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The added mass effect is the contribution to a Brownian particle’s effective mass arising from
the hydrodynamic flow its motion induces. For a spherical particle in an incompressible fluid, the
added mass is half the fluid’s displaced mass, but in a compressible fluid its value depends on
a competition between timescales. Here we illustrate this behavior with a solvable model of two
harmonically coupled Brownian particles of mass m, one representing the sphere, the other the
immediately surrounding fluid. The measured distribution of the Brownian particle’s velocity, P (v̄),
follows a Maxwell-Boltzmann distribution with an effective mass m∗. Solving analytically for m∗,
we find that its value is determined by three relevant timescales: the momentum relaxation time, tp,
the harmonic oscillation period, τ , and the velocity measurement time resolution, ∆t. In limiting
cases ∆t ≪ τ, tp and τ ≪ ∆t ≪ tp, our expression for m∗ reduces to m and 2m, respectively. We
find similar behavior upon generalizing the model to the case of unequal masses.

INTRODUCTION

Brownian motion, that is the random movement of a
particle suspended in a liquid or gas, was argued the-
oretically by Sutherland [1], Einstein [2] and Smolu-
chowski [3], and confirmed experimentally by Perrin [4],
to arise from the particle’s collisions with the surround-
ing fluid’s molecules. In equilibrium at temperature T ,
the D-dimensional velocity v of a Brownian particle with
mass m obeys the Maxwell-Boltzmann distribution,

PMB(v) =

(
mβ

2π

)D/2

e−βmv2/2 , β =
1

kBT
(1)

which in turn implies the equipartition theorem: the av-
erage kinetic energy per degree of freedom is 1/2β. Be-
cause the instantaneous velocity v(t) randomizes quickly,
the direct measurement of v(t) requires fine temporal and
spatial resolutions. These experimental challenges have
been overcome only recently, by Li, Mo, Raizen and col-
leagues, first for a Brownian particle immersed in gas [5],
then in liquid [6], marking milestones in the precision
testing of fundamental statistical mechanics.

For Brownian motion in liquid surroundings, the ve-
locity v was observed to obey a modified Maxwell-
Boltzmann distribution [6], with the particle’s mass m
in Eq. 1 replaced by an effective mass

m∗ ≈ m+
1

2
Md , (2)

where Md is the mass of liquid displaced by the parti-
cle. While this result may seem to conflict with classical
statistical mechanics, the discrepancy is understood to
arise from hydrodynamic considerations [7, 8]. As the
particle moves with speed v, the surrounding fluid flows
around it. If the particle is spherical and the fluid in-
compressible, then the induced flow has a kinetic energy
(1/4)Mdv

2, giving rise to the added mass Md/2 in Eq. 2.

At finite fluid compressibility, the effective mass is de-
termined by a competition between two timescales: a
characteristic time τfluid ∼ R/c for the fluid to respond
to displacements of the Brownian particle (where R is
the particle’s radius and c the speed of sound), and the
time resolution ∆t with which the time-averaged veloc-
ity v̄ = ∆q/∆t is measured [7, 9]. If the velocity is
measured with arbitrarily precise time resolution, such
that ∆t ≪ τfluid, then the effective mass is the parti-
cle’s true mass, m∗ = m, thus recovering the ordinary
Maxwell-Boltzmann distribution; while if τfluid ≪ ∆t,
the effective mass is given by the right side of Eq. 2. In
this paper, we analyze an exactly solvable model to il-
lustrate this behavior, and to quantitatively describe the
crossover between these two regimes.

Our model consists of two Brownian particles of equal
mass m moving in one dimension, coupled through a
harmonic spring and interacting with a thermal environ-
ment. One of these particles plays the role of the Brow-
nian particle described in the previous paragraphs. The
other represents, roughly, the immediately surrounding
fluid. The spring is analogous to the coupling between
the Brownian particle and the fluid. We imagine that the
first particle’s position is measured at regularly spaced
times, with ∆t the interval between successive measure-
ments, and ∆q1 the displacement over one such interval.
The time-averaged velocity v̄1 = ∆q1/∆t then represents
a single measurement of velocity. An empirical velocity
distribution P (v̄1) is constructed from many such succes-
sive measurements.

A spring constant k quantifies the harmonic coupling
strength. If the coupling is loose (k ≈ 0) then the par-
ticles’ motions are not strongly correlated, and we intu-
itively expect velocity measurements performed on the
first particle to produce a Maxwell-Boltzmann distribu-
tion with effective mass m. In the opposite extreme of
stiff coupling (k → ∞), the particles become “glued to-
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gether” and we expect to observe a Maxwell-Boltzmann
distribution with effective mass 2m. The particles’ syn-
chronized fluctuations in the stiff-coupling limit are anal-
ogous to the instantaneous flow induced by a Brownian
particle in an incompressible fluid.

Our analysis will show that the empirical distribution
P (v̄1) is indeed a modified Maxwell-Boltzmann distri-
bution, with an effective mass m∗ that depends on the
interplay between three timescales: the momentum relax-
ation time tp = m/γ, where γ is a friction coefficient; the

harmonic oscillation period τ = 2π
√
m/2k, analogous to

the fluid response time τfluid discussed above; and the
measurement time interval ∆t. We assume the velocity
is measured faster than it randomizes, i.e. ∆t ≪ tp, cor-
responding to the experimental conditions of Refs. [5, 6].
We then find that when τ ≪ ∆t ≪ tp the effective mass
is m∗ ≈ 2m, whereas when ∆t ≪ τ ≪ tp or ∆t ≪ tp ≪ τ
we obtain m∗ ≈ m.

