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HateTinyLLM : Hate Speech Detection Using Tiny
Large Language Models

Tanmay Sen, Ansuman Das, Mrinmay Sen

Abstract—Hate speech encompasses verbal, written, or be-
havioral communication that targets derogatory or discrimina-
tory language against individuals or groups based on sensitive
characteristics. Automated hate speech detection plays a crucial
role in curbing its propagation, especially across social media
platforms. Various methods, including recent advancements in
deep learning, have been devised to address this challenge. In this
study, we introduce HateTinyLLM, a novel framework based on
fine-tuned decoder-only tiny large language models (tinyLLMs)
for efficient hate speech detection. Our experimental findings
demonstrate that the fine-tuned HateTinyLLM outperforms the
pretrained mixtral-7b model by a significant margin. We ex-
plored various tiny LLMs, including PY007/TinyLlama-1.1B-
step-50K-105b, Microsoft/phi-2, and facebook/opt-1.3b, and fine-
tuned them using LoRA and adapter methods. Our observations
indicate that all LoRA-based fine-tuned models achieved over
80% accuracy.

Index Terms—Hate Speech Detection, tiny LLM, LoRA,
Adapter

I. INTRODUCTION

HAte speech detection [1], [2], [3] in text data has
garnered significant attention in recent years, with re-

searchers exploring various approaches to address this com-
plex problem. The task of hate speech detection refers to
identifying and categorizing language that expresses hatred,
prejudice, or hostility towards individuals or groups based
on attributes such as race, ethnicity, religion, gender, sexual
orientation, disability, or other protected characteristics. The
goal of hate speech detection is to develop automated systems
or algorithms that can analyze text data, such as social media
posts, comments, or news articles, and identify instances of
hate speech. Efficiently detecting and mitigating hate speech
can help to protect individuals and communities from the
negative consequences such as discrimination, violence and
social division. Various methodologies and data sets have been
explored and generated for hate speech detection problem.
All the previously proposed methodologies can be broadly
categorized into three groups: traditional machine learning,
deep learning methods that utilized word embedding and
transformers-based encoders only methods. Malik et al. [4]
present a comparative study on fourteen different deep learn-
ing models, concluding that transformers-based hate speech
detection models exhibit more promising results than classical
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and embedding based deep learning models. Various deep
learning models like as LSTM, biLSTM, and convolution
neural network with Word2Vec embedding are employed by
various researchers [5] for hate speech detection. [6] conduct
comprehensive experiments utilizing various deep learning
models to acquire semantic word embeddings.

Transformer models [7] , like BERT [8], ELECTRA [9], and
BART [10] offer superior syntactic and semantic understand-
ing of words within text compared to traditional word2vec
or GloVe vectors for word embedding. Mozafari et. al. [11]
explore BERT’s capability to capture hateful context within
social media content using novel fine-tuning methods. A fine-
tune multilingual BERT model for hate speech detection is
proposed by Aluru et al. [12] in low-resource languages. Graph
neural network (GNN) based mutlitask framework MTBul-
lyGNN for cyberbullying detection is proposed by Maity et
al. [13] for code-mixed language. They utilized a sentence
encoder and BART model to represent text. Awal et. al. [14]
propose HateMAML, a novel meta learning based approach
for hate speech detection in low-resource languages. Recently,
researchers have explored various techniques to enhance the
performance and robustness of large language models (LLM)
based hate speech detection. Guo et al. [15] conduct large scale
study on effective prompting methods for context-aware LLM-
based hate speech detection to improve accuracy. Often, hate
speech detection problem suffers lack of label data, Pendze
et al. [16] mitigate this issues by generating large amount of
synthetic data using LLM. The authors compare two types
of enocoder and decoder only transformer models. They have
observed zero shot GPT3.5 performs marginally better than
fine tuned BERT family of models.

Tiny LLMs are advantageous over large LLMs due to their
reduced computational requirements, faster inference times,
and lower memory footprint. Therefore, tiny LLMs are often
more suitable for niche applications where a smaller model
may suffice without sacrificing much performance. This work
introduces the use of various fine-tuned decoder only based
tiny large language models (LLMs) for hate speech detection.
These tiny LLMs offer strong performance across various
tasks while requiring fewer resources, making them ideal for
practical applications. Notably, this is the first study to explore
leveraging fine-tuned decoder only tiny LLMs for hate speech
detection.

