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Abstract. This paper describes our systems for the sub-task I in the
Software Mention Detection in Scholarly Publications shared-task. We
propose three approaches leveraging different pre-trained language mod-
els (BERT, SciBERT, and XLM-R) to tackle this challenge. Our best-
performing system addresses the named entity recognition (NER) prob-
lem through a three-stage framework. (1) Entity Sentence Classification
- classifies sentences containing potential software mentions; (2) Entity
Extraction - detects mentions within classified sentences; (3) Entity Type
Classification - categorizes detected mentions into specific software types.
Experiments on the official dataset demonstrate that our three-stage
framework achieves competitive performance, surpassing both other par-
ticipating teams and our alternative approaches. As a result, our frame-
work based on the XLM-R-based model achieves a weighted F1-score of
67.80%, delivering our team the 3rd rank in Sub-task I for the Software
Mention Recognition task. We release our source code at this repository>.

Keywords: Software mention recognition - Named entity recognition -
Transformer - Three-stage framework.

1 Introduction

Named Entity Recognition (NER) is an important task in NLP that involves
identifying and classifying named entities in text. That will transform them into
structured data, making it easier to categorize and perform search processing or
carry out other NLP tasks [5] on that data such as text classification, sentiment
analysis, and contextual analysis, ... particularly in the domain of Biomedical
Named Entity Recognition (Bio-NER), which is challenged by a range of entities
like genes, proteins, medications, and diseases [9].

* Corresponding author: thindv@uit.edu.vn

3 https://github.com/thuynguyen2003/NER-Three-Stage-Framework-for-Software-
Mention-Recognition
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The SOMD 2024 shared-task, hosted within Natural Scientific Language Pro-
cessing and Research Knowledge Graphs (NSLP 2024) workshop [8], is designed
to extract mentioned software and metadata from documents. In this context,
both the software and the metadata are identified as specific intervals in the orig-
inal documents. Understand and identify the software mentioned in documents,
which is especially important to support information extraction in scientific doc-
uments.

In this paper, we present three different approaches to address the challenge
of sub-task I, including:

— Approach 1: Fine-tuning pre-trained language models as a token classifi-
cation problem.

— Approach 2: Two-stage framework for entity extraction and classification.

— Apporach 3: Three-stage framework for entity sentence classification, entity
extraction, and entity type classification.

2 Related Work

In recent years, pre-training language models (PLMs) have made significant ad-
vancements in Named Entity Recognition (NER) tasks [16]. Among these, the
most popular model is BERT [7] and its variations like SciBERT [2], RoBERT
[3], and BiLSTM [11]. These models are often paired with machine learning tech-
niques, particularly Conditional Random Fields (CRF) [10]. Additionally, some
approaches involve breaking down the NER task into two simpler tasks using
question-answering methods [1], achieving notable results on various datasets
like BioNLP13CG, CTIReports, OntoNotes5.0 [12], and WNUT17 [6] based on
the F1 measure.

With the emergence of ChatGPT, researchers have been exploring the use of
Large Language Models (LLMs) for NER tasks [15,17], with some studies demon-
strating that ChatGPT can be distilled into smaller UniversalNER models for
open NER [18]. These UniversaNER models have shown exceptional accuracy
across 43 datasets spanning diverse fields such as biomedicine, programming,
social media, law, and finance, without requiring direct supervision. Universal-
NER surpasses traditional guideline-tuned models like Alpaca and Vicuna by an
average of over 30 F1 points and achieves a high F1 score of 0.8 on SoMeSci.
In this paper, BERT, SciBERT, and XML-R models are still utilized to address
the first task of the shared SOMD 2024 challenge.

3 Approach

To address the Software Mention Recognition task, we utilize the power of dif-
ferent pre-trained transformer-based language model in different approaches.
Figure 1 illustrates three approaches to participate in the competition. Because
shared-task is related to each token in the sentence and whether words are in
capital letters or not also greatly affects the recognition of entities. Therefore,
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Fig. 1. Overview system of three approaches: Sample input is ” Celeste was written in
C #” with two entities are E_1 and E_2. E_1 and E_2 play the role of two entity types
in this example

we do not apply any preprocessing techniques but use data directly from the
organizers. Also the tokenize method will depend on the default tokenier of the
models. In our work, we employ various pre-trained language models, includ-
ing the XLM-Roberta (XLM-R) [4], BERT [7], and SciBERT [2] as our main
backbones. The detail of our three approaches are present as follow.