MODEL AND ANALYSIS

Consider two identical, underdamped Brownian parti-
cles of mass m, moving in one dimension, immersed in
a thermal medium with friction coefficient γ and inverse
temperature β, and connected by a spring of stiffness k.
The equations of motion are:

mq̈1 = −k(q1 − q2)− γq̇1 +
√
2γ/β ξ1 (3a)

mq̈2 = −k(q2 − q1)− γq̇2 +
√
2γ/β ξ2 , (3b)

where q1 and q2 are the particles’ positions, ξ1 and ξ2
are independent realizations of delta-correlated Gaussian
white noise with zero mean and unit variance,

⟨ξi(t)⟩ = 0 , ⟨ξi(t) ξj(s)⟩ = δijδ(t− s) , (4)

and the magnitude of the noise
√

2γ/β follows from the
fluctuation-dissipation theorem. Under these dynamics,
the distribution of each particle’s velocity, vi = q̇i, relaxes
to the Maxwell-Boltzmann distribution corresponding to
the true particle mass m:

PMB(vi) ∝ e−βmv2
i /2 , (5)

whose variance is σ2
vi = 1/βm.

In an experiment, one does not directly measure a par-
ticle’s velocity but rather its displacement ∆qi over a
time interval ∆t. The time-averaged velocity

v̄i =
∆qi
∆t

(6)

converges to the instantaneous velocity when ∆t → 0,
but in practice ∆t remains finite due to the limited
time resolution of the measurement device. As a result,
the empirically measured distribution P (v̄i) differs from

PMB(vi) if ∆t is not sufficiently small to resolve all rele-
vant velocity fluctuations.

If the measured velocity distribution P (v̄i) is a Gaus-
sian with zero mean (as we shall show to be the case)
and variance σ2

v̄i , then it can be viewed as a modified
Maxwell-Boltzmann distribution with an effective mass

m∗ =
1

βσ2
v̄i

. (7)

Our aim is to solve for P (v̄i) for our simple model, and
to explore how the resulting effective mass m∗ depends
on the parameters m, γ, k, and (especially) ∆t. We will
imagine that the experimentalist tracks the position of
particle 1 only and not particle 2, with a regular measure-
ment time interval ∆t. Hence we will focus on P∆t(v̄1),
where the notation emphasizes that the empirically mea-
sured velocity distribution of particle 1 depends on ∆t.

Since ∆t is fixed, a change of variables gives

P∆t(v̄1) = P∆t(∆q1)∆t , (8)

where P∆t(∆q1) is the measured distribution of displace-
ments ∆q1 = v̄1∆t. Next, define Pt(q1|q10) to be the
conditional probability to find particle 1 at q1 at time t,
given an initial position q10 at time 0, i.e. Pt=0(q1|q10) =
δ(q1 − q10). As we will show, if the two-particle system
is in equilibrium, then

Pt=∆t(q1|q10) = P∆t(∆q1) , (9)

with ∆q1 = q1 − q10. In other words, the distribution of
displacements is independent of the particle’s initial lo-
cation. Hence, assuming the system has equilibrated, the
problem of computing P∆t(v̄1) reduces to that of solving
for Pt(q1|q10).
Introducing the center of mass Q = (q1 + q2)/2, sepa-

ration q = q1− q2, and corresponding velocities V and v,
Eq. 3 can be rewritten as four first-order equations:

Q̇ = V (10a)

V̇ = − γ

m
V +

√
2γ/β

2m
(ξ1 + ξ2) (10b)

q̇ = v (10c)

v̇ = −ω2q − γ

m
v +

√
2γ/β

m
(ξ1 − ξ2) (10d)

with

ω2 =
2k

m
. (11)

Since these dynamics are linear in Q, V , q and v, with
added Gaussian white noise, and since Eqs. 10a and
10b are decoupled from Eqs. 10c and 10d, the condi-
tional joint probability distributions Pt(Q,V |Q0, V0) and
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Pt(q, v|q0, v0) are both bivariate Gaussians:

Pt(Q,V |Q0, V0) =
1

2π
√
|C|

exp
(
− 1

2
XTC−1X

)
(12a)

Pt(q, v|q0, v0) =
1

2π
√
|c|

exp
(
− 1

2
xTc−1x

)
(12b)

with

X =

(
Q− ⟨Q⟩
V − ⟨V ⟩

)
, x =

(
q − ⟨q⟩
v − ⟨v⟩

)
. (13)

Here Q0, V0, q0 and v0 denote initial positions and veloc-
ities, angular brackets ⟨ · ⟩ denotes an ensemble average,
and C(t) and c(t) are the covariance matrices for (Q,V )
and (q, v) respectively. Explicit expressions for ⟨Q⟩, ⟨V ⟩,
⟨q⟩, ⟨v⟩, C, and c are given by Eqs. A7 -A19 in the Ap-
pendix.

Now assume that the particles’ velocities have equili-
brated prior to t = 0, hence V0 and v0 are sampled from
equilibrium. We then integrate over all velocity variables
in Eq. 12 to obtain the conditional distributions

Pt(Q|Q0) =
1√
2πσ2

Q

exp
(
− 1

2σ2
Q

(
Q− Q̄

)2)
(14a)

Pt(q|q0) =
1√
2πσ2

q

exp
(
− 1

2σ2
q

(
q − q̄

)2)
(14b)

(see Appendix for details) with

Q̄ = Q0 , σ2
Q =

1

βγ

(
t− m

γ
+

m

γ
e−γt/m

)
q̄ = αq0 , σ2

q =
2

βmω2

(
1− α2

)
α =

λ+e
−λ−t − λ−e

−λ+t

λ+ − λ−

λ± =
1

2

( γ

m
±
√

γ2

m2
− 4ω2

)
. (15)

Since Pt(Q|Q0) and Pt(q|q0) are Gaussians, and since
q1 = Q+ q/2 is the sum of the statistically independent
random variables Q and q/2, it follows that Pt(q1|Q0, q0)
is also a Gaussian,

Pt(q1|Q0, q0) =
1√
2πσ2

q1

exp
(
− 1

2σ2
q1

(
q1 − q̄1

)2)
(16)

with mean q̄1 = Q̄+ q̄/2 and variance σ2
q1 = σ2

Q + σ2
q/4.

