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Abstract. Art reinterpretation is the practice of creating a variation
of a reference work, making a paired artwork that exhibits a distinct
artistic style. We ask if such an image pair can be used to customize
a generative model to capture the demonstrated stylistic difference. We
propose Pair Customization, a new customization method that learns
stylistic difference from a single image pair and then applies the acquired
style to the generation process. Unlike existing methods that learn to
mimic a single concept from a collection of images, our method captures
the stylistic difference between paired images. This allows us to apply
a stylistic change without overfitting to the specific image content in
the examples. To address this new task, we employ a joint optimization
method that explicitly separates the style and content into distinct LoRA
weight spaces. We optimize these style and content weights to reproduce
the style and content images while encouraging their orthogonality. Dur-
ing inference, we modify the diffusion process via a new style guidance
based on our learned weights. Both qualitative and quantitative exper-
iments show that our method can effectively learn style while avoiding
overfitting to image content, highlighting the potential of modeling such
stylistic differences from a single image pair.

1 Introduction

Artistic works are often inspired by a reference image, a recurring scene, or even
a previous piece of art [54]. Such creations involve re-interpreting an original
composition in the artist’s unique style. A notable example is Van Gogh’s Repe-
titions [63], in which the artist created multiple versions of the same scenes with
his distinctive expressiveness, including adaptations of other artists’ work. Such
sets of variations allow close comparison of stylized art to a reference image,
providing unique insights into an artist’s detailed techniques and choices.

In our work, we explore how such content-style image pairs can be used to
customize a generative model to capture the demonstrated stylistic difference.
Our goal is to customize a pre-trained generative model to synthesize stylized
images, distilling the essence of the style from as few as a single pair without
fixating on specific content. We wish to create a model capable of re-interpreting
a variety of different content in the style demonstrated by the paired variation.

Prior works on model customization/personalization [18,43,71] take one or a
few images of a single concept to customize large-scale text-to-image models [67,
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Fig. 1: Given a single image pair, we present Pair Customization, a method for cus-
tomizing a pre-trained text-to-image model and learning a new style from the image
pair’s stylistic difference. Our method can apply the learned stylistic difference to
new input images while preserving the input structure. Compared to Dreambooth
LoRA [33, 73], a standard customization method that solely use style images, our
method effectively disentangles style and content, resulting in better structure, color
preservation, and style application. Style image credit: Jack Parkhouse.

69]. While they aim to learn styles without using pairs, the generated samples
from these customized models often resemble the training images’ content, such
as specific objects, persons, and scene layouts. In Figure 1, we observe that
standard single-image customization (3rd row) alters the subject, color tone, and
pose of the original image (1st row). These issues arise because the artistic intent
is difficult to discern from a single image: unlike image pairs that can demonstrate
a style through contrasts, a singleton example will always intertwine choices of
both style and content. Due to this ambiguity, the model fails to capture the
artistic style accurately and, in some cases, overfits and generates the subject-
specific details rather than the style, as shown in Figure 6.

On the other hand, our Pair Customization method exploits the contrast
between image pairs to generate pairwise consistent images while better disen-
tangling style and content. In Figure 1 (2nd row), our method accurately follows
the given style, turning the background into a single color matching the origi-
nal background and preserving the identity and pose for each dog. Our method
achieves this by disentangling the intended style from the image pair.

Our new customization task is challenging since text-to-image models were
not initially designed to generate pairwise content. Even when given specific text
prompts like “a portrait” and “a portrait with Picasso style”, a text-to-image
diffusion model often struggles to generate images with consistent structure from
the same noise seed. Therefore, it remains unclear how a customized model can
generate stylized images while maintaining the original structure.

https://www.instagram.com/parkhouse_art/
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To address the challenges, we first propose a joint optimization method with
separate sets of low-rank adaptation [33] (LoRA) weights for style and content.
The optimization encourages the content LoRA to reconstruct the content image
and the style LoRA to apply the style to the content. We find that the resulting
style LoRA can apply the same style to other unseen content. Furthermore, we
enforce row-space orthogonality [64] between style and content LoRA parame-
ters to improve style and content disentanglement. Next, we extend the standard
classifier-free guidance method [31] and propose style guidance. Style guidance
integrates style LoRA predictions into the original denoising path, which aids in
better content preservation and facilitates smoother control over the stylization
strength. This method is more effective than the previous technique, where a cus-
tomized model’s strength is controlled by the magnitude of LoRA weights [74].

Our method is built upon Stable Diffusion XL [65]. We experiment with vari-
ous image pairs, including different categories of content (e.g., portraits, animals,
landscapes) and style (e.g., paintings, digital illustrations, filters). We evaluate
our method on the above single image pairs and demonstrate the advantage of
our method in preserving diverse structures while applying the stylization faith-
fully, compared to existing customization methods. Our code, models, and data
are available on our webpage.