3.1 Approach 1: Token classification with BERT's

For the first approach, we address the task by fine-tuning different transformer
BERT-base models for the token classification task. We adapted different pre-
trained language models to the training dataset. After tokenizing the input, we
feed the token sequence to backbones models to extract the fixed vector in the
last layer as the final representation of the input sentence. Then, we apply a fully
connected layer to process the vectors and predict labels for each input token
using a softmax function. There are a total of 27 labels (in Table 1), where 26
correspond to 13 different entity types, and one label represents non-entities.
Figure 1 illustrates the overview of our first approach.

3.2 Approach 2: Two-stage framework for Entity Extraction and
Classification

Motivated by recent work by [1], we address Task 1 - Software Mention Recog-
nition with a two-stage framework composed of entity extraction and entity
classification components. However, our components are re-designed to improve
the overall performance than original framework proposed by [1]. Figure 1 illus-
trates the overview of this approach, the detail of each component is presented
below:
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Table 1. List of labels for token classification task in Approach 1

Index|Label Index|Label
1 |B-Application_ Creation 15 |B-Plugln_Deposition
2 |I-Application_ Creation 16 |I-PlugIn_Deposition
3 |B-Application_Deposition 17 |B-Plugln_Mention
4  |I-Application_Deposition 18 |I-PlugIn_Mention
5 |B-Application_Mention 19 |B-Plugln_Usage
6 |I-Application_Mention 20 |I-PlugIn_Usage
7 |B-Application_Usage 21 |B-ProgrammingEnvironment_Mention
8 |I-Application_Usage 22 |I-ProgrammingEnvironment_Mention
9 |B-OperatingSystem_Mention| 23 |B-ProgrammingEnvironment_Usage
10 |I-OperatingSystem_Mention | 24 |I-ProgrammingEnvironment_Usage
11 |B-OperatingSystem_Usage 25 |B-SoftwareCoreference_Deposition
12 |I-OperatingSystem_Usage 26 |I-SoftwareCoreference_Deposition
13 |B-Plugln_Creation 27 |O
14 |I-Plugln_Creation

— Stage 1 - Entity extraction: This stage aims to identify whether each
token in a given input sentence belongs to an entity or not. We achieve
this through token classification, similar to Approach 1. However, instead of
using 27 labels for different token types, we only use 3 labels as:

e O: Non-entity token
e B-X: Beginning token of an entity of type X (where X represents one of
the 13 entity types)

e I-X: Token within an entity of type X

Using separate labels for the beginning (B) and inside (I) positions of tokens
within an entity allows us to efficiently extract all words belonging to the
same entity in stage 2.

— Stage 2 - Entity classification: In this stage, we classify the detected
entities from stage 1. We use a classifier with 13 labels corresponding to the
13 entity types, discarding the B-I prefix distinction used for token position.
This classifier is built by fine-tuning a transformer-based model like BERT.
[14] During fine-tuning for classification tasks, it’s common practice to use
the hidden state associated with the [CLS] token as input for a classifier.
However, in this approach, we fine-tune the entire transformer model end-
to-end. This means the hidden states are not treated as fixed features, but
are trained alongside the classification head (a component added on top of
the pre-trained model) for optimal performance. Additionally, to leverage
the knowledge of transformer models, we format this classifier as a question-
and-answering model by constructing the input as the following prompt:

e Input: What is <entity> in the sentence: <input sentence>
e Output: Type of entity
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Table 2. General statistics in the training set and private test set

Information Training set|Private test set
#Sentence 39768 8180
#Sentence with entity 2353 374
Total entity 3241 515
Max length 568 347
Avg length 28.32 28.82

3.3 Approach 3: Three-stage framework

Our analysis in Table 2 revealed a limited number of sentences containing entities
within the training set. This disparity raised concerns about potential biases in
the label information during the training process for the previously mentioned
approaches. To address this, we introduce a new three-stage framework, which
integrate a binary classification with Approach 2. We simply built a binary
classification model to detect the sentences which contain the entity. As shown
in Figure 1, if a sentence is classified as class 0, assign all tokens in the sentence
as O, otherwise, this sentence will be passed to Approach 2 to extract the entity
and its type.