II. DATASETS

To begin, we reviewed the literature for the existing hate-
speech detection datasets in English. We have considered
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TABLE I: Samples from DynaHate dataset

Tweet Hate Class
dalits are lowlives hate
gay people are a burden to our society hate
Arabs are not welcome hate
i wish corona didnt break this country nothate
asian people are the shit nothate
i hate wearing black in the summer! nothate

TABLE II: Samples from Hateeval dataset

Tweet Hate Class
White women are stupid hate
Any woman that likes me is a bitch. All
women are bitches.

hate

Shut the fuck up pls hate
It must be amazing to be me nothate
Only I could get kicked out of a club for
just being

nothate

They’re replaceable, your time is not nothate

two hatespeech datasets (DynaHate [17] and hateeval [18])
in English for our experiment. DynaHate dataset comprises
approximately 41,144 entries, as shown in Table III. This
dataset is created through a collaborative human-and-model-
in-the-loop process aimed at enhancing hate detection models.
This approach facilitated the collection of four rounds of
datasets specifically focused on hate speech. In the balanced
DynaHate dataset, comprising 411,144 entries, tweets are
evenly distributed with 46% percent classified as ’Not Hate’
and 54% as ’Hate,’ ensuring robust representation across
categories. The HateEval dataset looks at hate speech aimed at
women and immigrants on Twitter. It has about 9000 entries.
Among these, 58% of the tweets are not hateful, while 42%
contain hate speech. Some samples of both the DynaHate and
Hateeval dataset are shown in Table I and Table II respectively.
Detailed class-wise distributions of DynaHate and Hateeval
datasets are also given in Table III.

TABLE III: Dataset Summary

Class DynaHate HateEval
Hate 22175 3783

NotHate 18969 5217

III. METHODOLOGY

In the following section dives into formulating the prob-
lem and unveils a framework for hate speech detection with
various tiny LLMs. Zhang et al. Zhang et al. [19] introduces
TinyLlama a condensed language model comprising 1.1 billion
parameters. It trained on approximately 3 trillion tokens across
three epochs. TinyLlama extends the architecture and tokenizer
initially developed for Llama 2. Employing advancements such
as flashAttention, TinyLlama achieves superior computational
efficiency and exhibits impressive performance across various
downstream tasks, surpassing existing open-source models
of comparable sizes. By training smaller models with larger
datasets, the study explores the potential of optimizing per-
formance within specific inference constraints, challenging
the preference for larger models. The pretraining process
effectively combines natural language and code data, resulting

in competitive performance. Through extensive experimen-
tation and optimization, including speed enhancements like
Fully Sharded Data Parallelism and flash attention, TinyLlama
showcases superior training efficiency and problem-solving
capabilities. The paper underscores the significance of smaller,
efficient models like TinyLlama in enhancing accessibility and
promoting innovative research in language model develop-
ment.TinyLlama consists of 22 layers, 16 attention heads, with
an embedding size of 2048.

Li et al. [20] propose Phi, represents a significant advance-
ment in the realm of smaller-scale transformers, demonstrating
impressive performance across various benchmarks without
the need for an extensive parameter count. Its utilization of
a diverse range of data sources, including synthetic texts and
filtered websites, highlights a strategic approach to training
that enriches its understanding of language and common
sense. Notably, Phi-2’s ability to achieve near-state-of-the-art
performance with just 2.7 billion parameters underscores the
importance of efficient model design and data augmentation
techniques. Moreover, its focus on safety and educational
value, reflected in the careful curation of data sources, speaks
to a conscientious approach to AI development.Phi model
features 24 layers with 32 attention heads, each having a
dimension of 32. Its context length is set as 2048.

Zhang et al. [21] present open pre-trained transformers
(OPT), a collection of decoder-only pre-trained transformers
with parameter sizes ranging from 125 million to 175 billion
( in our study we have used 1.3 billion parameters model)
aiming to facilitate reproducible and responsible research
in large language models (LLMs). The authors highlight
the limited access to full model weights of existing LLMs
and the significant computational cost involved in training
such models. They present detailed architectural specifica-
tions and training methodologies, emphasizing transparency
and efficiency. Evaluation results across various NLP tasks,
dialogue datasets, bias, and toxicity benchmarks demonstrate
the competitiveness of OPT-175B compared to existing models
like GPT-3 Davinci and PaLM. While OPT-175B generally
matches or outperforms existing models in NLP tasks and
dialogue generation, it exhibits higher stereotypical biases
and toxicity rates, indicating the need for further research
on ethical considerations and model improvements.Opt 1.3B
consists of 24 layers, each containing 32 attention heads, with
an embedding size of 2048.

