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Abstract 

Cell image segmentation is usually implemented using fully supervised deep learning methods, which heavily rely on 

extensive annotated training data. Yet, due to the complexity of cell morphology and the requirement for specialized 

knowledge, pixel-level annotation of cell images has become a highly labor-intensive task. To address the above problems, 

we propose an active learning framework for cell segmentation using bounding box annotations, which greatly reduces the 

data annotation cost of cell segmentation algorithms. First, we generate a box-supervised learning method (denoted as 

YOLO-SAM) by combining the YOLOv8 detector with the Segment Anything Model (SAM), which effectively reduces 

the complexity of data annotation. Furthermore, it is integrated into an active learning framework that employs the MC 

DropBlock method to train the segmentation model with fewer box-annotated samples. Extensive experiments demonstrate 

that our model saves more than ninety percent of data annotation time compared to mask-supervised deep learning methods. 
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1. Introduction 

Image segmentation plays a crucial role in various medical image analysis tasks, which can help in diagnosis, 

treatment planning and scientific research. Among them, cellular instance segmentation is a key challenge, 

which directly affects the accuracy of cell quantification, pathological analysis, and personalized medicine [1]. 

Conventional cell segmentation methods, including level sets and watersheds, are inflexible and unautomated  

[2]. In contrast, deep learning algorithms address these challenges through end-to-end learning, automatically 
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extracting optimal features from cell images, and achieving higher accuracy without manual feature design by 

researchers [3]. However, many current deep learning methods for cell segmentation rely heavily on precise 

mask-supervised training, and the accuracy of the model depends on the quality and quantity of annotated data 

[4]. Annotating cells in microscopic images is more challenging than the objects in natural images because of 

their complex cell morphology, unclear boundaries, frequent noise interference, and the need for significant 

expertise [5]. It is therefore important to explore potential ways to reduce the burden of manual annotation. 

Cell segmentation aims at obtaining the location and shape of the cells, but the annotation process is very 

time-consuming whether it is mask-based or polygon-based [6]. Research has shown that annotating an object's 

bounding box in COCO only requires 8.8% of the time (7s vs. 79.2s) compared to annotating its mask based on 

polygons [7]. Hence, more and more research is dedicated to exploring efficient methods for leveraging coarse 

annotations, such as points [8], bounding boxes [9], and scribbles [10], to obtain cell masks [11,12]. Cell images 

are diverse and complex, with unclear and overlapping cell boundaries, so box annotation is more accurate than 

point or scribble annotation and more efficient than polygon annotation, making it an ideal weak annotation 

method for mask acquisition in cell segmentation tasks [13]. 

Given the high cost of acquiring annotated data, it is imperative to explore how to utilize the annotation data 

more efficiently. Since the annotation of cells requires the intervention of experts in the relevant field, active 

learning as a human-in-the-loop framework fits well with this task. Active learning (AL) aims to select the most 

useful samples from the unlabeled dataset and hand it over to the oracle for annotation, to reduce the cost of 

annotation as much as possible while still maintaining performance [14,15]. It has been demonstrated that active 

learning can significantly reduce the number of training samples required, thereby alleviating the workload of 

experts for segmentation tasks [15–17]. Especially in the field of cell segmentation, by only annotating a small 

portion of cell masks, the model can achieve performance that is very close to a mask-supervised method [17,18]. 

However, the annotated data used by the above method is still a pixel-level mask object, which still requires a 

lot of annotation time. 

Therefore, this paper presents a novel method that only requires bounding box annotations for cell objects 

and uses active learning to further improve the utilization of annotated samples. Specifically, we combine the 

object detection model YOLOv8 with the Segment Anything Model (SAM) [19] (denoted as YOLO-SAM) to 

achieve accurate cell segmentation, and then integrate it into an active learning framework to efficiently utilize 

box-annotated data. Our main contributions can be summarized as follows. 

 A box-supervised deep learning method (YOLO-SAM) for cell segmentation is presented that 

outperforms other mask-supervised methods such as Mask R-CNN on three public medical datasets. 