2 Related Works

Text-to-image generative models. Deep generative models aim to model
the data distribution of a given training set [16,25,30,42,59,84]. Recently, large-
scale text-to-image models [4, 11, 24, 38, 52, 62, 65, 67, 69, 76, 77, 96] trained on
internet-scale training data [9, 78] have shown exceptional generalization. No-
tably, diffusion models [30,83] stand out as the most widely adopted model class.
While existing models can generate a broad spectrum of objects and concepts,
they often struggle with rare or unseen concepts. Our work focuses on teaching
these models to understand and depict a new style concept. Conditional gener-
ative models [8, 37, 46, 56, 61, 75, 97] learn to transform images across different
domains, but the training often requires thousands to millions of image pairs.
We focus on a more challenging case, where only a single image pair is available.
Customizing generative models. Model customization, or personalization,
aims to adapt an existing generative model with additional data, with the goal of
generating outputs tailored to specific user preferences. Earlier efforts mainly fo-
cus on customizing pre-trained GANs [25,40,41] for smaller datasets [39,57,98],
incorporating user edits [6, 90, 91], or aligning with text prompts [21, 58]. Re-
cently, the focus has pivoted towards adapting large-scale text-to-image models
to generate user-provided concepts, typically presented as one or a few images.
Simply fine-tuning on the concept leads to overfitting. To mitigate this and en-
able variations via free text, several works explored different regularizations,
including prior preservation [43, 71], human alignment [82], as well as parame-
ter update restriction, where we only update text tokens [1, 15, 18, 89], atten-
tion layers [19, 27, 43], low-rank weights [33, 73, 86], or clusters of neurons [50].

https://paircustomization.github.io/
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More recent methods focus on encoder-based approaches for faster personaliza-
tion [2,13,14,20,44,53,72,80,88,94,95]. Several works further focus on multiple
concepts [3, 26, 43, 64, 79] instead of only a single concept. Our method takes
inspiration from these techniques; however, we aim to address an inherently dif-
ferent task. Instead of learning concepts from an image collection, we customize
the model to learn stylistic differences from an image pair.
Style and content separation. Various past works have explored learning a
style while separating it from content [12,23,34,45,85]. Our work is inspired by
the seminal work Image Analogy [29], a computational paradigm that takes an
image pair and applies the same translation to unseen images. Common image
analogy methods include patch-wise similarity matching [29, 36, 47] and data-
driven approaches [5,60,68,87,92,99]. Different from these, we aim to exploit the
text-guided generation capabilities of large-scale models so that we can directly
use the style concept with unseen context. Recently, StyleDrop [82] has been
proposed to learn a custom style for masked generative transformer models.
Concurrent with our work, Hertz et al. [28] introduced a method for generating
images with style consistency, offering the option of using a style reference image.
In contrast, we exploit an image pair to better discern the stylistic difference.
Unlike StyleDrop, we do not rely on human feedback in the process.

3 Method

Our method seeks to learn a new style from a single image pair. This task is
challenging, as models tend to overfit when trained on a single image, especially
when generating images in the same category as the training image (e.g., a model
trained and tested on dog photos). To reduce this overfitting, we introduce a new
algorithm aimed at disentangling the structure of the subject from the style of the
artwork. Specifically, we leverage the image pair to learn separate model weights
for style and content. At inference time, we modify the standard classifier-free
guidance formulation to help preserve the original image structure when applying
the learned style. In this section, we give a brief overview of diffusion models,
outline our design choices, and explain the final method in detail.

3.1 Preliminary: Model Customization

Diffusion models. Diffusion models [30, 81, 84], map Gaussian noise to the
image distribution through iterative denoising. Denoising is learned by revers-
ing the forward diffusion process x0, . . . ,xT , where image x0 is slowly diffused
to random noise xT over T timesteps, defined by xt “

?
sαtx0 `

?
1 ´ sαtϵ for

timestep t P r0, T s. Noise ϵ „ N p0, Iq is randomly sampled, and sαt controls
the noise strength. The training objective of diffusion models is to denoise any
intermediate noisy image xt via noise prediction:

Eϵ,x,c,t

“

wt}ϵ ´ ϵθpxt, c, tq}2
‰

, (1)
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Fig. 2: Method overview. (Left) We disentangle style and content from an image
pair by jointly training two low-rank adapters, StyleLoRA and ContentLoRA, repre-
senting style and content, respectively. Our training objective consists of two losses:
The first loss fine-tunes ContentLoRA to reconstruct content image conditioned on a
content prompt. The second loss encourages reconstructing the style image using both
StyleLoRA and ContentLoRA conditioned on a style prompt, but we only optimize
Style LoRA for this loss. (Right) At inference time, we only apply StyleLoRA to cus-
tomize the model. Given the same noise seed, the customized model generates a stylized
counterpart of the original pre-trained model output. V* is a fixed random rare token
that is a prompt modifier for the content image. Style image credits: Jack Parkhouse

where wt is a time-dependent weight, ϵθp¨q is the denoiser that learns to pre-
dict noise, and c denotes extra conditioning input, such as text. At inference,
the denoiser ϵθ will gradually denoise random Gaussian noise into images. The
resulting distribution of generated images approximates the training data distri-
bution [30].