Eq. 16 gives the probability distribution to find particle 1
at location q1 at time t, conditioned on the initial values
of the center of mass and separation at time 0.

Note from Eqs. 14 and 15 that in the long-time limit,
the center of mass Q evolves diffusively (σ2

Q ∝ t) whereas
the separation q settles to an equilibrium distribution
with zero mean and variance 2/βmω2. Let us assume

that this equilibration occurs prior to t = 0 (as we did
earlier with the velocities), so that the separation q0 is
sampled from equilibrium. Furthermore, let us perform
a change of variables from Pt(q1|Q0, q0) to Pt(q1|q10, q0),
where q10 = Q0 + q0/2 is the initial value of q1, and let
us integrate over q0 (sampled from equilibrium) to obtain
Pt(q1|q10). Again leaving the details to the Appendix, we
state the result:

Pt(q1|q10) =
1√

2πσ2
∆q1

(t)
exp

(
− 1

2σ2
∆q1

(t)

(
q1 − q10

)2)
(17)

with

σ2
∆q1(t) =

t

βγ
+

1

2βmω2

{
2− 2m2ω2

γ2

(
1− e−γt/m

)
− 2e−γt/2m

[ γ

ma
sinh

(
at

2

)
+ cosh

(
at

2

)]}
(18a)

a =

√
γ2

m2
− 4ω2 =

√
γ2

m2
− 8k

m
. (18b)

We now return to the scenario in which the experi-
mentalist tracks particle 1 by measuring its location at
regular time intervals ∆t. Eq. 17 shows that the particle’s
displacement during one interval, ∆q1 = q1 − q10, is sta-
tistically independent of its initial location q10, reflecting
the problem’s underlying translational symmetry. It fol-
lows that the displacements ∆q1 during successive time
intervals are independent samples from the distribution

P∆t(∆q1) =
1√

2πσ2
∆q1

(∆t)
exp

(
− 1

2σ2
∆q1

(∆t)
∆q21

)
(19)

with σ2
∆q1

(∆t) given by Eq. 18.
Eqs. 8 and 19 show that the empirically measured dis-

tribution of particle 1’s velocity, P∆t(v̄1), is a Gaussian
with zero mean and variance σ2

v̄1 = σ2
∆q1

(∆t)/∆t2. As
already mentioned this distribution can be interpreted as
a modified Maxwell-Boltzmann distribution with an ef-
fective mass m∗ = 1/βσ2

v̄1 = ∆t2/βσ2
∆q1

(∆t) (see Eq. 7).
We thus finally arrive at our main result:

m∗ =

(
tp

m∆t
+

τ2

4π2m∆t2

{
1−

4π2t2p
τ2

(
1− e−∆t/tp

)
− e−∆t/2tp

[ 1

atp
sinh

(a∆t

2

)
+ cosh

(a∆t

2

)]})−1

(20a)

a =

√
1

t2p
− 16π2

τ2
, tp =

m

γ
, τ =

2π

ω
, (20b)

which gives the effective mass m∗ in terms of the true
mass m, and three timescales: the measurement time
∆t, the momentum relaxation time tp, and the oscillation
period τ .
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Eq. 20 is exact but complicated. It simplifies greatly
if we assume the timescales ∆t, tp and τ are widely sep-
arated. For v̄1 to provide a reasonable estimate of the
instantaneous velocity v1, a minimal requirement is that
∆t ≪ tp: repeated measurements of position must be
made before thermal noise randomizes the particle’s mo-
mentum. Under this assumption, as shown in the Ap-
pendix, the value of m∗ is approximately either 2m or m,
depending on the interplay between ∆t and τ . Specifi-
cally, we identify three regimes:

regime 1 : τ ≪ ∆t ≪ tp → m∗ ≈ 2m (21a)

regime 2 : ∆t ≪ τ ≪ tp → m∗ ≈ m (21b)

regime 3 : ∆t ≪ tp ≪ τ → m∗ ≈ m . (21c)

These results can be understood intuitively. Regime 1,
in which the oscillation period τ is the shortest timescale,
represents the limit of large spring stiffness, k → ∞. In
this limit the two Brownian particles are effectively stuck
together and move as one object of mass 2m. Although
particle 1 oscillates rapidly (as does particle 2), these
oscillations are not resolved by measurements occurring
at intervals ∆t. In regimes 2 and 3, ∆t is the shortest
timescale, hence measurements of particle 1’s position are
able to resolve its instantaneous velocity. The difference
between regimes 2 and 3 is that the former (τ ≪ tp)
represents underdamped motion – the particle separa-
tion q exhibits recognizable oscillations – while the latter
(tp ≪ τ) corresponds to overdamped motion, in which
each particle’s momentum thermally randomizes before
oscillations occur.

Fig. 1 plots m∗, given by Eq. 20, as a function of ∆t
and τ , at tp = 1 and m = 1. We see agreement with
Eq. 21: m∗ ≈ 2m in regime 1, and m∗ ≈ m in regimes 2
and 3.

FIG. 1. Color contour plot of m∗ against the measurement
interval ∆t and oscillation period τ , with m = β = γ = 1.

Eq. 21a illustrates that even if the experimental time
resolution is adequate to observe a Brownian particle’s

ballistic motion, i.e ∆t ≪ tp, the measured velocity dis-
tribution P (v̄1) may still fail to recover the instantaneous
velocity distribution PMB(v1), if there exists an addi-
tional relevant timescale, such as τ in our model, that is
shorter than ∆t. Regime 1 is reflected in the experimen-
tal situation of Ref. [6], where the time resolution ∆t is
shorter than the momentum relaxation timescale tp, but
longer than the response time τfluid of the surrounding
liquid, resulting in the effective mass given by Eq. 2.

