
ar
X

iv
:2

40
5.

01
60

9v
1 

 [
cs

.N
I]

  2
 M

ay
 2

02
4

Q-learning-based Opportunistic Communication for
Real-time Mobile Air Quality Monitoring Systems

Trung Thanh Nguyen∗, Truong Thao Nguyen†, Tuan Anh Nguyen Dinh∗, Thanh-Hung Nguyen∗, Phi Le Nguyen∗
∗School of Information and Communication Technology, Hanoi University of Science and Technology, Hanoi, Vietnam

†The National Institute of Advanced Industrial Science and Technology (AIST), Japan

{thanh.nt176874@sis, anh.ndt164767@sis, hungnt@soict, lenp@soict}.hust.edu.vn; nguyen.truong@aist.go.jp

Abstract—We focus on real-time air quality monitoring systems
that rely on devices installed on automobiles in this research.
We investigate an opportunistic communication model in which
devices can send the measured data directly to the air quality
server through a 4G communication channel or via Wi-Fi to
adjacent devices or the so-called Road Side Units deployed along
the road. We aim to reduce 4G costs while assuring data latency,
where the data latency is defined as the amount of time it takes
for data to reach the server. We propose an offloading scheme that
leverages Q-learning to accomplish the purpose. The experiment
results show that our offloading method significantly cuts down
around 40-50% of the 4G communication cost while keeping the
latency of 99.5% packets smaller than the required threshold.

Index Terms—Air quality monitoring, Mobile sensor, Oppor-
tunistic Communication, Reinforcement learning.

I. INTRODUCTION

In the last decades, with the rapid development of in-

dustrialization and urbanization, air pollution has become an

increasingly crucial issue. Over the years, many studies have

been conducted and showed that air pollution could cause

diseases, allergies, and even death to humans [1], [2]. In that

context, monitoring air quality is one of the critical factors that

help the government make policies and people plan for life.

Traditionally, air quality monitoring has been carried out by

static monitoring stations located at fixed locations. However,

due to the high deployment and operating costs, the density

of deployed monitoring stations is insufficient. For example,

in Hanoi, Vietnam, with more than 3000 km2, there are only

50 air quality monitoring stations [3].

Recently, there have been several studies proposing a new

approach, namely the vehicle-based mobile air quality mon-

itoring system [4] [5]. The vehicle-based mobile air quality

monitoring systems leverage lightweight air quality monitoring

devices mounted on vehicles to broaden the monitoring area.

In [6], the authors considered a mobile air quality monitoring

system that relies on low-cost mobile sensors deployed on

trash trucks. They proposed techniques to detect pollution hot

spots and identify pollutant source signatures. Nguyen et al.

in [5] studied how to deploy air quality monitoring sensors

on buses for maximizing the monitored regions. The authors

first mathematically formulated the problem and then provided

an approximation algorithm to determine optimal buses for

placing sensors.

In this research, we focus on real-time vehicle-based mobile

air quality monitoring systems, in which the devices contin-

uously collect the air quality information and transfer it to

the server. There are two challenges when dealing with such

real-time monitoring systems. Firstly, we need to ensure the

freshness of the information, i.e., guaranteeing that the time

from when the data is measured till arriving at the server does

not exceed a threshold. The second challenge is to minimize

the communication cost. The targeted problem, which we

name as OCMA (stands for Opportunistic Communication

for Mobile Air quality monitoring) can be stated as follows.

Air quality monitoring devices are mounted on buses. These

devices perform air quality measurement with frequency f .

The data collected by the devices are transmitted to the cloud

server via one of the following communication planes. Firstly,

devices can transmit data directly to the cloud server via the

4G communication. Secondly, the devices can transmit data to

Road Side Units (RSUs) located along the roads through the

Wi-Fi channel. These Road Side Units will transfer data to

the cloud server through a high speed wired network. Finally,

a device can relay data to another device on the vehicle

next to it. This neighbor vehicle will then aggregate the data

and transfer it to the cloud server or Road Side Units. We

assume that the 4G communication is available everywhere.

Thus, device can transmit data by 4G at any time. In contrast,

Wi-Fi communication can only be used when devices enter

the communication ranges of the RSUs or other devices. On

the other hand, it is well-known that 4G communication is

usually much more expensive than Wi-Fi. Besides, the 4G

communication also consumes much more energy compared

to Wi-Fi. Therefore, our OCMA problem asks to minimize

the use of 4G communication while guaranteeing that the

information latency does not exceed a threshold. Here, the

term “information latency” is defined by the time interval from

when the data is collected until it reaches the server. To the

best of our knowledge, this study is an early attempt to mini-

mize communication costs while maintaining the freshness of

information in mobile air quality monitoring systems.

