

δξρAB(D
〈A

D
B〉Tχ +

u0
2

D
〈A

D
B〉ḟχ)− (ξ ↔ χ)

)

ǫS (4.19)

and we have lost the property that global translations act covariantly on super-rotations in every
frame. We were not able to find a choice of ϑe that removes the cocycle, and the attempts we made
suggest that (4.6) is uniquely selected in that it minimizes the non-covariance of the charges. In spite
of its limited success, this example is useful to show explicitly the importance of requiring covariance
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in order to restrict the charge ambiguity, in situations like this where the reference solution is not
enough or not relevant.

As a closing remark, we point out that despite not being able to construct a covariant local corner
charge algebra, a covariant charge algebra can on the other hand be achieved if one defines the surface
charges only as relative quantities with respect to a given reference solution in the distance future.
For instance if we assume that spacetime settles down to Minkowski spacetime at u→ +∞, then we
can define the charge at a cross section S of I + as the integral of the current between I

+
+ and S.

By doing this, the charge vanishes automatically at any cross section S in Minkowski spacetime, since
the current vanishes in this case, and the charge algebra is free of cocycles.

5 Conclusions

We wrote this paper with two goals in mind. First, to bring to the forefront some aspects of the physics
and geometry of I that although well explained in the existing reviews, may not have received the
attention they deserve in order to explain and relate different results in the literature. Notably the fact
that the covariant shear constructed in [11] can be derived in a coordinate-independent way from the
radiative phase space of [2, 64], hence explaining that the super-translation field aka super-translation
Goldstone field is not a new degree of freedom, and it is present in Ashtekar-Streubel phase space. It
can be thought of as a bad cut (final) temporal condition acquire a status like an edge mode when
it is used as a temporal boundary condition to enlarge the radiative phase space with a temporal
boundary condition. We also explained that the seemingly contradictory statements that the time
derivative of the shear is not conformally invariant [3, 10, 11], and that it is [12], are due to the
alternative options of preserving or not a shear associated to a Lie-dragged auxiliary vector field. The
first option results in simpler transformations laws and simpler flux formulas, and that are actually
the ones used by the community working in Bondi coordinates. We provided a general formula for the
news tensor that is not often found, and resurfaced Dray’s argument explaining why it is convenient
not to restrict attention to only Bondi frames when studying flux-balance laws between arbitrary cross
sections. By presenting all results both in covariant language as well as in Bondi coordinates, we hope
to have contributed in helping communication between the two communities. A further technical
result of our paper is to show that covariance and conformal invariance can be studied in a practical
and economical way studying finite BMSW transformations, similarly to what done in [10], seen as an
auxiliary transformations and not as an extension of the symmetry. We also hope to have convinced
the reader that the anomaly operator is a very convenient tool, that makes checking covariance as
well as conformal invariance straightforward and simultaneous, and most practically, doable in a fixed
coordinate system.

The second goal of the paper was to present the details of the results announced in [14]. We
have shown that the 2-cocycle found in [7] is a result of a non-covariant split in the definition of the
charges, and that it is possible to find a Wald-Zoupas potential that removes it. For BMS the right
potential was already known, and we have checked that both currents and charges realize the algebra
under the Barnich-Troessaert bracket without central extensions. For eBMS it is a new result, and
generalizes previous formulas appeared in [24, 27]. There is an interesting similarity between the two
constructions, in the sense that in both cases the key role is played by Geroch tensor, with the crucial
difference that it is universal in the first case, non-universal and rather an edge mode in the second.
The similarities however stop here. In the eBMS case, covariance requires to modify the symplectic
2-form by a corner term, and can only be achieved for the fluxes and a subset of the charges. The full
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charge algebra presents a time-independent cocycle determined by the boundary fields u0 and ρab and
independent of radiative degrees of freedom such as the shear.

Having found a covariant symplectic potential for eBMS was quite a surprise to us. It follows from
(i) the subtle role that the generalization of Geroch’s tensor plays in restoring covariance even if it is no
longer universal, in fact precisely because it is no longer universal and it transforms inhomogeneously,
and (ii) using an appropriate symplectic 2-form with the corner improvement δ(u0NAB)δρ

ABǫI . Our
results suggest that case studies in which field-dependent cocycles appear in the literature (see e.g.
[65, 66, 67, 41, 44, 68]) are probably afflicted by loss of covariance in their construction, at one level
or another.

The fact that the charge covariance requires additional input than flux covariance is in line with
the results of [2, 69, 29] showing that the fluxes have also a more consistent interpretation as canonical
generators on the radiative phase space, than the charges on the partial Cauchy slice phase space.