BROWNIAN PARTICLES WITH DIFFERENT
MASSES

We now imagine that the coupled particles have differ-
ent masses, and we replace Eq. 3 by

m1q̈1 = −k(q1 − q2)− γq̇1 +
√

2γ/β ξ1 (22a)

m2q̈2 = −k(q2 − q1)− γq̇2 +
√

2γ/β ξ2 . (22b)

Unlike in the previous section (see Eq. 10), the equa-
tions of motion do not decouple upon transforming to
the center of mass and separation variables. Nonethe-
less, assuming the initial velocities v10 and v20 and the
initial separation q0 = q10 − q20 are sampled from equi-
librium, we can still solve for the distribution Pt(q1|q10)
and ultimately for P∆t(v̄1). Leaving the detailed calcula-
tion to the Appendix, we again find an empirical velocity
distribution of the form

P∆t(v̄1) =

√
βm∗

2π
exp

(
− βm∗

2
v̄21

)
(23)

with

m∗ =
∆t2

β

(
σ2
q1 +

b2

βk
+

c2

βm1
+

d2

βm2

)−1

, (24)

where the expression for σ2
q1 , b, c and d are given by

Eqs. C4 and C10 in the Appendix. Eq. 24 gives a com-
plicated but exact expression for the effective mass m∗,
which simplifies when there is a separation of timescales.
We introduce

tpi
=

mi

γ
, τ = 2π

√
m1m2

k(m1 +m2)
(25)

with i ∈ {1, 2}. tp1
and tp2

are the momentum relaxation
times for the two particles, which we assume to be com-
parable: tp1

∼= tp2 . As before, τ denotes the harmonic
oscillation period for the particle separation q. We then
find that

m∗ ≈ (m1 +m2)2π
2(∆t/τ)2

2π2(∆t/τ)2 + (m2/m1)(1− cos(2π∆t/τ))
(26)

when

τ,∆t ≪ tp1
, tp2

. (27)
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From Eq. 26, it is straightforward to verify that if we
additionally have a separation of timescales between ∆t
and τ , then m∗ reduces to approximately m1+m2 or m1,
analogously to regimes 1 and 2 in Eq. 21:

regime 1 : τ ≪ ∆t ≪ tp1 , tp2 → m∗ ≈ m1 +m2 (28a)

regime 2 : ∆t ≪ τ ≪ tp1 , tp2 → m∗ ≈ m1 . (28b)

For regime 3, we are unable to obtain a simple approx-
imate expression for m∗ analytically, but the numerical
evaluation of the exact expression of m∗, Eq. 24, suggests

regime 3 : ∆t ≪ tp1
, tp2

≪ τ → m∗ ≈ m1 . (28c)

As in the case of identical masses, if ∆t is the shortest
timescale (regimes 2 and 3), then the instantaneous ve-
locity can be resolved experimentally, and the effective
mass is the particle’s actual mass; whereas if τ is the
shortest timescale (regime 1), corresponding to a large
spring stiffness k, the two particles seem to move as a
single particle of mass m1 +m2.
Fig. 2 plotsm∗, given by Eq. 24, as a function of ∆t and

τ with γ = 1, m1 = 2, and m2 = 6. We see agreement
with Eq. 28: m∗ ≈ m1 +m2 in regime 1, and m∗ ≈ m1

in regimes 2 and 3. This behavior is qualitatively similar
to that of the case of identical masses.

FIG. 2. Color contour plot of m∗ against the measurement
interval ∆t and oscillation period τ , for m1 = 2, m2 = 6,
β = γ = 1.

NUMERICAL SIMULATIONS

We have performed numerical simulations of our model
using the Euler-Maruyama method [10], for different val-
ues of m1, m2, k and ∆t, with fixed β = γ = 1. To
obtain the measured velocity distribution P∆t(v̄1), for
every choice of parameters (m1,m2, k) we generated 105

trajectories of total duration ttraj = 1 with a numerical
integration time step δt = 10−9. We then computed

v̄1(∆t) =
q1(∆t)− q1(0)

∆t
(29)

for each trajectory and from these values we constructed
the distribution P∆t(v̄1).

FIG. 3. Measured velocity distribution P (v̄1) with tp = 1,
τ = 10−4 and m1 = m2 = β = γ = 1. Red: ∆t = 10−2 ,
Blue: ∆t = 10−6.

Fig. 3 shows the measured velocity distribution
P∆t(v̄1) obtained from simulations in which both par-
ticles have mass m = 1, with other parameters chosen
so that tp = 1 and τ = 10−4. The red and blue his-
tograms correspond to P∆t(v̄1) with ∆t = 10−2 (regime
1) and 10−6 (regime 2) respectively. The solid red and
blue curves are zero-mean Gaussians with variances 1/2
and 1, corresponding to effective masses m∗ = 2 and
m∗ = 1, respectively. The numerically obtained distribu-
tions agree with the theoretical predictions of Eq. 21.

Fig. 4 shows how m∗ varies with ∆t, at a fixed τ and
tp = m/γ (or tpi = mi/γ when the masses differ). The
red points are values of m∗ obtained from simulations,
while the black curves show the analytical predictions of
Eq. 20 (Fig. 4(a)) and Eq. 24 (Fig. 4(b)). We observe
excellent agreement between simulation results and ana-
lytical predictions. Both figures show m∗ ≈ m1 at small
values of ∆t, along with a transition around ∆t = τ to
a plateau m∗ ≈ m1 +m2, corresponding to a transition
from regime 2 to regime 1 as predicted by Eqs. 21 and
28.