In our work, we use Stable Diffusion XL [65], a large-scale text-to-image
diffusion model built on Latent Diffusion Models [69]. The model consists of a
U-Net [70] trained on the latent space of an auto-encoder, with text conditioning
from two text encoders, CLIP [66] and OpenCLIP [35].
Model customization with low-rank adapters. Low-Rank Adapters (LoRA)
[33] is a parameter-efficient fine-tuning method [32] that applies low-rank weight
changes ∆θLoRA to pre-trained model weights θ0. For each layer with an initial
weight W0 P Rmˆn, the weight update is defined by ∆WLoRA “ BA, a product
of learnable matrices B P Rmˆr and A P Rrˆn, where r ! minpm,nq to enforce
the low-rank constraint. The weight matrix of a particular layer with LoRA is:

WLoRA “ W0 ` ∆WLoRA “ W0 ` BA. (2)

At inference time, the LoRA strength is usually controlled by a scaling factor
α P r0, 1s applied to the weight update ∆WLoRA [74]:

WLoRA “ W0 ` α∆WLoRA. (3)

LoRA has been applied for customizing text-to-image diffusion models to learn
new concepts with as few as three to five images [74].

https://www.instagram.com/parkhouse_art/
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3.2 Style Extraction from an image pair

We aim to customize a pre-trained model with an artistic style in order to stylize
the original model outputs while preserving their content, as shown in Figure 2
(right). To achieve this, we introduce style LoRA weight θstyle “ θ0 ` ∆θstyle.
While a pre-trained model generates content from a noise seed and text c, style
LoRA’s goal is to generate a stylized counterpart of original content from the
same noise seed and a style-specific text prompt cstyle, where cstyle is original
text c appended by suffix “in <desc> style”. Here, <desc> is a placeholder for
some worded description of the style (e.g., “digital art”), and style LoRA θstyle
associates <desc> to the desired style.

Unfortunately, learning style LoRA θstyle from a single style image often leads
to copying content (Figure 6). Hence, we explicitly learn disentanglement from
a style and content image, denoted by xstyle and xcontent, respectively.
Disentangling style and content. We leverage the fact that the style im-
age share the same layout and structure as the content image. Our key idea
is to learn a separate content LoRA θcontent “ θ0 ` ∆θcontent to reconstruct
the content image. By explicitly modeling the content, we can train the style
LoRA to “extract” the stylistic differences between the style and content im-
age. We apply both style and content LoRA to reconstruct the style image, i.e.,
θcombined “ θ0 ` ∆θcontent ` ∆θstyle. This approach prevents leaking the content
image to style LoRA, resulting in a better stylization model.

During training, we feed the content LoRA θcontent with a content-specific
text ccontent, which contains a random rare token V*, and feed the combined
model θcombined with cstyle, where cstyle is “tccontentu in <desc> style”. Figure 2
(Left) summarizes our training process.
Jointly learning style and content. We employ two different objectives
during every training step. To learn the content of the image, we first employ
the standard training objective for diffusion models as described in Section 3.1
with the content image:

Lcontent “ Eϵ,xcontent,t

“

wt}ϵ ´ ϵθcontentpxt,content, ccontent, tq}2
‰

, (4)

where ϵθcontent is the denoiser with content LoRA applied, xt,content is a noisy
content image at timestep t, and ccontent is text representing the content image,
including some rare token V*. Next, we optimize the combined style and content
weights to reconstruct the style image. In particular, we only train the style
LoRA weights during this step, while stopping the gradient flow to the content
LoRA weights via stopgrad sgr¨s:

θcombined “ θ0 ` sgr∆θcontents ` ∆θstyle. (5)

We then apply diffusion objective to train θcombined to denoise xt,style, a noisy
style image at timestep t:

Lcombined “ Eϵ,xstyle,t

“

wt}ϵ ´ ϵθcombinedpxt,style, cstyle, tq}2
‰

, (6)
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Without Orthogonal AdaptionWith Orthogonal AdaptionStable Diffusion
Training Pair

Content Image

Style Image

LoRA Weight Scale

Style Guidance
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0.0 2.0 3.0 4.0

0.2

1.0
Effect of Orthogonal Adaptation Effect of Style Guidance

Fig. 3: (Left) Orthogonal adaptation. Enforcing row-space orthogonality between
style and content LoRA improves image quality, where the images capture the style
better and have fewer visual artifacts. (Right) Style guidance. We compare style
control capabilities between our style guidance and standard LoRA weight scaling [74].
Blue and green stand for the LoRA weight scale and style guidance scale, respectively.
Style guidance better preserves content when the style is applied. More details of style
guidance formulation are in Section 3.3.

where ϵθcombined is the denoiser with both LoRAs applied as in Equation 5, cstyle
is “tccontentu in <desc> style”, and <desc> is a worded description of the style
(e.g., “digital art”). Finally, we jointly optimize the LoRAs with the two losses:

min
∆θcontent,∆θstyle

Lcontent ` Lcombined (7)

Figure 2 provides an overview of our method. Next, we discuss the regularization
that promotes the disentanglement of style from content.
Orthogonality between style and content LoRA. To further encourage
style and content LoRAs to represent separate concepts, we enforce orthogonal-
ity upon the LoRA weights. We denote by W0 the original weight matrix and
Wcontent, Wstyle the LoRA modifications (layer index omitted for simplicity).
Reiterating Equation 2, we decompose Wcontent, Wstyle into low-rank matrices:

Wcontent “ W0 ` BcontentAcontent; Wstyle “ W0 ` BstyleAstyle. (8)

We initialize Bcontent, Bstyle with the zero matrix and choose the rows of
Acontent, Astyle from an orthonormal basis. We then fix Acontent, Astyle and only
update Bcontent, Bstyle in training. This forces the style and content LoRA up-
dates to respond to orthogonal inputs, and empirically reduces visual artifacts, as
shown in Figure 3. This technique is inspired by Po et al. [64]. While their work
focuses on merging multiple customized objects after each is trained separately,
we apply the method for style-content separation during joint training.