The OCMA problem can be categorized as an offloading

problem in V2X (i.e., Vehicle-to-Everything) networks. In [7],

K. Zhang et al. addressed the energy optimization problem in

Mobile Edge Computing (MEC)-enabled 5G networks. They

first mathematically formulated the targeted problem and then
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proposed an approximation algorithm to allocate the radio re-

source. The work in [8]–[10] addressed the offloading decision

of collaborative task execution between platoons and a MEC

server. Both [8], [9] considered how to determine the location

of task execution either on a vehicle, offloading to other

platoon members, or an associated MEC server. However, [8]

focused on minimizing the offloading cost, while [9] aimed at

reducing the average energy consumption. [10] targeted the

reduction of offloading latency between the vehicles, each

of which necessarily maintains the information of its 1-hop

neighbors. Whenever with a task, a vehicle calculates the

offloading latency for all the relay hop candidates. A neighbor

vehicle with minimum latency is chosen as the best relay node.

The authors in [11] proposed a federated offloading method

that exploits horizontal offloading path between vehicles, with

the objective of minimizing total latency. In [12], the authors

aimed at minimizing the power consumption of MEC servers

and vehicles.
Zhao et al. recently utilized MEC and cloud computing

resources simultaneously for offloading [13]. In that work,

vehicles could offload their computation tasks to an MEC

server or the cloud via RSUs. The objective was to maximize

the system’s utility by optimizing both the offloading strategy

and resource allocation. In [14], Y. Lin et al. addressed the traf-

fic and capacity allocation problem in a three-tier model and

proposed an optimization algorithm consisting of two phases.

The first was adjusting the capacity allocation, optimizing

the traffic allocation. Their objective was to minimize total

capacity and guarantee that at least some traffic has satisfying

latency constraints.
Unlike previous research, we use three communication

planes simultaneously, namely, vehicle-to-cloud, vehicle-to-

RSU, and vehicle-to-vehicle, with the goal of reducing 4G

communication costs while maintaining information freshness.

Our idea is to exploit Q-learning in offloading tasks. In our

Q-learning paradigm, each air quality monitoring device is

considered as an agent that keeps track of its Q-table. The

action space consists of four values: keeping data in the local

memory, sending to the RSU, relaying to the neighbor device,

and transmitting to the server. An entry in a Q-table represents

the quality of an action. The agent (i.e., air quality monitoring

device) chooses the action whose Q-value is the greatest at

every time slot. The Q-table is updated after performing an

action, based on a so-called reward function. Our reward

function is designed to encourage actions that reduce 4G

communication cost while ensuring the data latency constraint.

Our contribution is as follows:

• We are the first to handle the challenge of opportunistic

communication in real-time mobile air quality monitoring

systems.

• We propose a Q-learning-based opportunistic communi-

cation protocol that attempts to reduce the cost of 4G

communication while ensuring data latency.

• We perform extensive experiments to evaluate the per-

formance of the proposed protocol. The results show the

superiority of our proposal to the existing works.

Fig. 1. Network model.

The remainder of the paper is organized as follows. We

present the network model and a brief introduction to Q-

learning framework in Section II. Sections III describes our

proposed protocol in details. We present the numerical results

in Section IV and conclude the paper in Section V.

II. PRELIMINARIES

In this section, we first present our network model, and then

we give a brief introduction to Q-learning, the technique that

will be used in our solution.

A. Network Model

Figure 1 depicts the network model which comprises of

three components: air quality monitoring devices, Road-Side-

Units (RSUs), and a cloud server. We assume that there are n

air quality monitoring devices that are mounted on n buses.

Each device Di(i = 1, . . . , n) has a computing capacity of C∗
i

and the transmission range of rDi
. The RSUs are computing

units located along the roads. We also assume that there

are m RSUs denoted as Rj(j = 1, . . . ,m) which has the

transmission range of rRj
. The cloud server is named as the air

quality server. The air quality monitoring devices continuously

measure the air quality indicators and transfer the measured

data to the air quality server via one of the following three

communication planes:

1) Air quality monitoring device → Air quality server.

2) Air quality monitoring device → RSU → Air quality

server.

3) Air quality monitoring device A → Air quality monitor-

ing device B (device B then transfers the data to a RSU

or the air quality server, or another device).