 Combining YOLO-SAM with active learning, a low-cost algorithmic framework for cell segmentation 
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is proposed, which greatly reduces the data annotation time. 

 The impact of Monte-Carlo DropBlock sampling method in active learning on model learning 

efficiency is investigated, and the cost of data annotation used in this method is analyzed. 

2. Related Work 

Currently, research has shown that instance segmentation masks can be obtained using only bounding box 

annotations. The recent Box2Seg [20] method utilizes masks generated by GrabCut as pseudo-tags, iterating to 

refine the segmentation results. BBTP [21] transformed the box tightness prior into latent ground truth using 

multiple instance learning (MIL) and utilized structural constraints to preserve piece-wise smoothness in 

predicted masks. Boxinst [22] replaces the mask loss with the projection loss and pairwise loss in CondInst 

without modifying the segmentation network itself, achieving a significant improvement in segmentation 

performance. In addition, BoxLevelSet [23] incorporates the classic level set evolution model into deep neural 

network learning. It leverages both the input image and its deep features to implicitly evolve the level set curve 

and employs a local consistency module based on pixel affinity kernels to extract local context and spatial 

relations. However, the methods above are specifically designed for natural objects and rely largely on CNNs 

that only capture local details. In contrast, this paper proposes a novel box-supervised approach for cell 

segmentation, which combines CNN with transformer that considers long-distance dependencies. 

YOLOv8 is a CNN-based single-stage object detection model, which improves the detection performance 

and achieves better accuracy by introducing the CSPDarknet53 architecture and using PANet for feature fusion 

[24]. YOLOv8 offered a range of five scaled versions, namely YOLOv8n (nano), YOLOv8s (small), YOLOv8m 

(medium), YOLOv8l (large), and YOLOv8x (extra-large). Segment Anything Model (SAM) is a transformer 

model trained on the extensive SA1B dataset, and designed to segment an object of interest in an image given 

certain prompts provided by a user [19]. Prompts can take the form of a single point, a bounding box, or text. 

In this paper, we propose a box-supervised learning method that uses the bounding box output from the 

YOLOv8 model as a prompt for SAM. 

Active learning aims to explore how to obtain maximum performance gains with minimal labeled samples, 

focusing on selecting the most informative samples from unlabeled datasets. For a given unlabeled data set, the 

current main query strategies include diversity-based methods [25–27] and uncertainty-based methods [27–29]. 

Diversity-based methods select data samples that represent the overall distribution of the data pool. This method 

is affected by the density of the data pool, has limited ability to improve decision boundaries, and has a relatively 

high computational cost [30]. Uncertainty-based methods select the N samples with the highest uncertainty by 

measuring the uncertainty of a pool of unlabeled data [14]. Uncertainty can be determined by computing the 
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entropy of the probability of a data sample [31], the margin of the first and second predicted probability [32], 

or by using Bayesian deep neural networks with Monte-Carlo (MC) dropout [33–35]. However, many deep 

learning models (e.g., YOLOv8) are based on convolutional operations. Dropout was found to be ineffective 

for convolutional neural networks, so DropBlock for convolutional neural networks was proposed, which 

achieves uncertainty modeling by dropping neurons in contiguous regions of the feature map [36,37]. Hence, 

we propose Monte-Carlo (MC) DropBlock as an uncertainty sampling method in active learning. 

3. The Proposed Cell Segmentation Method Based on Active Learning 

3.1  Overview 

As shown in Fig.1, our method is a human-in-the-loop framework that incorporates box supervision into 

active learning for segmentation tasks. Firstly, A bounding box supervised segmentation algorithm, i.e. YOLO-

SAM, is proposed to obtain an accurate mask through the bounding box of a cell. Then, YOLO-SAM is 

integrated into the active learning framework to observe the effect of different sampling strategies on the 

efficiency of model performance improvement. 