Applications of our method to the generalizations of the BMS symmetry to larger groups will
appear elsewhere [51]. Our results are likely to be relevant also relevant for the current ongoing
research on w1+∞[70, 71, 72, 73, 74]. For other recent work on asymptotic gravitational symmetries,
see e.g. [75, 76, 77, 78, 79, 80, 81, 82].
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A Shear transformation

In this Appendix we review how (2.68) reduces to (2.50b) for a Lie dragged l. We start from the
identity

[£ξ,D〈a]lb〉 = lc(ξdR̂d〈ab〉c −D〈aDb〉ξc). (A.1)

For the vertical part of the symmetry vector field, ξ = fn, we have

lcndR̂d〈ab〉c =
1

2
Ŝ〈ab〉 (A.2)

because the conformal Weyl tensor vanishes at I , and

−lcD〈aDb〉(fnc) = D〈aDb〉f = D〈aDb〉f + σabḟ + 2l〈aDb〉ḟ (A.3)

where we used the divergence-free frame condition and the first identity in footnote 5. For the hori-
zontal part, we have

lcY dR̂d〈ab〉c = Y c[Dc,D〈a]lb〉 = Y cDcσab − Y cD〈bσa〉c (A.4)

where we already set τa = 0, and

−lcDaDbYc = £Y σab − Y cDcσab + Y cD〈aσb〉c. (A.5)
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Adding up and using (2.44), we recover

δξσab = (f∂u +£Y − ḟ)σab + D〈aDb〉f = −1

2
δξCab. (A.6)

A.1 On the flux-balance laws

In this appendix we investigate two different methods for computing the flux of the BMS charges
between two arbitrary cross sections of I + using the covariance properties that we studied in the
main text. Imagine for example that we want to compute the flux between the cross section S1 defined
at u1 = 0 and S2 defined at u2 = α(xA). The two cross sections are related to a supertranslation
u2 = u1 + α, and so the coordinates u′ = u − α, xA

′

= xA define a nother Bondi coordinate system
where S2 is located at u′ = 0. If we adapt the background structure to the first coordinate system
(u, xA) by usiong an auxiliary vector l = −du tangent to the foliation induced by the first Bondi
coordinate system, we can compute the charges at u = 0 which are given by

QBMS
ξ [S1] =

1

16π

∮

S1

(4MρT + 2Y AJA)ǫS (A.7)

where M and JA are computed using l = −du. However, on the cross section S2, the charge is not
given in general by

QBMS
ξ [S2] =

1

16π

∮

S2

(4MρT + 2Y AJA)ǫS (A.8)

since M and JA are not adapted to the foliation to which S2 belongs to. However, we can compute
the BMS charge on S2 by adapting the background structure made of l and ξ to the cross section S2,
such that

QBMS
ξ′ [S2] =

1

16π

∮

S2

(4M
′

ρT
′ + 2Y ′AJ ′

A)ǫS (A.9)

where the coordinate system A′ labels the cross section S2, M
′
ρ and J ′

A are computed by trans-
forming l = −du into l′ = −d(u − α) adapted to the foliations of supertranslated Bondi coordinate
system, which corresponds to the application of the (finite) anomaly operator associated to the super-
translation α. Furthermore, we have to adapt the vector field ξ to the new coordinate system, such
that

ξ = T∂u + Y A∂A = T ′∂u′ + Y ′A∂′A, (A.10)

and ∂′A being tangent to S2, and which components (T ′, Y ′A) are obtained by computing the bracket
[α, ξ]. It is how the charges have been computed in [9, 33] for instance, without referring to the anomaly
operator. Furthermore, we know that the relation between (A.8) and (A.9) is given by the integration
of the infinitesimal relation (3.77) to a finite supe-rtranslation parameter α. Indeed, this relation tells
us that at linearized order the anomaly of the charge is equivalent to computing the anomaly of the
vector fields, i.e their bracket. In particular, for any super-translation T , since [α, T ] = 0, (3.77) can
easily be integrated and we have that

Qξ[S] =
1

4π

∫

S

(TMρ + DAV
A
(C+uρ,T ))ǫS =

1

4π

∫

S

(TM ′
ρ + D

′
AV

A
(C′,T ))ǫS (A.11)

which outlines the invariance of the super-momentum with respect to the choice of l. Nevertheless, the
super-momentum can be written as the integral of TMρ on S only if l is adapted to the cross section
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S, since DA depends on the choice of l. However, the angular momentum does not commute with an
arbitrary super-translation α, and so the angular momentum is dependent on the choice of l, but in a
covariant manner, since (A.8) and (A.9) are related by (3.77). Therefore, if we want to compute the
angular momentum charge using an auxiliary vector l which is not adapted to the cross-section, we
have to integrate (3.77) to a finite super-translation parameter α.