Notice the wiggles in Fig. 4 at ∆t ≈ τ . Mathematically,
from Eq. 26, which is valid as long as ∆t, τ ≪ tp (tpi

),
these wiggles arise from the cosine appearing in the de-
nominator. In regime 1, where ∆t/τ ≫ 1, the term
2π2(∆t/τ)2 in the denominator of Eq. 26 dominates over
the cosine term, masking the latter’s oscillations. In
regimes 2 and 3, where ∆t/τ ≪ 1, if we express m∗ as a



6

(a) Effective mass m∗ against the measurement interval ∆t with
tp = 1 and τ = 10−4 (m = β = γ = 1).

(b) Effective mass m∗ against the measurement interval ∆t with
τ = 10−4 (m1 = 2,m2 = 6, β = γ = 1).

FIG. 4. Effective mass m∗ against the measurement interval
∆t

power series in ∆t/τ , we obtain

m∗ = m1 +
m1π

2

3(m1 +m1)

(∆t

τ

)2

+O
((∆t

τ

)4)
(30)

which increases monotonically with ∆t. Therefore, we do
not see wiggles whenever a time separation between ∆t
and τ exists. However, when ∆t and τ are comparable,
the cosine term’s oscillatory nature becomes significant.
In fact, the crests and troughs correspond to integer and
half-integer values of ∆t/τ , suggesting that the wiggles
in m∗ at ∆t ≈ τ arises from synchronization between the
measurements and the oscillation of the particles.

Also note that in Fig. 4 at ∆t ≈ tp (tpi
), the value

of m∗ increases with ∆t. This growing tail is expected
because for tp (tpi) ≫̸ ∆t, the observed dynamics are no
longer ballistic but diffusive. In a diffusion process, the
variance of the displacement ∆q1 scales linearly with the
time interval ∆t. As a result, the variance of the time-
averaged velocity v̄1 scales as ∆t−1, and thus m∗ scales

as ∆t, leading to the exponential growth observed in the
logarithmic scale in Fig. 4.

SUMMARY

As discussed in the Introduction, the effective mass of
a Brownian sphere in a fluid ranges from m∗ ≈ m to
m∗ ≈ m+(1/2)Md, depending on how the measurement
time resolution compares with the fluid’s hydrodynamic
response time. Modeling this behavior with a pair of har-
monically coupled, underdamped Brownian particles, we
have solved exactly for the effective mass, m∗, in terms
of the actual mass, m, and three relevant timescales:
the momentum relaxation time, tp, the harmonic oscil-
lation period, τ , and the measurement time interval, ∆t
(Eq. 20). When these timescales are widely separated,
the effective mass simplifies (Eq. 21). We find m∗ ≈ m
when ∆t is the shortest timescale, in other words when
position measurements are sufficiently frequent to resolve
the particle’s instantaneous velocity. However, if τ ≪ ∆t,
then these measurements do not capture the rapid oscil-
lations due to stiff harmonic coupling; the particles then
appear to move as if glued together: m∗ ≈ 2m. These
results generalize to the case when the particles have dif-
ferent masses (Eqs. 24, 28). We have also presented the
results of numerical simulations, verifying our analytical
calculations.
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APPENDIX

Appendix A : Pt(q1|q10) for Coupled Brownian Particles with Identical Masses

We first rewrite Eqs. 10a and 10b as follows:

d

dt
X(t) = −ΛX(t) + F, (A1)

with

X(t) =

(
Q
V

)
, Λ =

(
0 1
0 γ/m

)
, F (t) =

√
2γ/β

2m

(
0

ξ1 + ξ2

)
. (A2)

The general solution of Eq. A1 is:

X(t) = e−ΛtX(0) +

∫ t

0

dt ′ e−Λ(t−t ′)F (t ′) (A3)

e−Λt =

(
1 m

γ (1− e−γt/m)

0 e−γt/m

)
. (A4)

From this solution we obtain

Q(t) = Q(0) +
m

γ
(1− e−γt/m)V (0) +

√
2γ/β

2m

∫ t

0

dt′
m

γ

(
1− e−γ(t−t′)/m

)
(ξ1(t

′) + ξ2(t
′)) (A5)

V (t) = e−γt/mV (0) +

√
2γ/β

2m

∫ t

0

dt′e−γ(t−t′)/m(ξ1(t
′) + ξ2(t

′)) . (A6)

Taking the ensemble average for both Q(t) and V (t), the integral terms vanish since ξ1 and ξ2 are zero-mean Gaussian
white noise, and we have

⟨Q⟩ = Q(0) +
m

γ
(1− e−γt/m)V (0) (A7)

⟨V ⟩ = e−γt/mV (0) . (A8)

Combining Eq. 4 and Eqs. A5 - A8, we then compute the variances and the covariance:

σ2
QQ = ⟨(Q− ⟨Q⟩)2⟩ = 1

2γβ

∫ t

0

dt′
(
1− e−γ(t−t′)/m

)2

=
m

2βγ2

(
2
γ

m
t− e−2γt/m + 4e−γt/m − 3

)
(A9)

σ2
QV = ⟨(Q− ⟨Q⟩)(V − ⟨V ⟩)⟩ = 1

2βm

∫ t

0

dt′
(
1− e−γ(t−t′)/m

)
e−γ(t−t′)/m =

1

2βγ

(
1− e−γt/m

)2
(A10)

σ2
VV = ⟨(V − ⟨V ⟩)2⟩ = γ

2βm2

∫ t

0

dt′e−2γ(t−t′)/m =
1

2βm

(
1− e−2γt/m

)
. (A11)

https://doi.org/10.1007/BF02846028
https://doi.org/10.1007/BF02846028
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Applying the same procedure to Eqs. 10c and 10d, we obtain

⟨q⟩ =
(
λ+e

−λ−t − λ−e
−λ+t

)
q(0) +

(
e−λ−t − e−λ+t

)
v(0)

λ+ − λ−
(A12)

⟨v⟩ =
ω2

(
e−λ+t − e−λ−t

)
q(0) +

(
λ+e

−λ+t − λ−e
−λ−t

)
v(0)