The air quality monitoring devices use the 4G connection,

which is relatively expensive, to interact with the air quality

server. Communication between air quality monitoring devices

and RSUs, on the other hand, takes place via a free Wi-

Fi channel, as does communication between two air quality

monitoring devices. It’s worth noting that 4G service is avail-

able everywhere. As a result, a device can send data to a

server via the 4G channel nearly instantly. In order to send

data to the RSU or another device, the device must first move

into that RSU’s or device’s communication range. We aim at

proposing an offloading mechanism that accomplishes both of

the following goals: 1) Reducing the amount of data with a



Fig. 2. Q-learning overview.

latency larger than a given threshold δ, where “data latency”

refers to the time it takes for data to reach the server from

when it is measured; and 2) Minimizing the amount of data

transmitted by 4G communication.

B. Q-learning

Q-Learning [15] is a Reinforcement Learning technique

that learns from experiences in order to achieve a certain

optimization target. Figure 2 depicts the Q-learning process,

which consists of four components: an environment, an agent,

a state space, and an action space. The agent uses the so-called

Q table to determine the action at each stage. Each entry in

the Q table represent the goodness of performing an action at

a given state concerning the agent’s final goal. The Q-table is

updated by the following Bellman equation:

Q(St, At)← (1− α)Q(St, At) + α[Rt + γmax
a

Q(St+1, a)] (1)

where Q(St, At) is the Q-value at a state St when taking

action At at time-step t. Rt is the reward received for

performing action At in the state of St. maxa Q(St+1, a) is the

maximum value that may be obtained for all possible actions

a at the next state St+1. In addition, the α and γ (ranges from

0 to 1) represent the learning and discount rates, respectively.

III. PROPOSAL

In our Q-learning-based model, the network is considered

the environment, while each air quality monitoring device

is an agent. We utilize the distributed approach where each

monitoring device runs its own Q-learning-based model. To

facilitate the reading, we summarize the notations in Table I.

A. State space

For each device Di, the state at a time slot t is a quadruple

consisting of the following items:

• µi(t): the timing Di generates the last packet.

• ci(t): the computing resource of Di that is remaining at

time slot t.

• cN (t): the remaining resource of the nearest device N ,

if N is in the communication range of Di.

• NR
i (t): a binary variable indicating whether Di is in the

communication range of a RSU.

TABLE I
NOTIONS

Notion Description

n the number of air quality monitoring devices
m the number of RSUs
Di the i-th air quality monitoring device
rDi

the transmission range of Di

C∗
i the maximum computing capacity of Di

Rj the j-th RSU
rRj

the transmission range of Rj

δ the data latency threshold
Si(t) the state at a time slot t of agent Di

Ai(t) the action taken by agent Di at a time slot t
µi(t) the timing agent Di generates the last data at a time slot t
ci(t) the remaining computing resource of Di at time slot t

cN (t)
the remaining computing resource of the nearest device at
time slot t

∆i(t)
the time interval from when Di generates the last data until
the time slot t, ∆i(t) = t− µi(t)

∆c(t)
the difference in remaining capacity of Di and nearest
device at time slot t, ∆c(t) = cN (t) − ci(t)

θ the priority factor

B. Action space

An air quality monitoring device can conduct one of the

following actions at each time slot t:

i) Keeping the data in the local queue,

ii) Sending the data directly to the air quality server via 4G

communication channel,

iii) Sending the data to the nearest RSU, if Di is in the

communication range of a RSU,

iv) Sending the data to the nearest device, if they are in the

communication range of each other.

C. Reward function

We denote by Ri(t) the reward received when device Di

performs action Ai(t). Our goal is to minimize the total

amount of data transmitted by 4G while guaranteeing that the

data latency does not exceed a predefined threshold δ. The

reward function is defined as follows.

Ri(t) =































































































θ × C∗
i − ci(t)

1 + ∆i(t)
, sending to the

air quality server (2)

C∗
i − θ × ci(t)

1 + ∆i(t)
, sending to a

RSU (3)

∆c(t)

[1 + ∆i(t)] × |∆c(t)|
, sending to the

nearest device (4)

−p , if ci(t) > C∗
i

or ∆i(t) > δ (5)

0 , keeping in the

local memory (6)

where ∆i(t) = t − µi(t) is the time elapsed from when

the data is collected, ∆c(t) = cN (t) − ci(t) in that cN (t)
is the remaining resource of the nearest device, and p is a

significantly large positive number. θ is a parameter in the



range of [0, 1]. The value of θ is adjust based on the remaining

capacity ci(t) and the elapsed time ∆i(t). Specifically, when

ci(t) is large and ∆i(t) is small, θ tends to be small as

sending the packet to RSU is prioritized than sending it to the

gNB. The rationale behind the reward function is as follows.

