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Abstract

In this study, we developed an inverse analysis framework that proposes a microstructure
for dual-phase (DP) steel that exhibits high strength and ductility. The inverse analysis
method proposed in this study involves repeated random searches on a model that combines
a generative adversarial network (GAN), which generates microstructures, and a convolu-
tional neural network (CNN), which predicts the maximum stress and working limit strain
from DP steel microstructures. GAN was trained using images of DP steel microstructures
generated by the phase-field method. CNN was trained using images of DP steel microstruc-
tures, the maximum stress and the working limit strain calculated by the dislocation-crystal
plasticity finite element method. The constructed framework made an efficient search for mi-
crostructures possible because of a low-dimensional search space by a latent variable of GAN.
The multiple deformation modes were considered in this framework, which allowed the re-
quired microstructures to be explored under complex deformation modes. A microstructure
with a fine grain size was proposed by using the developed framework.

Keywords: Inverse analysis, Dual-phase steel, Convolutional neural network, Generative
adversarial network, Phase-field method, Dislocation-crystal plasticity finite element
method

1. Introduction

Dual-phase (DP) steel is composed of a soft phase (ferrite) and a hard phase (martensite).
The DP steel is widely used because of its significant mechanical properties. However, the
problem of DP steel is the trade-off between strength and ductility [1]. For the material
development of DP steel, it is necessary to find a microstructure with high strength and
ductility [2]. Experiments have shown that the mechanical properties of DP steel are affected
by the spatial distribution of martensite and ferrite. For example, when the martensitic
phase surrounds the ferrite phase to form a chainlike network structure, the strength of
DP steel is higher and the ductility is lower than when the martensitic phase is isolated
[3]. Other studies have shown that an increase in the proportion of martensite and the
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refinement of grains increase the strength, but ductility is less affected by grain refinement
[4, 5].

However, material development requires repeated experiments through trial and error.
To reduce experimental costs, numerical simulations using computers are used in various
fields [6, 7, 8, 9]. For example, for steel, the phase-field method is used to predict the
microstructure [10, 11, 12, 13], and the dislocation-crystal plasticity finite element method
(FEM) is used to obtain mechanical properties [14, 15, 16, 17]. These analysis methods
are called forward analysis methods, but high computational costs become sometimes a
problem. Therefore, in recent years, methods of performing forward analysis rapidly and
accurately have been explored [18, 19, 20, 21]. In particular, machine learning is introduced
for remarkably rapid and accurate forward analysis [22, 23, 24, 25]. For example, machine
learning has been used for the prediction of material properties [26, 27, 28] and the stress–
strain relationship [29, 30], and the improvement of processing [31, 32, 33, 34]. Machine
learning is also used for homogenization analysis, and it enables a more rapid computation
of the mechanical properties of advanced materials, for example, porous and composite
materials [35, 36, 37, 38, 39]. In DP steel research, machine learning is also used for various
applications, including the prediction of properties [40, 41], the optimization of processing
[42], and the automation of phase segmentation [43].

In addition to forward analysis by numerical simulation, inverse analysis has also at-
tracted attention as a means of reducing experimental costs in material development [44,
45, 46, 47, 48]. Inverse analysis proposes a material microstructure on the basis of the re-
quired mechanical properties, such as high strength and ductility. Inverse analysis predicts
in the opposite direction of forward analysis, which predicts mechanical properties from
microstructures. The microstructure proposed by inverse analysis provides an idea on the
type of microstructure that should be made in experiments. This enables a more efficient
material development than the conventional trial-and-error process of material development
without knowing the structure to be made. Shiraiwa et al. [49] performed inverse analysis
to propose DP steel microstrustures. Their study has the problem that the microstructure
does not resemble the real one. Hiraide et al. [50] proposed a forward analysis method to
predict the Young’s modulus E from a real polymer alloy phase separation structure and
an inverse analysis method to output the structure from E. This method does not have
the aforementioned problem. However, this method has not been applied to DP steel and
that the investigation of the optimum microstructure is only performed within a specific
deformation mode. With the above background, the purpose of this study is to develop a
machine learning model that proposes a DP steel microstructure exhibiting high strength
and ductility. The focus of this research is not to propose DP steel microstructures that
are certain to be physically materialized, but to develop a framework for exploring DP steel
microstructures that satisfy the required mechanical properties and have a high possibility
to be materially embodied. The inverse analysis framework proposed by Hiraide et al. [50]
is applied to DP steel and multiple deformation modes.