3.3 Style Guidance

A common technique to improve text-to-image model’s sample quality is via
classifier-free guidance [31]:

ϵ̂θpxt, cq “ ϵθpxt,∅q ` λcfgpϵθpxt, cq ´ ϵθpxt,∅qq, (9)
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where ϵ̂θpxt, c, tq is the new noise prediction, ∅ denotes no conditioning, and
λcfg controls the amplification of text guidance. For notation simplicity, we omit
the timestep t in this equation and subsequent ones.

To improve pairwise consistency between original and stylized content, we
propose an inference algorithm that preserves the original denoising path while
adding controllable style guidance:

ϵ̂θ0,θstylepxt, c, cstyleq “ ϵθ0pxt,∅q

` λcfgpϵθ0pxt, cq ´ ϵθ0pxt,∅qq

` λstylepϵθstylepxt, cstyleq ´ ϵθ0pxt, cqq,

(10)

where style guidance is the difference in noise prediction between style LoRA
and the pre-trained model. Style guidance strength is controlled by λstyle, and
setting λstyle “ 0 is equivalent to generating original content. In Figure 3, we
compare our style guidance against scaling LoRA weights (Equation 3), and we
find that our method better preserves the layout. More details and a derivation
of our style guidance are in Appendix B.

Previous works [8,49] have also considered applying multiple guidance terms
with diffusion models. A major difference in our approach is that we obtain
additional guidance from a customized model and apply it to the original model.
Styledrop [82] considers a similar formulation with two guidance terms but for
transformer-based generative models.

Blending multiple learned styles. With a collection of models customized
by our method, we can blend the learned styles as follows. Specifically, given
some set of styles S and strengths λstyle0 , . . . , λstylen , we can blend the style
guidance from each model, and our new inference path is represented by

ϵ̂θ0,θstylepxt, c, cstyleq “ ϵθ0pxt,∅q

` λcfgpϵθ0pxt, cq ´ ϵθ0pxt,∅qq

`
ÿ

styleiPS
λstyleipϵθstylei

pxt, cstyleiq ´ ϵθ0pxt, cqq,
(11)

We can vary the strengths of any parameter λstylei to seamlessly increase or
decrease style application while preserving content. Figure 7 gives a qualitative
example of blending two different styles while preserving image content.

Implementation details. We train all models using an AdamW optimizer [51]
and learning rate 1ˆ10´5. For baselines, we train for 500 steps. For our method,
we first train our content weights on the content image for 250 steps, and then
train jointly for 500 additional steps. All image generation is performed using
50 steps of a PNDMScheduler [48]. For all methods using inference with LoRA
adapters, we use SDEdit [55] to further preserve structure. Specifically, normal
classifier-free guidance on the original prompt without style is used for the first
10 steps. We then apply style guidance/LoRA scale for the rest of the timesteps.
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Same Category Different Category

Fig. 4: Quantitative comparison with baselines on learned style. Given a fixed
inference path, our method’s pareto dominates baselines for image generation both on
the same category as training (left) and when evaluated on categories different from
training, e.g., trained on human portraits but tested on dog images (right). Secondly,
our proposed style guidance outperforms standard LoRA weight scale guidance for our
training method (blue vs. orange), DB LoRA (green vs. pink), and Sliders (brown vs.
purple). In the Appendix’s Figure 9, we further evaluate the diversity of generated
images. We show that baselines often lose diversity, while our method leads to diverse
generations while still achieving lower perceptual distance to the ground truth style.
Increased marker size corresponds to an increase in style guidance scale.