Formula (2) means that when the device’s remaining capacity

is sufficient (θ × C∗
i − ci(t) ≤ 0), the device will avoid

transmitting packets directly to the cloud server (due to the

negative reward value). Instead, it will either send the data

to the RSU or a nearest device, or hold the packet in local

memory until it can take another action. In contrast, when the

remaining capacity is no longer sufficient (θ×C∗
i −ci(t) > 0),

the device cannot hold the packet in the local memory; thus,

transmitting the data directly to the cloud server gets more

priority. Moreover, when θ × C∗
i − ci(t) ≤ 0, the reward of

action sending to the cloud server is proportional to ∆i(t). It

means that the smaller the ∆i(t), the more likely the device

will not send the packet to the air quality server. The reward

of action transferring data to a RSU is represented by Formula

(3), which is inversely proportional to ∆i(t). When ∆i(t) is

small, the device will prioritize delivering data to the RSU.

When ∆i(t) is significant large, however, communicating over

the RSU is no longer a viable alternative because the device is

not always within the RSU’s communication range. Therefore,

the reward of this action is lowered. Formulas (4) mean that

the action of relaying data to the neighboring device is only

encouraged when the available resource of the neighboring

device is greater than that of the current device. Moreover, the

greater the ∆i(t), the smaller the reward of action sending to

the neighbor device (because 1
1+∆i(t)

is inversely proportional

to ∆i(t)). Finally, Formula (5) depicts that when the available

resource of the current device exceeds its capacity or when the

data’s latency exceeds the threshold, the agent will be punished

by a substantial negative reward.

IV. EVALUATION

A. Methodology

In this section, we evaluate the efficiency of our proposed

algorithm in terms of optimizing the communication perfor-

mance and cost.
Simulation model: we simulate the target network model

(as shown in Figure 1) by extending the queue-model proposed

in [16]. In which, air quality monitoring devices (sensors)

iteratively generate packets with a same size in every λd time

steps. Packets are then stored in a local queue and wait for

processing in a first-in-first-out manner. If the queue is full

at the time a packet is generated, the packet will be dropped.

Thus, the data latency of a packet comprises two components:

the transmission latency, e.g., the total time for transmitting

packets from the vehicles to the server, and the time in the

queue of this packet. The transmission latency on a given

communication channel, i.e., Wi-Fi, 4G, or wired network,

is proportional to the packet size and inversely proportional

to the link bandwidth. In our simulation, the packet will be

routed based on the corresponding decision algorithms, e.g.,

our proposed Q-learning method or the baseline method that

Fig. 3. The real vehicle trajectory.

uses random selection. Basically, a packet is decided between

four actions: (i) keep in the local queue, (ii) send directly to

the air quality server, (iii) send to the nearest RSU, or (iv) send

to the nearest sensor/vehicle. In case a packet of a given sensor

is decided to send to the nearest RSU (or sensor) while there

is no available RSU (or sensor) in the transmission range of

this sensor, the packet will continue keeping in the local queue

for processing in the next time step (hereafter mentioned as

the offload-hit) or sent directly to the server when the queue

remaining capacity is not sufficient (hereafter mentioned as

the offload-missed issue).

Simulation environment: we use the data set of bus routes

in Seattle City, Washington [17] to simulate the movement of

vehicles. Each data point includes the time and position of a

bus. We use the data collected within 2 days (48 hours) from

November 19th, 2001 till the end of November 20, 2001. We

realized that in this data set, there are several buses that only

appear in a short time, therefore we only collect data of buses

whose active time is no less than 90 minutes per day. We then

generate the RSUs’ position on the map along each bus route.

In which, the RSUs are concentrated in the city center, 1 - 3

km apart, while in the suburbs there will be a sparser number

of RSUs, 4 - 8 km apart. We illustrate the bus routes (color

lines) and the RSUs’ positions (red pin) in Figure 3.