4 Experimental Setup

4.1 Data and Evaluation Metrics

This shared-task uses the SoMeSci dataset [13] which included 39768 sentences
and 3756 software mentions divided into a training set and a private test set. We
train our systems only on the training set and evaluate the performance of our
model on the private test set using weighted precision, recall, and F1-score. In
Table 2, we summarize some general information about the two data sets. Where
#Sentence denotes the number of sentences, #Sentence with entity denotes the
number of sentences containing the entity, and Total entity is the total of enti-
ties in all sentences. Max length and Avg length are the maximum length and
average length of the sentences in each set, respectively. This dataset contains
six groups of entity Application, OperatingSystem, Plugln, ProgrammingEnvi-
ronment, and SoftwareConference. Each group can have the entity belong to
four types [Creation, Deposition, Mention, Usage]. In Table 3 we indicate the
distribution of each entity in the dataset

4.2 System Settings

We conduct all experiments on three approaches, using three base-version back-
bones: XLM-R*, BERT®, and SciBERT®. We loaded the weights of the back-
bones from the HuggingFace library and carried out training on an NVIDIA

* https://huggingface.co/Facebook Al /xlm-roberta-base
® https://huggingface.co/google-bert /bert-base-uncased
5 https://huggingface.co/allenai/scibert-scivocab-uncased
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Table 3. Statistics the number of entities in each entity type entity in each entity
group in the training set and private test set

. . Training set Testing set
Entity group Entity Quantity | Total|Quantity | Total
Application_Creation 150 47
.. Application_Deposition 80 22
Application Application_Mention 162 2353 31 348
Application_Usage 1958 248
L . OperatingSystem_Mention 13 17 .
OperatingSystem OperatingSystem_Usage 127 140 16 33
PlugIn_Creation 53 17
PlugIn_Deposition 21 8
Plugln PlugIn_Mention 40 344 11 81
PlugIn_Usage 230 45
i . . ProgrammingEnvironment_Mention 41 . 6
ProgrammingEnvironment ProgrammingEnvironment_Usage 331 372 43 49
SoftwareCoreference SoftwareCoreference_Deposition 35 35 4 4

T4(x2) GPU provided by Kaggle. The corresponding hyper-parameters for each
approach are presented below:

— Approach 1: batch size = 32, learning rate = 5e-05, and the number of
epoch = 25 with XLM-R model and the number of epoch = 20 both remain
backbones.

— Approach 2:

e Stage 1: batch size = 32, learning rate = 5e-05 and the number of epoch
= 20 for all three backbones.

e Stage 2: batch size = 16, learning rate = 2e-05 and the number of epoch
= 25 with XLM-R model and epoch = 20 two remainder models.

— Approach 3:

e Stage 1: batch size = 32, learning rate = 2e-5 and the number of epoch
= 10 for all three backbones.

e Stage 2 and Stage 3: Using the configuration and architecture as the
Approach 2.

5 Main results

According to the organizing committee, this sub-task will be evaluated by F1-
Score based on exact matches. As shown in Table 4, we provide a tabulated
summary of 9 experiments, each representing one of the 9 final systems generated
from three different approaches and using three distinct backbones.

The experimental results in Table 4 indicate that Approach 3, a three-stage
system, demonstrates the best performance across all backbones, with the XLM-
RoBERTa backbone exhibiting the highest efficacy among all approaches. How-
ever, this result is for reference only and is only true in all of my experiments.
It’s important to acknowledge that different contexts, set up or datasets might
yield different outcomes, and we are not sure this is the best result that each
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Table 4. Comparative performance of our three Approaches with different
pre-trained language models on the test set.

Model Approach 1 Approach 2 Approach 3
0A€!S Precision Recall Fl-score Precision Recall Fl-score Precision Recall Fl-score
BERT 0.675 0.594  0.625 0.682 0.643 0.653 0.690 0.629  0.650

SciBERT  0.658 0.621 0.623 0.719 0.645  0.670 0.736 0.631  0.670
XLM-R 0.716 0.614  0.649 0.707 0.654 0.671 0.729 0.649 0.678

Table 5. Official scoreboard”for the sub-task I: Software mention recognition.