To apply the framework proposed by Hiraide et al. [50] to DP steel, two main changes
are made to the framework in addition to replacing the material. The first is to modify the
framework considering microstructures with high strength and ductility. In the framework
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Figure 1: Conceptual diagram of the inverse analysis framework applied to DP steel

by Hiraide et al., it is necessary to specify the desired Young’s modulus E that microstruc-
tures should have. In the material development of DP steels, it is necessary to consider
the trade-off between strength and ductility, and to investigate a microstructure that is
more compatible with both strength and ductility. Therefore, in this study, we develop a
framework considering a microstructure that maximizes the product of strength and duc-
tility without specifically specifying the desired property values in advance. The second is
adapting the framework to four modes of deformation. Whereas the framework developed
by Hiraide et al. proposes a microstructure under one specified deformation mode, four
deformation modes are considered simultaneously in this study: tensile toward the x direc-
tion, tensile toward the y direction, shear toward the x direction, and shear toward the y
direction. By considering multiple deformation modes, we can explore the microstructure
required under complex deformation modes.

2. Overview of inverse analysis framework

A conceptual diagram of the inverse analysis framework is shown in Fig. 1. This inverse
analysis framework employs two machine learning models: a generative adversarial network
(GAN), which generates microstructures, and a convolutional neural network (CNN), which
predicts mechanical properties from microstructures.

In this study, we apply the inverse analysis framework proposed by Hiraide et al. [50] to
DP steel. Specifically, we use the maximum stress σmax as the indicator for strength and the
working limit strain εlim as the indicator for ductility. To evaluate whether the microstructure
has high strength and ductility, we use the product of the normalized maximum stress and
working limit strain, σ̄maxε̄lim [51]. The higher the value of σ̄maxε̄lim, the higher the strength
and ductility of microstructures.

Inverse analysis involves repeated the random search on the model created by combining
the trained GAN and CNN. The random search is performed as follows.

Step 1: A series of latent variables z are randomly selected, and GAN outputs an image
of a DP steel microstructure on the basis of the selected z.

Step 2: From the image, CNN predicts the maximum stress σmax and the working limit
strain εlim for each of the four deformation modes: tensile toward the x direction,
tensile toward the y direction, shear toward the x direction, and shear toward the
y direction.
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Step 3: For each deformation mode, the product of the normalized maximum stress and
the working limit strain σ̄maxε̄lim is calculated.

Step 4: When σ̄maxε̄lim is the highest up to this step, the DP steel microstructure and
deformation mode are saved as a tentative optimal solution.

Step 5: After sufficient iterations of the process from Steps 1 to 4, the microstructure
and deformation mode of the DP steel with the maximum σ̄maxε̄lim is determined
as the optimal solution.

3. Construction of GAN

In the inverse analysis framework shown in Fig. 1, GAN is used to generate DP steel
microstructures. Training data for GAN are obtained by the phase-field method. In section
3.1, we describe the preparation of DP steel microstructures using the phase-field method,
and in Section 3.2, we describe the training of GAN.

3.1. Phase-field method

The phase-field method [52] is used for predicting the evolution of material microstruc-
tures by using order parameters called phase-field variables. In this case, we predict marten-
sitic transformation. In the martensitic transformation of steel materials, the lattice struc-
ture changes from a face-centered cubic (fcc) structure to a body-centered cubic (bcc) struc-
ture. This change causes a compressive deformation in a particular axial direction. For
three-dimensional analysis, there are three directions in which the compressive deformation
can occur: x-, y-, and z-axes. Thus, the martensitic phases, which are crystallographically
equivalent to each other although lattice deformation occurs in different directions, are re-
ferred to as variants. The martensitic phases generated with the directions of compressive
deformation toward the x-, y-, and z-axes are called variant1, variant2, and variant3, re-
spectively. Then, ϕi(i = 1, 2, 3) is defined as the phase-field variables, which take ϕi = 1
in varianti and ϕi = 0 in the other variants or in the matrix phase. The time evolution
equation for the phase-field variables ϕi is expressed by the following equation [53]:

∂ϕi

∂t
= −Mϕ

δḠ

δϕi

, (1)

where Mϕ is the mobility of ϕi and Ḡ is the total free energy of the system expressed as

Ḡ =

∫
V

(gchem + ggrad + gelast)dV. (2)

Here, gchem is the chemical free energy density, ggrad is the gradient energy density, and gelast
is the elastic strain energy density. The chemical free energy density gchem is expressed as
the following equation to be metastable at ϕi = 0 and stable at ϕi = 1:

gchem = ∆f

A

2

3∑
i=1

ϕ2
i +

B

3

3∑
i=1

ϕ3
i +

C

4

(
3∑

i=1

ϕ2
i

)2
 , (3)

4



Table 1: Analysis conditions for phase-field method

Dimensions of analysis 2
Size 31 µm× 31 µm
Number of grid points 32× 32
Boundary condition Periodic boundary condition
Change in chemical free energy ∆f 1.0 kJmol−1

Elastic modulus C11,C44,C12 397.0GPa,123.5GPa,150.0GPa
Square of gradient coefficient a2 5.0× 10−15 Jm2mol−1