However, translating between two different Bondi coordinate systems can be painful and so we
outline here another elegant way of computing the flux of angular momentum which has been worked
out by Dray [34]. The Dray-Straubel angular momentum charge is computed using an auxiliary vector
l that is tangent to the cross section S on which we evaluate the angular momentum charge. However
in the example above we do not have an auxiliary vector l that is tangent to both cross sections at
the same time, for the same reason as the vector ξ cannot be tangent to both cross sections, since for
a general α it will have a vertical component on S2 if it does not have one on S1. Nevertheless, the
Ashtekar-Streubel flux is conformally invariant, so we can compute the flux and the charges in any
conformal frame. Under conformal transformations (followed by a super-translation T ), we remind
that the affine coordinate u transforms into

u→ u′ = ω(u+ T ) +O(Ω) (A.12)

which is another affine coordinate. If we choose now ω = 1
u2−u1

and T = − u1
u2−u1

, then the cross
sections S1 and S2 belong the same foliation, and are located respectively at u′ = 0 and u′ = 1. In
other words, for any pair of cross sections (S1, S2) there exists a privileged conformal frame in which
the auxiliary field l′ = −du′ adapted to S1 is also adapted to S2. Therefore in this conformal frame
the two cross sections belong to the same foliation and we can compute the flux and the charges by
neglecting the contribution of the total divergences D ′

AX
AǫI all along (where the two dimensional

derivative operator D ′
A is associated with l′ = −du′).

B Explicit calculation of the 2-cocycle’s removal

In this Appendix we prove that the Wald-Zoupas charges satisfy the algebra without 2-cocycle with
an explicit calculation and without reference to the anomaly operator. The cocycle is removed if

δξ(q
BT
χ − qBMS

χ )− iξIχ(θ
BT − θBMS) = −KBT

(ξ,χ) − (qBT

[ξ,χ] − qBMS

[ξ,χ]). (B.1)

where

ℓG = −1

2
ρABC

ABǫI , θBT − θBMS = −δℓG =
1

32π
ρABδC

ABǫI , (B.2)

qBT
χ − qBMS

χ = −iχℓG =
fχ
32π

ρABC
ABǫS , iχǫI = fχǫS . (B.3)

From the latter we have

qBT

[ξ,χ] − qBMS

[ξ,χ] =
f[ξ,χ]

32π
ρABC

ABǫS =
1

32π

(

fξḟχ + Yξ[fχ]− (ξ ↔ χ)
)

ρABC
ABǫS , (B.4)

hence the right-hand side of (B.1) is equal to

− 1

32π

(

fξ(∂
Afχ∂AR+ 2CAB

DADB ḟχ) + (fξḟχ + Yξ[fχ])ρABC
AB − (ξ ↔ χ)

)

ǫS, (B.5)
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where we used (3.15). On the left hand side we have

δξ(q
BT
χ − qBMS

χ )− iξIχ(θ
BT − θBMS) =

fχ
32π

ρAB δξC
AB ǫS − (ξ ↔ χ)

=
1

32π
fχρAB

(

(£Yξ
+ 3ḟξ)C

AB − 2D 〈A
D

B〉fξ

)

ǫS − (ξ ↔ χ), (B.6)

where we used (2.62). In the first term we integrate by parts:

fχρAB£Yξ
CABǫS = −CAB£Yξ

(fχρABǫS) = −CAB(ρABYξ[fχ] + fχ£Yξ
ρAB + 2fχρAB ḟξ)ǫS , (B.7)

using dǫS = 0 and d(iYξ
ǫS) = DYξǫS = 2ḟξǫS . The crucial ingredient at this point is the transformation

law (2.10) of Geroch’s tensor, which allows us to rewrite (B.6) as

− 1

32π

(

CABYξ[fχ]− fχρAB ḟξC
AB + 2fχ

(

CABD
〈A

D
B〉ḟξ + ρ〈AB〉D

A
D

Bfξ
)

)

ǫS − (ξ ↔ χ). (B.8)

The first three terms match the first three terms of (B.5), including the anti-symmetrization. The
last term we integrate by parts, finding

−fχρ〈AB〉D
A
D

Bfξ =
1

2
fχ∂AR∂Afξ + ρ〈AB〉DAfχD

Bfξ. (B.9)

The second term vanishes from the anti-symmetrization, and the derivation of (B.1) is complete.
This derivation can be applied to the eBMS case if we replace (2.10) by (4.1). In this case we

also have an extra contribution − 1
32πCABδξρ

ABǫSfχ − (ξ ↔ χ) to δξq
BMS
χ − iξIχθ

BMS and thus we
understand that it is in fact the combination £ξρAB − δξρAB = −∆ξρAB that appears in the more
general derivation. However this quantity is the same for both BMS and eBMS symmetries, and the
rest of the proof follows the same steps.