4 Experiments

4.1 Dataset

In this section, we show our method’s results on various image pairs and compare
them with several baselines. We explain our dataset, baselines, and metrics in
detail, then we present quantitative and qualitative results.
Datasets. To enable large-scale quantitative evaluation, we construct a diverse
set of paired style and content images as follows. First, we generate 40 content im-
ages for each class: headshots, animals, and landscapes. When generating images
in the headshot class, we generate 20 images with the prompt “A professional
headshot of a man” and 20 images with the prompt “A professional headshot
of a woman”. Similarly, we split the animal class into photos of dogs and cats. To
curate synthetic pairs, we then apply image editing or image-to-image transla-
tion methods to all the content images to obtain the stylized version. For each
unique prompt, we choose a single paired instance as training data and hold out
the other pairs with the same prompt as a test set (Same Category). For each
prompt, we also choose 5 pairs from each of the other prompts as a secondary
test set (Different Category). We show all our synthetic training image pairs
in Appendix C. By leveraging synthetic pairs for evaluation, we can train on a
single synthetic pair and test our results against held out synthetic style images.
Secondly, we qualitatively compare against single artist pairs in Figure 6. Next,
we describe the specific methods to create the paired dataset.
LEDITS++ [7] is a diffusion-based image editing technique that transforms
an image by updating the inference path of a diffusion model. After fine-grained
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inversion, a global prompt and a set of translation prompts representing a new
style or object are used to perform the image translation. We leverage LED-
ITS++ on all images with the translation prompt “Impressionist style”. Further,
we change the word “photo” to “painting” in the original prompt when generating
the style image.
White-box cartoonization. Cartoonization [93] is a GAN-based image-to-
image translation technique that applies a cartoon-like effect to real images. We
apply the cartoonized model to our set of generated images to create image pairs.
Stylized neural painting. Stylized Neural Painting [100] is a rendering based
image to image translation technique where an image is reconstructed via N
painting strokes, where the strokes are guided by a loss function that encourages
the final translated image to resemble the original. We use the Neural Painting
model with N “ 1000 to create image pairs.
Posterization. Posterization is an image filtering technique that reduces the
number of distinct colors in a given image to some fixed number N , reducing
color variation and creating fixed color areas. We apply posterization to images
in our training set with N “ 8.

4.2 Baselines and Evaluation Metrics

Baselines. We compare our method against – (1) DreamBooth LoRA [33,74]
(DB LoRA), (2) Concept Sliders [22] (3) IP-adapters [95], (4) IP-adapters w/
T2I, and (5) StyleDrop [82]. DB LoRA uses only the style image and fine-tunes
low-rank adapters in all the linear layers in the attention blocks of the diffusion
model. We evaluate different amounts of style applications for DB LoRA using
the standard LoRA scale [74] and our style guidance. Concept sliders presents a
paired image model customization method that trains a single low-rank adapter
jointly on both images, with different reconstruction losses for the style and
content images. We also evaluate using both the standard LoRA scale and our
style guidance. IP-adapters is an encoder-based method that does not require
training for every style and takes a style image as an extra condition separate
from the text prompt. Increasing or decreasing the guidance from the input style
image is possible by scaling the weight of the image conditioning. We consider the
SDXL [65] implementation of this method. For the IP-Adapter, we also compare
against the stronger baseline of providing extra conditioning of an edge map
of the content image through T2I Adapters [56] to preserve the content image
structure. The recently proposed Styledrop [82] technique for learning new styles
is based on MUSE [11], and uses human feedback in its method. Since MUSE
is not publicly available, we follow Style-Aligned Image Generation’s [28] setup,
and implement a version of StyleDrop on SDXL. Specifically, we train low-rank
linear layers following each Feed-Forward layer in the attention blocks of SDXL.
For a fair comparison, we train Styledrop without human feedback.
Evaluation metrics. When evaluating the performance of each method, we
consider two quantitative metrics: perceptual distance to ground truth style im-
ages and structure preservation from the original image. A better customization
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Fig. 5: Human preference study. Our method is preferred over the baselines (ě

60%). Further, our full method, including orthogonal weight matrices (Section 3.2),
is preferred over the one w/o orthogonal weight matrices, specifically for the same
category as training pair, e.g., trained on a headshot of a man and tested on other
headshots of man. The Gray dashed line denotes 50% chance performance.

method will have a low perceptual distance to the ground truth style images
while still preserving content of the original image before adding style. We mea-
sure these using – (1) Distance to GT Styled : given holdout ground truth style
images, we measure the perceptual distance between our styled outputs and the
ground truth style images using DreamSim [17], a recent method for measur-
ing the perceptual distance between images. DreamSim image embeddings are
comprised of an ensemble of image embedding models, including CLIP [66] and
DINO [10], which are then fine-tuned so the final embeddings respect human
perception. We measure DreamSim distance as (1 - cosine similarity) between
DreamSim embeddings, where a lower value implies that the images are percep-
tually more similar. (2) Distance to Content Image: to measure content preserva-
tion after style application, we measure the perceptual distance of our generated
style image to the original content image with no style guidance. We again use
DreamSim, this time comparing styled and content images. Note here that a
perceptual distance of zero to the content image is undesirable, as this would
require no style to be applied. However, a better-performing method should ob-
tain a better tradeoff between the two distances. (3) We also perform a human
preference study of our method against baselines.

4.3 Results

Quantitative evaluation. We show quantitative results in Figure 4. Increased
marker size (circles) indicates the higher application of style, and line color de-
termines the method. When evaluating style similarity vs. structure preservation
in Figure 4, we see that our training method’s Pareto dominates all baselines,
yielding lower perceptual distance to style images while still being perceptually
similar to the original content image. Secondly, style guidance outperforms the
LoRA scale for Ours (blue vs orange), DB LoRA (green vs. pink), and Concept
Sliders (brown vs. purple), highlighting the effectiveness of both parts of our
method.
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Ours Sliders DB LoRAPretrained Output

“A photo of a dog in cartoon style”

“A photo of a cat in cartoon style”

Content Image Style Image

Synthetic Pairs

Content Image Style Image

Content Image Style Image

“A photo of a dog in digital art style”

“A photo of a cat in digital art style”