Mobility Mϕ 1.0 J−1s−1

Table 2: Conditions of GAN training

Dimensions of latent variables 2
Distribution of latent variables Uniform distribution in [0,100]
Optimization methods for discriminator Adam (learning rate, 0.0001)
Optimization methods for generator Adam (learning rate, 0.0001)
Minibatch size 32
Number of iterations 1, 000, 000
Number of data 1700

where ∆f is the amount of change in chemical free energy during martensitic transformation
and A, B, and C are numerical constants. The gradient energy density ggrad is expressed as

ggrad =
a2

2
|∇ϕ|2, (4)

where a is the gradient coefficient. The elastic strain energy density is expressed as follows
on the basis of phase-field microelasticity theory [54]:

gelast =
1

2
σijε

el
ij =

1

2
Cijklε

el
klε

el
ij, (5)

where σij is the Cauchy stress and εelij is the elastic strain. In equation (5), the Cauchy stress
is expressed as σij = Cijklε

el
kl using the elastic modulus Cijkl. By solving equation (1), one

can predict the spatial and temporal evolutions of martensitic transformation.
The analytical conditions for the phase-field method are set as shown in Table 1. The

finite difference method is employed for the discretization. Fig. 2a shows an example
of the initial conditions and generated microstructures in the phase-field analysis in this
study. By changing the crystallographic orientation of the matrix and the width of the
initial grain boundary, we can generate various microstructures. A prediction of martensitic
transformation under these initial conditions corresponds to focusing on microstructures
near the grain boundaries as shown in Fig. 2b [55]. The generalization is therefore sufficient
for microstructures near the grain boundaries. For each of 170 initial conditions, 10 types
of microstructure are output in a time series, generating a total of 1700 microstructures.
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Figure 2: An example of the initial conditions and generated microstructures in the phase-field analysis. (a)
DP steel microstructure obtained by the phase-field method. (b) DP steel microstructure obtained in the
experiment [55].

Figure 3: Example of converting the results of phase-field analysis to pixel data. (a) Point data. The upper
image means the probability that the point is variant1 of martensite. The lower image means the probability
that the point is variant2 of martensite. (b) Pixel data.

3.2. Generative adversarial network

GAN [56] is a method of adversarial competition and alternating training of two networks,
a generator G and a discriminator D. The generator G is a generative model that outputs
an image x′ from a random variable of the latent variable z. On the other hand, the
discriminator D outputs a discriminant signal indicating the probability that the image is
authentic. Through repeated training, the generator G is optimized to fool the discriminator
D and eventually produces images that are indistinguishable from the real ones. However,
GAN has issues such as learning instability, mode collapse, and the vanishing gradient
problem [57]. As a method of solving these problems, Wasserstein GAN (WGAN) [58] was
developed, which takes the Wasserstein distance approximated by the following equation as
the loss function:

W (pr, pg) = max
w∈W

Ex∼pr [fw(x)]− Ez∼pz [fw (gθ(z))] , (6)

where W is the loss function, pr is the training image distribution, pg is the generated image
distribution, pz is the latent variable distribution, x is the image, z is the latent variable, w
and θ are parameters, W is the parameter space that satisfies Lipschitz continuity, fw is the
function with w, and gθ is the generated image with θ. WGAN is used in this study.
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Figure 4: Architecture of GAN. (a) Architecture of generator network. (b) Architecture of discriminator
network.

As training data for GAN, the results obtained by the phase-field method are converted
to pixel data. Fig. 3 shows an example of converting the results of phase-field analysis to
pixel data. The results of the phase-field analysis are presented as the value of ϕi(i = 1, 2)
at each grid point, as shown in Fig. 3a. On the basis of the value of ϕi(i = 1, 2) at each
grid point, we have to determine whether the pixel is variant1 of martensite, variant2 of
martensite, or a ferrite as shown in Fig. 3b. In Fig. 3b, red pixels indicate variant1 of
martensite, green pixels indicate variant2 of martensite, and blue pixels indicate a ferrite.

As can be seen from Fig. 3a, ϕi(i = 1, 2) takes values from 0 to 1. Both ϕ1 and ϕ2 can
take non zero values, and one of these is sufficiently smaller than the other. On the basis of
these features, point data are converted to pixel data according to the following criteria by
using the variable P , which is P = 1 if a pixel is a variant1 of martensite, P = 2 if a pixel
is a variant2 of martensite, and P = 0 if a pixel is ferrite.

P =


1 if ϕ1 = max(ϕ1, ϕ2, ϕ0),

2 if ϕ2 = max(ϕ1, ϕ2, ϕ0),

0 if ϕ0 = max(ϕ1, ϕ2, ϕ0),

(7)

where ϕ0 = 1− ϕ1 − ϕ2. At point A in Fig. 3a, ϕ0 = max(ϕ1, ϕ2, ϕ0) is satisfied. From Eq.
(7), point A corresponds to ferrite (P = 0), and pixel A in Fig. 3b is blue. Similarly, point
B in Fig. 3a corresponds to variant1 of martensite (P = 1), and pixel B in Fig. 3b becomes
red. Point C in Fig. 3a corresponds to variant2 of martensite (P = 2), and pixel B in Fig.
3b becomes green. Thus, the converted pixel data have three channels, RGB, and the size
of the training data is set to 32 pixels× 32 pixels× 3 channels. The architecture of GAN is
shown in Fig. 4 and the training conditions of GAN are shown in Table 2.
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Figure 5: Boundary conditions for FEM. (a) Tensile toward x direction. (b) Tensile toward y direction. (c)
Shear toward x direction. (d) Shear toward y direction

4. Construction of CNN

In the inverse analysis framework shown in Fig. 1, CNN is used to predict the maximum
stress σmax and the working limit strain εlim from DP steel microstructures. The training
data for the input of CNN are parts of the DP steel microstructures generated in Section 3.1.
The training data for the output of CNN are σmax and εlim calculated by the dislocation-
crystal plasticity FEM.