Details of each part of the proposed network structure are described in this section. 
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Fig.1 Overall framework of our method. 
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3.2  Box-supervised Segmentation Algorithm YOLO-SAM 

As shown in Fig.1, we trained YOLOv8 for the region of interest detection and used predicted bounding 

boxes as prompts to SAM for instance segmentation, i.e. YOLO-SAM. 

Before training the model, we preprocess the cell images to be used. This includes resizing the images, 

enhancing the contrast, and removing noise. YOLOv8 utilizes the C2f (cross-level partial bottleneck with two 

convolutions) module and employs a spatial pyramid fast pooling (SPPF) layer to make the feature pool a fixed-

size map. We fed cell images and corresponding bounding box labels to YOLOv8 for iterative training and fine-

tuned the weighting parameters for each dataset to optimize cell detection. The main objective of the YOLOv8 

model is to accurately detect approximate boundary boxes around the Regions of Interest (ROI) present in our 

cell images. These boundary boxes serve as essential inputs to the SAM model, performing the subsequent 

segmentation task. 

The reason for aiming at approximate boundary boxes is that the SAM model’s dice score remains relatively 

consistent even when the boundary boxes vary by a small margin, specifically 5-10 pixels [38]. SAM is a 

versatile and potent architecture designed for real-world segmentation tasks. It consists of the following 

components: image encoder, mask encoder, prompt encoder and mask decoder [39]. The image encoder 

converts the input image into encoded features. The mask encoder encodes the mask as a dense prompt, while 

the prompt encoder encodes the bounding box predicted by YOLOv8 as a sparse prompt. The mask decoder, 

consisting of multiple layers of attention, interacts with the image features with the prompt features to output 

the final segmentation map. Utilizing image, prompt, and lightweight mask encoders, SAM accurately predicts 

segmentation masks. By combining YOLOv8’s approximate boundary boxes with the spatial attention 

mechanisms of SAM, this approach ensures better localization and segmentation of regions of interest in cell 

images. 

3.3  Active Learning Based Algorithm for Box-supervised Cell Segmentation 

Generally speaking, active learning consists of four main steps in our study. First, we selected an initial set 

of images L0 from the training pool L, and annotated them by an oracle. Second, we trained an object detector 

f(x|L0) using YOLOv8 on these images and predicted segmentation masks by SAM. Third, the trained 

segmentation model g(x|L0) was evaluated on the independent test set to determine its performance. Fourth, a 

new subset Li of images was selected from the training pool with sampling. After the fourth step, the selected 

images Li are annotated and added to the previous training set L0. The segmentation model is retrained on this 

combined image set L0+Li and then evaluated to sample the new images. The whole process is repeated for 
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several iterations, so that there is ƩLi that achieves equivalent performance to L, i.e. f (x| ƩLi)≈f (x|L). The 

details of our data augmentation algorithm are presented in Algorithm 1. 

Algorithm 1: Box-supervised Segmentation Method Based on Active Learning 
Input: data-pool, sample-size, pre-training weight F0=0 
Output: DSC-list 
1:    initia-data ← RandomlySample(data-pool, sample-size) 
2:    L0 ← Annotate(initia-data) 
9:    for i ← 1 to loop do 
10:       sampled-image ←sampling-strategy (data-pool, sample-size) 
11:       Li ← Annotate(Sampled-image) 
12:       Fi ← Train-YOLOv8(Li+Li-1, Fi-1) 
13:       Bbox-output ← F(validate-set) 
14:       Mask-output ← SAM(Bbox-output) 
15:       DSC ← Evaluate-YOLO-SAM(Mask-output) 
16:       DSC-list.insert(DSC) 
17:       data-pool ← data-pool − sampled-image 
18:  end 
19:  return DSC-list 

In this paper, we employ the Monte-Carlo (MC) DropBlock method for deep learning models, which provides 

the required uncertainty modeling capability when sampling unlabeled images for active learning. The MC 

DropBlock approach aims to add DropBlock to the model network and apply them during training and inference, 

which can be interpreted as generating multiple DropBlock architectures for an averaged prediction. Literature 

[37] derives a proof of theory showing that MC DropBlock is equivalent to a Bayesian convolutional neural 

network and therefore captures the epistemic uncertainty of out-of-distribution data. We add DropBlock to the 

YOLOv8 model and analyze the effect of different locations of its addition on the sampling efficiency of active 

learning. These three locations are at the backbone-neck junction (MC DropBlock 1), during feature fusion of 

the neck (MC DropBlock 2), and before the prediction of the head (MC DropBlock 3). 