We have used Low-Rank Adaptation (LoRA) and Adapter
methods for our small LLm fine-tuning purpose. The paper
[22] introduces LoRA as a solution to the challenge of
fine-tuning large pre-trained models like GPT-3 (175 billion
parameters) for specific tasks, which can be prohibitively
expensive due to the sheer size of the model. The authors
acknowledge the paradigm of pretraining on general domain
data and adapting to particular tasks, but note that full fine-
tuning becomes less feasible as models grow larger. To address
this issue, the proposed LoRA approach involves freezing the
weights of the pretrained model and introducing trainable rank
decomposition matrices into each layer of the Transformer
architecture. This effectively reduces the number of trainable
parameters for downstream tasks while still allowing adapta-
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Fig. 1: Adapter architecture

tion. The proposed architecture can be foiund in Fig1.

TABLE IV: Hyperparameters for LoRA

Hyperparameters TinyLlama phi-2 opt-1.3B
Epoch 3 3 3

Target Modules
k proj’,
’v proj

k proj’,
’v proj

k proj’,
’v proj

Trainable Parameters 0.01 % 0.02 % 0.03%
LoRA alpha 16 16 16

r 2 2 2
LoRA dropout 0.05 0.05 0.05

Batch Size 8 8 8
weight decay 0.001 0.001 0.001
Training Time 1.05 hour 1.20 hour 1.10 hour

The adapter method, as introduced by Houlsby et al.
(2019) [23], offers a parameter-efficient approach to enhanc-
ing large language models (LLMs) by adding adapter layers
to transformer blocks. Unlike prefix tuning, which modifies
embeddings, adapter layers are inserted into two positions
within each transformer block. These adapter layers consist of
relatively small fully connected layers with a bottleneck struc-
ture akin to autoencoders. This design significantly reduces
the number of parameters required compared to traditional
methods

IV. EXPERIMENTS, RESULTS AND ANALYSIS

This section describes the outcomes of raw pretrained
models and our proposed finetuned models.

A. Baselines Setup

Utilizing all three Tiny LLMs, both before and after fine-
tuning, as well as Mistral 7B,we have evaluated the classi-
fication results. The experiments were conducted in a con-
sistent computing environment. Notably, the baseline models
demonstrated an average accuracy of 0.5, and no quantization
was applied to these models. All baseline model results are
summarised in below tables.

B. Experimental Setup and Hyperparameters

The experiments were conducted sequentially, with each
method executed separately by restarting the kernel to ensure
independent runs. A Nvidia P100 GPU with 16 GB memory
was utilized for all experiments. In bothe the methods we have
chnaged the weights for k-proj and v-proj layer fo the all 3
tiny llms.TinyLlama, phi-2, and opt-1.3B. Across all methods,
epochs are set to 3, target modules focus on kproj and vproj,
and there’s a slight variation in the percentage of trainable
parameters. Additionally, common values for LoRAalpha, r,
LoRAdropout, batch size, weight decay, and training time
are maintained. In contrast, the second table presents the
parameters for Adapter (LLM) and LoRA methods. While
epochs are increased to 5 for both, training times differ slightly
The fine-tuning process involved 5 epochs for the Adapter-
based method and 3 epochs for the LoRA method, with
detailed hyperparameters specified for each. In both LoRA and
adapter-based fine-tuning, the AdamW optimizer is utilized.
Additionally, in the adapter-based method, the negative-log-
likelihood loss function is employed as the loss function.

TABLE V: Hyperparamaters for Adapter

Parameters TinyLlama phi-2 opt-1.3B
Epoch 5 5 5

Trainable Parameters 0.05% 0.01% 0.03%
Adapter Layer Added 2 2 2

Training Time 1.05hour 1.31 hour 1.05 hour

C. Results and Discussion

In this work , we conducted a comparative analysis of four
base models’ performance on two distinct datasets: Dynahate
and Hateeval with metrics including accuracy and F1 scores.
From Table VI, Among the models assessed, TinyLlama
demonstrated moderate performance, achieving an accuracy of
0.50 and an F1 score of 0.61 on DynaHate, while on Hateeval,
its accuracy decreased to 0.29 with an F1 score of 0.24. phi-
2 exhibited slightly better results, with an accuracy of 0.52
and an F1 score of 0.66 on DynaHate, and a corresponding
accuracy of 0.47 and F1 score of 0.28 on Hateeval. opt-1.3b
showcased comparable performance across both datasets, with
an accuracy of 0.53 and an F1 score of 0.54 on DynaHate, and
an accuracy of 0.45 with an F1 score of 0.17 on Hateeval.
In contrast, Mistral-7B-v0.1 emerged as the top-performing
model, with an accuracy of 0.58 and an F1 score of 0.52 on
DynaHate, and notably higher scores on Hateeval, boasting
an accuracy of 0.73 and an F1 score of 0.16. Overall, while
some models displayed consistency across datasets, others
demonstrated varying degrees of performance