The crystal plasticity FEM is suitable for the evaluation of the mechanical properties of
metals because it takes into consideration crystal information such as grain size and crystal
orientation. The problem with the crystal plasticity FEM is, however, its high computational
cost [29, 59]. To enable iterative random searches that repeat the processes of generating
structures and evaluating their mechanical properties, as the one shown in Fig. 1, the
dislocation-crystal plasticity FEM should be replaced by CNN.

In section 4.1, we describe the preparation of σmax and εlim using the dislocation-crystal
plasticity FEM, and in Section 4.2, we describe the training of CNN.

4.1. Dislocation-crystal plasticity finite element method

Dislocation-crystal plasticity FEM is used to calculate the maximum stress σmax and the
working limit strain εlim, which are obtained by deforming a ductile metallic specimen at a
constant deformation rate. The maximum stress σmax is the maximum nominal stress that
can be applied to the specimen and represents strength. The working limit strain εlim is the
true strain at the start of necking and represents ductility. The working limit strain εlim is
the true strain that satisfies the following equation expressed by the true stress σ̄ and the
true strain ε̄:

dσ̄

dε̄
= σ̄. (8)

The dislocation-crystal plasticity model [60, 61] is used as the constitutive law of FEM.
Specifically, it is expressed as:

◦
σ = C : D −

N∑
α=1

γ̇(α)
[
C : p(α) +w(α)σ − σw(α)

]
, (9)
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where
◦
σ is the Jaumann velocity of stress, C is the elastic modulus, D is the deformation

rate, γ̇(α) is the slip rate of slip system α, and p(α) and w(α) are the tensors determined when
a slip system is determined. The hardening law for the shear slip rate γ̇(α) is the exponential
law used by Hutchinson [62] and Pan-Rice [63] as follows:

γ̇(α) = γ̇
(α)
0 sgn(τ (α))

∣∣∣∣τ (α)g(α)

∣∣∣∣
1
m

, (10)

where sgn is the sign function, γ̇
(α)
0 is the reference slip rate, τ (α) is the resolved shear stress,

g(α) is the flow stress, and m is the strain-rate sensitivity. In crystal plasticity theory, the
evolution equation of the flow stress is expressed as:

ġ(α) =
N∑

β=1

h(αβ)
∣∣γ̇(β)

∣∣ , (11)

where h(αβ) is the dislocation-dependent hardening modulus.
In order to obtain the relationship between the hardening modulus and the dislocation

density, we introduce the density of the geometrically necessary (GN) dislocations ρG and
the density of the statistically stored (SS) dislocations ρS [64, 65, 66]. Here, the definitions
of the screw and edge components of the GN dislocation density are expressed as:

ρ̇
(α)
G,screw =

1

b̃
∇γ̇(α) · t(α), (12)

ρ̇
(α)
G,edge = −1

b̃
∇γ̇(α) · s(α), (13)

where b̃ is the magnitude of Burgers vector, s(α) is the unit vector in the slip direction, and
t(α) is the unit binormal vector defined by t(α) = s(α) ×m(α), and m(α) is the unit vector
normal to the slip plane. The evolution equation of the SS dislocation density are expressed
as:

ρ̇
(α)
S =

c

b̃L(α)

∣∣γ̇(α)
∣∣ , (14)

where c is a numerical parameter on the order of 1 and L(α) is the dislocation mean free
path.

The relationship between the flow stress and the dislocation density can be written as
[67]:

g(α) = τ (α)y + aµb̃
∑
β

Ω(αβ)

√
ρ
(β)
S , (15)

where τ
(α)
y is the reference shear stress, a is a numerical parameter on the order of 0.1, µ is

shearing modulus, and Ω(αβ) is the matrix representing the dislocation interaction between
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Table 3: Calculation conditions for FEM
Size 31 µm× 31 µm
Number of grid points 32× 32
Strain rate 1.0× 10−4 s−1

Crystal orientation [0,0,10]
2D analysis conditions Plane strain

Table 4: Martensite and ferrite material information used in FEM
Martensite Ferrite

Young’s modulus 237.3 GPa 205.9 GPa
Poisson’s ratio 0.333 0.3
Initial dislocation density 1.0× 103 µm−2 1.0 µm−2

Strain rate sensitivity 0.007 0.01
Reference strain rate 1.0ms−1 1.0ms−1

slip systems α and β. Comparing Eq. (11) and the time derivative of Eq. (15), we obtain
the relationship as follows:

h(αβ) =
aµb̃Ω(αβ)c

2b̃L(β)

√
ρ
(β)
S

. (16)

The dislocation mean free path L(β) is expressed as:

L(β) =
c∗(β)√∑

γ ω
(βγ)

(
ρ
(γ)
G + ρ

(γ)
S

) , (17)

where c∗(β) is the dislocation mobility and ω(βγ) is the dislocation interaction matrix exclud-
ing the effect of self-hardening.