We give a visual example of sampling using the MC DropBlock method, as shown in Figure 2. DropBlock 

drops contiguous regions of the intermediate feature layer with a certain probability, which can be viewed as 

giving rise to a sub-network of multiple architectures. In the inference stage, we make T forward passes, and 

each time the resulting subnetwork outputs a different prediction value separately, which we employ to 

compute the uncertainty of each image. The uncertainty calculations were adopted from Pieter et al. (2022) 

[40], where the coefficients of the three components—category, bounding box, and mask—are multiplied 

together, as shown in Eqs. (1-4). 

                                                           𝑐𝑐𝑖𝑖 = 1
𝑡𝑡
∑ [1 − −∑ 𝑃𝑃(𝑘𝑘𝑖𝑖)∙log𝑃𝑃(𝑘𝑘𝑖𝑖) 𝑚𝑚

𝑖𝑖=1
−∑ 1

𝑚𝑚∙
𝑚𝑚
𝑖𝑖=1 𝑙𝑙𝑙𝑙𝑙𝑙 1

𝑚𝑚
]𝑡𝑡

𝑖𝑖=1                                                        (1) 
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                                                          𝑐𝑐𝑏𝑏 = 1
𝑡𝑡
∙ ∑ 𝐼𝐼𝐼𝐼𝐼𝐼�𝐵𝐵�(𝑆𝑆),𝐵𝐵(𝑠𝑠𝑖𝑖)�𝑡𝑡

𝑖𝑖=1                                                                (2) 

                                                        𝑐𝑐𝑚𝑚 =  1
𝑡𝑡
∙ ∑ 𝐼𝐼𝐼𝐼𝐼𝐼 �𝑀𝑀�(𝑆𝑆),𝑀𝑀�𝑠𝑠𝑗𝑗��𝑡𝑡

𝑗𝑗=1                                                             (3) 

                                                                  𝑐𝑐 = 𝑐𝑐𝑖𝑖 ∙ 𝑐𝑐𝑏𝑏 ∙ 𝑐𝑐𝑚𝑚                                                                                 (4) 

where m is the number of classes, t is the number of instance sets, 𝑃𝑃(𝑘𝑘𝑖𝑖) is the confidence score of each class. 

𝐵𝐵�(𝑆𝑆) and 𝑀𝑀�(𝑆𝑆) are the mean bounding box and mask of all instance sets, respectively. 𝐵𝐵(𝑠𝑠𝑖𝑖) and 𝑀𝑀�𝑠𝑠𝑗𝑗� are the 

corresponding each individual box and mask prediction within that instance set, respectively. In the sampling 

stage of active learning, we select the N images with the highest uncertainty to be annotated by experts. 

(a) Input image

(d) Prediction of 
bounding boxes 

and masks

(b) Applying 
DropBlock in 
feature map

(c) Heat map 
after DropBlock

(f) Uncertainty
c=c_i*c_b*c_m

  
  

 
Fig.2 Visual example of uncertainty calculation with the MC DropBlock method. 

4. Experiments and Results 

4.1 Datasets and Implementation Details 

To evaluate our proposed method, we conducted extensive experiments on three public cell segmentation 

datasets, which include PanNuke, Data Science Bowl (DSB) 2018 and MoNuSeg datasets. The details of the 

datasets are described as follows. 

(1)PanNuke. PanNuke [41] is a semi automatically generated nuclei instance segmentation and classification 

dataset with exhaustive nuclei labels across 19 different tissue types. In total, the dataset contains 205,343 

labeled nuclei, each with an instance segmentation mask. 