Artist Created Pairs

“A headshot of a man in painting style”

“A headshot of a woman in painting style”

Content Image Style Image

“A bowl of soup on a plate in drawing style”

“A dinner plate in drawing style”

Fig. 6: Result of our method compared to the strongest baselines. When only training
with the style image as in DB LoRA, the image structure is not preserved and over-
fitting occurs. While Concept Slider’s training scheme [22] uses both style and content
images, it still exhibits overfitting and loss of structure in many cases. Our method
preserves the structure of the input mage while faithfully applying the desired style.
We use style guidance strength 3 and classifier guidance strength 5. Style image credits:
Jack Parkhouse (Third row) and Aaron Hertzmann (Fourth row)

https://www.instagram.com/parkhouse_art/
https://www.instagram.com/aaronhertzmann/?hl=en
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Qualitative evaluation. We compare our method with the highest perform-
ing baselines in Figure 6. The finetuning-based methods DB LoRA [33, 74] and
Concept Sliders [22] outperform the encoder-based method [95] for our task.
Hence, we compare against that in Figure 6. For both baselines, we modulate
style application with LoRA scale (Equation 3). We observe that DB LoRA often
fails to generate the style-transformed version of the original image and overfits
to the training pair image when generating similar concepts. There are two main
reasons why this may occur. First, we are in a challenging case where there is
only 1 training image instead of the usual 3´5 images that customization meth-
ods use. Second, we are prompting the model on the same or very similar text
prompts to the training prompt, and the baseline method overfits to the train-
ing image for these prompts. Our method preserves the structure of the original
image while applying the learned style. Moreover, applying our style guidance
instead of the LoRA scale benefits the baseline method as well (Figure 6, last 2
columns), as it can better preserve the structure of the original image, though
it still tends to overfit to the content of the training image. We observe a simi-
lar issue for other baselines as well. We show a qualitative comparison with the
other baselines in Appendix A. We also compare with baselines using our style
guidance for style application at inference time in Appendix A.
User preference study. We perform a user preference study using Amazon
Mechanical Turk. We test our method against all baselines, as well as a version of
our method trained without orthogonality constraint. Specifically, we test on all
datasets in Section 4.1. When evaluating against DB LoRA and Concept Sliders,
we consider inference with both LoRA scale as in Equation 3 and style guidance
as in Equation 10. For each method, we pick a single style strength that performs
most optimally according to quantitative metrics as in Figure 4. Full details are
available in Appendix C. We collect 400 responses per paired test of ours vs the
other method. The user is shown an image generated via our method and an
image generated via the other method and asked to select the image that best
applies the given style to the new content image. We provide a detailed setup of
the user study in Appendix C. As shown in Figure 5, our method is favored by
users in comparison to baselines, whether evaluating images generated within the
same category as the training image pair or across different categories. Secondly,
users prefer our full method to ours without the orthogonality constraint.
Blending learned styles. We show that we can blend the learned styles by
applying a new inference path, defined in Equation 11. In Figure 7, we show
the results of blending two models. We can seamlessly blend the two styles at
varying strengths while still preserving the content.

5 Discussion and Limitations

In this work, we have introduced a new task: customizing a text-to-image model
with a single image pair. To address this task, we have developed a customiza-
tion method that explicitly disentangles style and content through both training
objectives and a separated parameter space. Our method enables us to grasp
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Original
Model

Edited
Model 0

Edited
Model 1

Train Image Pair 0

Train Image Pair 1

Fig. 7: Blending multiple style guidances. We can compose multiple customized
models by directly blending each style guidance together. Adjusting blending strength
of each model allows us to acquire a smooth style transition. Train Image Pair 0 Style
image credits: Jack Parkhouse

Pretrained Output
Training Pair

Content Image

Style Image

Ours
Training Pair

Content Image

Style Image

Pretrained Output Ours

Fig. 8: Limitations. Left : our method struggles with categories when they signifi-
cantly differ from the training categories. Here, our method fails to transfer the artistic
style of landscape image pairs to human portraits. Right : our method can cause struc-
ture changes in some instances, like change of body position or background changes.

the style concept without memorizing the content of input examples. While our
approach outperforms existing customization methods, it still exhibits several
limitations, as discussed below.

Limitations. First, while our method is able to transfer the style from a pair
of dog images to cat photos, it struggles to handle completely different categories
from the training image pair, particularly when the test category significantly
differs from the training. As shown in Figure 8 (left), our method falls short of
faithfully replicating the style of landscape paintings in some human images.

Second, our current method relies on test-time optimization, which takes
around 15 minutes on a single A5000 GPU. This can be computationally de-
manding if we need to process many image styles. Leveraging encoder-based
approaches [2, 72] for predicting style and content weights in a feed-forward
manner could potentially speed up the customization process.

https://www.instagram.com/parkhouse_art/
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Finally, our method may occasionally fail to completely maintain input struc-
ture, as demonstrated in Figure 8 (right).
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Appendix
In Section A, we evaluate our method against baselines on the diversity met-

ric, showing that our method leads to more diverse generations comparatively.
We also show more qualitative results along with a comparison to the concur-
rent work of Style Aligned Image Generation [28]. In Section B, we then present
details of our style guidance formulation. Finally, in Section C, we provide more
implementation details, including the setup for our human preference study and
the full synthetic training dataset used for evaluation.