For the FEM, we determined whether each element is a martensite with variant1, a
martensite with variant2, or a ferrite based on the basis of the values of ϕi(i = 1, 2) obtained
by phase-field analysis. The simulation conditions for the FEM are shown in Table 3 and
the material information in Table 4. Anisotropy is taken into account and the analysis is
performed under four boundary conditions, namely, tensile toward the x direction, tensile
toward the y direction, shear toward the x direction, and shear toward the y direction, as
shown in Fig. 5.

4.2. Convolutional neural network

CNN is commonly used for image recognition because it can acquire important features
for prediction by condensing spatial information such as images [68, 69]. Images have three-
dimensional information (vertical, horizontal, and channel), but the fully connected layer
requires that the information of an image be converted to one dimension at input, making
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Figure 6: Architecture of CNN.

Table 5: CNN training conditions

Loss function Mean Squared Error (MSE)
Optimization method Adam (learning rate, 0.0001)
Minibatch size 1 (tensile deformation)

4 (shear deformation)
Number of iterations 1200
Number of training data 96
Number of validation data 10
Number of test data 10

it impossible to effectively use the original spatial information. In contrast, CNN does not
lose spatial information of the image as follows:

yijk =
∑
l

∑
p

∑
q

Wpqklx(i+p)(j+q)l + bk, (18)

where W denotes the kernel and b the bias term.
Here, we construct CNN that outputs the maximum stress σmax and the working limit

strain εlim when DP steel microstructures are given. The architecture of CNN is shown in
Fig. 6 and the training conditions of CNN are shown in Table 5.

5. Results and Discussion

5.1. Output of DP steel microstructures based on latent variables

The phase-field method is used to generate the DP steel microstructures as shown in Fig.
7. GAN is constructed using the generated microstructures as training data. The shape of
training data of GAN is 32 pixels × 32 pixels × 3 channels. Each channel corresponds to
ferrite, variant1 of martensite, and variant2 of martensite, respectively. The number of
training data is 1700. The dimension of the latent variable is set to 2 and the distribution
of the latent variable is set to a uniform distribution in the range of [0, 100]. The number of
training iterations is set to 1, 000, 000. The generator G is trained once every 10 iterations
and the discriminator D is trained 9 times every 10 iterations. The size of the mini batch is
32, the optimization method is Adam, and the learning rate is 0.0001.

Changes in the DP steel microstructures in the two-dimensional latent variable space of
the trained GAN are shown in Fig. 8. In Fig. 8, the fraction of martensite decreases at
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Figure 7: Examples of DP steel microstructures generated by phase-field method.

Figure 8: Results of GAN. The features of the training data are extracted and obtained in the latent variable
space.

around z1 = z0, and from the line z1 = z0, the fraction of variant2 increases as z0 increases
and z1 decreases. Conversely, the smaller z0 and the larger z1 are, the larger the fraction
of variant1 is. Thus, the microstructures vary with the values of the latent variable z. We
also find that similar microstructures are distributed closely together in the latent variable
space.

5.2. Output of maximum stress and working limit strain based on microstructures

The FEM is performed on the DP steel microstructures prepared in Section 5.1 to obtain
the maximum stress σmax and the working limit strain εlim. Here, an example of the results
of FEM in the case of tensile toward the x direction is shown in Fig. 9. Fig. 9 shows
the stress–strain curve and the equivalent stress distribution during deformation. From the
stress–strain curve, a work hardening curve is derived. From the intersection of the stress–
strain and work hardening curves, the maximum stress σmax and the working limit strain
εlim are obtained. The equivalent stress distribution indicates that the martensitic phase
carried a higher stress than the ferritic phase. For the same microstructure as in the case of
tensile toward the x direction, the stress–strain curves and equivalent stress distributions in
the case of tensile toward the y direction, shear toward the x direction, and shear toward the
y direction are shown in Figs. 10, 11, and 12, respectively. Both σmax and εlim are obtained
similarly to the case of tensile toward the x direction. The equivalent stress distribution
indicates the same trend as that in the case of tensile toward the x direction, that is, the
martensitic phase carried a higher stress than the ferritic phase.
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Figure 9: Example of FEM results in the case of tensile toward the x direction. (a) The upper figure shows
the stress–strain and work hardening curves. (b) The lower figure shows the historical distributions of the
equivalent stress.