Evaluation metrics

Participant Ranking Precision Recall F1l-score

phinx Top 1 0.761 0.750 0.740
david-s477 Top 2 0.739 0.711  0.692
ottowg Top 4 0.679 0.664 0.652
vampire Top 5 0.682 0.637  0.648

Our best system| Top 3 0.729 0.649 0.678

backbone could give in other cases. Finally, the best system was built according
to approach 3 with XLM-R backbone and our best submission was ranked 3rd.
Table 5 show the final score of the top 5 participants.

With the test dataset labels provided by the organizing committee, we eval-
uated the performance of our best system for each entity class in Table 6. We
observed that the SoftwareCoreference_Deposition entity achieved the highest
Precision score, while the ProgrammingEnvironment_Usage entity attained the
highest Recall and F1 score, top 5 Fl-score classes are ProgrammingEnviron-
ment_Usage, SoftwareCoreference_Deposition, and OperatingSystem_Mention. It
is evident that entities belonging to the Plugln group typically scored lower than
those in other groups shows that it has difficulty in the regconization process.
Although, the number of PlugIln_Usage entities in the training set is pretty large
the result on the test set is not positive. Besides that, PlugIn_Creation and Plu-
gIn_Deposition entities have the sample in the training set are pretty low and
their score moves forward to zero. The number of OperatingSystem_Mention en-
tities in the training set is low and the score on the test set is high so we predict
the mention entity type in this group is featured and easier to recognize than
other groups.

Additionally, in Table 7, we evaluated each individual stage in our final three-
stage system by assuming that the accuracy of the stages before it is 100%. The
first stage works well with an Fl-score of 0.992 in classifying whether a sentence
contains an entity or not. Moving to stage 2, tasked with detecting entities
in sentences, achieved an F1 score at a relatively good level, but a significant
difference between Precision and Recall (12.6% difference) is evident, which also
affects the overall system performance. In the final stage, the scores between the
three metrics are relatively balanced, but it appears that the task of classifying

" https://codalab.lisn.upsaclay.fr/competitions/16935#results
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Table 6. Performance of the final system on the test dataset across entity classes
evaluated by Precision, Recall, and F1-score.

Entity class Precision|Recall|F1-score
Application_Creation 0.692 0.766 | 0.727
Application_Deposition 0.615 0.727 | 0.667
Application-Mention 0.560 0.452 | 0.500
Application_Usage 0.812 0.730 0.769
OperatingSystem_Mention 0.867 0.765 | 0.812
OperatingSystem_Usage 0.579 0.688 | 0.629
PlugIn_Creation 0.200 0.059 | 0.091
PlugIn_Deposition 0.000 0.000 | 0.000
Plugln_Mention 0.667 0.364 | 0.471
Plugln_Usage 0.682 0.333 | 0.448
ProgrammingEnvironment_Mention| 0.500 0.167 | 0.250
ProgrammingEnvironment_Usage 0.886 0.907 | 0.897
SoftwareCoreference_Deposition 1.000 0.750 | 0.857

Table 7. Performance of components in our final three-stage framework.

Stage |Precision Recall F1-score
Stage 1| 0.992 0.992  0.992
Stage 2| 0.912 0.786  0.845
Stage 3| 0.786 0.806  0.784

13 entity classes had some impact on this stage with relatively lower overall
performance. The propagation of errors between the three stages has a significant
impact on the entire system, with the final Fl-score of the entire system being
0.678.

6 Conclusion and Future Work

In this paper, we present and evaluate three approaches for tackling sub-task I
in the Software Mention Detection in Scholarly Publications shared task. While
we explored the use of suitable transformer models like BERT, our three-stage
system leveraging the XLM-R model achieved the highest performance in the
competition. As a result, our best system achieved the Top 3 in the private
test. In future work, our intention is to analyze the error propagation between
the three stages to enhance the performance of the entire three-stage system.
Additionally, with access to more substantial computational resources, we aim
to experiment with fine-tuning sub-tasks using larger batch sizes and epochs for
each backbone in order to investigate the effects of these hyper-parameters on
the model’s performance.
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