λ+ − λ−
(A13)

σ2
qq =

2γ
(

γ
mω2 − 4m

γ

(
1− e−γt/m

)
− e−2λ−t

λ−
− e−2λ+t

λ+

)
βm2(λ+ − λ−)2

(A14)

σ2
qv =

2γ
(
e−λ+t − e−λ−t

)2

βm2(λ+ − λ−)2
(A15)

σ2
vv =

2γ
(

γ
m − 4mω2

γ (1− e−γt/m)− λ−e
−2λ−t − λ+e

−2λ+t
)

βm2(λ+ − λ−)2
, (A16)

with

ω2 =
2k

m
, λ± =

1

2

( γ

m
±

√
γ2

m2
− 4ω2

)
. (A17)

The vectors X and x and matrices C and c appearing in the conditional probability distributions Pt(Q,V |Q0, V0)
and Pt(q, v|q0, v0), Eq. 12, are

X =

(
Q− ⟨Q⟩
V − ⟨V ⟩

)
, x =

(
q − ⟨q⟩
v − ⟨v⟩

)
(A18)

C =

(
σ2
QQ σ2

QV

σ2
QV σ2

VV

)
, c =

(
σ2
qq σ2

qv

σ2
qv σ2

vv

)
(A19)

with the first and second moments of (Q,V ) and (q, v) given by Eqs. A7 - A16. Marginalizing the conditional
distributions yields

Pt(Q|Q0, V0) =

∫ ∞

−∞
dV Pt(Q,V |Q0, V0) =

√
1

2πσ2
QQ

exp
( 1

2σ2
QQ

(
Q− ⟨Q⟩

)2)
(A20)

Pt(V |Q0, V0) =

∫ ∞

−∞
dQPt(Q,V |Q0, V0) =

√
1

2πσ2
VV

exp
( 1

2σ2
VV

(
V − ⟨V ⟩

)2)
(A21)

Pt(q|q0, v0) =
∫ ∞

−∞
dvPt(q, v|q0, v0) =

√
1

2πσ2
qq

exp
( 1

2σ2
qq

(
q − ⟨q⟩

)2)
(A22)

Pt(v|q0, v0) =
∫ ∞

−∞
dqPt(q, v|q0, v0) =

√
1

2πσ2
vv

exp
( 1

2σ2
vv

(
v − ⟨v⟩

)2)
. (A23)

From these expressions, we see that in long-time limit t → ∞, the variables V , v, and q settle to the equilibrium
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distributions:

Peq(V ) = lim
t→∞

P (V, t|Q0, V0) =

√
βm

π
e−βmV 2

(A24)

Peq(v) = lim
t→∞

P (v, t|q0, v0) =
√

βm

4π
e−βmv2/4 (A25)

Peq(q) = lim
t→∞

Pt(q|q0, v0) =
√

βmω2

4π
e−βmω2q2/4 . (A26)

Assuming the initial velocities are drawn from the equilibrium distributions Eqs. A24 and A25, we obtain Pt(Q|Q0)
and Pt(q|q0) by integrating out the dependence on V0 and v0 from Eqs. A20 and A22 respectively.

Pt(Q|Q0) =

∫ ∞

−∞
dV0Pt(Q|Q0, V0)Peq(V0) =

1√
2πσ2

Q

exp
(
− 1

2σ2
Q

(
Q− Q̄

)2)
(A27)

Pt(q|q0) =
∫ ∞

−∞
dv0Pt(q|q0, v0)Peq(v0) =

1√
2πσ2

q

exp
(
− 1

2σ2
q

(
q − q̄

)2)
(A28)

Q̄ = Q0 , σ2
Q =

1

βγ

(
t− m

γ
+

m

γ
e−γt/m

)
(A29)

q̄ = αq0 , σ2
q =

2

βmω2

(
1− α2

)
, α =

λ+e
−λ−t − λ−e

−λ+t

λ+ − λ−
. (A30)

Note that both Pt(Q|Q0) and Pt(q|q0) are Gaussians. Since Q and q are independence random variables and
q1 = Q+ q/2, it follows that Pt(q1|Q0, q0) is also a Gaussian:

Pt(q1|Q0, q0) =
1√
2πσ2

q1

exp
(
− 1

2σ2
q1

(
q1 − q̄1

)2)
(A31)

with mean q̄1 = Q̄+ q̄/2 and variance σ2
q1 = σ2

Q + σ2
q/4.

Finally, assuming the initial separation q0 to be sampled from the equilibrium distribution Eq. A26, we obtain
Pt(q1|q10) from Eq. A31 by first performing a change of variables, using Q0 = q10 − q0/2, and then integrating out
the dependence on q0:

Pt(q1|q10, q0) =
∫

dQ0 Pt(q1|Q0, q0) δ
(
Q0 − q10 +

1

2
q0
)

(A32)

Pt(q1|q10) =
∫ ∞

−∞
dq0 Pt(q1|q10, q0)Peq(q0) =

1√
2πσ2(t)

exp
(
− 1

2σ2(t)

(
q1 − q10

)2)
(A33)

σ2(t) =
t

βγ
+

1

2βmω2

{
2− 2m2ω2

γ2

(
1− e−γt/m

)
− 2e−γt/2m

[ γ

ma
sinh

(at
2

)
+ cosh

(at
2

)]}
, a =

√
γ2

m2
− 4ω2

(A34)

Appendix B : Approximate Expression of m∗ for Coupled Brownian Particles with Identical Masses

In Eq. 21, the timescale separations tp ≫ τ and tp ≫ ∆t are valid in regimes 1 and 2, implying γ/mω ≪ 1 and
γ∆t/m ≪ 1. To leading order in γ/mω and γ∆t/m, Eqs. 18 and 20 become:

σ2
∆q1(∆t) ≈ 1

2βmω2

(
2 + ω2∆t2 − 2 cos

(
ω∆t

))
(B1)
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m∗ ≈ 2m
[ ω2∆t2

ω2∆t2 + 2− 2 cos(ω∆t)

]
. (B2)

For regime 1, we also have ∆t ≫ τ , i.e. ω∆t ≫ 1; while in regime 2, we have τ ≫ ∆t, hence ω∆t ≪ 1. Therefore,
from Eq. B2, we can further approximate m∗:

regime 1 : m∗ ≈ 2m
(ω2∆t2

ω2∆t2

)
= 2m (B3)

regime 2 : m∗ ≈ 2m
( ω2∆t2

ω2∆t2 + 2− 2(1− ω2∆t2/2)

)
= m . (B4)

The timescale separations that define regime 3 imply γ∆t/m ≪ 1, mω/γ ≪ 1, and ω∆t ≪ 1. Hence, to leading
order in γ∆t/m and mω2∆t/γ, Eq. 18 gives

σ2
∆q1(∆t) ≈ ∆t2

βm
. (B5)

Therefore, Eq. 7 yields

regime3 : m∗ =
1

βσ2
v̄1

=
∆t2

βσ2
∆q1

(∆t)
≈ ∆t2

β

( βm

∆t2

)
= m . (B6)

Appendix C : Pt(q1|q10) and Approximate Expression of m∗ for Coupled Brownian Particles with Different
Masses

We first rewrite Eq. 22 as follows:

d

dt
X(t) = Λ′ X(t) + F ′ (C1)

X(t) =


q1
q2
v1
v2

 , Λ′ =


0 0 1 0
0 0 0 1

−k/m1 k/m1 −γ/m1 0
k/m2 −k/m2 0 −γ/m2

 , F ′(t) =
√

2γ/β


0
0

ξ1/m1

ξ2/m2

 . (C2)

The general solution for Eq. C1 is:

X(t) = eΛ
′tX(0) +

∫ t

0

dt ′ eΛ
′(t−t ′)F ′(t ′) . (C3)

The matrix exponential eΛ
′t in Eq. C3 is a 4× 4 matrix whose first-row elements are:

eΛ
′ t(1, 1) = a(t) = 1/2 +

3∑
i=1

γ +m1λi

m1m2
AiBie

λit , eΛ
′ t(1, 2) = b(t) = 1/2−

3∑
i=1

γ +m1λi

m1m2
AiBie

λit

eΛ
′ t(1, 3) = c(t) =

m1

2γ
+

3∑
i=1

AiBi

m2
eλit , eΛ

′ t(1, 4) = d(t) =
m2

2γ
+

3∑
i=1

kAi

m1
eλit (C4)

where

A1 =
[
λ1(λ2 − λ1)(λ3 − λ1)

]−1

, A2 =
[
λ2(λ1 − λ2)(λ3 − λ2)

]−1

, A3 =
[
λ3(λ1 − λ3)(λ2 − λ3)

]−1

(C5)

Bi = m2λ
2
i + γλi + k (C6)
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and λi [i ∈ {1, 2, 3}] are the roots of the cubic equation

x3 +

(
γ

m1
+

γ

m2

)
x2 +

(
k

m1
+

k

m2
+

γ2

m1m2

)
x+

2kγ

m1m2
= 0 . (C7)

Substituting Eq. C4 into Eq. C3, we obtain q1(t) in terms of the initial values of the variables:

q1(t) = a(t)q10 + b(t)q20 + c(t)v10 + d(t)v20 +

∫ t

0

dt′c(t− t′)

√
2γ/β

m1
ξ1(t

′) +

∫ t

0

dt′d(t− t′)

√
2γ/β

m2
ξ2(t

′) . (C8)

Taking the ensemble average gives:

⟨q1⟩ = a(t)q10 + b(t)q20 + c(t)v10 + d(t)v20 . (C9)

From Eqs. 4, C8 and C9, we obtain the variance of q1:

σ2
q1 = ⟨(q1 − ⟨q1⟩)2⟩ =

2γ

βm2
1

∫ t

0

c2(t− t′)dt′ +
2γ

βm2
2

∫ t

0

d2(t− t′)dt′ . (C10)

By Eq. C1, the variables (q1, q2, v1, v2) evolve under linear underdamped Langevin equations with independent
Gaussian white noises. Therefore, the conditional probability P (q1, q2, v1, v2, t|q10, q20, v10, v20) is a multivariate Gaus-
sian. Integrating out the dependence on q2, v1, and v2, we have the marginal distribution:

Pt(q1|q10, q20, v10, v20) =
√

1

2πσ2
q1

exp
( −1

2πσ2
q1

(q1 − ⟨q1⟩)2
)

. (C11)

.
Letting q = q1 − q2 denote the separation between the particles, we have the initial separation q0 = q10 − q20. We

then perform a change of variables in Eq. C11 to obtain

Pt(q1|q10, q0, v10, v20) =
∫

dq20P (q1, t|q10, q20, v10, v20)δ(q20 − q10 + q0) . (C12)

Assuming the initial separation and the initial velocities q0, v10, and v20 obey the equilibrium distributions,

Peq(q0) =

√
βk

2π
exp

(−β

2
kq20

)
(C13)

Peq(v10) =

√
βm1

2π
exp

(−β

2
m1v

2
10

)
(C14)

Peq(v20) =

√
βm2

2π
exp

(−β

2
m2v

2
20

)
, (C15)

we integrate out the dependence on q0, v10, and v20 from P (q1|q10, q0, v10, v20) to obtain Pt(q1|q10):

Pt(q1|q10) =
∫ ∞

−∞
dq0

∫ ∞

−∞
dv10

∫ ∞

−∞
dv20 P (q1|q10, q0, v10, v20)Peq(q0)Peq(v10)Peq(v20) (C16)

=

√
1

2πσ2
∆q1

exp
( −1

2σ2
∆q1

(q1 − q10)
2
)