Figure 10: Example of FEM results in the case of tensile toward the y direction. (a) The upper figure shows
the stress–strain and work hardening curves. (b) The lower figure shows the historical distributions of the
equivalent stress.

Fig. 13 shows the relationship between σmax and εlim for all training data in the case of
tensile toward the x direction. It can be seen from Fig. 13 that the trade-off between strength
σmax and ductility εlim is also observed in the FEM results. Similarly, the relationships
between σmax and εlim for all training data in the case of tensile toward the y direction, the
shear toward the x direction, and the shear toward the y direction are shown in Figs. 14, 15,
and 16, respectively. Although there is a larger variation than in the case of tensile toward
the x direction, the trade-off relationship follows the same trend as that in the case of tensile
toward the x direction.

Using these results of FEM, we construct CNN. CNN is trained separately for each
deformation mode. Therefore, four CNNs are trained. The input of CNN is the DP steel
microstructures obtained by the phase-field method. The output of CNN is the maximum
stress σmax and the working limit strain εlim obtained by FEM. The number of training
data is 96 for each deformation mode. The loss function is the mean squared error, the
optimization method is Adam, and the learning rate is 0.0001. The size of mini batch is set
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Figure 11: Example of FEM results in the case of shear toward the x direction. (a) The upper figure shows
the stress–strain and work hardening curves. (b) The lower figure shows the historical distributions of the
equivalent stress.

Figure 12: Example of FEM results in the case of shear toward the y direction. (a) The upper figure shows
the stress–strain and work hardening curves. (b) The lower figure shows the historical distributions of the
equivalent stress.

to 1 in the case of tensile toward the x direction and tensile toward the y direction, and 4
in the case of shear toward the x direction and shear toward the y direction. The number
of iterations is set to 1200.

To confirm the generalization performance of CNN, the mechanical properties are pre-
dicted using the images of the DP steel microstructures not used for training. The prediction
results of CNN trained under the condition of tensile toward the x direction for 10 test data
are shown in Fig. 17a. Here, the coefficient of determination for the prediction of σmax

is R2 = 0.97 and that for εlim is R2 = 0.93, indicating that the prediction of mechanical
properties using CNN is highly accurate. Similarly, the prediction results of CNN trained
under the condition of tensile toward the y direction, shear toward the x direction, and shear
toward the y direction are shown in Figs. 17b, c, and d respectively. The coefficients of
determination in predicting σmax and εlim for tensile toward the y direction are R2 = 0.99
and 0.92, those for shear toward the x direction are R2 = 0.97 and 0.92, and those for shear
toward the y direction are R2 = 0.97 and 0.80, respectively, indicating that the prediction
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Figure 13: Relationship between maximum stress and work limit strain for tensile toward x direction.

Figure 14: Relationship between maximum stress and work limit strain for tensile toward y direction.

with high accuracy can be achieved by the trained CNN.
The coefficient of determination for the working limit strain εlim for shear toward the

y direction is smaller than those for the other deformation modes. This can be explained
by the features of the training data. Figs. 13, 14, 15, and 16 show the distribution of
training data for each deformation mode. For all deformation modes, the larger the fraction
of martensite, the more scattered the distribution, and this tendency is more apparent in
the case of shear toward the y direction. Comparisons of Fig. 13 with Fig. 15 and Fig.
14 with Fig. 16 show that shear deformation has more variability than tensile deformation.
Comparisons of Fig. 13 with Fig. 14 and Fig. 15 with Fig. 16 show that there is more
variability in the deformation toward the y direction than toward the x direction. This is
because the initial state of phase-field analysis has an initial grain boundary parallel to the
x direction, as shown in Fig. 2a. Furthermore, Fig. 16 shows that for similar fractions of
martensite, the maximum stress σmax does not change much, but the working limit strain
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Figure 15: Relationship between maximum stress and work limit strain for shear toward x direction.

Figure 16: Relationship between maximum stress and work limit strain for shear toward y direction.

εlim does. These are the reasons why the coefficient of determination for shear toward the y
direction is smaller than those for the other deformation modes. Therefore, it can be said
that the performance of CNN for shear toward the y direction can be improved by adding
training data. In particular, it is necessary to add training data with large fractions of
martensite.
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Figure 17: Results of CNN. (a) Tensile toward x direction. (b) Tensile toward y direction. (c) Shear toward
x direction. (d) Shear toward y direction. For each of (a) to (d), graph (i) shows results for maximum stress
and graph (ii) shows results for working limit strain, respectively. Here, R2 is the coefficient of determination.
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Figure 18: Detailed process of the random search.

5.3. Investigation of DP steel microstructure with high strength and ductility

An inverse analysis framework is constructed using the trained GAN and CNN. Inverse
analysis is performed to investigate DP steel microstructures that exhibit high strength and
ductility.