A More Quantitative and Qualitative Results

Diversity metric. To measure the overfitting behavior of our method and
baselines, we consider a diversity metric. Concretely, we measure the DreamSim
[17] perceptual distance between any two images trained with the same style
image pair and generated with the same prompt and average results over training
pairs and prompts. More formally, we let

DreamSim Diversity “ ESPS,PPP
“

Ei1,i2PdataS,P
DreamSimpi1, i2q

‰

(12)

where S is the set of style image pairs, P is the set of prompts, and dataS,P
is the set of images generated with prompt P by a model customized on style
S. DreamSimp¨, ¨q is DreamSim perceptual distance. A decrease in DreamSim
Diversity indicates that all images in a certain domain are becoming perceptually
similar, which may indicate overfitting to the style training image. Methods
that do not overfit the style training image should have higher diversity scores
while also having a low perceptual distance to the ground truth testing style
images. We present our findings in Figure 9. Our method is able to achieve a
low perceptual distance to style ground-truth images while maintaining higher
diversity scores. As shown in Figure 6 in the main paper, the baseline results
mode collapses to the training image, thus lowering their diversity score as they
all become perceptually similar to each other.
Style Aligned Image Generation [28] Baseline This is a recent work for
zero-shot style-consistent image generation from an exemplar style image. Given
the exemplar style image, it is first inverted to a noise map; then for a new text
prompt, the image is generated by attending to both its own self-attention map
and the self-attention map from the style exemplar at every denoising step. We
compare against this baseline by using the style image in our training image
pair as an exemplar and generating a new style image with a new text prompt
using this method. Optionally, we condition this generation on the edge map of
the newly generated image without attention sharing using ControlNet [97] to
help with content preservation. We show the qualitative results of our method
compared to all the variants of this baseline in Figure 12. Figures 10 and 11
show quantitative comparison, where our method outperforms this baseline in
terms of both style similarity and diversity metric. We achieve lower perceptual
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Same Category Different Category

Fig. 9: Quantitative comparison on Diversity metric. Our method with style
guidance has high diversity and low perceptual distance to ground truth style images
both on the same category as training (left) and when evaluated on categories different
from training, e.g., trained on human portraits but tested on dog images (right). Meth-
ods without edge control tend to lose diversity indicating overfitting, and methods with
edge control have similar/higher diversity, but much worse style application. Increased
marker size corresponds to an increase in style guidance scale.

Same Category Different Category

Fig. 10: Style similarity with Style Aligned [28]. Our method Pareto dominates
both versions of Style Aligned Image Generation for image generation both on the same
category as training (left) and when evaluated on categories different from training,
e.g., trained on human portraits but tested on dog images (right).

distance to the style ground-truth images, low perceptual distance from content
images, and high diversity.

Extra Qualitative Evaluation We compare our method to non finetuning-
based methods in Figure 12. We observe that these methods perform worse
than finetuning-based methods, especially when generating images in a different
category to the training style image. Secondly, we compare our method with
the highest-performing baselines, but use our style guidance (Equation 10 ) to
apply stylization during inference for these baselines. We present our results in
Figure 13. First, we notice that using style guidance for adding style allows the
baseline methods to better preserve original content over LoRA scale (Figure
13 vs Figure 6). While adding our style guidance is better able to preserve
content while applying style for baseline methods, our full method is still able
to outperform baselines with style guidance applied.
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Same Category Different Category

Fig. 11: Image diversity with Style Aligned [28] on learned style (Diversity).
Our method has high diversity and low perceptual distance to ground truth style images
both on the same category as training (left) and when evaluated on categories different
from training, e.g., trained on human portraits but tested on dog images (right) as
compared to both versions of Style Aligned Image Generation.

B Style Guidance Details

In this section, we derive our style guidance formulation. We consider the prob-
ability of latent x with multiple conditionings [8], i.e., the text prompt ct and a
class of style images cstyle. First, we apply Bayes’ rule:

P px|ct, cstyleq “
P px, ct, cstyleq

P pct, cstyleq
“

P pcstyle|ct,xqP pct|xqP pxq

P pct, cstyleq
(13)

Applying logarithm on both sides, we get:

logpP px|ct, cstyleqq

“ logpP pcstyle|ct,xqq ` logpP pct|xqq ` logpP pxqq

´ logpP pct, cstyleqq

(14)

Next, we take the derivative with respect to x:

∇x logpP px|ct, cstyleqq

“∇x logpP pcstyle|ct,xqq ` ∇x logpP pct|xqq ` ∇x logpP pxqq

“ ∇x log

ˆ

P pcstyle, ct,xq

P pct,xq

˙

` ∇x log

ˆ

P pct,xq

P pxq

˙

` ∇x log pP pxqq

“ p∇x logP pcstyle, ct,xq ´ ∇x logP pct,xqq

` p∇x logP pct,xq ´ ∇x logP pxqq

` p∇x log pP pxqqq

(15)

As usual, we approximate ∇x plogP pct,xqq via ϵθpxt, ctq and ∇x log pP pxqq via
ϵθpxt,∅q. Importantly, we approximate