(C17)

(C18)

with

σ2
∆q1(t) = σ2

q1(t) +
b2(t)

βk
+

c2(t)

βm1
+

d2(t)

βm2
. (C19)
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Therefore, by Eq. 7, the effective mass m∗ is

m∗ =
1

βσ2
v̄1

=
∆t2

βσ2
∆q1

(∆t)
=

∆t2

β

(
σ2
q1(∆t) +

b2(∆t)

βk
+

c2(∆t)

βm1
+

d2(∆t)

βm2

)−1

(C20)

Eq. C20 is an exact expression. In the following, assuming the timescale separations described by Eq. 28, we
compute approximate expression for m∗. To start, we obtain approximate expressions for the λi’s. Since these are
the roots of a cubic equation, Eq. C7, we have

λ1 = −m1 +m2

3m1m2
γ − 21/3

3

∆1(
∆2 +

√
∆2

2 + 4∆3
1

)1/3
+

1

3 · 21/3
(
∆2 +

√
∆2

2 + 4∆3
1

)1/3
(C21)

λ2 = −m1 +m2

3m1m2
γ +

1 +
√
3i

3 · 22/3
∆1(

∆2 +
√
∆2

2 + 4∆3
1

)1/3
− 1−

√
3i

6 · 21/3
(
∆2 +

√
∆2

2 + 4∆3
1

)1/3
(C22)

λ3 = −m1 +m2

3m1m2
γ +

1−
√
3i

3 · 22/3
∆1(

∆2 +
√
∆2

2 + 4∆3
1

)1/3
− 1 +

√
3i

6 · 21/3
(
∆2 +

√
∆2

2 + 4∆3
1

)1/3
(C23)

with

∆1 = 3
( k

m1
+

k

m2
+

γ2

m1m2

)
− (m1 +m2)

2

m2
1m

2
2

γ2 (C24)

∆2 = 9kγ
m2

1 − 4m1m2 +m2
2

m2
1m

2
2

+
−2m3

1 + 3m2
1m2 + 3m1m

2
2 − 2m3

2

m3
1m

3
2

γ3 . (C25)

Recall that tpi = mi/γ and τ = 2π
√
m1m2/k(m1 +m2). In regimes 1 and 2, we have tp1 ≈ tp2 ≫ τ , which implies:

m1

γ
≫

√
m1m2

k(m1 +m2)
,

m2

γ
≫

√
m1m2

k(m1 +m2)
(C26)

1 ≫ γ√
k

√
m2

m1(m1 +m2)
, 1 ≫ γ√

k

√
m1

m2(m1 +m2)
. (C27)

Since tp1
≈ tp2

, it follows that m1 ≈ m2, thus we have:

1 ≫

√
γ2m2

km1(m1 +m2)
≈

√
γ2m1

km2(m1 +m2)
≈

√
γ2

k(m1 +m2)
≈

√
γ2

k(2m1)
≈

√
γ2

k(2m2)
. (C28)

With Eq. C28, we approximate λi from Eqs. C21 - C23, keeping terms up to O(k−1m−2
j γ3) [j ∈ 1, 2], obtaining

λ1 ≈ −2γ

m1 +m2
− 2(m1 −m2)

2

k(m1 +m2)4
γ3 (C29)

Re(λ2) = Re(λ3) ≈
−(m2

1 +m2
2)

2m1m2(m1 +m2)
γ +

(m1 −m2)
2

k(m1 +m2)4
γ3 (C30)

Im(λ2) = −Im(λ3) ≈

√
k(m1 +m2)

m1m2
−
√

m1m2

k(m1 +m2)

m4
1 + 4m3

1m2 − 6m2
1m

2
2 + 4m1m

3
2 +m4

2

8m2
1m

2
2(m1 +m2)2

γ2 . (C31)
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Substituting Eqs. C29 - C31 into Eq. C19 and keeping terms to O(k−1m0
jγ

0), we have:

σ2
∆q1(∆t) ≈ 1

β

[(∆t

γ
+

1

2k
− m1 +m2

2γ2

)
+

(m1 +m2

2γ2
− m2

1 + 2m1m2 − 3m2
2

2k(m1 +m2)2

)
exp

( −2γ∆t

m1 +m2

)

− 2m2
2

k(m1 +m2)2
cos

(√k(m1 +m2)

m1m2
∆t

)
exp

(
− (m2

1 +m2
2)γ∆t

2m1m2(m1 +m2)

)]
. (C32)

Furthermore, in regimes 1 and 2 we have tp1
≈ tp2

≫ ∆t, and thus γ∆t/mj ≪ 1. Therefore, expanding the
exponentials in Eq. C32 to O(γ2∆t2m−2

j ), we obtain

σ2
∆q1(∆t) ≈ 1

β

( m2τ
2

2π2m1(m1 +m2)

(
1− cos(2π∆t/τ)

)
+

∆t2

m1 +m2

)
. (C33)

Finally, using Eq. C20, we arrive at an approximate expression for m∗ that is valid in regimes 1 and 2:

m∗ ≈ (m1 +m2)2π
2(∆t/τ)2

2π2(∆t/τ)2 + (m2/m1)(1− cos(2π∆t/τ))
. (C34)

As a consistency check, we confirm that that if m1 = m2 = m, then Eq. C34 reduces to Eq. B2.


	Added mass effect in coupled Brownian particles
	Abstract
	Introduction
	Model and Analysis
	Brownian Particles with Different Masses
	Numerical Simulations
	Summary
	Acknowledgments
	References
	Appendix
	Appendix A : Pt(q1|q10) for Coupled Brownian Particles with Identical Masses
	Appendix B : Approximate Expression of m* for Coupled Brownian Particles with Identical Masses
	Appendix C : Pt(q1|q10) and Approximate Expression of m* for Coupled Brownian Particles with Different Masses