The detailed process of the random search is shown in Fig. 18. One loop shown in
Fig. 18 corresponds to one iteration. At the beginning of the iteration, a two-dimensional
vector z = [z0, z1] is randomly selected. This z is the only input to GAN, and it is not
necessary to provide the desired σmax or εlim as other inputs. Thus, one image of the DP
steel microstructure is generated per an iteration.

CNN predicts σ̄maxε̄lim for each of the four deformation modes. That is, for one mi-
crostructure, four σ̄maxε̄lim values are predicted as shown in Fig. 18. The deformation
mode at the largest of the four σ̄maxε̄lim values is the optimal deformation mode for the
microstructure generated. Now, when in the first iteration, there are the following three
tentative optimal solutions: (a) the first is the microstructure, (b) the second is the optimal
deformation mode for the microstructure (a), and (c) the third is σ̄maxε̄lim under the optimal
deformation mode (b) for the microstructure (a). At the second and subsequent iterations,
we update the tentative optimal solutions (a), (b), and (c) when the obtained (c) is the best
among the iterations so far.

The iteration number of random searches is set as 5000. The random search stops when
the specified number of iterations is reached. Therefore, the number of iterations should
be set sufficiently large. Since mechanical properties generally do not show a one-to-one
correspondence to structures, multiple solutions are possible in inverse analysis. With the
current method of using a single objective function such as the product of strength and
ductility, there is a problem that only one solution is obtained when multiple solutions
should be possible. This problem can be avoided if the optimization is performed with
the strength and ductility as the separate objective functions. Among the Pareto optimal
solutions obtained by multi-objective optimization, it is more practical to select the solution
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Table 6: Comparison of mechanical properties of the proposed microstructure under shear toward x direction

σmax εlim σ̄maxε̄lim
Results predicted by CNN 261 MPa 0.430 0.517
Results obtained from FEM 260 MPa 0.427 0.508
Relative error 0.76% 0.25% 1.69%

with higher strength when strength is important and the solution with higher ductility when
ductility is important. Depending on the desired balance between strength and ductility,
different structures can practically be selected from the Pareto optimal solutions.

In the case of complex deformations, the speed and memory requirements of the proposed
method are superior to the ones of the existing methods. In this study, four deformation
modes are considered simultaneously in one iteration, whereas only one deformation mode
is considered in one iteration in the existing method [50]. If the four deformation modes
are considered exhaustively, the existing method requires four times as many iterations as
the proposed method. The calculation speed is mostly determined by the iteration number.
Nevertheless, the memory requirement remains the same, the proposed method can be said
to be four times faster than the existing method.

The proposed microstructure and deformation mode are shown in Fig. 19a and b, re-
spectively. In other words, when the microstructure shown in Fig. 19a is deformed by shear
toward the x direction, σ̄maxε̄lim is the highest, indicating high strength and ductility. The
maximum stress σmax of the proposed microstructure is 261 MPa, the working limit strain
εlim is 0.430, and σ̄maxε̄lim is 0.517. These values are predicted by CNN during inverse anal-
ysis. Here, FEM is performed for the proposed microstructure shown in Fig. 19a. As a
result, the maximum stress σmax of the proposed DP steel microstructure is determined to
be 260 MPa, the working limit strain εlim is 0.427, and σ̄maxε̄lim is 0.508.

Table 6 shows a summary of the mechanical properties predicted by CNN and obtained
by the FEM analysis when the proposed microstructure is deformed by the proposed de-
formation mode (shear toward x direction). The relative errors of σmax, εlim, and σ̄maxε̄lim
are 0.76%, 0.25%, and 1.69%, respectively, indicating that the inverse analysis is performed
with high accuracy.

Fig. 20 shows the relationship between the maximum stress σmax and the working limit
strain εlim. The values of σ̄maxε̄lim for shear toward the x direction are located in the upper
right region of the figure, which means high strength and ductility. This indicates that the
proposed deformation mode is reasonable.

Fig. 21 shows a comparison of the proposed microstructure and the microstructures
obtained by phase-field analysis. The microstructures compared in Fig. 21 have similar
fractions to martensite. The proposed microstructure has a finer distribution of martensite
variant1 and variant2 than the microstructure obtained by phase-field analysis. In other
words, the grain size of martensite in the proposed microstructure is smaller than that
obtained by phase-field analysis. The mechanical properties are compared among three DP
steel microstructures in Fig. 21 when they are deformed by shear toward the x direction.
The results show that the σ̄maxε̄lim of the proposed DP steel structure is the highest. This
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Figure 19: Proposed microstructure and deformation mode. (a) Proposed DP steel microstructure. (b)
Proposed deformation mode.

Figure 20: Relationship between maximum stress and working limit strain.

is because σmax is higher in the proposed microstructure, whereas εlim is lower, but σmax has
a greater effect. This characteristics is shown in polycrystalline materials with small grain
size [70], and it is reasonable that such a DP steel microstructure is proposed.