Evaluation metrics: It is worthy to note that the target of

this work is to keep the number of packets that can reach the

air quality server as much as possible (i.e., maximizing the



TABLE II
CONFIGURATION OF THE FIX-POSSIBILITY STRATEGIES

Strategies Pkeep Pserver Prsu Psensor

FP1 0.2 0.3 0.3 0.2
FP2 0.1 0.3 0.5 0.1
FP3 0.1 0.5 0.3 0.1

TABLE III
SIMULATION PARAMETERS

Parameter Value
Packet size 1 Mb
RSU transmission range 350 Meter
Sensor transmission range 120 Meter
RSU-server’s link bandwidth (wired network) 10 Gbps
Sensor-RSU’s link bandwidth (wifi network) 1 Gbps
Sensor-server’s link bandwidth (4G communication) 500 Mbps
A time step T 1 Min
Packet generation interval at a sensor (λd) 1 ∼ 5 T
Data latency threshold δ 5 ∼ 25 T
Sensor’s computing capacity C∗ 25 Mb
Number of RSUs m 384
Number of vehicles n 776

delivery ratio), while reducing the amount of data with a long

latency (i.e., guaranteeing the information freshness) and less-

ening the 4G communication usage rates (i.e., minimizing the

communication cost). Firstly, for the delivery ratio, we intro-

duce the term rate of dropped packets (rdrop), i.e., the relative

number of packets that have been dropped at sensors when

their remaining capacity is no longer sufficient. Secondly, for

estimating the information freshness, we introduce the term

δ-delayed packets. The δ-delayed packets are calculated by

the total number of packets that have data latency greater

than the threshold δ. We also define the evaluation metric

rate of δ-delayed packets (or rdelay) as the ratio of δ-delayed

packets over the total number of generated packets. Finally,

the communication cost can be considered as the number of

packets that directly send from a sensor to the air quality server

via the 4G communication channel over the total number of

generated packets (4G communication ratio or rserver)1. In

this work, we also investigate the ratio of a packet sent from

a RSU to the air quality server, denoted as rrsu.

Comparison baseline: Because there is no current work

that handles the same problem as ours, to show the efficiency

of our proposed method, we compare it with a naı̈ve offloading

strategy named FP. In FP, at a given time step, a packet is

randomly decided between four actions, namely keeping at the

local, sending directly to the server, transferring to an RSU,

and relaying to the nearest device, with fixed possibilities of

Pkeep, Pserver , Prsu and Psensor , respectively. We consider

three different configurations of FP, in which we change values

of Pserver , Prsu and Psensor . The detail settings of FP are is

summarized in Table II.

In the following, we first compare the performance and

cost of our proposed method with the baseline concerning a

particular settings of the packet generation interval λd and the

1Assumption: the cost of sending a packet via the 4G communication
channel is much higher than that of using Wi-Fi or wired network.

Fig. 4. Relative breakdown of the simulation packets.

latency threshold δ in Section IV-B. We then investigate the

impacts of λd and δ in Section IV-C.

B. Comparison of the proposed method and the baseline

In this experiment, we set the packet generation interval

λd to 1, and the data latency threshold δ to 5 and 10. As

mentioned in Section III, the value of θ is adjust based on

the remaining capacity ci(t) and the elapsed time ∆i(t). We

heuristically increase θ from 0 to 1 when the remaining capac-

ity decreases and the elapsed time increases. Other simulation

parameters are summarized in Table III.

Figure 4 shows the rate of dropped packets rdrop, δ-delayed

packets rdelay , and the communication cost rserver of our

proposed method and the baseline strategies. The lower value

the better performance. First of all, in the baseline, devices

tend to hold the data in their queue until they can send it

an RSU/or the nearest device (the offload-hit as mentioned

in section IV-A). This strategy leads to a longer delay of a

message and a higher number of dropped packets (when the

queue is full). In contrast, by constructing a flexible priority

factor θ which considers both the number of packets in the

local queue and the elapsed time of packets, our proposed

method can always guaranty all the generated packets can

reach the server, i.e., rdrop = 0. As a result, the baseline

strategies can not avoid the packet-dropped issue in all the

cases, e.g., 15,1% and 3.5% of rdrop as in FP1 and FP2,

respectively. The result also shows that our method provides

a small number of δ-delayed packet, e.g., 0.5% and 0.24%

which are 3− 5× lower than those of FP1 and FP2 as shown

in Figure. 4(a) and 4(b), respectively.

In addition, although the rdelay of FP3 is lower than

that of our proposed method in the case of δ = 10, it

requires much more 4G cost than ours. Specifically, in all the

experiments, our method requires the lowest communication

cost (rserver), i.e., only around 50% of packets travel through

the 4G network. It is interesting to note that the offload-missed

issue mentioned in Section IV-A increases the communication

cost, i.e., rserver of the FP strategies is much higher than

the expected value (which should be around Pserver). The

reason can be explained as follows. When a packet is decided
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Fig. 5. Impacts of the packet generation interval (λd). δ is fixed to 5 time steps.