C Conformal stress-energy tensor and super-rotations

The equivalent of Geroch’s tensor in the context or eBMS is still defined by (2.5), but one can now
look for a reference solution on a flat conformal frame, with R = 0. This means that it is trace-
less and divergence-free, like the stress energy tensor of a conformal field theory. If we use complex
coordinates (z, z̄), the only non-vanishing component of the flat metric is qzz̄ = 1, and the trace-free
and divergence-free conditions read

ρzz̄ = 0, ∂z̄ρzz = 0 ∂zρz̄z̄ = 0. (C.1)

The solution to these equations is ρzz = ρzz(z) an arbitrary meromorphic function while ρz̄z̄ =
ρz̄z̄(z̄) is an arbitrary anti-meromorphic function. We thus have an infinite number of solutions,
parametrizable in terms of conformal field theories.20 Therefore the generalization of Geroch’s tensor
is not unique nor universal, which was to be expected since the sphere’s topology was crucial to
establish those properties. Let us now look at its transformation rules. Under a (meromorphic)
coordinate transformation, both the induced metric and ρab transform as a tensor, hence in complex
coordinates,

q′zz̄ =

∣

∣

∣

∣

∂z

∂z′

∣

∣

∣

∣

2

, ρ′zz =

(

∂z

∂z′

)2

ρzz(z
′). (C.2)

20One can in fact show that being divergence-free and trace-less implies the third condition in (2.5).
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The first equation coincides with a conformal transformation of the metric. Therefore just like for
BMS vector fields, preservation of the background metric is achieved if we perform simultaneously an

asymptotic diffeomorphism and a conformal transformation with factor ω =
∣

∣

∂z
∂z′

∣

∣

−1
,

q′zz̄ =

∣

∣

∣

∣

∂z

∂z′

∣

∣

∣

∣

2 ∣
∣

∣

∣

∂z

∂z′

∣

∣

∣

∣

−2

qzz̄ = qzz̄. (C.3)

This establishes invariance of the background metric for finite eBMS transformations, namely δξqab = 0
at the infinitesimal level. On the other hand, the behaviour of ρab under conformal transformation is
still given by (2.7), consistently with the defining conditions. As a consequence, the combined action
of cross-section meromorphism plus (inverse) conformal rescaling defining a eBMS symmetry gives

ρ′zz =

(

∂z

∂z′

)2

ρzz(z
′) + Schw(z′), (C.4)

where Schw(f) := f ′′′

f ′ −3
2

(

f ′′

f ′

)2
is the Schwarzian derivative. The infinitesimal version of this combined

transformation is
δξρAB = £ξρAB + 2DADB ḟ . (C.5)

The remarkable property (2.10) is now lost, because it was due to the topological properties of the
sphere, and it is replaced by (C.5). The inhomogeneous term means that an eBMS transformation
can introduce a non-trivial ρab even if one initially has ρab = 0, and this plays a key role in the study
of eBMS covariance.

C.1 Recovering the universality of Geroch’s tensor

In this Appendix we prove that without assuming sphere topology for the cross sections, it is still
possible to show that there is a choice of Geroch tensor such that δξρAB = 0 for globally defined
CKVs, in any frame. To do so, we consider first the flat metric. There ∂〈A∂B〉ḟ = 0, which in complex
coordinates is the statement that ∂3zY

z = 0 for the Mobius transformations Y z(z) = a + bz + cz2.
Then δξρAB = £ξρAB = 0 is solved trivially by ρAB = 0. Starting from this special solution on the
plane, the correspondent one in an arbitrary frame qAB = ω2δAB is

ρ̊AB = −2ω−1
DADBω + 4ω−2

DAωDBω − ω−2gABD
CωDCω. (C.6)

The right-hand side is manifestly universal, hence this solution satisfies δξρ̊AB = 0 in any frame.
Conversely, had we started from a different solution than the trivial one, the resulting transformation
law δξρAB may not be zero for globally defined CKVs.
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