∇x logpP pxt|ct, cstyleqq « ϵθstylepxt, ct,styleq (16)
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Pretrained Output

“A photo of a landscape in poster style”

“A photo of a cat in poster style”

Content Image Style Image

Synthetic Pairs

Content Image Style Image

Content Image Style Image

“A photo of a dog in painted style”

“A photo of a cat in painted style”

“A headshot of a man in painted style”

“A headshot of a woman in painted style”

Ours IP-Adapter (control) IP-AdapterStyle-Align (control) Style-Align

Fig. 12: Result of our method compared to the methods without finetuning (zoom in
for best viewing). For all methods, we consider adding the edgemap from the pretrained
output as an extra conditioning using ControlNet. Without this edgemap, other meth-
ods tend to lose the structure of the pretrained output. In some cases, however, an
additional edgemap can overly constrain the output of a model, like in the second and
fourth stylistic image pairs. Our method preserves the structure of the Stable Diffusion
image, while faithfully applying the desired style. We use style guidance strength 3
and classifier guidance strength 5 for our method and set the IP-adapter scale and
style-alignment scale to 0.5.

where ct is the original text prompt, cstyle is the class of stylized images from
the training style, θstyle is the UNet with style LoRA adapters applied, and
ct,style “ "tctu in <desc> style". Here, we use ct to push the prediction in the
text direction, and both text conditioning ("in <desc> style") and low-rank
adapters (θstyle) to push the prediction into the class of images in the artist’s
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Ours Sliders (Style Guid.) DB LoRA (Style Guid.)Pretrained Output

“A photo of a dog in cartoon style”

“A photo of a cat in cartoon style”

Content Image Style Image

Synthetic Pairs

Content Image Style Image

Content Image Style Image

“A photo of a dog in digital art style”

“A photo of a cat in digital art style”

Artist Created Pairs

“A headshot of a man in painting style”

“A headshot of a woman in painting style”

Content Image Style Image

“A bowl of soup on a plate in drawing style”

“A dinner plate in drawing style”

Fig. 13: Result of our method compared to the strongest baselines, but replacing
LoRA scale (Eq. 3) with our style guidance (Eq. 10) for the baselines. While our style
guidance increases baseline performance over LoRA scale images displayed in Figure
6, our method is still superior in terms of preserving content while applying style.

style denoted by cstyle. Following this, our new score estimate is:

ϵ̂θpxt, ct, cstyleq “ϵθpxt,∅q

` λcfgpϵθpxt, ctq ´ ϵθpxt,∅qq (17)
` λstylepϵθstylepxt, ct,styleq ´ ϵθpxt, ctqq

(18)
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Fig. 14: Training Data. We present the synthetic training data set used for evalua-
tion, where each pair is used as a single training instance. Each column corresponds to
a different style, and each row corresponds to a different content category.

λcfg and λstyle are guidance scales that can be varied as in classifier free guid-
ance [31]. Given a fixed λcfg, we can vary the λstyle term as desired to generate
an original guidance λcfg image with varying amounts of style. Notice that at
λcfg “ λstyle, the ϵθpxt,∅q terms cancel and we are left with the original classifier
guidance.

C Implementation Details

Training data. We present our full training set of 20 different style transfor-
mations in Figure 14. Each image pair is a standalone training instance used in
our method. We consider four different styles (posterization, impressionist, neu-
ral painting, cartoonization), with each column corresponding to a single style.
For each style, we consider five categories for training (man, woman, dog, cat,
landscape).
Mechanical Turk details. When running Amazon Mechanical Turk, we
prompt users with an analogy-style interface. First, we provide the training pair
of images, followed by the testing content image, and two options for possible
styled examples. After viewing both images, users choose either the left or right
image. Figure 15 shows an example. Each individual user is presented with four
training examples, as in Figure 15, followed by 16 random testing examples
comparing our method with one of our baselines. We survey 75 users for each
of the 16 individual studies and use bootstrapping to obtain variance estimates.
In total, we collect 19200 user samples. For each method, we pick a stylization
hyperparameter based on Figure 4. For details, see Table 1
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Fig. 15: Mturk User Interface

Method Hyperparameter value

Same Category Different Category

Ours (Style Guid.) 3 4
Ours w/ Orthog (Style Guid.) 3 4
DB LoRA (Style Guid.) 2 4
DB LoRA (LoRA Scale) 0.4 0.8
Concept Sliders (Style Guid.) 2 4
Concept Sliders (LoRA Scale) 0.6 0.8
StyleDrop LoRA (LoRA Scale) 0.6 1
IP Adapter w/T2I (Image Guidance) 0.5 0.5
IP Adapter (Image Guidance) 0.5 0.5

Table 1: Experiment Hyperparameters. We choose a fixed stylization hyperpa-
rameter for our own model and each baseline when generating images for Mechanical
Turk. When picking a hyperparameter, we try and optimize tradeoffs between style
application and content preservation, informed by Figure 4 in the main body. Our
style guidance (Equation 10) generally takes values from 0 to λcfg “ 5, while all other
stylization hyperparameters generally take values 0 to 1.
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