Proposal FP1 FP2 FP3

0
.5

0
.6

0
.7

0
.8

Data latency threshold (t)

4
G

 c
o

m
m

u
n

ic
a

ti
o

n
 r

a
ti
o

 (
r−

s
e

rv
e

r)

5 10 15 20 25

(a) 4G communication ratio

0
.0

0
0

0
.0

0
4

0
.0

0
8

0
.0

1
2

5 10 15 20 25

0
.0

0
0

0
.0

1
0

0
.0

2
0

0
.0

3
0

Data latency threshold (t)

R
a
te

 o
f 
δ

�

d
e
la

y
e
d
 p

a
c
k
e
t 
(r

�

d
e
la

y
)

5 10 15 20 25

(b) Rate of δ-delayed packets

0
.0

0
0

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

5 10 15 20 25

0
.0

0
0

.0
5

0
.1

0
0

.1
5

Data latency threshold (t)

R
a

te
 o

f 
d

ro
p

p
e

d
 p

a
c
k
e

t 
(r
−

d
ro

p
)

5 10 15 20 25

(c) Rate of dropped packets

Fig. 6. Impact of the data latency threshold (δ). λd is fixed to 1 time steps.

to send to the nearest RSU/device but there is no available

RSUs/devices around it, and the queue is full, the packet will

be directly sent to server via the 4G communication channel.

Thus, the 4G communication cost increases significantly. For

example, in the FP1 and FP2, more than 60% of packets use

the 4G communication channel (although it is designed with

a fixed possibility of 30%). Those values are 80% and 50%

for FP3, respectively.

In summary, the results imply that the performance/cost

of the baseline FB approach is sensitive to the environ-

ment/network due to its coarse fixed configuration. Thus, it

requires effort to manually figure out the best configuration

when implementing this method in the real world (for a

given specific environment). By contrast, our proposed method

learns the environment/network information to make the deci-

sion flexibly so that it can avoid both the packet-dropped issue

and offload-missed issue.

C. Discussion

In the following, we investigate the impacts of the packet

generation interval and the data latency threshold to our

proposed method.

1) Impacts of the packet generation interval λd: Figure 5

shows the impact of the packet generation interval, i.e., the

frequency the devices measure the air quality indicators. In

this evaluation, we set the data latency threshold to 5 while



changing the packet generation interval from 1 → 5 time

steps. The result shows that there’s a trivial impact of packet

generation rate to our proposed method in both communication

cost and performance. However, in the FB strategy, a higher

number of messages are generated in a time unit, the higher

possibility of a packet is dropped. On the other hand, when

the packet generation interval is slow enough, instead of being

dropped, a packet will be stored in a queue and, thus, the rate

of delayed packets is increased. In general, this trend also

appears when the relative packet size over the capacity of

the local queue is too big (that leads to a smaller number

of the packet can be store in the queue until the queue is full).

Interestingly, the packet generation interval does not affect the

communication cost of FB strategy.
2) Impacts of the data latency threshold δ: Figure 6 il-

lustrates the impact of the data latency threshold, e.g., the

maximum latency required by application, to our proposed

method. In this experiment, we fix the packet generation

interval λd = 1 while changing the latency threshold δ from

5 → 25 times steps. As expected that the rate of δ-delayed

packets of both our proposed method and the baseline strategy

decrease as the latency threshold increase because a packet

has a longer time stay in the local edges, e.g., sensor or

RSU. Furthermore, let us remind our strategy of the reward

function in our Q-Learning method (as shown in the Formula

(5)). When the data latency exceeds the threshold, there is a

higher possibility of a packet to be directly sent to the server

using the 4G communication channel. As the results, when the

latency threshold increases, the number of packets meets such

condition and use the 4G communication channel becomes

smaller.

V. CONCLUSION

In this research, we focused on real-time mobile air qual-

ity monitoring systems which rely on devices mounted on

vehicles. The devices continuously measure the air quality

indicators and transfer them to the server via either 4G

or Wi-Fi communication channels. We leveraged Q-learning

to propose an opportunistic communication algorithm that

minimizes the 4G communication cost while guaranteeing the

data latency is under a predefined threshold. The experiment

results showed that the proposed method can reduce 40-50%

of the 4G communication cost while ensuring the latency of

99.5% packets smaller than the required threshold.
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