Although in this study we focus on microstructures near grain boundaries, the scale of
the proposed structures would be sufficient for practical use when larger analysis domains
are used for this framework. For further practicality, not only structures but also process
parameters that can be controlled when the structures are created experimentally should be
proposed. Experimental data are required to propose process parameters, but it is difficult to
obtain sufficient data sets. To solve this problem, a technique that combines experimental
and simulation data is used. The framework in this study is suitable for this technique
because it is based on the phase-field method and dislocation-crystal plasticity FEM, which
are physical simulation methods that reproduce experiments.

5.4. Discussion of employing random search for inverse analysis

Here, the appropriateness of employing the random search for the inverse analysis is
considered by comparing it with the gradient descent method. For the purposes of this
examination, the relationship between the latent variables and the product of the normalized
maximum stress and the working limit strain, σ̄maxε̄lim, is shown in Fig. 22. Fig. 22a shows
the case of tensile toward the x direction. In this figure, the region where σ̄maxε̄lim becomes
high is divided into two parts by the blue plots at around z0 = z1. The global optimal
solution should be taken in the lower right region where z0 is high and z1 is low. However, if
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Figure 21: Comparison of the microstructure proposed by the present framework and the microstructures
obtained by phase-field analysis.

Figure 22: Distribution of the product of the normalized maximum stress and the working limit strain in
the latent variable space. (a) Tensile toward x direction. (b) Tensile toward y direction. (c) Shear toward
x direction. (d) Shear toward y direction.

the initial value is taken in the upper left region where z0 is low and z1 is high, the optimal
solution will fall into the local solution near the initial value.

Similarly, for the tensile toward the y direction shown in Fig. 22b, the shear toward the
x direction shown in Fig. 22c, and the shear toward the y direction shown in Fig. 22d,
the optimal solutions fall into local ones, depending on their initial values. For this reason,
in this study, we employ random search, which enables an exhaustive search of the latent
variable space. The computational cost, which is a concern in the use of random search, is
not considered to be a problem. This is because the high-dimensional images can be dropped
into a low-dimensional latent variable space.

We consider methods of sampling the space that are not based on gradients. We focus
here on the space-filling design, which is commonly used to select design variables for ex-
periments. The space-filling design is a kind of design of experiments that involves uniform
sampling within the design space. Recently, it has been used to efficiently obtain large
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Figure 23: Comparison of errors between random search and space-filling design.

numbers of training data for machine learning [71]. In this study, the latent variable space
is sampled on the basis of the space-filling design and compared with that obtained by a
random search.

Fig. 23 shows the relationship between the number of sampling points, which is called
the number of iterations in the random search, and the error of σ̄maxε̄lim. The error is the
difference from σ̄maxε̄lim obtained by the random search for a sufficiently large number of
sampling points, 5000. The number of sampling points is set from 100 to 1000 in increments
of 100. At each number of sampling points, ten searches are performed, and the average of
the errors is plotted. Fig. 23 shows that the space-filling design is not markedly superior
to the random search. This is because in the a low-dimensional space, the solution can be
reached with a realistically feasible amount of computation even if the random search is used
[72]. Since the space-filling design is naturally more reasonable than the random search, in
which sampling points are very close to each other, it would be more effective when the
search space is a higher-dimensional one.

6. Conclusion

In this study, we developed an inverse analysis framework that can propose an optimal
microstructure of DP steel using machine learning. The developed inverse analysis frame-
work used the combination of GAN, which generates microstructures, and CNN, which
predicts the maximum stress and working limit strain from DP steel microstructures.

The novelty of this study as a framework is twofold. The first is that microstructures
can be proposed by considering the trade-off of DP steels without specifying the desired
mechanical properties in advance. The second is that microstructures are proposed by
considering four deformation modes simultaneously. Compared with the case that four
deformation modes, the proposed method requires approximately one-fourth of iteration
number in existing methods. Due to the reduction of the iteration number, the speed is
significantly improved from the existing method keeping the same memory requirement. In
addition, the novelty as a method of material exploration of DP steels is that the proposed
microstructures are based on the phase-field method, and therefore, the results are consistent
with the trends observed in experiments.

As a result of implementing the developed inverse analysis framework, the following were
confirmed.
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1. GAN could generate images with features of DP steel microstructures, which were gen-
erated by the phase-field analysis.

2. CNN could predict maximum stress and working limit strain, which were obtained by
dislocation-crystal plasticity FEM.

3. The product of the normalized maximum stress and the working limit strain was used
as the criterion for high strength and ductility, and by performing random search, the
optimal DP steel microstructures and deformation mode were proposed.

4. The martensitic phase of the proposed microstructure showed fine grains, which was
consistent with the trend observed in the experiments.

The inverse analysis framework developed in this study has the following advantages: The
first is that GAN generates DP steel microstructures from the results of phase-field analysis;
thus, the images generated by GAN have the features of actual DP steel. The second is that
it is easy to adapt the inverse analysis framework to other mechanical properties because
when it is necessary to change the target mechanical properties, for example, changing the
maximum stress to yield stress, CNN only needs to be trained again.
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