(2)Data Science Bowl (DSB) 2018. The DSB2018 dataset [42] contains 670 images of cell nuclei with 

segmentation masks, each containing one nucleus with no overlap between masks. The sample size of the 
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training set and test set are 536 and 134 images, respectively. 

(3)MoNuSeg. The MoNuSeg dataset [43] contains Multi-Organ Nucleus Segmentation (MoNuSeg) is a nucleus 

segmentation dataset consisting of H&E images representing nuclei from seven different organs to ensure 

diversity in nuclear appearance. The dataset consists of a total of 51 images containing 28,846 annotated cells. 

We segmented the 1000x1000 image into sixteen 250x250 images, resulting in 592 training and validation 

images and 224 test images. 

We used the YOLOv8 medium version as a detector to predict the bounding box, employing a confidence 

level of 0.2 and an IoU (for NMS) of 0.5, and used ViT-B as the backbone of the SAM-based image encoder. 

And we compare the proposed YOLO-SAM method with the state-of-the-art box-supervised instance 

segmentation methods BoxInst [22], Boxlevelset [23] and the classical mask-supervised method Mask R-CNN 

[44], SOLOv2 [45]. The optimizer for these models uses the AdamW with the learning rate(lr) set to 0.01 at the 

beginning and gradually decreasing by a factor of 0.01 throughout training with a batch size of 16, and 

momentum of 0.937, while weight decay is set to 0.0005. In each loop of active learning, YOLO-SAM was 

trained for 150 epochs. The MC DropBlock method used DropBlock with a dropout probability of 0.25, block 

size of 7, and a total of 8 forward passes. 

We use the Dice Coefficient (DSC) to evaluate the performance of the segmentation model, defined as the 

similarity between the ground truth mask and the predicted mask. We conduct our experiments using NVIDIA 

GTX 3090 GPU in Python 3.8. 

4.2 Results and Analysis 

4.2.1 Comparison of Box-supervised Learning Approaches 

We compared our proposed YOLO-SAM method against the state-of-the-art box-supervised instance 

segmentation approaches. The results of representative fully mask-supervised methods are also reported for 

reference. 

Table 1 shows the performance comparison of YOLO-SAM with other state-of-the-art methods such as Mask 

R-CNN and BoxInst on PanNuke, 2018DSB, and MoNuSeg datasets, respectively. On all three datasets, YOLO-

SAM outperforms the two representative box-supervised segmentation models, with substantial improvements 

in segmentation accuracy. Moreover, the performance of YOLO-SAM is almost comparable to the mask-

supervised method Mask R-CNN. This is mostly due to the effective combination of a CNN that captures local 

details and a transformer that considers global information. 
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Table 1. Performance comparison of different cell segmentation algorithms on PanNuke, 2018DSB, MoNuSeg datasets. The best results 
are in bold. 

 Method PanNuke 2018DSB MoNuSeg 

Mask-supervised 

methods 

Mask R-CNN 81.02 86.26 75.75 

SOLOv2 78.25 87.80 61.54 

Box-supervised 

methods 

BoxInst 69.80 77.37 62.52 

Boxlevelset 75.81 83.73 76.28 

Ours(YOLO-SAM) 80.90 88.39 78.01 

Representative visualization results are illustrated in Fig. 3. We can see that segmentation masks predicted 

by BoxInst has overlapping and undetected cell instances, and segmentation masks generated from 

BoxLevelset is not clear enough in terms of boundary, but YOLO-SAM can accurately detect cell instances 

and further improve the shape of segmentation mask. Our method achieves excellent performance. 

Fig. 3 Comparison of segmentation masks for random images on PanNuke, 2018DSB and MoNuSeg dataset predicted by 
BoxInst(ResNet-101), BoxLevelset(ResNet-101), and YOLO-SAM respectively. 
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4.2.2 Analysis of Annotation Costs Based on Active Learning 

We combine the box-supervised deep learning method YOLO-SAM mentioned above with an active 

learning process to form a weakly supervised learning method. As described in Section 3.3, when employing 

the MC DropBlock method for sample selection, we investigated the impact of applying DropBlock at three 

different locations in YOLO-SAM on the efficiency of model performance improvement. The random 

sampling method is to randomly select the samples to be annotated for training during each round of active 

learning. 