TABLE VI: Base models performance on both the data sets

Model name DynaHate Hateeval
Accuracy F1 Accuracy F1

TinyLlama 0.50 0.61 0.29 0.24
phi-2 0.52 0.66 0.47 0.28

opt-1.3b 0.53 0.54 0.45 0.17
Mistral-7B-v0.1 0.58 0.52 0.73 0.16

The fine-tuning process has shown remarkable improve-
ments across all models and methodologies compared to their
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Fig. 2: LoRA architecture

TABLE VII: Adapter based finetuned models performance

Model name DynaHate Hateeval
Accuracy F1 Accuracy F1

TinyLlama-1.1B 0.71 0.75 0.69 0.7
phi-2 0.7 0.76 0.72 0.71

opt-1.3b 0.71 0.71 0.72 0.74

TABLE VIII: LoRA based finetuned models performance on
both the data sets

Model name DynaHate Hateeval
Accuracy F1 Accuracy F1

TinyLlama-1.1B 0.80 0.81 0.79 0.77
phi-2 0.80 0.83 0.79 0.78

opt-1.3b 0.82 0.83 0.80 0.81

respective base models. It is observed from Table VI, VIII
& VII, initially, TinyLlama, although exhibiting moderate ac-
curacy and F1 scores, underwent a substantial transformation
post-fine-tuning.

The adapter-based fine-tuned models consistently displayed
improvements, as shown in Table VII. For instance, TinyLlama
saw its accuracy rise to 0.71 on Dynahate and 0.69 on
Hateeval, with F1 scores reaching 0.75 and 0.70, respectively.
Likewise, phi-2 achieved accuracies of 0.70 and 0.72 on
Dynahate and Hateeval, respectively, alongside F1 scores of
0.76 and 0.71. Meanwhile, opt-1.3b attained accuracies of
0.71 on both datasets, with F1 scores of 0.71 on Dynahate
and 0.74 on Hateeval. From Table VII, we note that phi2
achieves a higher F1 score with a slightly lower accuracy for
the Dynahate dataset. However, for the Hateeval dataset, opt-
1.3b exhibits higher accuracy and an F1 score improvement
of 3-4% compared to the other two models

With the LoRa technique (see, Table VIII), its accuracy

surged from 0.50 to 0.80 on Dynahate and from 0.56 to 0.79
on Hateeval, accompanied by notable F1 score enhancements,
rising from 0.61 to 0.81 and from 0.36 to 0.77, respectively.
Similarly, fine-tuning with LoRa significantly improved phi-
2, elevating its accuracy from 0.52 to 0.80 on Dynahate and
from 0.22 to 0.79 on Hateeval, with F1 scores jumping from
0.66 to 0.83 and from 0.24 to 0.78, respectively. Opt-1.3b,
another model subjected to fine-tuning using LoRa, witnessed
impressive accuracy increments from 0.53 to 0.82 on Dynahate
and from 0.47 to 0.77 on Hateeval, with F1 scores soaring from
0.54 to 0.83 and from 0.25 to 0.70, respectively. Analysis of
Table VIII reveals that the opt-1.3b model demonstrates a 2%
increase in accuracy and a 1-2% improvement in F1 score for
the Dynahate dataset. Additionally, for the Hateeval dataset,
its accuracy improves by 1%, and the F1 score sees a boost
of 3-4%, when compared to the other two models.

In general, fine-tuning, especially using the LoRa tech-
nique, significantly improved the performance of all models
across both datasets. Notably, the opt-1.3b model consistently
delivered strong performance, indicating its robustness in
hate speech detection tasks. It is worth noting that opt-1.3b
outperformed the larger phi2-2 model and also performed
better than the slightly smaller model, tinyllama. Furthermore,
adapter-based fine-tuned models, also exhibited consistent
improvements, suggesting the effectiveness of this approach
in enhancing model performance.

V. CONCLUSION AND FUTURE WORK

This study pioneers the use of various tiny GPT-based tiny
large language models (LLMs) for hate speech detection. We
explore two different fine-tuning approaches and demonstrate
that fine-tuned LLMs significantly outperform pre-trained
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models. Overall, the results suggest that fine-tuning, partic-
ularly with the LoRa technique, is crucial for enhancing the
performance of base models in hate speech detection tasks.
Among the models evaluated, opt-1.3b consistently demon-
strated strong performance across both datasets, indicating
its robustness in this domain. Future work could focus on
exploring additional fine-tuning techniques and conducting
more extensive experiments to further improve the efficacy
of hate speech detection models. Additionally, investigating
the generalizability of these models across different languages
and cultural contexts could be a promising direction for future
research.
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