Fig. 4 shows the performance on three public datasets using the MC DropBlock method and the random 

sampling method, where we counted the DSC values (averaged over three times) as the number of training 

sets increased. We observed that our method achieves nearly equivalent performance to mask-supervised 

learning while using minimal data across all three datasets. Notably, the sampling method based on MC 

DropBlock 1 shows superior performance, as the DropBlock removes semantic information, placing it deeper 

in the feature extraction network is better for improving generalisation and increasing uncertainty modelling 

capabilities. On the Pannuke dataset, utilizing only 32.7% of training samples, the sampling method based on 

MC DropBlock 1 yields a DSC value of 80.1. This highlights that our method achieves 99% of the 

performance of the mask-supervised instance segmentation model Mask R-CNN while utilizing only 32.7% 

of the bounding box labeled data. This trend in performance is consistent across the 2018DSB and MoNuSeg 

datasets as well. 

Fig. 4 Comparison of trends in DSC of our method on (a)PanNuke, (b)2018DSB, and (c)MoNuSeg Datasets. The black solid line 
represents the performance of the Mask R-CNN model that was trained on the entire mask-annotated training pool. 

Literature [7] shows that it takes only 8.8% of the time to annotate an object's bounding box in COCO 

compared to annotating a mask based on a polygon. As shown in Equation (5), when the DSC of this method 

reaches 99% of the Mask R-CNN method, we calculated the data annotation time cost at this point compared 

to the mask-supervised learning method, i.e., Mask R-CNN. The calculated results are shown in Table 2. For 

example, on the Pannuke dataset, when our model achieves 99% of the performance of Mask R-CNN, the 
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sampling method based on MC DropBlock 1 uses only 32.7% of the box-annotated samples, i.e., it uses only 

32.7% *8.8%=2.9% of the annotation time. Thus, compared to mask-supervised segmentation algorithms, our 

model requires only a few percent of the annotation time to achieve high-performance segmentation, i.e., it 

saves more than ninety percent of the annotation time. 

𝐴𝐴 = 𝑁𝑁𝑏𝑏
𝑁𝑁𝑚𝑚

× 8.8%                                                                      (5) 

where Nb is the number of images annotated with bounding boxes, Nm is the number of images annotated with 

masks, and 8.8% is the ratio of the average time to annotate the bounding box of a natural object to the time to 

annotate the polygon mask. 
Table 2. Minimum annotation time used by each of the sampling methods of active learning on each of the three datasets when the model 
performance (DSC) reaches 99% of that of Mask-RCNN. The best results are in bold. 

Method                Datasets PanNuke 2018DSB MoNuSeg 

MC DropBlock 1 2.9% 4.1% 2.7% 

MC DropBlock 2 7.8% 7.6% 3.6% 

MC DropBlock 3 4.5% 5.1% 3.6% 

The above analysis shows that our method can reduce the number of required training samples, and the 

annotation time of a single image. Overall, our method greatly reduces the cost of data annotation for cell 

segmentation. 

5. Conclusion and Future Work 

This paper presents a method that synergistically combines bounding box annotations with active learning, 

significantly reducing the annotation cost needed to train a cellular segmentation network. First, a box-

supervised segmentation method named YOLO-SAM is designed to achieve accurate cell segmentation using 

only bounding box annotations. Then, it is integrated into an active learning framework. Applying the MC 

DropBlock-based active learning approach significantly improves the efficiency of model performance 

enhancement. Ultimately, we achieve the performance of Mask R-CNN while using only a fraction of the 

annotation time. This method, which accomplishes cell segmentation with only a small number of box-

annotated data, substantially reduces data annotation time cost. 

For future work, we will consider several directions in terms of low-cost cell segmentation. First, we will 

analyze the time cost required for cell segmentation using more active learning sampling strategies. Then, the 

evaluation method of data annotation cost will be further refined to make the results more scientific. 
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